23
L = 6 × 10 4 km 70 Gauss 50 Gauss W B = 10 32 erg Magnetic Energy Conversion: ideal MHD reconnection inefficient (< 10%) efficient (100%) currents

Van Tend & Kuperus (1978) Three-Dimensional Configuration of Titov & Démoulin (1999) 3. line-current 1. flux rope 2. magnetic charges 3

Embed Size (px)

Citation preview

Page 1: Van Tend & Kuperus (1978) Three-Dimensional Configuration of Titov & Démoulin (1999) 3. line-current 1. flux rope 2. magnetic charges 3

L = 6 × 104 km

70 Gauss

50 Gauss

WB = 1032 ergs

:Magnetic Energy Conversion

ideal MHD reconnection

(< 10%)inefficient (100%)efficient

currents

Page 2: Van Tend & Kuperus (1978) Three-Dimensional Configuration of Titov & Démoulin (1999) 3. line-current 1. flux rope 2. magnetic charges 3

Force-free fields: j || B

How is Energy Stored?

β = 10–3

:Current sheets

reconnection whenj > jcritical

emerging flux model sheared magnetic fields

j × B ≈ 0∇p ≈ 0

Page 3: Van Tend & Kuperus (1978) Three-Dimensional Configuration of Titov & Démoulin (1999) 3. line-current 1. flux rope 2. magnetic charges 3

How Much Energy is Stored?

B = Bphotospheric + Bcoronal

invariantduring CME

source ofCME energy

jcorona

+

photospheric sources

Hα imageplage

prominence

& (1997)from Gaizauskas Mackay

model with magnetogram

B from corona ≈ B from photosphere

free magnetic energy≈ 50% of total magnetic energy

currents currents

Page 4: Van Tend & Kuperus (1978) Three-Dimensional Configuration of Titov & Démoulin (1999) 3. line-current 1. flux rope 2. magnetic charges 3

.

(a) (b) (c)

impossibletransition

(a)(b)

(c)

time

ideal

resistive

forbidden

Aly - Sturrock Paradox

Page 5: Van Tend & Kuperus (1978) Three-Dimensional Configuration of Titov & Démoulin (1999) 3. line-current 1. flux rope 2. magnetic charges 3

. .

time

7

6

5

4

3

2

1

00 2 4 6

Flux-Rope Height h

Source Separation 2λ

current sheetforms

critical point

8

jump

4–4 0

4–4 0

4–4 0

x

y

8

0

y

8

0

y

8

0

λ = 0.96

λ = 0.96

λ = 2.50time

A Storage Model

Page 6: Van Tend & Kuperus (1978) Three-Dimensional Configuration of Titov & Démoulin (1999) 3. line-current 1. flux rope 2. magnetic charges 3
Page 7: Van Tend & Kuperus (1978) Three-Dimensional Configuration of Titov & Démoulin (1999) 3. line-current 1. flux rope 2. magnetic charges 3

. .

t = 36 s

t = 87 s

x

y

y

x

t = 129 s

log P 0–2

0.0

8.0

4.0

150 300 4500

t (sec)

Numerical Simulation of Critical Point Configuration

t = 0 s

initial condition: V = 0

energy equation: Ohmic heating no coolingresistivity: uniform, S = 500

Page 8: Van Tend & Kuperus (1978) Three-Dimensional Configuration of Titov & Démoulin (1999) 3. line-current 1. flux rope 2. magnetic charges 3

.

Three Dimensional Equilibria

dipole (strapping field)

flux rope 0

1

–1

distancefrom Sun1 2 3 4

flux rope hoop force

dipole attraction(strapping field)

Equilibrium is unstable to torus* instability

* see Bateman (1973): instability if r –α; α > 3/2 : for dipoleα = 3

unstable example

Page 9: Van Tend & Kuperus (1978) Three-Dimensional Configuration of Titov & Démoulin (1999) 3. line-current 1. flux rope 2. magnetic charges 3

Van Tend & Kuperus (1978)

.

line-tiedsurface field

0

1

–1

distancefrom Sun1 2 3 4

hoop force

dipole attraction

effect of line-tying

stableequilibrium

How to Achieve a Stable Equilibrium

flux rope

Line-tying creates a second, stable equilibrium

Key factor: Line-tying

Page 10: Van Tend & Kuperus (1978) Three-Dimensional Configuration of Titov & Démoulin (1999) 3. line-current 1. flux rope 2. magnetic charges 3

Three-Dimensional Configuration of Titov & Démoulin (1999)

3. line-current

1. flux rope

2. magnetic   charg

es

3 field sources

Page 11: Van Tend & Kuperus (1978) Three-Dimensional Configuration of Titov & Démoulin (1999) 3. line-current 1. flux rope 2. magnetic charges 3

Initial Configuration(Titov & Démoulin)

Normal Field at Surface

flux-rope footprint

I0 = I

I : flux rope current

I0 : sub-surface line current

Page 12: Van Tend & Kuperus (1978) Three-Dimensional Configuration of Titov & Démoulin (1999) 3. line-current 1. flux rope 2. magnetic charges 3

. ..

Török, Kliem, & Titov (2003)

Kink Stability Analysis of T&D Configuration

j contours

Φ loop = 2.1 π Φ loop = 4.9 π

twist (Φ loop/π)

Stable Case Unstable Casej contours

R = 2.2

R = 3.4

Page 13: Van Tend & Kuperus (1978) Three-Dimensional Configuration of Titov & Démoulin (1999) 3. line-current 1. flux rope 2. magnetic charges 3

surface

image

flux rope current

stationarybackground

source

flux rope arc

perturbedposition

line current& q sources

3D Line-Tied Solution by Method of Images

Solution for B interms of incompleteelliptical integrals

Page 14: Van Tend & Kuperus (1978) Three-Dimensional Configuration of Titov & Démoulin (1999) 3. line-current 1. flux rope 2. magnetic charges 3

Force Equation

F(h,R,ω ) =J 2

c2Rln

8R

a

⎝ ⎜

⎠ ⎟+

1

2ln

tan2(ϕ / 4)− tan2(ω / 4)

1− tan2(ϕ / 4)tan2(ω / 4)

⎣ ⎢

⎦ ⎥+ li / 2 – 3/ 2

⎣ ⎢

⎦ ⎥–

2qLJ / c

ρ+2 + L2

[ ]3 / 2

⎨ ⎪

⎩ ⎪

⎬ ⎪

⎭ ⎪ˆ R

+IJ

c2Ψ Ro ,ρ+ ,π − ϕ o ,θ+[ ] – Ψ Ro ,ρ − ,ϕ o ,θ −[ ]+

J

IΨ R,ρ i ,ϕ ,θ i[ ]

⎧ ⎨ ⎩

⎫ ⎬ ⎭ˆ R

+JIo

c2

h − R + d

ρ+2 sin(ω )ˆ x

arc field function:

force due to ±q sources

stationary background

line current

B(x = 0) =j

c

1

ρ + rF

α +θ

2,p

⎝ ⎜

⎠ ⎟+ F

α –θ

2,p

⎝ ⎜

⎠ ⎟

⎣ ⎢

⎦ ⎥

⎧ ⎨ ⎩

–1

ρ – rE

α +θ

2,p

⎝ ⎜

⎠ ⎟+ E

α –θ

2,p

⎝ ⎜

⎠ ⎟

⎣ ⎢

–p2 sin

α +θ

2

⎝ ⎜

⎠ ⎟cos

α +θ

2

⎝ ⎜

⎠ ⎟

1 – p2 sin2 α +θ

2

⎝ ⎜

⎠ ⎟

–p2 sin

α –θ

2

⎝ ⎜

⎠ ⎟cos

α –θ

2

⎝ ⎜

⎠ ⎟

1 – p2 sin2 α –θ

2

⎝ ⎜

⎠ ⎟

⎥ ⎥ ⎥ ⎥

⎪ ⎪

⎪ ⎪

ˆ x €

≡j

cΨ(r ,ρ ,α ,θ )ˆ x

generalized hoop force

: arc coordinates

Page 15: Van Tend & Kuperus (1978) Three-Dimensional Configuration of Titov & Démoulin (1999) 3. line-current 1. flux rope 2. magnetic charges 3

Other Equations

Current, I, from flux conservation: Requires numerical integration

Radial variation: Assume Lundquist solution, a = a0 (I/I0), li = 1

Ignore tapering (end effect occuring over a distance of a – a0)

force

arc length

apex surface

Page 16: Van Tend & Kuperus (1978) Three-Dimensional Configuration of Titov & Démoulin (1999) 3. line-current 1. flux rope 2. magnetic charges 3

side view

(x = 0)

end

view

(y =

0)

initial displaced

Line-Tied Displacements

Page 17: Van Tend & Kuperus (1978) Three-Dimensional Configuration of Titov & Démoulin (1999) 3. line-current 1. flux rope 2. magnetic charges 3
Page 18: Van Tend & Kuperus (1978) Three-Dimensional Configuration of Titov & Démoulin (1999) 3. line-current 1. flux rope 2. magnetic charges 3

line current field

Effect of Line Current on Twist

flux rope

line current

j

B j

B

j

B

–F F

line current

rotation out of planeupon eruption

Page 19: Van Tend & Kuperus (1978) Three-Dimensional Configuration of Titov & Démoulin (1999) 3. line-current 1. flux rope 2. magnetic charges 3

Principal Results of 3D Analysis

4. Existence of lower equilibrium

3. Aneurism-like evolution

2. Out-of-plane twisting motion

1. Eruption without escape

Page 20: Van Tend & Kuperus (1978) Three-Dimensional Configuration of Titov & Démoulin (1999) 3. line-current 1. flux rope 2. magnetic charges 3

QuickTime™ and aGIF decompressor

are needed to see this picture.

QuickTime™ and aPhoto decompressor

are needed to see this picture.

Kliem & Török (2004)

current density

Page 21: Van Tend & Kuperus (1978) Three-Dimensional Configuration of Titov & Démoulin (1999) 3. line-current 1. flux rope 2. magnetic charges 3

Numerical Simulation of an Unstable Flux Rope

Titov & Démoulin (1999)Török & Kliem (2005)

QuickTime™ and aGIF decompressor

are needed to see this picture.

Page 22: Van Tend & Kuperus (1978) Three-Dimensional Configuration of Titov & Démoulin (1999) 3. line-current 1. flux rope 2. magnetic charges 3

Simulation of “Torus*” Instability

*nonhelical kink(see Bateman 1973)

1. no subsurface line current2. subcritical twist for helical kink3. torus center near surface

QuickTime™ and aGIF decompressor

are needed to see this picture.

Page 23: Van Tend & Kuperus (1978) Three-Dimensional Configuration of Titov & Démoulin (1999) 3. line-current 1. flux rope 2. magnetic charges 3

What is the efficiency of energy conversion as afunction of reconnection rate?

How does reconnection work in a current sheetwhose length grows at a rapid rate?

Can we determine the equilibria and stability propertiesof more realistic line-tied field configurations?