Variability and Accuracy of Target Displacement From Nonlinear St

Embed Size (px)

Citation preview

  • 8/12/2019 Variability and Accuracy of Target Displacement From Nonlinear St

    1/16

    InternationalScholarlyResearchNetworkISRNCivilEngineeringVolume2011,ArticleID582426,16pagesdoi:10.5402/2011/582426

    Research ArticleVariability and Accuracy of Target Displacement fromNonlinear Static Procedures

    Rakesh K. Goel

    Department of Civil and Environmental Engineering, California Polytechnic State University, San Luis Obispo, CA 93407-0353, USA

    CorrespondenceshouldbeaddressedtoRakeshK.Goel,[email protected]

    Received13December2010;Accepted19January2011

    AcademicEditors:R.Jangid,S.Pantazopoulou,andI.Takewaki

    Copyright2011RakeshK.Goel.ThisisanopenaccessarticledistributedundertheCreativeCommonsAttributionLicense,whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited.

    ThispapercomparesthetargetdisplacementestimatefromfourcurrentnonlinearstaticproceduresFEMA-356CM,ASCE41CM,ATC-40CSM,andFEMA-440CSMwiththevaluederivedfromrecordedmotionsoffivestronglyshakenreinforcedconcrete buildings.This comparison provides useful insight into two important questions: (1) how much does the targetdisplacementvaryamongthefournonlinearstaticprocedures?and(2)cantheengineeringprofessionaccuratelypredicttheresponseof a realbuilding during anearthquake event using currentlyavailable modelingtechniques andpushover analysisprocedures?Itisshownthattheseproceduresmayleadtosignificantlydifferentestimatesofthetargetdisplacement,particularlyfor short-period buildings responding in the nonlinear range. Furthermore, various nonlinear static procedures applied tononlinearmodelsdevelopedusinggenerallyacceptedengineeringpracticeprovideeithersignificantoverestimation orunderestimationofthetargetroofdisplacementwhencomparedtothevaluederivedfromrecordedmotions.

    1. Introduction

    Nonlinear static procedure (NSP) or pushover analysisis widely used for seismic design/evaluation of buildings.The NSP requires nonlinear static pushover analysis ofthe structure subjected to monotonically increasing lateralforceswithspecifiedheight-wisedistributionuntilatargetdisplacementisreached.Thebuildingdesignisdeemedtobeacceptableif seismicdemands(e.g.,plastichingerotations,drifts,etc.)at thetargetdisplacementarewithinacceptable

    values.The twowidely usedproceduresto estimatethetarget

    displacement in the NSP are: (1) the Coefficient Method(CM) defined in the FEMA-356 document [1], and (2)the Capacity Spectrum Method (CSM) specified in theATC-40 document [2]. The CM utilizes a displacementmodificationprocedureinwhichthetargetdisplacementiscomputed by modifying displacement of a linearly-elastic,single-degree-of-freedom(SDF)systembyseveralempiricalcoefficients. The SDF system has the same period anddampingasthefundamentalmodeoftheoriginalbuilding.The CSM is a form of equivalent linearization in whichthe target displacement is estimated bymultiplying elastic

    displacementof anSDFsystembythe fundamentalmodeparticipation factor. The SDF system has larger (effective)periodanddampingthanthe original building. The CSMuses empirical relationships for the effective period anddampingasafunctionofductilitytoestimatedisplacementofanequivalentlinearSDFsystem.

    MostpreviousinvestigationsondevelopmentandevaluationoftheCMand/orCSMtocomputethetargetdisplacementusedcomputermodelsofbuildings;anexhaustivelistofreferencesisavailableintheFEMA-440report[ 3].These

    investigationsprimarilyfocusedontheaccuracyofvariousnonlinearstaticproceduresinpredictingtargetdisplacementof computer models; the exact value of the target roofdisplacementwastakenasthepeakroofdisplacementcomputedbynonlinearresponsehistoryanalysisofthecomputermodelsubjectedtoselectedearthquakemotionatitsbase.Becausetheexacttargetdisplacementandthevaluefromvariousnonlinearstaticproceduresusedthesamecomputermodel, these investigations eliminated thediscrepancydueto modeling assumptions; errors examined were onlyduetononlinearstaticprocedures.Recentinvestigationsonthistopicfoundsignificantvariabilityinthetargetdisplacementsfromvariousprocedures[4,5].

    mailto:[email protected]:[email protected]
  • 8/12/2019 Variability and Accuracy of Target Displacement From Nonlinear St

    2/16

    2 ISRNCivilEngineering

    Recorded motions of strongly shaken buildings, especially those deformed into the nonlinear range, providea unique opportunity to gain insight into two importantquestions:(1)howmuchdoesthetargetdisplacementvariesamong various nonlinear static procedures? and (2) cantheengineeringprofessionaccuratelypredicttheresponse

    of a real building during an earthquake event using currentlyavailablemodelingtechniquesandpushoveranalysisprocedures?While paststudiesthatused either generic orwell-calibrated computermodelshave providedsignificantinsightintothefirstquestion,theadditionaldatageneratedin this investigation using validated computer models ofrealbuildingsisusefulineitherconfirmingorcontradictingthepreviousfindings.Theinsightintothesecondquestioncan only be gained by comparing the roof displacementestimatedfromvariousnonlinearstaticproceduresappliedto a computer model, developed using generally acceptedengineeringpractice,ofthebuildingwiththevalueobservedduring an actual earthquake event. This investigation isspecificallyaimedatfillingthisneed.

    Theproceduresconsideredin thisinvestigationare:(1)CMdefinedintheFEMA-356document[1],(2)improvedCMproposedintheFEMA-440report[3] and adopted in theASCE-41standard[6],(3)CSMdefinedintheATC-40document[2],and(4)improvedCSMproposedbyGuyaderandIwan[7]andadoptedintheFEMA-440report[3].

    2. Selected Buildings

    Recordedmotionsofbuildingsthatwerestronglyshakenandpotentiallydeformedbeyondtheyieldlimitduringtheearthquakearerequiredforthisinvestigation.Forthispurpose,

    fiveconcretebuildings,rangingfromlow-risetohigh-rise,havebeenselected(Table1).Thestrong-motiondatausedinthisinvestigationareidentifiedin Table1 foreachbuilding.Thedataselectedinthisinvestigationaretheprocesseddataavailable from the Center for Engineering Strong MotionData (CESMD) (http://www.strongmotioncenter.org). Thedataprocessingprocedureinvolveslow-pass andhigh-passfiltering using Ormsby filters. Further details of the dataprocessingareavailableinapaperbyShakaletal.[8].

    Thedistancefrombuildingtoepicenteroftheearthquake(Table1) indicates that the selected buildings were mostlikelysubjectedto near-faultmotions.Althoughresultsarenot presented here for brevitys sake, response spectra formotions recordedat the base ofseveralof thesebuildingsindicatedcharacteristicscompatiblewiththoseexpectedfornear-fault motions; a more comprehensive discussion onhow toidentify near-fault effects from responsespectra isavailableinChopra[9].

    3. Procedures to Compute Target Displacement

    3.1. FEMA-356 Coefficient Method. ThetargetdisplacementintheFEMA-356CM[1] is computed from

    T2et= C0C1C2C3Sa g, (1) 42

    whereSa = responsespectrumaccelerationattheeffectivefundamental vibration period and damping ratio of thebuildingunderconsideration,g=accelerationduetogravity;Te = effective fundamental period of the building in thedirectionunder considerationcomputed bymodifyingthefundamentalvibrationperiodfromelasticdynamicanalysis,

    forexample,eigen-valueanalysis,Ti, b y

    KiTe= Ti (2)Ke

    in which Ki is the elastic stiffness of the building andKe is the effective stiffness of the building obtained byidealizing the pushover curve as a bilinear relationship;C0 = coefficient to relate the elastic response of an SDFsystem to the elastic displacement of the multi-degree-offreedom(MDF) buildingat the control node takenas thefirst mode participation factor or selected from tabulatedvaluesintheFEMA-356documentC1=coefficienttorelatethemaximuminelasticandelasticdisplacementoftheSDF

    systemcomputedfrom1.0; Te Ts,C1=

    1.0 + (R 1)Ts/TeR ; Te < Ts, (3)1.5; Te

  • 8/12/2019 Variability and Accuracy of Target Displacement From Nonlinear St

    3/16

    3ISRNCivilEngineering

    Table 1:Fivereinforcedconcretebuildingsselected.

    Buildingsname CSMIPStation Stories/basement Earthquake Epic.Dist.(km)

    ImperialCountyServicesBuilding 01260 6/0 1979ImperialValley 28.4

    ShermanOaksCommercialBldg 24322 13/2 1994Northridge 9

    NorthHollywoodHotel 24464 20/1 1994Northridge 19

    WatsonvilleCommercialBldg 47459 4/0 1989LomaPrieta 18SantaBarbaraOfficeBldg 25213 3/0 1978SantaBarbara 13

    Baseshear

    VdVy

    0.6VyKe

    1Ke P-KeeKe

    2Ke

    y d Displacement,Figure 1:Idealizedforce-deformationcurveinASCE-41CM.

    themotionsrecordedatthebaseofthebuilding.Therefore,theperiodTswasestimatedfromthelinearly-elasticresponsespectrumofthemotionrecordedatthebaseofthebuilding.For this purpose, a smooth spectrum was fitted to the

    combined D-V-A response spectrum and the period atthe intersection of the acceleration-sensitive and velocity-sensitive regions wasselectedtobe theperiod Ts. Furtherdetails of this procedure may be found in Chopra [9].

    3.2. ASCE-41 Coefficient Method. ThetargetdisplacementintheASCE-41CM[6] is computed from

    T2et= C0C1C2Sa g, (6) 42

    wherecoefficient C0 relatestheelastic responseof anSDF

    systemtotheelasticdisplacementoftheMDFbuildingatthecontrolnodetakenasthefirstmodeparticipationfactor.ThecoefficientC1 isgivenby

    C1=

    1.0; Te >1.0s, 1.0 +

    R 1aT2e ; 0.2 s < Te 1.0s,

    1.0 + R 10.04a; Te 0.2 s

    (7)

    inwhichaisequalto130forsoilsiteclassAandB,90forsoilsiteclassC,and60forsoilsiteclassesD,E,andF(see

    ASCE-41fordetailsofvarioussiteclasses),respectively.ThecoefficientC2 isgivenby

    1.0; Te >0.7s, C2= 2 (8) 1 R 11 + ; Te 0.7 s.

    800 TeFinally, the ASCE-41CM imposes limitation on R to

    avoiddynamicinstabilityas

    d |e|hR Rmax= + ; h= 1.0 + 0.15ln(Te) (9)y 4

    in which d is the deformation corresponding to peakstrength,y istheyielddeformation,and e istheeffectivenegativepostyieldslopegivenby

    e= P-+(2 P-), (10)where 2 is the negative postyield slope ratio defined inFigure1,P-isthenegativesloperatiocausedbyP-effects,andisthenear-fieldeffectfactorgivenas0.8forS1 0.6and0.2forS1

  • 8/12/2019 Variability and Accuracy of Target Displacement From Nonlinear St

    4/16

    4 ISRNCivilEngineering

    and/ordegradedloops;andTypeBbetweenTypesAandCandprovidesequationsforcomputing foreachofthethreetypesofhystereticbehavior.

    Since the equivalent linearization procedure requiresprior knowledge of the displacement ductility ratio (12),ATC-40 document describes three iterative procedures:

    Procedures A, B, and C. Procedures A and B are themosttransparentandconvenientforprogramming,whereasProcedureCispurelyagraphicalmethod.DetailsoftheseproceduresareavailableintheATC-40documentandarenotpresentedhereforbrevityssake.

    3.4. FEMA-440 Capacity Spectrum Method. ThetargetdisplacementintheFEMA-440CSM[3] is computed from

    t= C0Sd(Teff,eff), (13)wherecoefficientC0 isthefundamentalmodeparticipationfactor, and Sd(Teff,eff) is the maximum displacement ofa linearly-elastic SDF system with effective period, Teff,and effective damping ratio, eff. The FEMA-440 CSMincludes improved expressions, compared to the ATC-40CSM,todeterminetheeffectiveperiodandeffectivedampingdeveloped by Guyader and Iwan [7]. Consistent with theoriginal ATC-40 procedure, three iterative procedures forestimatingthetargetdisplacementarealsooutlined.Finally,a limitation on the strength is imposed toavoid dynamicinstability(9).

    TheimprovedformulasforeffectiveperiodanddampingratiointheFEMA-440documentare 2 3

    0.2 1 0.038 1 +1 To; < 4.0,

    0.28+0.13 1 + 1 To; 4.06.5,Teff= 1 0.89 1 +1 To; > 6.5,

    1+0.05 2

    2 34.9 1 1.1 1 +o; < 4.0, 14.0 + 0.32 1 +o; 4.06.5,eff= 2 0.64 1 1 Teq19 + > 6.5. 2 o;

    0.64 1 To(14)

    Theseformulasapplyforperiodsintherangeof0.2and2.0s.TheFEMA-440documentalsoprovidesformulaswithconstantsA toL thatarespecifieddependingontheforce-deformationrelationships(bilinear,stiffness-degrading,andstrength-degrading)andthepostyieldstiffnessratio,;theseformulasarenotincludedhereforbrevityssake.

    4. Analytical Models

    4.1. Modeling Procedure. Needed for estimating the targetdisplacementisthepushovercurveofthebuilding.Forthispurpose,three-dimensionalmodelsoftheselectedbuildingsweredevelopedusingthestructuralanalysissoftwareOpen

    SystemforEarthquakesEngineeringSimulation( OpenSees)[10].Twomodelsweredevelopedforeachbuilding:linearly-elastic model for computing the mode shapes and frequencies (or vibration periods), and a nonlinear modelforpushoveranalysis.Gravityloadswereincludedinbothmodelsandwereappliedpriortoeigenanalysistocompute

    mode shapes and frequencies or the pushover analysis.Furthermore,P-Deltaeffectswereincludedinbothmodels.The beams, columns, and shearwalls in the linear modelweremodeledusingelasticBeamColumnelementinOpenSeeswith effective (or cracked) section properties as per theFEMA-356 recommendations [1]. The beams, columns,and shear walls in the nonlinear model were modeledwith nonlinearBeamColumn element with fiber section inOpenSees.Contributionstostiffnessduetoflexuralaswellassheareffectswereincludedinbothmodels.

    The nonlinear element used fiber sections containingconfinedconcrete,unconfinedconcrete,andsteelreinforcingbars to model the axial-flexural behavior, whereas linear-elastic behavior was assumed for the shear and torsionalbehavior.Thecompressivestress-strainbehaviorofconcrete,bothconfinedandconfined,wasmodeledwithConcrete04materialinOpenSees (Figure2(a))andtensilestrengthwasignored.Furthermore,concretewasassumedtocompletelylose strength immediately after the crushing strain. Thecrushingstrainoftheunconfinedconcretewasselectedtobeequalto0.004andthatforconfinedconcretewasselectedtobe that corresponding tothe rupture ofconfining steelusing thewell-established Mandermodel [11].Thestress-strain behavior of steelwas modeled with ReinforcingSteelmaterial in OpenSees (Figure2(b)). Further details of thematerial models are available in McKenna and Fenves[10]. The nominal strengths of concrete and steel wereselected based on the values specified in the structuraldrawings.

    FortwoofthefiveselectedbuildingsWatsonvilleCommercial Building and Santa Barbara Office Buildingthefoundationflexibilitywasexpectedtosignificantlyinfluencetheresponseduringstronggroundshakingbecausebothofthese low-rise buildingscontained longitudinal and transverseshearwalls.Thefoundationflexibilitywasincludedinanalyticalmodelsofthesebuildingsbyattachingsixlinearspringsthreealongthex-,y-,andz-translation,twoaboutthex- and y- rocking,andoneaboutthez-torsionatthebaseaspertheFEMA-356recommendationsforfoundationflexibilitymodeling[1].

    4.2. Validation of Analytical Models. Themodelsdevelopedin this investigationare based on generallyaccepted engineeringpractice.Therefore,thedifferencebetweenthetargetdisplacementfromvariousnonlinearstaticproceduresandthevaluederivedfromrecordedmotionsofabuildingwouldbe due to errors due to inaccuracies in modeling as wellasnonlinearstatic procedures.In thisinvestigation, whichutilizes data from actual buildings during an earthquakeevent,itmaynotbecompletelypossibletoisolatetheerrorsfrom thesetwo sources.However, it is important that theanalyticalmodelbeasaccurateaspossibletominimizetheerrorsduetomodeling.Forthispurpose,modelsofselected

  • 8/12/2019 Variability and Accuracy of Target Displacement From Nonlinear St

    5/16

    5ISRNCivilEngineering

    Confined

    Unconfined

    Stress

    Strain Strain

    Stress

    (a) ConcreteModel (b) SteelModel

    Figure 2:Materialmodelsusedfornonlinearanalysis.

    buildingsusedin thisinvestigationwerevalidatedbycomparingtheirvibrationpropertiesanddisplacementresponses(due to recorded base motions during actual earthquakeevents)withthoseobservedduringactualearthquakeevents.The following is a description of the procedure used tovalidatethemodeloftheNorthHollywoodHotel.Asimilarprocedurewasusedtovalidatemodelsforotherbuildings.

    First,fundamentalvibrationperiodsofthebuildinginthe longitudinal and transverse directions were identifiedfrom recorded motions of the building by using a well-known transfer function approach (Figure3). Next, theseperiodswerecomputedfromeigen-analysisof thelinearly-elastic model (Figure4). Finally, the linearly-elastic modelwasvalidatedbycomparingthevibrationperiodsidentifiedfromrecordedmotionsandcomputedfromeigen-analysis.Although not identical to the periods identified fromrecordedmotions,thevibrationperiodsfromeigen-analysis

    are close enough for most practical applications: periodfromeigen-analysisin thelongitudinaldirectionis 2.57seccomparedtotheidentifiedvalueof2.64sec.Itisusefultoemphasizeagainthatthelinear-elasticmodelconsideredinthisinvestigationisbasedongenerallyacceptedengineeringpractice and is not intentionally calibrated to match theperiodsindentifiedfromtherecordedmotions.

    Thenonlinearmodelusedinthisinvestigationwasfirstvalidated by comparing the fundamental vibration periodestimatedfromthepushovercurvesagainstthevaluefromeigen-analysisandvalue identifiedfromrecordedmotions.Forthispurpose,thepushovercurvewasconvertedtothecapacity curve of the equivalent inelastic SDF system by

    scaling the roof displacement by 1/(1r1) and base shearby1/M where1 isthefirst-modeparticipationfactor, r11is the first-mode component at the roof (or target node),andM1

    isthefirst-modeeffectivemass.Thefundamentalvibration period is estimated by recognizing that initialelasticslopeofthecapacitycurveoftheequivalentinelasticSDFsystemisequalto1

    2 whichgivesT1= 2/1 [12].The results presented in Figure5 indicate that the

    pushover curve also provides estimates of fundamentalvibration periods that are close to the values identifiedfromrecordedmotionsandcomputedfromeigen-analysisof linearly-elastic model. For example, the longitudinalvibration period of 2.78sec (Figure5(a)) from pushover

    curve compares quite well withthe value of 2.64 secidentified fromrecordedmotions(Figure3(a))and2.57seccomputedfromeigen-analysisofthelinearelasticmodel(Figure4(a)).

    Thenonlinearmodelwasfurthervalidatedbycomparingthe displacement responses of the model subjected tomotions recorded at the base of the building with thedisplacementsderivedfrom recorded motions.TheresultsshowninFigure6fortheNorthHollywoodHotelindicatethatthemodelprovidesdisplacementresponsehistoriesthatmatch quite well with the displacement histories derivedfromrecordedmotions.

    Thevibrationperiodsofselectedbuildingsfromthethreesourcessystem identification using recorded motions,eigen-analysis of the linearly-elastic model, and pushoveranalysisofthenonlinearmodelaresummarizedinTable2.Thepresented results indicatethatvibration periods fromsystemidentificationandeigen-analysisofthelinear-elastic

    model match quite well for all buildings. The vibrationperiods estimated frompushover analysisof thenonlinearmodel also match quite well with results from the twoother sources for three of the five buildingsImperialCounty,ShermanOaks,andNorthHollywood.However,thepushoveranalysisprovides longerperiodscompared tothetwoothersourcesfortwoshear-wallbuildingsWatsonvilleandSantaBarbara.

    Thelongervibrationperiodfromthepushoveranalysisofthetwoshear-wallbuildingsisduetolowerinitialelasticstiffnessofthesystemduringthepushoveranalysiscomparedto that in the model used for eigen-analysis. The lowerstiffnessofthesystemduringpushoveranalysisisapparently

    duetolowereffectivemomentofinertiaoftheshearwallscompared to the value of 0.5 times the gross momentof inertia assumed in the model for eigen-analysis of thebuilding.Thisobservationisconsistentwiththatinarecentstudy[13] whichconcluded that the factor toconvertthegrossmomentofinertiatotheeffectivemomentofinertiaissignificantly lowerthanthevalueof 0.5 specifiedin theASCE-41andFEMA-356documents.Thediscrepancycanbeparticularlylargeforlowvaluesofaxialforce;experimentaldatapresentedinElwoodetal.[13]indicatedthatthefactorcan beas low as0.1 for zeroaxial forcelevel. Clearly, thevibrationperiodcomputedbasedontheeffectivemomentof inertia factor of 0.5, the value specified in FEMA-356

    http:///reader/full/valueof2.64http:///reader/full/valueof2.64http:///reader/full/valueof2.64
  • 8/12/2019 Variability and Accuracy of Target Displacement From Nonlinear St

    6/16

    6 ISRNCivilEngineering

    20 20

    15 15

    f1= 0.378Hz,T1= 2.64s

    NHH-longitudinal

    TR

    0 1 2 3 4 5

    Frequency(Hz)

    f1= 0.354Hz,T1= 2.82s

    NHH-transverse

    0 1 2 3 4 5

    Frequency(Hz)

    TR 10 10

    5 5

    0 0

    (a) (b)

    Figure 3:FundamentalvibrationperiodofNorthHollywoodHotelidentifiedfromrecordedmotions.(a)Longitudinaldirection,and(b)Transversedirection.

    ZXY Z XY

    (a) 1stLong.Mode:T= 2.572s (b)1stTrans.Mode:T= 2.980sFigure 4:VibrationperiodsandmodeshapesoftheNorthHollywoodhotelcomputedfromeigen-analysisofthelinear-elasticmodel.(a)Longitudinaldirection,and(b)Transversedirection.

    200 200

    150 150

    Ti=2.572sT1=2.782s21 Vb/

    M1

    (cm

    /s2)

    0 20 40 60 80

    ur/1r1 (cm)

    Ti=2.98sT1=2.906s

    21

    0 20 40 60 80

    ur/1r1 (cm)

    Vb/M

    (cm

    /s2)

    1100 100

    50 50

    0 0

    (a) (b)

    Figure 5:ComputationofthefundamentalvibrationperiodfromcapacitycurveoftheequivalentinelasticSDFsystemsoftheNorthHollywoodHotel.(a)Longitudinaldirectionand(b)Transversedirection.

  • 8/12/2019 Variability and Accuracy of Target Displacement From Nonlinear St

    7/16

  • 8/12/2019 Variability and Accuracy of Target Displacement From Nonlinear St

    8/16

    8 ISRNCivilEngineering

    Table 2:Comparisonof fundamentalvibration periods(sec) fromsystemidentification,linear-elasticmodel,andpushoveranalysisofnonlinearmodel.

    BuildingSystemID

    Longitudinaldirection

    Linearmodel Nonlinearmodel SystemID

    Transversedirection

    Linearmodel Nonlinearmodel

    ImperialCounty N/A N/A N/A 0.41 0.41 0.48

    ShermanOaks 2.93 2.67 2.51 2.93 2.94 2.62

    NorthHollywood 2.64 2.57 2.78 2.82 2.98 2.91

    Watsonville 0.24 0.27 0.46 0.30 0.31 0.41

    SantaBarbara 0.16 0.15 0.23 0.20 0.18 0.28

    ATC-40CSM.Furtherdetailsofthisprocedure,denotedasthemodifiedADRSprocedure,areavailableintheFEMA440document[3].

    Typically,thelocusofperformancepointsintheATC-40andFEMA-440CSMisplottedonthecapacitycurvefortheequivalentinelasticSDFsystemtoestimatethedisplacementSd. In this investigation, the displacement Sd (or Sa =Sd/(2/ Te)2) is used to compute peak roof displacementusing(1),(6),(11),and(13)forFEMA-356CM,ASCE-41CM,ATC-40CSM,andFEMA-440CSM,respectively,whichisthenplottedonthepushovercurveofthebuilding.SuchaplotpermitsdirectcomparisonoftargetdisplacementfromtheCSMprocedureandtherecordeddisplacement.

    The pushover curves needed in implementing theselectedproceduresweredevelopedforfundamental-modeheight-wise distribution of lateral loads defined by s =m1in whichm is the mass matrix, 1 is the vector offundamentalmodeshape,and istheloadmultiplierduringpushover analysis. The fundamental mode distribution isthe only distribution specified in the ATC-40, FEMA

    440, and ASCE-41 pushover procedures whereas it is oneof the distributions specified in the FEMA-356 pushoverprocedure.

    5.1. Imperial County Services Building. The Imperial County ServicesBuildingisuniqueamongthefiveselectedbuildinginthisinvestigationbecauseitcollapsedduringtheselectedearthquake. The strength and stiffness of this buildingwasprovidedprimarilybymoment-resistingframesinthelongitudinal direction and shear walls in the transversedirection.Thepostearthquakeinvestigation[15]aswellthepushoveranalysis[14]indicatedthatthisbuildingcollapsedin the longitudinal direction due to concrete crushing at

    basesofcolumnsinthemoment-resistingframes.Obviously,thefourprocedurescouldnotbeappliedtoestimatepeakdisplacementof thisbuildingin thelongitudinaldirection.Thecollapseof thebuilding in the longitudinal direction,however, did not significantly influence its stiffness andstrength in the transverse direction because shear walls,which provide most of the stiffness and strength in thisdirection, did not exhibit significant damage. Therefore,theseprocedurescouldbeappliedtoestimatethepeakroofdisplacementinthetransversedirection.However,theresultsforthisbuildingshouldbeviewedwithcareastheseresultsincludeerrors associated withthemodelingand analyticalprocedure, mentioned previously, aswellasdue toeffects

    offailurein the longitudinaldirection onresponse inthetransversedirection.

    TheresultspresentedinFigure7fortheImperialCountyServicesBuildingduetothe1979ImperialValleyearthquakeshowthattheFEMA-356CM,ASCE-41CM,ATC-40CSM,and FEMA-440 CSM lead to target roof displacement of6.98cm,7.60cm,5.64cm,and5.46cm,respectively;thepeak

    roof displacement derived from recorded motions duringthis earthquake is 5.78cm. The differences between thepeak roofdisplacements fromthe FEMA-356CMandtheASCE-41 CM are clearly due to different values of thecoefficientthatconvertsthepeakdisplacementofalinear-elasticSDFsystemtothatofaninelasticSDFsystembetweenthe two CM procedures. Recall that the factor to convertthe peak displacement of a linear-elastic SDF system tothatofan inelasticSDFsystemis equaltoC1C2C3 fortheFEMA-356 CM (1) and C1C2 for the ASCE-41 CM (6).Furthermore, values of the individual coefficients betweenthetwoproceduresdifferforthesamevalueofRandTe (see(3) and (4)fortheFEMA-356CM,and(7) and (8)forthe

    ASCE-41CM).Althoughquitedifferentinimplementationdetails,thetwoCSMproceduresATC-40andFEMA-440ledtoverysimilarestimatesoftargetdisplacementforthisbuilding.

    5.2. Sherman Oaks Commercial Building. The presentedresults indicate that the two CM proceduresFEMA-356andASCE-41provideidenticalestimateofthepeakroofdisplacements of the Sherman Oaks building: the roofdisplacementis27.98cm(Figures8(a)and8(b)).SuchisthecasebecausethecoefficientC1 intheFEMA-356CM(3) and C1 andC2 intheASCE-41CM((7) and (8))areallequaltounitybecausefundamentallongitudinalvibrationperiodof

    thisbuildingisthelongerthanthethresholdperiodvalue,and C3 intheFEMA-356CM(4)isequaltounityduetopositive postyield stiffness. The ATC-40 CSM and FEMA440CSMprovidepeakroofdisplacementof24.26cmand27.09cm,respectively(Figures 8(c)and8(d)).UnlikethetwoCM procedures, the two CSM procedures lead to slightlydifferentvaluesoftheroofdisplacement.ThisdifferenceisduetodifferentvaluesofeffectiveperiodanddampingratiousedintheseCSMprocedures(see(12) and (14)).Thepeakroof displacement derived from recorded motions of thisbuildingduringtheselectedearthquakeis33.6cm.

    Allfourproceduresleadtoidenticalpeakroofdisplacementinthetransversedirection:thepeakroofdisplacement

  • 8/12/2019 Variability and Accuracy of Target Displacement From Nonlinear St

    9/16

    9ISRNCivilEngineering

    ut=5.7

    8cm

    uc=6.9

    85cm

    121086420

    Roofdisplacement(cm)

    0

    3000

    6000

    9000

    12000

    15000

    18000

    Bas

    eshear

    (kN)

    ut=5.7

    8cm

    uc=7.6

    01cm

    121086420

    Roofdisplacement(cm)

    0

    3000

    6000

    9000

    12000

    15000

    18000

    Bas

    eshear

    (kN)

    (a) FEMA-356CM (b) ASCE-41CM

    uc=5.6

    44cm

    ut=5.7

    8cm

    121086420

    Roofdisplacement(cm)

    0

    3000

    6000

    9000

    12000

    15000

    18000

    Baseshe

    ar

    (kN)

    ICSBtransverseu

    c=5.4

    65cm

    ut=5.7

    8cm

    121086420

    Roofdisplacement(cm)

    0

    3000

    6000

    9000

    12000

    15000

    18000

    Baseshe

    ar

    (kN)

    (c) ATC-40CSM (d) FEMA-440CSM

    Figure 7:Computationof the roof displacement from theFEMA-356 CM,ASCE-41CM, ATC-40CSM, andFEMA-440CSM in thetransversedirectionoftheImperialCountyServicesBuilding.

    is equal to 17.98cm (Figure9). Such is the case becausethe building in the transverse direction remains in thelinearelasticrangeduringthe1994Northridgeearthquake.Recall that the coefficients C1, C2, and C3 in the FEMA356 NSP ((3) and (4)) as well as the coefficients C1 andC2 intheASCE-41NSP((7) and (8))areequaltooneforalinearly-elasticsystem.Furthermore,thevibrationperiodanddampingratiointheATC-40CSMandFEMA-440CSMremainequaltothatofalinear-elasticsystemfor = 1(see(12)and (14)).Thepeakroofdisplacementderivedfromtherecordedmotionsofthisbuildinginthetransversedirectionis22.71cm.

    The presented results also indicate that the peak roofdisplacements from the four procedures for the ShermanOaksbuildingare less thanthose fromrecorded motions.Such is the case because these procedures attempt tocapture the response only due to the fundamental mode.Such procedures, obviously, cannot capture the responsedue to higher modes; several higher modes contribute tothe response of the Sherman Oaks Commercial Building[14].

    5.3. North Hollywood Hotel. Althoughstronglyshaken,theNorth Hollywood Hotel remainedwithinthe linear-elasticrange in both the longitudinal and transverse directions

    duringthe1994Northridgeearthquake.Theresultsforthisbuilding arepresented only for the transverse directionthe direction with the larger roof displacement. As notedpreviouslyfortheShermanOaksbuildingin thetransversedirection, all four procedures provide estimates of peakroof displacement that is identical and equal to 14.33cm(Figure10). The peak roof displacement derived fromrecordedmotionsofthisbuildingis17.46cm.ForreasonssimilartothoseidentifiedpreviouslyfortheShermanOaksCommercial Building, the lower estimate from the fourprocedures is due to the inability of these procedures tocapturehighermodeeffectsthatcontributesignificantlyto

    thetransverseresponseofthisbuilding[14].

    5.4. Watsonville Commercial Building. TheresultspresentedinFigure11fortheWatsonvilleCommercialBuildingindicate that the estimate of the peak roof displacements inthelongitudinaldirectionfromtheFEMA-356CM,ASCE41 CM, ATC-40 CSM, and FEMA-440 CSM is 3.13cm,3.01cm,3.12cm,and2.98cm, respectively. Thepeakroofdisplacementderivedfromrecordedmotionsofthisbuildingis 3.33cm. As noted previously for the Imperial CountyServices Building, the two CM procedures provide different estimates of peak roof displacement because variouscoefficientsintheseproceduresdifferforshortervibration

  • 8/12/2019 Variability and Accuracy of Target Displacement From Nonlinear St

    10/16

    10 ISRNCivilEngineering

    104 104

    2 2

    1.5 1.5

    uc=27.

    98cm

    ut=33.

    6cm

    0 10 20 30 40 50 60

    Roofdisplacement(cm)

    uc=27.

    98cm

    ut=33.

    6cm

    0 10 20 30 40 50 60

    Roofdisplacement(cm)

    Baseshear

    (kN)

    Baseshear

    (kN)

    Baseshear

    (kN)

    Baseshear

    (kN)

    1

    0.5

    0

    1

    0.5

    0

    (a) FEMA-356CM (b) ASCE-41CM

    104 104

    2 2

    1.5 1.5

    uc=24.

    26cm

    ut=33.

    6cm

    0 10 20 30 40 50 60

    Roofdisplacement(cm)

    SOlongitudinalu

    c=27.

    09cm

    ut=33.

    6cm

    0 10 20 30 40 50 60

    Roofdisplacement(cm)

    1 1

    0.5

    0

    0.5

    0

    (c) ATC-40CSM (d) FEMA-440CSM

    Figure 8:Computationof the roof displacement from theFEMA-356 CM,ASCE-41CM, ATC-40CSM, andFEMA-440CSM in the

    longitudinaldirectionoftheShermanOaksCommercialBuilding.

    periods; the fundamental longitudinal vibration period ofthisbuildingis0.27sec(Table2).

    The building remained essentially in the linear elasticrangeinthetransversedirection(Figure12).ThetwoCMproceduresprovideestimatesofthepeakroofdisplacementsthatareessentially identical: theFEMA-356CMprovidesavalueof2.75cmandASCE-41CMgivesavalueof2.68cm(Figures 12(a) and 12(b)). The ATC-40 CSM providesan estimate of the peak roof displacement of 2.42cm(Figure12(c))whereasthevaluefromtheFEMA-440CSMis2.76cm(Figure12(d)).Thepeakroofdisplacementofthis

    buildingderivedfromitsrecordedmotionis1.93cm.Unlike the peak roof displacements of the Sherman

    OaksCommercialBuildingandtheNorthHollywoodHotel,the two CM or the two CSM procedures do not providean identical estimate of the peak roof displacement ofthe Watsonville Commercial Building in the transversedirection even though the building remains within thelinear-elastic range (Figure12). This occurs due to thediscrepancy between the effective fundamental vibrationperiodestimatedfrom(2)andthevibrationperiodestimatedfromthepushovercurve(Table2),andtheactualdampingratioandthedampingratioofthelinear-elasticsystemusedinthisinvestigation.

    5.5. Santa Barbara Office Building. Althoughstronglyshakenduringthe1978SantaBarbaraearthquake,theSantaBarbaraOfficeBuildingremainedessentiallywithinthelinear-elasticrangeinbothdirections.Forreasonsofbrevity,thecomputationofthetargetdisplacementfromthefourproceduresispresentedonlyin thelongitudinaldirection.Thepresentedresultsindicatethatestimateoftheroofdisplacementinthelongitudinal direction fromthe FEMA-356 CM, ASCE-41CM,ATC-40CSM,andFEMA-440CSMis0.36cm,0.35cm,0.57cm, and 0.56cm, respectively, (Figure13). The peakvalueoftheroofdisplacementderivedfromrecordedmotion

    is 0.68cm. The four procedures do not provide identicalestimates of thepeak roofdisplacements, even though thebuilding remained within linear elastic range because ofreasons noted previously for the Watsonville CommercialBuilding.

    6. Variability in Target Displacement

    The estimates of the target displacement from the fournonlinearstaticproceduresFEMA-356CM,ASCE-41CM,ATC-40 CSM,andFEMA-440CSMalongwith thepeakroof displacement derived from recorded motions of the

  • 8/12/2019 Variability and Accuracy of Target Displacement From Nonlinear St

    11/16

    11ISRNCivilEngineering

    104 104

    2 2

    1.5 1.5

    uc=17.

    98cm

    ut=22.

    71cm

    0 10 20 30 40 50 60

    Roofdisplacement(cm)

    uc=17.

    98cm

    ut=22.

    71cm

    0 10 20 30 40 50 60

    Roofdisplacement(cm)

    Baseshear

    (kN)

    Baseshear

    (kN)

    Baseshear

    (kN)

    Baseshear

    (kN)

    1

    0.5

    0

    1

    0.5

    0

    (a) FEMA-356CM (b) ASCE-41CM

    104 104

    2 2

    1.5 1.5

    uc=17.

    98cm

    ut=22.

    71cm

    0 10 20 30 40 50 60

    Roofdisplacement(cm)

    SOtransverseu

    c=17.

    98cm

    ut=22.

    71cm

    0 10 20 30 40 50 60

    Roofdisplacement(cm)

    1 1

    0.5

    0

    0.5

    0

    (c) ATC-40CSM (d) FEMA-440CSM

    Figure 9:Computationof the roof displacement from theFEMA-356 CM,ASCE-41CM, ATC-40CSM, andFEMA-440CSM in the

    transversedirectionoftheShermanOaksCommercialBuilding.

    selectedbuildingsaresummarizedinTable3 inthelongitudinaldirectionandTable4inthetransversedirection.Theseresultspermit the following importantobservations aboutvariability of target displacement estimates from variousnonlinearstaticprocedures.

    First,variousnonlinearstaticproceduresprovideidenticalestimatesoftargetdisplacementoflong-periodbuildingsthat remain within the linear elastic range (see NorthHollywood Hotel in the longitudinal direction in Table3,andSherman OaksCommercial BuildingandNorth Hol

    lywood Hotel in the transverse direction inTable4).Thisis consistent with the expectation that nonlinear staticproceduresshouldprovideidenticalestimatesforbuildingsrespondinginthelinearelasticrange.

    Second,variousnonlinearstaticproceduresmayprovidedifferent estimates of target displacement of short-periodshear-wall buildings that remain within the linear elasticrange(seeSantaBarbarabuildinginthelongitudinaldirectioninTable3 andWatsonvilleandSantaBarbarabuildingsinthetransversedirectioninTable4).ThisoccursbecauseofthesensitivityofthepeakdisplacementoftheequivalentSDF system to period and damping in the short-periodrange.Recallthattheremaybeaslightdiscrepancyinthe

    effective fundamental vibration period estimated from(2)andthevibrationperiodestimatedfromthepushovercurveforthesebuildings(Table2),andtheactualdampingratioandthedampingratioofthelinear-elasticsystemusedinthisinvestigation.Itisusefultopointoutthatthelargevariabilitynotedhereisduetouseofresponsespectrumforindividualgroundmotion,whichcanbeveryjaggedintheshort-periodrange;thisvariabilitywouldbemuchlessifasmoothdesignspectrumisused.

    Finally,thevariabilityinthetargetdisplacementoflong-

    periodbuildingrespondinginthenonlinearrangeis muchsmaller compared to short-periodbuildings responding inthenonlinearrange.Forexample,thetargetdisplacementofthelong-periodShermanoaksbuildinginthelongitudinaldirection fromthe four nonlinear static procedures variesfrom 27.98cm to24.26cm (Table3),a variation ofabout13%, whereas that for the short-period Imperial CountyServices building in the transverse direction varies from7.60cmto5.46cm(Table4),avariationofabout28%.ThisisthecasebecauseofsensitivityofvariouscoefficientsintheCMprocedureandtheequivalentperiodanddampingintheCSMprocedurestodegreeofnonlinearity,thatis,valueofR.

  • 8/12/2019 Variability and Accuracy of Target Displacement From Nonlinear St

    12/16

    12 ISRNCivilEngineering

    12000

    uc=14.

    33cm

    ut=17.

    46cm

    uc=14.

    33cm

    ut=17.

    46cm

    12000

    10000 10000

    Baseshear

    (kN)

    Bases

    hear

    (kN)

    8000

    6000

    4000

    2000

    Baseshear

    (kN)

    Bases

    hear

    (kN)

    8000

    6000

    4000

    2000

    0 00 20 40 60 80 0 20 40 60 80

    Roofdisplacement(cm) Roofdisplacement(cm)

    (a) FEMA-356CM (b) ASCE-41CM

    12000 12000

    10000 10000

    uc=14.

    33cm

    ut=17.

    46cm

    0 20 40 60 80

    Roofdisplacement(cm)

    NHtransverseu

    c=14.

    33cm

    ut=17.

    46cm

    0 20 40 60 80

    Roofdisplacement(cm)

    8000

    6000

    4000

    8000

    6000

    4000

    2000 2000

    0 0

    (c) ATC-40CSM (d) FEMA-440CSM

    Figure 10:ComputationoftheroofdisplacementfromtheFEMA-356CM,ASCE-41CM,ATC-40CSM,andFEMA-440CSMinthetransversedirectionoftheNorthHollywoodHotel.

    Table 3:Peak roofdisplacementestimated from four nonlinearstaticprocedures andderivedfrom recorded motions in longitudinaldirection;allvaluesofdisplacementsareincm.

    BuildingFEMA-356CM ASCE-41CM

    Nonlinearstaticprocedure

    ATC-40CSM FEMA-440CSM Recorded

    ImperialCounty N/A N/A N/A N/A N/A

    ShermanOaks 27.98 27.98 24.26 27.09 33.60

    NorthHollywood 10.17 10.17 10.17 10.17 9.75

    Watsonville 3.13 3.01 3.12 2.98 3.33

    SantaBarbara 0.36 0.35 0.57 0.56 0.68

    Table 4:Peakroofdisplacementestimatedfromfournonlinearstaticproceduresandderivedfromrecordedmotionsintransversedirection;allvaluesofdisplacementsareincm.

    BuildingFEMA-356CM ASCE-41CM

    Nonlinearstaticprocedure

    ATC-40CSM FEMA-440CSM Recorded

    ImperialCounty 6.98 7.60 5.64 5.46 5.78

    ShermanOaks 17.98 17.98 17.98 17.98 22.71

    NorthHollywood 14.33 14.33 14.33 14.33 17.46

    Watsonville 2.75 2.68 2.41 2.76 1.93

    SantaBarbara 1.06 0.92 1.06 1.19 1.28

  • 8/12/2019 Variability and Accuracy of Target Displacement From Nonlinear St

    13/16

  • 8/12/2019 Variability and Accuracy of Target Displacement From Nonlinear St

    14/16

    14 ISRNCivilEngineering

    ut=1.9

    26cm

    uc=2.7

    49cm

    86420

    Roofdisplacement(cm)

    0

    5000

    10000

    15000

    Bas

    eshear

    (kN)

    ut=1.9

    26cm

    uc=2.6

    78cm

    86420

    Roofdisplacement(cm)

    0

    5000

    10000

    15000

    Bas

    eshear

    (kN)

    (a) FEMA-356CM (b) ASCE-41CM

    ut=1.9

    26cm

    uc=2.4

    19cm

    86420

    Roofdisplacement(cm)

    0

    5000

    10000

    15000

    Baseshe

    ar

    (kN)

    WTtransverseu

    t=1.9

    26cm

    uc=2.7

    58cm

    86420

    Roofdisplacement(cm)

    0

    5000

    10000

    15000

    Baseshe

    ar

    (kN)

    (c) ATC-40CSM (d) FEMA-440CSM

    Figure 12:Computationofthe roof displacementfromthe FEMA-356 CM,ASCE-41CM,ATC-40 CSM,andFEMA-440CSM inthe transversedirectionoftheWatsonvilleCommercialBuilding.

    prediction for some buildings (see IC-NS and SB-EW inFigure14) but worsefor others (see SO-EW inFigure14)comparedtotheCMprocedure.Forotherbuildings,thetwoproceduresleadtoessentiallysimilarlevelsofaccuracy(seeSO-NS,NH-EW,andNH-NSinFigure14).

    8. Conclusions

    This investigation compared the target roof displacementcomputed from the four currently used proceduresFEMA-356 CM, ASCE-41 CM, ATC-40 CSM, and FEMA

    440 CSMwith the peak roof displacement derived fromrecordedmotionsoffivereinforced-concretebuildingswiththeaimofdevelopinganimprovedunderstandingofthefollowingtwoquestions:(1)howmuchdoesthetargetdisplacement varies among the four nonlinear static procedures?and(2)cantheengineeringprofessionaccuratelypredicttheresponseofarealbuildingduringanearthquakeeventusingcurrentlyavailablemodelingtechniquesandpushoveranalysisprocedures?Themodels of selectedbuildingsutilized in this investigation are developed using generallyacceptedengineeringpractice.Thesemodelswerevalidatedbut not intentionally calibratedagainst the recorded data.Thiscomparisonhasledtothefollowing conclusions.

    Thenonlinearstaticproceduresmayleadtosignificantlydifferent estimates of target displacement, particularly forshort-periodbuildings responding in the nonlinearrange;thelargestvariationnotedin thisinvestigationapproached28%fortheImperialCountyServicesbuilding.Thevariationwasmuchsmallerforlong-periodbuildingsrespondinginthenonlinearrange. These observations areunlikely tobeaffectedbytheinaccuraciesassociatedwithmodelingerrorsbecausethesamemodelwasusedduringimplementationoftheseprocedures.

    Thecurrentnonlinearstaticprocedures,whenappliedtononlinearmodelofthebuildingdevelopedusinggenerally

    acceptedengineeringpracticemayleadtoeithersignificantover-estimation or under-estimation of the targetroof displacementwhencomparedwiththepeakroofdisplacementobserved during a selected earthquake. The error rangedbetween50%underestimationto40%overestimation.

    It is useful to note that poor estimates of target displacement for a few of the buildings from the variouspushover analysis procedures may be due to severe near-fault effects as noted previously by Akkar and Metin [5].Additional errors may occur due to loss of accuracy inrecorded roofdisplacementresulting fromdata processingtechniques described previously. Furthermore, nonlinearstaticproceduresaredesignedtoprovideaccurateestimate

  • 8/12/2019 Variability and Accuracy of Target Displacement From Nonlinear St

    15/16

    15

    15000

    ISRNCivilEngineering

    15000

    10000 10000

    uc=0.3

    6cm

    ut=0.6

    81cm

    2.50 0.5 1 1.5 2

    uc=0.3

    52cm

    ut=0.6

    81cm

    2.50 0.5 1 1.5 2

    Baseshe

    ar

    (kN)

    Bas

    eshear

    (kN)

    Baseshe

    ar

    (kN)

    Bas

    eshear

    (kN)

    5000 5000

    0 0

    Roofdisplacement(cm) Roofdisplacement(cm)

    (a) FEMA-356CM

    2.5

    uc=0.5

    71cm

    ut=0.6

    81cm

    0 0.5 1 1.5 2

    Roofdisplacement(cm)

    (b) ASCE-41CM

    15000 15000

    uc=0.5

    64cm

    SBlongitudinalu

    t=0.6

    81cm

    10000

    5000

    10000

    5000

    0 00 0.5 1 1.5 2 2.5

    Roofdisplacement(cm)

    (c) ATC-40CSM (d) FEMA-440CSM

    Figure 13:ComputationoftheroofdisplacementfromtheFEMA-356CM,ASCE-41CM,ATC-40CSM,andFEMA-440CSMinthelongitudinaldirectionoftheSantaBarbaraOfficeBuilding.

    80

    60

    40

    20

    0

    IC-NS SO-EW SO-NS NH-EW NH-NS WT-EW WT-NS SB-EW SB-NS

    Building

    Error

    (%)

    20

    40

    60

    80

    FEMA-356CM ATC-40CSM

    ASCE-41CM FEMA-440CSM

    Figure 14:PercenterrorinpeakroofdisplacementsfromtheFEMA-356CM,ASCE-41CM,ATC-40CSM,andFEMA-440CSM.

    of the median response. Therefore, it is not surprising staticproceduresandinaccuraciesassociatedwithnonlinearthat large errors are noted when these procedures are modeling.appliedto predict target displacement of buildings during Thedatapresentedinthisinvestigationalsoprovidesaindividualgroundmotions.Thelargeerrorsnotedhereare comparativepredictioncapabilityofvariousnonlinearstaticalso because of a combination of errors due to nonlinear procedures. Although limited in size, this data indicates

  • 8/12/2019 Variability and Accuracy of Target Displacement From Nonlinear St

    16/16

    16 ISRNCivilEngineering

    that (1) the ASCE-41 CM, which is based on recentimprovementsto theFEMA-356CM suggested in FEMA440document,doesnotnecessarilyprovidebetterpredictionofroofdisplacement,(2)theimprovedFEMA-440CSMalsomaynotprovidebetterpredictionofpeakroofdisplacementscomparedtotheATC-40CSM,and(3)thereisnoconclusive

    evidencethattheCMprocedures(FEMA-356orASCE-41)provide better predictions of the peak roof displacementcomparedtotheCSMprocedure(ATC-40orFEMA-440)orvice-versa.

    Acknowldegments

    This investigation is supported by the California DepartmentofConservation,CaliforniaGeologicalSurvey,StrongMotion Instrumentation Program (SMIP), Contract no.1005-832. This support is gratefully acknowledged. Theauthors aregrateful toDrs.AnthonyShakal, Moh Huang,andErolKalkanofSMIPforprovidingtherecordedmotionsandstructuralplansoftheselectedbuildings.TheauthorsalsoacknowledgethecontributionstothisresearchinvestigationbyMatthewHazenandJoeyGivens,undergraduatestudentsatCalPoly,SanLuisObispoandbyDr.Dae-HanJun,VisitingProfessorfromDongseoUniversity,Korea.

    References

    [1] FEMA 356, Prestandard and Commentary for the SeismicRehabilitation of Buildings, FEMAPublicationno. 356, TheAmericanSocietyofCivilEngineersfortheFederalEmergencyManagementAgency,Washington,DC,USA,2000.

    [2] ATC-40, Seismic evaluation andretrofitof concretebuildings,volumes1and2,Tech.Rep.ATC-40,AppliedTechnologyCouncil,RedwoodCity,Calif,USA,1996.

    [3] FEMA-440,Improvement of Nonlinear Static Seismic AnalysisProcedures, AppliedTechnology Council for DepartmentofHomelandSecurity,FederalEmergencyManagementAgency,Washington,DC,USA,2005.

    [4] E. Miranda and J. Ruiz-Garca, Evaluation of approximatemethodsto estimatemaximuminelasticdisplacementdemands, Earthquake Engineering and Structural Dynamics,vol.31,no.3,pp.539560,2002.

    [5] S. Akkar andA. Metin, Assessment of improved nonlinearstatic procedures in FEMA-440,Journal of Structural Engineering,vol.133,no.9,pp.12371246,2007.

    [6] ASCE/SEI-41, Seismic rehabilitation of existing building,

    ASCE Standard no. ASCE/SEI 41-06, American Society ofCivilEngineers,Reston,Va,USA,2007.

    [7] A.C.GuyaderandW.D.Iwan,Determiningequivalentlinearparametersforuseinacapacityspectrummethodofanalysis,

    Journal of Structural Engineering,vol.132,no.1,pp.5967,2006.

    [8] A. F. Shakal, M. J. Huang, and V. Graizer, Strong-motiondata processing, in International Handbook of EarthquakeEngineering Seismology, Part B, W. H. K. Lee, H. Kanamori, P.C.Jennings,andC.Kisslinger,Eds.,pp.967981,AcademicPress,Amsterdam,TheNetherlands,2003.

    [9] A.K.Chopra,Dynamics of Structures: Theory and Applicationsto Earthquake Engineering,Prentice-Hall,UpperSaddleRiver,NJ,USA,3rdedition,2007.

    [10] F. McKenna and G. Fenves, The Opensees Command Language Manual: 1.2, Pacific Earthquake Engineering Center, University of California, Berkeley, Calif, USA, 2001,http://opensees.berkeley.edu/.

    [11] J. B. Mander, M. J. N. Priestley, and R. Park, Theoretical stress-strainmodel forconfinedconcrete,Journal of Structural Engineering,vol.114,no.8,pp.18041826,1988.

    [12] R.K.GoelandA.K.Chopra,EvaluationofmodalandFEMApushoveranalyses:SACbuildings,EarthquakeSpectra,vol.20,no.1,pp.225254,2004.

    [13] K.J.Elwood,A.B.Matamoros,J.W.Wallaceetal.,UpdatetoASCE/SEI41concreteprovisions,Earthquake Spectra,vol.23,no.3,pp.493523,2007.

    [14] R.K.GoelandC.Chadwell,Evaluationofcurrentnonlinearstaticproceduresforconcretebuildingsusingrecordedstrong-motion data, Data Utilization Report, California StrongMotionInstrumentationProgram,CDMG,Sacramento,Calif,USA,2007,http://digitalcommons.calpoly.edu/cenv fac/172/.

    [15] ATC-9,Anevaluationof theimperialcountyservices building:earthquakeresponseandassociateddamage,Tech.Rep.ATC-9, AppliedTechnology Council,PaloAlto, Calif, USA,

    1984.

    http:///reader/full/http://opensees.berkeley.eduhttp://digitalcommons.calpoly.edu/cenvhttp:///reader/full/http://opensees.berkeley.eduhttp://digitalcommons.calpoly.edu/cenv