102
Variational Principles and Lagrange’s Equations

Variational Principles and Lagrange’s Equations

  • Upload
    jenaya

  • View
    81

  • Download
    7

Embed Size (px)

DESCRIPTION

Variational Principles and Lagrange’s Equations. Joseph Louis Lagrange/ Giuseppe Luigi Lagrangia (1736 – 1813). Definitions Lagrangian density : Lagrangian : Action : How to find the special value for action corresponding to observable ?. Pierre-Louis Moreau - PowerPoint PPT Presentation

Citation preview

Page 1: Variational Principles and Lagrange’s Equations

Variational Principles

and Lagrange’s Equations

Page 2: Variational Principles and Lagrange’s Equations

Definitions

• Lagrangian density:

• Lagrangian:

• Action:

• How to find the special value for action corresponding to observable ?

nin

nmi

xx

xη,

)(L tzyxx

i

n ,,,

?...3,2,1,0

dxdydzL L

t

dt

trdL

im

i

,)(

dtt

dt

trdLI

im

i

,)(

)(tr Joseph Louis

Lagrange/Giuseppe Luigi

Lagrangia (1736 – 1813)

zyxm rrrr ,,

Page 3: Variational Principles and Lagrange’s Equations

Variational principle

• Maupertuis: Least Action Principle

• Hamilton: Hamilton’s Variational Principle

• Feynman: Quantum-Mechanical Path Integral Approach

Pierre-Louis Moreau de Maupertuis (1698 – 1759)

Sir William Rowan Hamilton

(1805 – 1865)

Richard Phillips Feynman

(1918 – 1988)

Page 4: Variational Principles and Lagrange’s Equations

Functionals

• Functional: given any function f(x), produces a number S

• Action is a functional:

• Examples of finding special values of functionals using variational approach:

shortest distance between two points on a plane;the brachistochrone problem;minimum surface of revolution; etc.

)]([ xfS

2

1

,)(

)]([t

ti

mi

dttdt

trdLtrI

Page 5: Variational Principles and Lagrange’s Equations

Shortest distance between two points on a plane

• An element of length on a plane is

• Total length of any curve going between points 1 and 2 is

• The condition that the curve is the shortest path is that the functional I takes its minimum value

22 dydxds

2

1

dsI

2

1

2

1 dxdx

dy

Page 6: Variational Principles and Lagrange’s Equations

The brachistochrone problem

• Find a curve joining two points, along which a particle falling from rest under the influence of gravity travels from the highest to the lowest point in the least time

• Brachistochrone solution: the value of the functional t [y(x)] takes its minimum value

dtdsv /

2

1

12 v

dst

2

1

2

2

/1dx

gy

dxdy

22 dydxds

mgymv

2

2

gyv 2

Page 7: Variational Principles and Lagrange’s Equations

Calculus of variations

• Consider a functional of the following type

• What function y(x) yields a stationary value (minimum, maximum, or saddle) of J ?

2

1

),...,,,,()]([x

x

dxxyyyyfxyJ dx

dyy

x

y

0

),( 22 yx

),( 11 yx

Page 8: Variational Principles and Lagrange’s Equations

Calculus of variations

• Assume that function y0(x) yields a stationary value and consider all possible functions in the form:

x

y

0

),( 22 yx

),( 11 yx

...)()()(),( 12

0 xxxyxy

0)()( 21 xx

Page 9: Variational Principles and Lagrange’s Equations

Calculus of variations

• In this case our functional becomes a function of α:

• Stationary value condition:

)()(),( 0 xxyxy 0)()( 21 xx

)(),()],([2

1

JdxxfxyJx

x

0)()(

0)(),( 0

d

dJ

d

dJ

xyxy

Page 10: Variational Principles and Lagrange’s Equations

Stationary value

2

1

),...,,,()(

x

x

dxxyyyfd

d

d

dJ

2

1

),...,,,(x

x

dxd

xyyydf

2

1

...x

x

dxy

y

fy

y

fy

y

f

1

2

3

2

1

.1x

x

dxy

y

f

2

1

x

x

dxy

f

)()(),( 0 xxyxy

Page 11: Variational Principles and Lagrange’s Equations

Stationary value

2

1

),...,,,()(

x

x

dxxyyyfd

d

d

dJ

2

1

),...,,,(x

x

dxd

xyyydf

2

1

...x

x

dxy

y

fy

y

fy

y

f

1

2

3

2

1

.2x

x

dxy

y

f

2

1

2x

x

dxx

y

y

f

u

dv

2

1

x

x

y

y

f

u

v

2

1

x

x

dxy

f

dx

dy

v

du

)()(),( 0 xxyxy

2

1

x

xy

f

2

1

x

x

dxy

f

dx

d

0)(

0)(

2

1

x

x

Page 12: Variational Principles and Lagrange’s Equations

Stationary value

2

1

),...,,,()(

x

x

dxxyyyfd

d

d

dJ

2

1

),...,,,(x

x

dxd

xyyydf

2

1

...x

x

dxy

y

fy

y

fy

y

f

1

2

3

2

1

.3x

x

dxy

y

f

2

1

x

x

y

y

f

2

1

x

x

dxy

f

dx

dy

2

1

x

xy

f

2

1

x

xy

f

dx

d

2

1

2

2x

x

dxy

f

dx

d

Page 13: Variational Principles and Lagrange’s Equations

Stationary value

2

1

),...,,,()(

x

x

dxxyyyfd

d

d

dJ

2

1

),...,,,(x

x

dxd

xyyydf

2

1

...x

x

dxy

y

fy

y

fy

y

f

1

2

3

2

1

x

xy

f

2

1

2

2x

x

dxy

f

dx

d

2

1

x

x

dxy

f

2

1

x

x

dxy

f

dx

d

2

1

...2

2x

x

dxy

f

dx

d

y

f

dx

d

y

f

2

1

x

xy

f

...

...

Page 14: Variational Principles and Lagrange’s Equations

Stationary value

... ...2

1

2

1

2

2

x

x

x

x y

fdx

y

f

dx

d

y

f

dx

d

y

f

d

dJ

),( xyff

2

1

x

x

dxy

f

d

dJ

0)(

0

d

dJ0

2

1 0 )(),(

x

x xyxy

dxy

f

arbitrary

0y

fTrivial …

Page 15: Variational Principles and Lagrange’s Equations

Stationary value

... ...2

1

2

1

2

2

x

x

x

x y

fdx

y

f

dx

d

y

f

dx

d

y

f

d

dJ

),,( xyyff

2

1

x

x

dxy

f

dx

d

y

f

d

dJ

0)(

0

d

dJ0

2

1 0

x

x

dxy

f

dx

d

y

f

arbitrary0

y

f

dx

d

y

f Nontrivial !!!

Page 16: Variational Principles and Lagrange’s Equations

Shortest distance between two points on a plane

2

1

2

1 dxdx

dyI 21 yf

0

y

f

dx

d

y

f

01

02

y

y

dx

d

c

y

y

21

21 c

cy

bx

c

cy

21

Straight line!

Page 17: Variational Principles and Lagrange’s Equations

The brachistochrone problem

2

1

2

122

/1dx

gy

dxdyt

gy

yf

2

1 2

0

y

f

dx

d

y

f

0

1222

123

2

ygy

y

dx

d

gy

y

Scary!

Page 18: Variational Principles and Lagrange’s Equations

Recipe

• 1. Bring together structure and fields

• 2. Relate this togetherness to the entire system

• 3. Make them fit best when the fields have observable dependencies:

Structure

FieldsFields

Structure

Physical Laws

Best F

it

mη mη

Page 19: Variational Principles and Lagrange’s Equations

Back to trajectories and Lagrangians

• How to find the special values for action corresponding to observable trajectories ?

• We look for a stationary action using variational principle

2

1

,)(

)]([t

ti

mi

dttdt

trdLtrI

)()(),( 0 ttrtr mmm

0)()( 21 tt mm 0)(

0

d

dI

2

1

,),(

)],([)(t

ti

mi

m dttdt

trdLtrII

Page 20: Variational Principles and Lagrange’s Equations

Recipe

• 1. Bring together structure and fields

• 2. Relate this togetherness to the entire system

• 3. Make them fit best when the fields have observable dependencies:

Structure

FieldsFields

Structure

Physical Laws

Best F

it

mη mη

Page 21: Variational Principles and Lagrange’s Equations

Back to trajectories and Lagrangians

• For open systems, we cannot apply variational principle in a consistent way, since integration in not well defined for them

• We look for a stationary action using variational principle for closed systems:

2

1

,),(

)],([)(t

ti

mi

m dttdt

trdLtrII

0)(

0

d

dI

dxdydzL L dxdydzdtI L

Page 22: Variational Principles and Lagrange’s Equations

Stationary value

... ...2

1

2

1

2

2

x

x

x

x y

fdx

y

f

dx

d

y

f

dx

d

y

f

d

dJ

),,( xyyff

2

1

x

x

dxy

f

dx

d

y

f

d

dJ

0)(

0

d

dJ0

2

1 0

x

x

dxy

f

dx

d

y

f

0

y

f

dx

d

y

f Nontrivial !!!

Page 23: Variational Principles and Lagrange’s Equations

Simplest non-trivial case

• Let’s start with the simplest non-trivial result of the variational calculus and see if it can yield observable trajectories

2

1

,),(

)(t

ti

mi

dttdt

trdLI

0)(

0

d

dI

2

1

,),(

),,(t

t

mm dtt

dt

tdrtrL

zyxm

i

,,

1,0

2

1

,,t

t

mm dttrrL

Page 24: Variational Principles and Lagrange’s Equations

Stationary value

... ...2

1

2

1

2

2

x

x

x

x y

fdx

y

f

dx

d

y

f

dx

d

y

f

d

dJ

),,( xyyff

2

1

x

x

dxy

f

dx

d

y

f

d

dJ

0)(

0

d

dJ0

2

1 0

x

x

dxy

f

dx

d

y

f

0

y

f

dx

d

y

f Nontrivial !!!

Page 25: Variational Principles and Lagrange’s Equations

Euler- Lagrange equations

• These equations are called the Euler- Lagrange equations

0)(

0

d

dI 2

1

,,t

t

mm dttrrLI

0

y

f

dx

d

y

f

0

mm r

L

dt

d

r

L

Joseph Louis Lagrange

(1736 – 1813)

Leonhard Euler (1707 – 1783)

Page 26: Variational Principles and Lagrange’s Equations

Recipe

• 1. Bring together structure and fields

• 2. Relate this togetherness to the entire system

• 3. Make them fit best when the fields have observable dependencies:

Structure

FieldsFields

Structure

Physical Laws

Best F

it

mη mη

Page 27: Variational Principles and Lagrange’s Equations

How to construct Lagrangians?

• Let us recall some kindergarten stuff

• On our – classical-mechanical – level, we know several types of fundamental interactions:

• Gravitational• Electromagnetic• That’s it

0

mm r

L

dt

d

r

L

Page 28: Variational Principles and Lagrange’s Equations

Gravitation

• For a particle in a gravitational field, the trajectory is described via 2nd Newton’s Law:

• This system can be approximated as closed

• The structure (symmetry) of the system is described by the gravitational potential

gUdt

vmd

)(

gm

),,,( tzyxgg

Sir Isaac Newton(1643 – 1727)

Page 29: Variational Principles and Lagrange’s Equations

Electromagnetic field

• For a charged particle in an electromagnetic field, the trajectory is described via 2nd Newton’s Law:

• This system can be approximated as closed

• The structure (symmetry) of the system is described by the scalar and vector potentials

),,,(

),,,(

tzyx

tzyxAA

)( AvqqAqvmdt

d Really???

Page 30: Variational Principles and Lagrange’s Equations

Electromagnetic field

)( AvqqAqvmdt

d

)()(

Avqqdt

Adq

dt

vmd

dt

Ad

),,,( tzyxAA

zz

Ay

y

Ax

x

A

t

A

Avt

A

)(

Avqt

AqAvqq

dt

vmd

)()()(

AvAvqt

Aqq

dt

vmd

)()()(

Page 31: Variational Principles and Lagrange’s Equations

Electromagnetic field

AvAvqt

Aqq

dt

vmd

)()()(

FGFGGFGF

)()()(

GF

vAvAAvAv

)()()(

Av

Avqt

Aqq

dt

vmd

)(

Page 32: Variational Principles and Lagrange’s Equations

Electromagnetic field

• Lorentz force!

Avqt

Aq

dt

vmd

)(

t

AE

AB

BvEqdt

vmd

)(

Hendrik Lorentz(1853-1928)

Page 33: Variational Principles and Lagrange’s Equations

Kindergarten

• Thereby:

• In component form

0)( Aqvmdt

dAvqq

0)()(

dt

rmd

r

m j

j

g

0)(

dt

vmdm g

0)())((

dt

qArmd

r

Arqq jj

j

Page 34: Variational Principles and Lagrange’s Equations

How to construct Lagrangians?

• Kindergarten stuff:

• The “kindergarten equations” look very similar to the Euler-Lagrange equations! We may be on the

right track!

0

jj r

L

dt

d

r

L

0)()(

dt

rmd

r

m j

j

g

0)())((

dt

qArmd

r

Arqq jj

j

Page 35: Variational Principles and Lagrange’s Equations

Gravitation

0

jj r

L

dt

d

r

L 0

)()(

dt

rmd

r

m j

j

g

j

g

j r

m

r

L

)(

j

j

r

L

dt

d

dt

rmd

)(

),,,( trrrTmL zyxg C

r

Lrm

jj

),,,( trrrS zyx),,,( trrr zyxgg

2

)( 222zyx rrrm

L

Page 36: Variational Principles and Lagrange’s Equations

Gravitation

gzyx mtrrrTL ),,,(

),,,(2

)( 222

trrrSrrrm

L zyxzyx

gzyx mrrrm

L

2

)( 222

Page 37: Variational Principles and Lagrange’s Equations

Electromagnetism

0

jj r

L

dt

d

r

L

0)())((

dt

qArmd

r

Arqq jj

j

)(2

)( 222

Arqqrrrm

L zyx

Page 38: Variational Principles and Lagrange’s Equations

Bottom line

• We successfully demonstrated applicability of our recipe

• This approach works not just in classical mechanics only, but in all other fields of physics

Structure

Physical LawsBes

t Fit

Page 39: Variational Principles and Lagrange’s Equations

Some philosophy

• de Maupertuis on the principle of least action (“Essai de cosmologie”, 1750): “In all the changes that take place in the universe, the sum of the products of each body multiplied by the distance it moves and by the speed with which it moves is the least that is possible.”

• How does an object know in advance what trajectory corresponds to a stationary action???

• Answer: quantum-mechanical pathintegral approach

Pierre-Louis Moreau de Maupertuis (1698 – 1759)

Page 40: Variational Principles and Lagrange’s Equations

Some philosophy

• Feynman: “Is it true that the particle doesn't just "take the right path" but that it looks at all the other possible trajectories? ... The miracle of it all is, of course, that it does just that. ... It isn't that a particle takes the path of least action but that it smells all the paths in the neighborhood and chooses the one that has the least action ...”

Richard Phillips Feynman

(1918 – 1988)

Page 41: Variational Principles and Lagrange’s Equations

Some philosophy

• Dyson: “In 1949, Dick Feynman told me about his "sum over histories" version of quantum mechanics. "The electron does anything it likes," he said. "It just goes in any direction at any speed, forward or backward in time, however it likes, and then you add up the amplitudes and it gives you the wave-function." I said to him, "You're crazy." But he wasn't.”

Freeman John Dyson (born 1923)

Page 42: Variational Principles and Lagrange’s Equations

Some philosophy

• Philosophical meaning of the Lagrangian formalism: structure of a system determines its observable behavior

• So, that's it?

• Why do we need all this?

• In addition to the deep philosophical meaning, Lagrangian formalism offers great many advantages compared to the Newtonian approach

Page 43: Variational Principles and Lagrange’s Equations

Lagrangian approach: extra goodies

• It is scalar (Newtonian – vectorial)

• Allows introduction of configuration space and efficient description of systems with constrains

• Becomes relatively simpler as the mechanical system becomes more complex

• Applicable outside Newtonian mechanics

• Relates conservation laws with symmetries

• Scale invariance applications

• Gauge invariance applications

Page 44: Variational Principles and Lagrange’s Equations

Simple example

• Projectile motion gzyx mrrrm

L

2

)( 222

zzyx mgrrrrm

L

2

)( 222

0

yy r

L

dt

d

r

L

0

xx r

L

dt

d

r

L

0

zz r

L

dt

d

r

L

0xrmdt

d

0yrmdt

d

constrm x

constrm y

zg gr

mgrmdt

dz constgtrz

Page 45: Variational Principles and Lagrange’s Equations

Another example

• Another Lagrangian

• What is going on?!

xy

zx mgrrm

rrmL 2

2

0

yy r

L

dt

d

r

L

0

xx r

L

dt

d

r

L

0

zz r

L

dt

d

r

L

0 zrmdt

d

0yrmdt

d

constrm x

constrm y

constgtrz mg

0 0 xrmdt

d

Page 46: Variational Principles and Lagrange’s Equations

Gauge invariance

• For the Lagrangians of the type

• And functions of the type

• Let’s introduce a transformation (gauge transformation):

trrL ii ,,

dt

trdFtrrLtrrL i

iiii

,,,,,'

trF i ,

Page 47: Variational Principles and Lagrange’s Equations

Gauge invariance

dt

dFLL ' j

j j

rr

F

t

F

dt

dF

trFF i ,

dt

dF

rr

L

r

L

iii

'

jj jii

rr

F

t

F

rr

L

jj jiii

rrr

F

tr

F

r

L

22

Page 48: Variational Principles and Lagrange’s Equations

Gauge invariance

dt

dFLL ' j

j j

rr

F

t

F

dt

dF

trFF i ,

dt

dF

rr

L

r

L

iii '

jj jii

rr

F

t

F

rr

L

ii r

F

r

L

iii r

F

dt

d

r

L

dt

d

r

L

dt

d

'

ii r

F

tr

L

dt

d

jj ij

rr

F

r

Page 49: Variational Principles and Lagrange’s Equations

Gauge invariance

jj ijiii

rr

F

rr

F

tr

L

dt

d

r

L

dt

d

'

jj ijii

rrr

F

rt

F

r

L

dt

d

22

jj jiiii

rrr

F

tr

F

r

L

r

L

22'

ii r

L

r

L

dt

d

'' ii r

L

r

L

dt

d

0

Page 50: Variational Principles and Lagrange’s Equations

Back to the question: How to construct Lagrangians?

• Ambiguity: different Lagrangians result in the same equations of motion

• How to select a Lagrangian appropriately?

• It is a matter of taste and art

• It is a question of symmetries of the physical system one wishes to describe

• Conventionally, and for expediency, for most applications in classical mechanics:

VTL

Page 51: Variational Principles and Lagrange’s Equations

Cylindrically symmetric potential

• Motion in a potential that depends only on the distance to the z axis

• It is convenient to work in cylindrical coordinates

• Then

22

222

2

)(yx

zyx rrVrrrm

L

zrrrrr zyx ;sin ;cos

zr

rrr

rrr

z

y

x

cossin

sincos

Page 52: Variational Principles and Lagrange’s Equations

Cylindrically symmetric potential

• How to rewrite the equations of motion in cylindrical coordinates?

22

222

2

)(yx

zyx rrVrrrm

L

22222

sincos2

rrVzm

2

)cossin( 2 rrm

2

)sincos( 2 rrm

)(2

)( 2222

rVzrrm

0

jj r

L

dt

d

r

L

Page 53: Variational Principles and Lagrange’s Equations

Generalized coordinates

• Instead of re-deriving the Euler-Lagrange equations explicitly for each problem (e.g. cylindrical coordinates), we introduce a concept of generalized coordinates

• Let us consider a set of coordinates

• Assume that the Euler-Lagrange equations hold for these variables

• Consider a new set of (generalized) coordinates

),...,,(: 21 Ni rrrr

0

ii r

L

dt

d

r

L

),,...,,( 21 trrrqq Njj

Page 54: Variational Principles and Lagrange’s Equations

Generalized coordinates

• We can, in theory, invert these equations:

• Let us do some calculations:

N

i m

i

im q

r

r

L

q

L

1

),,...,,( 21 trrrqq Nmm

),,...,,( 21 tqqqrr Mii

M

mm

m

iii q

q

r

t

rr

1

N

i m

i

im q

r

r

L

dt

d

q

L

dt

d

1

N

i m

i

i q

r

r

L

dt

d

1

m

iN

i i

N

i m

i

i q

r

dt

d

r

L

q

r

r

L

dt

d

11

m

i

m

i

q

r

q

r

Page 55: Variational Principles and Lagrange’s Equations

Generalized coordinates

• The Euler-Lagrange equations are the same in generalized coordinates!!!

M

kk

m

i

k

i

m

i

m

i qq

r

q

r

q

r

tq

r

dt

d

1

m

iN

i i

N

i m

i

im q

r

dt

d

r

L

q

r

r

L

dt

d

q

L

dt

d

11

M

kk

k

ii

m

qq

r

t

r

q 1

M

mm

m

iii q

q

r

t

rr

1

m

i

q

r

mq

L

dt

d m

iN

i i q

r

r

L

1 mq

L

N

i m

i

i q

r

r

L

1

Page 56: Variational Principles and Lagrange’s Equations

Generalized coordinates

• If the Euler-Lagrange equations are true for one set of coordinates, then they are also true for the other set

ii r

L

r

L

dt

d

),,...,,( 21 trrrqq Nmm

mm q

L

q

L

dt

d

Page 57: Variational Principles and Lagrange’s Equations

Cylindrically symmetric potential

• Radial force causes a change in radial momentum and a centripetal acceleration

)(2

)( 2222

rVzrrm

L

0

jj q

L

dt

d

q

L

),,(: zrqi 0

r

L

dt

d

r

L

r

rV

)(

0)(

dt

rmd

dt

rmdmr

r

rV )()( 2

2mr

Page 58: Variational Principles and Lagrange’s Equations

Cylindrically symmetric potential

• Angular momentum relative to the z axis is a constant

)(2

)( 2222

rVzrrm

L

0

jj q

L

dt

d

q

L

),,(: zrqi 0

L

dt

dL

0 0)( 2

dt

mrd

constmrrmr )(2

0)( 2

dt

mrd

Page 59: Variational Principles and Lagrange’s Equations

Cylindrically symmetric potential

• Axial component of velocity does not change

)(2

)( 2222

rVzrrm

L

0

jj q

L

dt

d

q

L

),,(: zrqi 0

z

L

dt

d

z

L

0 0)(

dt

zmd

constzm

0)(

dt

zmd

Page 60: Variational Principles and Lagrange’s Equations

Symmetries and conservation laws

• The most beautiful and useful illustration of the “structure vs observed behavior” philosophy is the link between symmetries and conservation laws

• Conjugate momentum for coordinate :

• If Lagrangian does not depend on a certain coordinate, this coordinate is called cyclic (ignorable)

• For cyclic coordinates, conjugate momenta are conserved

)( iqfL

mq

L

mq

0

jj q

L

dt

d

q

L

0

jq

L

dt

d

Page 61: Variational Principles and Lagrange’s Equations

Symmetries and conservation laws

• For cyclic coordinates, conjugate momenta are conserved

p =

cons

t p ≠ const

Page 62: Variational Principles and Lagrange’s Equations

Cylindrically symmetric potential

• Cyclic coordinates:

• Rotational symmetry Translational symmetry

• Conjugate momenta:

)(2

)( 2222

rVzrrm

L

0

L

dt

dL

constmr 2

0

z

L

dt

d

z

L

constzm

z

Page 63: Variational Principles and Lagrange’s Equations

Electromagnetism

• Conjugate momenta:

)(2

)( 222

Arqqrrrm

L zyx

jr

L

jrm jqA jrm

Page 64: Variational Principles and Lagrange’s Equations

Noether’s theorem

• Relationship between Lagrangian symmetries and conserved quantities was formalized only in 1915 by Emmy Noether:

• “For each symmetry of the Lagrangian, there is a conserved quantity”

• Let the Lagrangian be invariant under the change of coordinates:

• α is a small parameter. This invariance

has to hold to the first order in α

),,...,,(~21 tqqqqq Niii

Emmy Noether/Amalie Nöther(1882 – 1935)

Page 65: Variational Principles and Lagrange’s Equations

Noether’s theorem

• Invariance of the Lagrangian:

• Using the Euler-Lagrange equations

0ddL

N

i

i

i

i

i

q

q

Lq

q

L

d

dL

1

~

~

~

~

N

ii

i

ii q

L

q

L

1~~

N

ii

i

i

i q

L

q

L

dt

d

1~~

N

ii

iq

L

dt

d

1~ 0

constq

LN

ii

i

1

),,...,,(~21 tqqqqq Niii

Page 66: Variational Principles and Lagrange’s Equations

Example

• Motion in an x-y plane of a mass on a spring (zero equilibrium length):

• The Lagrangian is invariant (to the first order in α) under the following change of coordinates:

• Then, from Noether’s theorem it follows that

2

)(

2

)( 2222yxyx rrkrrm

L

xyyyxx rrrrrr ~ ;~

constr

L

r

Ly

yx

x

yxrrm xyrrm const

Page 67: Variational Principles and Lagrange’s Equations

Example

• In polar coordinates:

• The conserved quantity:

• Angular momentum in the x-y plane is conserved

constrrmrrm xyyx

sin

cos

rr

rr

y

x

cossin

sincos

rrr

rrr

y

x

xyyx rrmrrm sin)sincos( rrrm

cos)cossin( rrrm 2mr const

Page 68: Variational Principles and Lagrange’s Equations

Example

• For the same problem, we can start with a Lagrangian expressed in polar coordinates:

• The Lagrangian is invariant (to any order in α) under the following change of coordinates:

• The conserved quantity from Noether’s theorem:

constmr 12

2

)(

2

)( 2222yxyx rrkrrm

L

22

)( 2222 krrrm

1~

constL

Page 69: Variational Principles and Lagrange’s Equations

Back to trajectories and Lagrangians

• How to find the special values for action corresponding to observable trajectories ?

• We look for a stationary action using variational principle

2

1

,)(

)]([t

ti

mi

dttdt

trdLtrI

)()(),( 0 ttrtr mmm

0)()( 21 tt mm 0)(

0

d

dI

2

1

,),(

)],([)(t

ti

mi

m dttdt

trdLtrII

),,...,,(~21 tqqqqq Nmmm

Page 70: Variational Principles and Lagrange’s Equations

Stationary value

2

1

),...,,,()(

x

x

dxxyyyfd

d

d

dJ

2

1

),...,,,(x

x

dxd

xyyydf

2

1

...x

x

dxy

y

fy

y

fy

y

f

1

2

3

2

1

.2x

x

dxy

y

f

2

1

2x

x

dxx

y

y

f

u

dv

2

1

x

x

y

y

f

u

v

2

1

x

x

dxy

f

dx

dy

v

du

)()(),( 0 xxyxy

2

1

x

xy

f

2

1

x

x

dxy

f

dx

d

0)(

0)(

2

1

x

x

constq

LN

ii

i

1

Page 71: Variational Principles and Lagrange’s Equations

More on symmetries

• Full time derivative of a Lagrangian:

• From the Euler-Lagrange equations:

• If

dt

dL

M

m

M

mm

mm

m

qq

Lq

q

L

t

L

1 1

M

m

M

mm

mm

m

qq

Lq

q

L

dt

d

t

L

1 1

M

mm

m

qq

L

dt

d

t

L

1

Lqq

L

dt

d

t

L M

mm

m1

dt

dH

0t

L constLqq

LH

M

mm

m

1

Page 72: Variational Principles and Lagrange’s Equations

What is H?

• Let us expand the Lagrangian in powers of :

• Form calculus, for a homogeneous function f of

degree n (Euler’s theorem) :

......),,...,,(

),,...,,(),,...,,(

3210,

212

211210

LLLLqqtqqql

qtqqqltqqqLL

jji

iMij

iiMiM

fnx

fx

i ii

iq

...210

ii

iii

iii

iii

i

qq

Lq

q

Lq

q

Lq

q

L

...320 321 LLL

Page 73: Variational Principles and Lagrange’s Equations

What is H?

• If the Lagrangian has a form:

• Then

• For electromagnetism:

Lqq

LH

M

mm

m

1

...32 321 LLL

...)( 3210 LLLL ...2 320 LLL

210 LLLL

02 LLH

)(2/2 ArqqrmL

2L 0L 1L

02 LLH qrm 2/2 EVT

Page 74: Variational Principles and Lagrange’s Equations

Conservation of energy

• In the field formalism, the conservation of H is a part of Noether’s theorem

210 LLLL

EH

constEt

L

0

Page 75: Variational Principles and Lagrange’s Equations

The brachistochrone problem

• Similarly to the “H-trick”:

2

1

12 dxft gy

yf

2

1 2 0

x

f

0

1222

123

2

ygy

y

dx

d

gy

y

Scary!

constfy

fy

H

gy

y

ygy

yy

2

1

12

2

2

constygy

212

1

21/ yyC

!!!

Page 76: Variational Principles and Lagrange’s Equations

The brachistochrone problem

• Change of variables:

• Parametric solution (cycloid)

21/ yyC

2sinCy

dx

dy

y

Cy 1 dy

yC

ydx

)sin(sin

sin 22

2

Cd

CC

Cdx

dC sin2 2

BdCx sin2 2

2sin

)2/)2(sin(

Cy

CBx

)2/)2(sin( CB

Page 77: Variational Principles and Lagrange’s Equations

Scale invariance

• For Lagrangians of the following form:

• And homogeneous L0 of degree k

• Introducing scale and time transformations

• Then

jji

iijM qqlqqqLLLL ,

221020 ),...,,( constl ij 2

tt

qq ii

'

'

),...,,(),...,,(' 2102100 Mk

M qqqLqqqLL

jji

iij qql

,2

2

ii qq

' jji

iij qqlL ''',

22

Page 78: Variational Principles and Lagrange’s Equations

Scale invariance

• Therefore, after transformations

• If

• Then

• The Euler-Lagrange equations after transformations

• The same!

2

2

0' LLL k

k

2

LL k'

0''

jj q

L

dt

d

q

L

0)()(

j

k

j

k

q

L

dt

d

q

L

0

jj q

L

dt

d

q

L

Page 79: Variational Principles and Lagrange’s Equations

Scale invariance

• So, the Euler-Lagrange equations after transformations are the same if

• Free fall

• Let us recall

k

2

2/1 k2/1

2/1 ''k

i

ik

q

q

t

t

mgzzm

L 2

21k

2/1''

k

z

z

t

t

2/1'

z

z

2/12z

g

zt

Page 80: Variational Principles and Lagrange’s Equations

Scale invariance

• So, the Euler-Lagrange equations after transformations are the same if

• Mass on a spring

• Let us recall

k

2

2/1 k2/1

2/1 ''k

i

ik

q

q

t

t

22

22 KzzmL

2k

2/1''

k

z

z

t

t

0'

z

z

02 zK

mT

Page 81: Variational Principles and Lagrange’s Equations

Scale invariance

• So, the Euler-Lagrange equations after transformations are the same if

• Kepler’s problem

• Let us recall 3rd Kepler’s law

k

2

2/1 k2/1

2/1 ''k

i

ik

q

q

t

t

2

2

2 r

MmG

rmL

1k

2/1''

k

z

z

t

t

2/3'

z

z

2/3RT

Johannes Kepler(1571-1630)

Page 82: Variational Principles and Lagrange’s Equations

How about open systems?

• For some systems we can neglect their interaction with the outside world and formulate their behavior in terms of Lagrangian formalism

• For some systems we can not do it

• Approach: to describe the system without “leaks” and “feeds” and then add them to the description of the system

Page 83: Variational Principles and Lagrange’s Equations

How about open systems?

• For open systems, we first describe the system without “leaks” and “feeds”

• After that we add “leaks” and “feeds” to the description of the system

• Q: Non-conservative generalized forces

jj q

L

q

L

dt

d

jQ

Page 84: Variational Principles and Lagrange’s Equations

Generalized forces

• Forces

• 1: Conservative (Potential)

• 2: Non-conservative

j

jj

Qq

T

q

T

dt

d

UU

jjjjj

Qqqdt

d

q

T

q

T

dt

d

UU

...),,...,,( 21 tqqqV NU

12

1

UTL

Page 85: Variational Principles and Lagrange’s Equations

Generalized forces

• In principle, there is no need to introduce generalized forces for a closed system fully described by a Lagrangian

• Feynman: “…The principle of least actiononly works for conservative systems — where all forces can be gotten from a potential function. … On a microscopic level — on the deepest level of physics — there are no non-conservative forces. Non-conservative forces, like friction, appear only because we neglect microscopic complications — there are just too many particles to analyze.”

• So, introduction of non-conservative forces is a result of the open-system approach

Richard Phillips Feynman

(1918 – 1988)

Page 86: Variational Principles and Lagrange’s Equations

Degrees of freedom

• The number of degrees of freedom is the number of independent coordinates that must be specified in order to define uniquely the state of the system

• For a system of N free particle there are 3N degrees of freedom (3N coordinates)

N) ..., ,2 ,1(

ˆˆˆ

Ni

rkrjrir ziyixii

Page 87: Variational Principles and Lagrange’s Equations

Constraints

• We can imposed k constraints on the system

• The number of degrees of freedom is reduced to 3N – k = s

• It is convenient to think of the remaining s independent coordinates as the coordinates of a single point in an s-dimensional space: configuration space N

), ..., , ,(

...

), ..., , ,(

321

32111

tqqqrr

tqqqrr

kNNN

kN

k

Page 88: Variational Principles and Lagrange’s Equations

Types of constraints

• Holonomic (integrable) constraints can be expressed in the form:

• Nonholonomic constraints cannot be expressed in this form

• Rheonomous constraints – contain time dependence explicitly

• Scleronomous constraints – do not contain time dependence explicitly

kj

tqqqf nj

,...,2,1

0), ..., , ,( 21

Page 89: Variational Principles and Lagrange’s Equations

Analysis of systems with holonomic constraints

• Elimination of variables using constraints equations

• Use of independent generalized coordinates

• Lagrange’s multiplier method

Page 90: Variational Principles and Lagrange’s Equations

Double 2D pendulum

• An example of a holonomic scleronomous constraint

• The trajectories of the system are very complex

• Lagrangian approach produces equation of motion

• We need 2 independent generalized coordinates (N = 2, k = 2 + 2, s = 3 N – k = 2)

0)( 21

21 lr 0)( 2

22

21 lrr

1 2

Page 91: Variational Principles and Lagrange’s Equations

Double 2D pendulum

• Relative to the pivot, the Cartesian coordinates

• Taking the time derivative, and then squaring

• Lagrangian in Cartesian coordinates:

11,1 sinlr x

11,1 coslr z 2211,2 sinsin llr x

2211,2 coscos llr z

21

21

21 lr

)sinsincos(cos2 212121212

22

22

12

12

2 llllr

)(2 ,22,11

222

211

zz rmrmgrmrm

L

Page 92: Variational Principles and Lagrange’s Equations

Double 2D pendulum

• Lagrangian in new coordinates:

• The equations of motion:

)coscos(cos

2

)cos(2

2

22112111

2121212

22

22

12

122

12

11

llgmglm

llllmlmL

222212

1212

212

12122

22

22

1121212

2212

212

22122

12

121

sin)sin(

)cos(0

sin)()sin(

)cos()(0

glmllm

llmlm

glmmllm

llmlmm

Page 93: Variational Principles and Lagrange’s Equations

Double 2D pendulum

• Special case

• The equations of motion:

• More fun at:

http://www.mathstat.dal.ca/~selinger/lagrange/doublependulum.html

21 mm 0, 21 lll 21

221

121

0

220

gl

gl

Page 94: Variational Principles and Lagrange’s Equations

Lagrange’s multiplier method

• Used when constraint reactions are the object of interest

• Instead of considering 3N - k variables and equations, this method deals with 3N + k variables

• As a results, we obtain 3N trajectories and k constraint reactions

• Lagrange’s multiplier method can be applied to some nonholonomic constraints

Page 95: Variational Principles and Lagrange’s Equations

Lagrange’s multiplier method

• Let us explicitly incorporate constraints into the structure of our system

• For observable trajectories

• So

kjtqqqf nj ,...,2,1 ;0), ..., , ,( 21

k

jnjj tqqqftLL

121 ), ..., , ,()('

0), ..., , ,( 21 tqqqf nj

k

jjj fLL

1

' L

ii q

L

q

L

dt

d

''

k

j i

jj

ii q

f

q

L

q

L

dt

d

1

0

0

Page 96: Variational Principles and Lagrange’s Equations

Lagrange’s multiplier method

• - constraint reactions

• Now we have 3N + k equations for and

kjtqqqf nj ,...,2,1 ;0), ..., , ,( 11

k

j i

jj

ii q

f

q

L

q

L

dt

d

1

iQ

iQ

Niq

f

q

L

q

L

dt

d k

j i

jj

ii

3,...,2,1 ;1

iq j

Page 97: Variational Principles and Lagrange’s Equations

Application to a nonholonomic case

• A particle on a smooth hemisphere

• One nonholonomic constraint:

• While the particle remains on the sphere, the constraint is holonomic

• And the reaction from the surface is not zero

02222 arrr zyx

02222 arrr zyx

Page 98: Variational Principles and Lagrange’s Equations

Application to a nonholonomic case

• Constraint equation in cylindrical coordinates:

• New Lagrangian in cylindrical coordinates:

• Equations of motion

0 ar

)(cos2

)(' 1

2222

armgrzrrm

L

r

f

r

L

dt

d

r

L

1

1

01cos 12 mgmrrm

Page 99: Variational Principles and Lagrange’s Equations

Application to a nonholonomic case

• Constraint equation in cylindrical coordinates:

• New Lagrangian in cylindrical coordinates:

• Equations of motion

0 ar

)(cos2

)(' 1

2222

armgrzrrm

L

0

L

dt

dL

0sin2 mgrmr

Page 100: Variational Principles and Lagrange’s Equations

Application to a nonholonomic case

• Constraint equation in cylindrical coordinates:

• New Lagrangian in cylindrical coordinates:

• Equations of motion

• Trivial

0 ar

)(cos2

)(' 1

2222

armgrzrrm

L

0

z

L

dt

d

z

L

0zm

Page 101: Variational Principles and Lagrange’s Equations

Application to a nonholonomic case

• Constraint reaction:

ar

0cos 12 mgmrrm

0sin2 mgrmr

a

mg /cos 12

sina

g sin22

a

g

cos22

a

g

dt

d

dt

d

0

0

)cos1(

22 a

g

)2cos3(1 mg

)2cos3(111

1 mgr

f

Page 102: Variational Principles and Lagrange’s Equations

Application to a nonholonomic case

• Constraint reaction:

• Reaction disappears when

• The particle becomes airborne

)2cos3(1 mg

2cos3

3

2cos 1

ar