13
UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl) UvA-DARE (Digital Academic Repository) Insomnia disorder and endogenous neurophysiological dynamics Colombo, M. Link to publication Citation for published version (APA): Colombo, M. (2018). Insomnia disorder and endogenous neurophysiological dynamics. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. Download date: 25 Mar 2019

UvA-DARE (Digital Academic Repository) Insomnia disorder ... file6 important to study the pathophysiology of Insomnia Disorder. 3 Hyperarousal Multiple theories of insomnia have been

Embed Size (px)

Citation preview

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Insomnia disorder and endogenous neurophysiological dynamicsColombo, M.

Link to publication

Citation for published version (APA):Colombo, M. (2018). Insomnia disorder and endogenous neurophysiological dynamics.

General rightsIt is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s),other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, statingyour reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Askthe Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam,The Netherlands. You will be contacted as soon as possible.

Download date: 25 Mar 2019

4

Contents of Chapter 1 1 Insomnia Complaints………………………………………………………………………………………………..…............ 5 2 Insomnia Disorder…………………………………………………………………………………………………....................5 3 Hyperarousal………………………………………………………………………………………………….........………...........6 4 Scope of the Thesis……………………………………………………………………………………………………….............6 5 Outline of the Thesis…………………………………………………………………………………………….………............7 6 EEG Dynamics During Wakefulness………………………………………………………………………….…..............7

6.1 Power Spectral Analysis of EEG Oscillations 6.2 Long-Range Temporal Correlations in EEG oscillations 6.3 Heart-beat Evoked Potentials

7 Macrostructure of Sleep EEG: Dynamics of Stage Transitions……………………………………….............9 8 Discussion…………………………………………………………………………………………………………………….............9 9 References ……………………………………………………………………………………………………………………..........10

5

Chapter 1

Introduction 1 Insomnia Complaints

Insomnia symptoms are the most common medical complaints, affecting up to a third of the general population. Insomnia symptoms constitute a dramatic and wide-ranging socioeconomic burden—tens of billions in the U.S. alone (Chilcott and Shapiro, 1996; Kessler et al., 2011)—not only due to health-care expenses, but also due to decreased work productivity and proneness to injuries. Insomnia symptoms

include sleep problems as well their repercussions on wake-time functioning. Sleep-related symptoms concern non-restorative sleep, poor sleep quality or quantity despite adequate sleep opportunity, with problems at one or several parts of the sleep period: at the beginning (sleep initiation), middle (sleep maintenance) or terminal (early-morning awakening) part. Wake-time symptoms include the following: fatigue, inability to concentrate, memory impairments, altered mood, irritability, tension, headaches, reduced energy and motivation, daytime-sleepiness, worries about sleep, work/school dysfunctions and proneness for accidents (American Psychiatric Association, 2013; Edinger et al., 2004; Espie et al., 2012; Wilson et al., 2010).

On one hand, genetic, epigenetic and developmental factors may predispose one to insomnia, while on the other hand, adverse and stressful life events may precipitate insomnia symptoms (Morin et al., 2015; Spielman et al., 1987). Insomnia symptoms may also be precipitated by multiple somatic, psychiatric, neurological, and psychological conditions. Yet, it is not always possible to disentangle causal relationships between insomnia symptoms and other comorbid conditions. In fact, insomnia symptoms as a whole constitute the most central hub in the network of associations between all psychopathological symptoms (Borsboom et al., 2011). Interestingly, insomnia symptoms may persist even after the precipitating factors have remitted.

2 Insomnia Disorder While acute insomnia symptoms tend to remit spontaneously over the short term (days or weeks) in most individuals, in some individuals they endure over the long term (months or years). In the latter case, when the symptoms become recurrent (i.e. at least 3 times a week) and persistent (i.e. more than 3 months), Insomnia Disorder can be diagnosed (American Psychiatric Association, 2013). Insomnia Disorder affects approximately 10% of the population (according to the DSM-IV definition), and has a staggeringly high persistence rate: 74% at 1 year, and 46% at 3 years of follow-up (Morin et al., 2009). Insomnia Disorder severely reduces the quality of life (Kyle et al., 2010), and carries an increased risk of severe, long-lasting health problems, including cardiovascular (Laugsand et al., 2011; Spiegelhalder et al., 2011) and mood (Baglioni et al., 2011) disorders. Given its high prevalence, persistence and impact on health, it is highly

6

important to study the pathophysiology of Insomnia Disorder. 3 Hyperarousal Multiple theories of insomnia have been developed over the years (Espie, 2002; Perlis et al., 1997; Spielman et al., 1987) to explain how the disorder develops and is sustained over time. People who suffer from Insomnia Disorder mostly attribute their sleep troubles to cognitive and emotional factors such as intrusive negative thoughts and the inability to unwind a racing mind during bed-time (Lichstein and Rosenthal, 1980; Watts et al., 1994), as confirmed by recent British epidemiological data (https://www.sleepio.com/2012report/). Over the years, researchers gathered evidence that Insomnia Disorder entails a state of hyperarousal—which is a state of heightened cognitive, emotional, somatic and neurophysiological activation that interferes with the initiation and maintenance of sleep. (Bonnet and Arand, 1997; Riemann et al., 2010, 2015). Multiple neurobiological pathways could be involved in the etiology of hyperarousal, including wake and sleep promoting nuclei (Cano et al., 2008) and networks regulating emotion, reward and cortical excitability (Altena et al., 2010; Stoffers et al., 2014; Wassing et al., 2016). Hyperarousal can be investigated at multiple levels of the neurobiological organization, from the cellular up to the level of large-scale brain dynamics (Bonnet, 2010; Bonnet and Arand, 2010b; Morin et al., 2015; Riemann et al., 2010). Despite the large body of work conducted up to date, the current understanding of hyperarousal at the level of large-scale neurophysiological dynamics is still preliminary. Furthermore, while many studies have focused on neurophysiological activity evoked by a specialized task, the study of the endogenous, spontaneous activity is emerging as a promising new field (Michel and Murray, 2012; Stam, 2005). Thus, investigating the large-scale endogenous neurophysiological dynamics is a key step to understand the pathophysiology of Insomnia Disorder. 4 Scope of the Thesis If we had a better understanding of the pathophysiology of Insomnia Disorder and insomnia complaints, we could expose the fundamental mechanism that underlie the disorder, and thus highlight potential therapeutic targets. Current pharmacological treatments of Insomnia Disorder are devoted to alleviate symptoms and not the underlying causes of the disorder. Insomnia Disorder often endures years, if not decades, suggesting it is underpinned by neurophysiological alterations that settle the nervous system to a novel equilibrium. We argue that a better understanding of the endogenous neurophysiology of medication-free people suffering from Insomnia Disorder is needed to evaluate the efficacy of hypnotics, and help developing new treatments in general. By studying the neurophysiological basis of Insomnia Disorder we aim to highlight which neurophysiological processes are altered and contribute to the maintenance of the disorder.

7

5 Outline of the Thesis In the current thesis we focus on the underlying mechanisms of Insomnia Disorder, specifically on the endogenous (i.e. not experimentally manipulated) neurophysiological dynamics at the macroscopic level, assessed through different vigilance states. For this purpose, we recruited a relatively large cohort of participants that spanned from early to late adulthood, were free from sleep medications, and belonged to either a group suffering from Insomnia Disorder, or to a group of age and sex –matched controls. Endogenous neurophysiological dynamics were investigated by means of high-density electroencephalography (HD-EEG), obtained during resting-state evening wakefulness and during night-time sleep. Specifically, we evaluated wake neurophysiological dynamics—related to ongoing oscillations and to the response to cardiac activity—and the macrostructure of sleep dynamics—related to the transition between sleep stages. We then considered how the endogenous neurophysiological dynamics were altered in Insomnia Disorder and how these modified with the severity of insomnia complaints, to uncover potential signatures of hyperarousal. 6 EEG Dynamics During Wakefulness We begin by considering the endogenous neurophysiological dynamics occurring during quiet wakefulness. Even in absence of any explicit task, the brain at rest generates highly complex dynamics. The structure of these dynamics carries a wealth of information about the brain’s functional organization, which can reveal—through sophisticated analysis techniques—the dysregulations occurring in Insomnia Disorder and with individual differences in insomnia complaints. A large part of these endogenous brain dynamics is generated by the ongoing intrinsic oscillatory brain activity, and a tiny part is evoked by the ever-present heartbeat. First, we investigated the intrinsic, ongoing brain oscillations during evening resting-state wakefulness: specifically the strength of oscillations (through power spectral analysis) and the temporal autocorrelation of oscillations (through the analysis of long-range temporal correlations). 6.1 Power Spectral Analysis of EEG Oscillations

Multiple studies have analyzed how the spectral composition of sleep EEG is altered in Insomnia Disorder. A common finding is elevated amplitude of high-frequency oscillations—a long-standing signature of hyperarousal (Freedman, 1986; Perlis et al., 2001a). However, few studies have considered the spectral composition of the wake EEG, and the majority of these studies looked at wake epochs during night-time bed recordings. The findings have been relatively inconsistent, plausibly due to small sample sizes, different inclusion criteria and heterogeneity of conditions and settings. Furthermore, these studies usually analyzed few channels and frequency bands, which granted them poor spatial and spectral resolution. To overcome these limitations, we undertook a study of adequate sample size, with stringent inclusion criteria, in a standardized setting for data acquisition. In chapter 2 we will consider the amplitude of the ongoing brain

8

oscillations during wakefulness, with a fine-grained spatiospectral resolution. For multiple electrodes we estimated the spectral composition of the EEG-signals at multiple frequency bins, and explored possible group differences related to Insomnia Disorder, using a powerful and rigorous framework to correct for multiple comparisons. We will discuss plausible neuropsychological processes that are functionally involved in the observed neurophysiological alterations, and the implications for the construct of hyperarousal. 6.2 Long-Range Temporal Correlations in EEG oscillations The spectral composition of the brain’s ongoing oscillations revealed important characteristics of the brain functional organization in Insomnia Disorder. However, the amplitude of these ongoing brain oscillations varies over time in a highly structured manner—oscillations wax and wane—hence the mean amplitude does not capture these complex temporal dynamics. Brain oscillations display a temporal organization that is sustained across multiple scales, such that even small changes in the activity in the past can shape future activity over the long run. This scale-invariant temporal organization of brain oscillations can be characterized by their Long-Range Temporal Correlations (LRTC)—autocorrelations that decay over time according to a power-law (Hardstone et al., 2012).

In chapter 3 we will consider the LRTC of band-filtered oscillations during restful wakefulness. Previous modeling work related the strength of LRTC to the critical balance between excitatory and inhibitory processes (Poil et al., 2012). Specifically, in the physiological domain where excitation does not dominate over inhibition, (Priesemann et al., 2013, 2014) stronger LRTC can index a stronger excitation to inhibition ratio (Poil et al., 2012). Sleep is hypothesized to regulate these scale-invariant dynamics (Pearlmutter and Houghton, 2009), by enabling the brain to maintain the balance between excitatory and inhibitory signaling. Sleep therefore prevents the formation of self-reinforcing excitatory loops that could yield an imbalance towards excitation. A net imbalance towards excitation would favor large cascades of activity and ultimately seizures (Meisel et al., 2013, 2015). Seizures are likely due to a large increase of the ratio between excitation and inhibition (DiNuzzo et al., 2014; Scharfman, 2007) and can arise after prolonged total sleep deprivation in susceptible individuals (Ellingson et al., 1984; Friis and Lund, 1974; Gunderson et al., 1973; Rodin et al., 1962). Consistently, in healthy individuals sleep deprivation yields a net increase of cortical excitability (Huber et al., 2013). Insomnia Disorder involves only a moderate amount of sleep loss, therefore it could involve a subtle alteration of the ratio between excitation and inhibition, preserving the overall inhibitory bias of the physiological balance between excitation and inhibition. In line with the notion of hyperarousal, we hypothesized that Insomnia Disorder and the severity of sleep complaints would yield a reduction of the net inhibitory bias, and thereby also increase LRTC.

9

6.3 Heart-beat Evoked Potentials We then considered the spontaneous wake neurophysiological dynamics that are not intrinsically generated in the brain, in particular those evoked by cardiac activity. While previous studies have shown heightened sensitivity to exogenous sensory information in Insomnia Disorder, it remains to be addressed whether insomnia also entails heightened sensitivity to endogenous sensory information—as observed in depression and anxiety disorder. In chapter 4 we will consider the neurophysiological response to the heart-beat, as a marker of interoceptive sensitivity. We reasoned that interoceptive hyper-sensitivity may be one possible phenotype of hyperarousal, interfering with the process of sleep initiation. We therefore hypothesized that Insomnia Disorder would entail a larger neurophysiological response evoked by the heartbeat. 7 Macrostructure of Sleep EEG: Dynamics of Stage Transitions Finally, we will consider the macrostructure of sleep dynamics. Previous studies on the macrostructure of sleep considered the standard polysomnographic measures derived from the amount of each sleep stage (absolute or relative to the amount a person slept), revealing higher intrusion of wakefulness after sleep onset, reduced slow-wave sleep and reduced Rapid Eye Movement (REM) sleep (Baglioni et al., 2014). However, previous studies typically did not consider the dynamics in the sleep macrostructure. Sleep stages are usually structured into a 90 - 120 minute sleep cycle, going from light to deep non-REM sleep, to REM sleep. Therefore, some sleep stages are more likely to be followed by others. Furthermore, each sleep stage may last from a few to tens of epochs, such that longer epochs are exponentially rarer than shorter ones. In chapter 5 we will consider the stability of each sleep stage and the transitions between sleep stages. Specifically, we investigated the survival rate of each sleep stage, and the likelihood of transition between each sleep stages. We hypothesized that the macrostructure of sleep dynamics in Insomnia Disorder would show signatures of hyperarousal, and thus be characterized by shorter bouts of sleep and by a higher probability of deeper stages to revert to lighter stages of sleep. 8 Discussion In Chapter 6 we will summarize the findings of the previous chapters, and put them in perspective within the growing literature on the neurophysiology of Insomnia Disorder. The alterations in spontaneous neurophysiological dynamics that we uncovered in the thesis will be discussed with respect to the current understanding of hyperarousal. We will connect the neurophysiological findings to the neuropsychological processes that are involved in Insomnia Disorder and with individual differences in the severity of insomnia complaints. Finally, we will discuss the caveats for future research and give recommendations.

10

9 References American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders, 5th Edition: DSM-5. Arlington, VA:

Copernicus doi:10.1176/appi.books.9780890425596.893619. Atallah, B. V, and Scanziani, M. (2009). Instantaneous Modulation of Gamma Oscillation Frequency by Balancing Excitation with

Inhibition. Neuron 62, 566–577. doi:10.1016/j.neuron.2009.04.027. Baglioni, C., Battagliese, G., Feige, B., Spiegelhalder, K., Nissen, C., Voderholzer, U., et al. (2011). Insomnia as a predictor of depression:

a meta-analytic evaluation of longitudinal epidemiological studies. J. Affect. Disord. 135, 10–9. doi:10.1016/j.jad.2011.01.011. Baglioni, C., Regen, W., Teghen, A., Spiegelhalder, K., Feige, B., Nissen, C., et al. (2014). Sleep changes in the disorder of insomnia: a

meta-analysis of polysomnographic studies. Sleep Med. Rev. 18, 195–213. doi:10.1016/j.smrv.2013.04.001. Bak, Tang, and Wiesenfeld (1987). Self-organized criticality: An explanation of the 1/f noise. Phys Rev Lett 59, 381–384.

doi:10.1103/PhysRevLett.59.381. Bastien, C. H. (2011). Insomnia: Neurophysiological and neuropsychological approaches. Neuropsychol. Rev. 21, 22–40.

doi:10.1007/s11065-011-9160-3. Beggs, J. M. (2008). The criticality hypothesis: how local cortical networks might optimize information processing. Philos. Trans. A.

Math. Phys. Eng. Sci. 366, 329–43. doi:10.1098/rsta.2007.2092. Bennett, C., Arroyo, S., and Hestrin, S. (2013). Subthreshold mechanisms underlying state-dependent modulation of visual

responses. Neuron 80, 350–357. doi:10.1016/j.neuron.2013.08.007. Bonnet, M. H. (2010). Hyperarousal and insomnia. Sleep Med. Rev. 14, 33. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/19748299. Bonnet, M. H., and Arand, D. L. (1997). Hyperarousal and insomnia. Sleep Med. Rev. 1, 97–108. doi:10.1016/S1087-0792(97)90012-

5. Bonnet, M. H., and Arand, D. L. (1998). Heart Rate Variability in Insomniacs and Matched Normal Sleepers. Psychosom. Med. 60, 610–

615. doi:10.1097/00006842-199809000-00017. Bonnet, M. H., and Arand, D. L. (2010a). Hyperarousal and insomnia : State of the science. Sleep Med. Rev. 14, 9–15.

doi:10.1016/j.smrv.2009.05.002. Bonnet, M. H., and Arand, D. L. (2010b). Hyperarousal and insomnia: state of the science. Sleep Med. Rev. 14, 9–15.

doi:10.1016/j.smrv.2009.05.002. Borsboom, D., Cramer, A. O. J., Schmittmann, V. D., Epskamp, S., and Waldorp, L. J. (2011). The Small World of Psychopathology. PLoS

One 6, e27407. doi:10.1371/journal.pone.0027407. Britz, J., Van De Ville, D., and Michel, C. M. (2010). BOLD correlates of EEG topography reveal rapid resting-state network dynamics.

Neuroimage 52, 1162–1170. doi:10.1016/j.neuroimage.2010.02.052. Brodbeck, V., Kuhn, A., von Wegner, F., Morzelewski, A., Tagliazucchi, E., Borisov, S., et al. (2012). EEG microstates of wakefulness

and NREM sleep. Neuroimage 62, 2129–39. doi:10.1016/j.neuroimage.2012.05.060. Buckelew, S. P., DeGood, D. E., Roberts, K. D., Butkovic, J. D., and MacKewn, A. S. (2009). Awake EEG disregulation in good compared

to poor sleepers. Appl. Psychophysiol. Biofeedback 34, 99–103. doi:10.1007/s10484-009-9080-7. Cano, G., Mochizuki, T., and Saper, C. B. (2008). Neural Circuitry of Stress-Induced Insomnia in Rats. J. Neurosci. 28, 10167–10184.

doi:10.1523/JNEUROSCI.1809-08.2008. Cervena, K., Espa, F., Perogamvros, L., Perrig, S., Merica, H., and Ibanez, V. (2014). Spectral analysis of the sleep onset period in

primary insomnia. Clin. Neurophysiol. 125, 979–87. doi:10.1016/j.clinph.2013.10.010. Chen, M. C., Chang, C., Glover, G. H., and Gotlib, I. H. (2014). Increased insula coactivation with salience networks in insomnia. Biol.

Psychol. 97, 1–8. doi:10.1016/j.biopsycho.2013.12.016. Chilcott, L. A., and Shapiro, C. M. (1996). The Socioeconomic Impact of Insomnia. Pharmacoeconomics 10, 1–14.

doi:10.2165/00019053-199600101-00003. Chokroverty, S., and Nobili, L. (2017). “Sleep and Epilepsy,” in Sleep Disorders Medicine (New York, NY: Springer New York), 915–

961. doi:10.1007/978-1-4939-6578-6_44. Chowdhury, G. M. I., Patel, A. B., Mason, G. F., Rothman, D. L., and Behar, K. L. (2007). Glutamatergic and GABAergic neurotransmitter

cycling and energy metabolism in rat cerebral cortex during postnatal development. J. Cereb. Blood Flow Metab. 27, 1895–1907. doi:10.1038/sj.jcbfm.9600490.

Corsi-Cabrera, M., Figueredo-Rodríguez, P., del Río-Portilla, Y., Sánchez-Romero, J., Galán, L., and Bosch-Bayard, J. (2012). Enhanced Frontoparietal Synchronized Activation During the Wake-Sleep Transition in Patients with Primary Insomnia. Sleep. doi:10.5665/sleep.1734.

11

Corsi-Cabrera, M., Rojas-Ramos, O. A., and del Río-Portilla, Y. (2016). Waking EEG signs of non-restoring sleep in primary insomnia patients. Clin. Neurophysiol. 127, 1813–1821. doi:10.1016/j.clinph.2015.08.023.

Cortoos, A., De Valck, E., Pattyn, N., Mairesse, O., and Cluydts, R. (2014). Excitatory versus inhibitory impairments in insomnia patients: An ERP study. Int. J. Psychophysiol. 93, 62–9. doi:10.1016/j.ijpsycho.2013.03.004.

Damsa, C., Kosel, M., and Moussally, J. (2009). Current status of brain imaging in anxiety disorders. Curr. Opin. Psychiatry 22, 96–110. doi:10.1097/YCO.0b013e328319bd10.

De Gennaro, L., Ferrara, M., and Bertini, M. (2001). The boundary between wakefulness and sleep: Quantitative electroencephalographic changes during the sleep onset period. Neuroscience 107, 1–11. doi:10.1016/S0306-4522(01)00309-8.

Dehghani, N., Peyrache, A., Telenczuk, B., Le Van Quyen, M., Halgren, E., Cash, S. S., et al. (2016). Dynamic Balance of Excitation and Inhibition in Human and Monkey Neocortex. Sci. Rep. 6, 23176. doi:10.1038/srep23176.

DiNuzzo, M., Mangia, S., Maraviglia, B., and Giove, F. (2014). Physiological bases of the K+ and the glutamate/GABA hypotheses of epilepsy. Epilepsy Res. 108, 995–1012. doi:10.1016/j.eplepsyres.2014.04.001.

Domschke, K., Stevens, S., Pfleiderer, B., and Gerlach, A. L. (2010). Interoceptive sensitivity in anxiety and anxiety disorders: An overview and integration of neurobiological findings. Clin. Psychol. Rev. 30, 1–11. doi:10.1016/j.cpr.2009.08.008.

Dudek, F. E., and Sutula, T. P. (2007). “Epileptogenesis in the dentate gyrus: a critical perspective,” in, 755–773. doi:10.1016/S0079-6123(07)63041-6.

Edinger, J. hoeverD, Bonnet, M. H., Bootzin, R. R., Doghramji, K., Dorsey, C. M., Espie, C. A., et al. (2004). Derivation of research diagnostic criteria for insomnia: report of an American Academy of Sleep Medicine Work Group. Sleep 27, 1567–96. doi:10.1016/S0513-5117(08)70324-7.

Ellingson, R. J., Wilken, K., and Bennett, D. R. (1984). Efficacy of sleep deprivation as an activation procedure in epilepsy patients. J. Clin. Neurophysiol 1, 83–101. doi:10.1097/00004691-198401000-00005.

Erden, V., Abitağaoğlu, S., Güler, C., Doğan, Z., Kırgezen, Ş., and Abut, Y. (2016). Insomnia may increase anesthetic requirement. J. Clin. Anesth. 34, 367–372. doi:10.1016/j.jclinane.2016.05.020.

Escolano, C., Navarro-Gil, M., Garcia-Campayo, J., Congedo, M., and Minguez, J. (2014). The effects of individual upper alpha neurofeedback in ADHD: an open-label pilot study. Appl. Psychophysiol. Biofeedback 39, 193–202. doi:10.1007/s10484-014-9257-6.

Espie, C. A. (2002). Insomnia: conceptual issues in the development, persistence, and treatment of sleep disorder in adults. Annu. Rev. Psychol. 53, 215–43. doi:10.1146/annurev.psych.53.100901.135243.

Espie, C. A., Kyle, S. D., Hames, P., Cyhlarova, E., and Benzeval, M. (2012). The daytime impact of DSM-5 insomnia disorder: comparative analysis of insomnia subtypes from the Great British Sleep Survey. J. Clin. Psychiatry 73, e1478-84. doi:10.4088/JCP.12m07954.

Fernandez-Mendoza, J., Li, Y., Vgontzas, A. N., Fang, J., Gaines, J., Calhoun, S. L., et al. (2016). Insomnia is Associated with Cortical Hyperarousal as Early as Adolescence. Sleep 39, 1029–1036. doi:10.5665/sleep.5746.

Foldvary-Schaefer, N., and Grigg-Damberger, M. (2009). Sleep and Epilepsy. Semin. Neurol. 29, 419–428. doi:10.1055/s-0029-1237115.

Fortier-Brochu, E., Beaulieu-Bonneau, S., Ivers, H., and Morin, C. M. (2012). Insomnia and daytime cognitive performance: a meta-analysis. Sleep Med. Rev. 16, 83–94. doi:10.1016/j.smrv.2011.03.008.

Freedman, R. R. (1986). EEG power spectra in sleep-onset insomnia. Electroencephalogr. Clin. Neurophysiol., 408–413. Friis, M. L., and Lund, M. (1974). Stress convulsions. Arch. Neurol. 31, 155–159. doi:10.1001/archneur.1974.00490390037002. Gao, R. D., Peterson, E. J., and Voytek, B. (2016). Inferring Synaptic Excitation/Inhibition Balance from Field Potentials.

doi:10.1101/081125. Grigg-Damberger, M. M., and Ralls, F. (2014). Sleep disorders in adults with epilepsy: past, present, and future directions. Curr. Opin.

Pulm. Med. 20, 542–549. doi:10.1097/MCP.0000000000000101. Gunderson, C. H., Dunne, P. B., and Feyer, T. L. (1973). Sleep deprivation seizures. Neurology 23, 678–686.

doi:10.1212/WNL.23.7.678. Hahn, G., Ponce-Alvarez, A., Monier, C., Benvenuti, G., Kumar, A., dé ric Chavane, F., et al. (2017). Spontaneous cortical activity is

transiently poised close to criticality. PLOS Comput. Biol. 13, e1005543. doi:10.1371/journal.pcbi.1005543. Haider, B., Häusser, M., and Carandini, M. (2013). Inhibition dominates sensory responses in the awake cortex.

doi:10.1038/nature11665. Hammad, M. A., Barsky, A. J., and Regestein, Q. R. (2001). Correlation Between Somatic Sensation Inventory Scores and Hyperarousal

Scale Scores. Psychosomatics 42, 29–34. doi:10.1176/appi.psy.42.1.29.

12

Hardstone, R., Poil, S.-S., Schiavone, G., Jansen, R., Nikulin, V. V, Mansvelder, H. D., et al. (2012). Detrended fluctuation analysis: a scale-free view on neuronal oscillations. Front. Physiol. 3, 450. doi:10.3389/fphys.2012.00450.

Hauri, P. (1981). Treating psychophysiologic insomnia with biofeedback. Arch. Gen. Psychiatry 38, 752–758. doi:10.1001/archpsyc.1981.01780320032002.

Hauri, P. J., Percy, L., Hellekson, C., Hartmann, E., and Russ, D. (1982). The treatment of psychophysiologic insomnia with biofeedback: a replication study. Biofeedback and selfregulation 7, 223–235.

Hennequin, G., Agnes, E. J., and Vogels, T. P. (2017). Inhibitory Plasticity: Balance, Control, and Codependence. Annu. Rev. Neurosci. 40, annurev-neuro-072116-031005. doi:10.1146/annurev-neuro-072116-031005.

Hoedlmoser, K., Pecerstorfer, T., Gruber, G., Anderer, P., Doppelmayr, M., Klimesch, W., et al. (2008). Instrumental Conditioning of Human Sensorimotor Rhythm (12-15 Hz) and Its Impact on Sleep as Well as Declarative Learning. Sleep 31, 1401-1408-. doi:10.5665/sleep/31.10.1401.

Huber, R., Mäki, H., Rosanova, M., Casarotto, S., Canali, P., Casali, A. G., et al. (2013). Human cortical excitability increases with time awake. Cereb. Cortex 23, 332–8. doi:10.1093/cercor/bhs014.

Isaacson, J. S., and Scanziani, M. (2011). How inhibition shapes cortical activity. Neuron 72, 231–243. doi:10.1016/j.neuron.2011.09.027.

Jansson, M., and Linton, S. J. (2007). Psychological mechanisms in the maintenance of insomnia: Arousal, distress, and sleep-related beliefs. Behav. Res. Ther. 45, 511–521. doi:10.1016/j.brat.2006.04.003.

Jiang, C. gang, Zhang, T., Yue, F. guo, Yi, M. ling, and Gao, D. (2013). Efficacy of Repetitive Transcranial Magnetic Stimulation in the Treatment of Patients with Chronic Primary Insomnia. Cell Biochem. Biophys. 67, 169–173. doi:10.1007/s12013-013-9529-4.

Kantelhardt, J. W., Tismer, S., Gans, F., Schumann, A. Y., and Penzel, T. (2015). Scaling behavior of EEG amplitude and frequency time series across sleep stages. EPL (Europhysics Lett. 112, 18001. doi:10.1209/0295-5075/112/18001.

Kessler, R. C., Berglund, P. A., Coulouvrat, C., Hajak, G., Roth, T., Shahly, V., et al. (2011). Insomnia and the performance of US workers: results from the America insomnia survey. Sleep 34, 1161–71. doi:10.5665/SLEEP.1230.

Khanna, A., Pascual-Leone, A., Michel, C. M., and Farzan, F. (2015). Microstates in resting-state EEG: Current status and future directions. Neurosci. Biobehav. Rev. 49, 105–113. doi:10.1016/j.neubiorev.2014.12.010.

Klimesch, W. (2012). Alpha-band oscillations, attention, and controlled access to stored information. Trends Cogn. Sci. 16, 606–617. doi:10.1016/j.tics.2012.10.007.

Klimesch, W., Doppelmayr, M., and Hanslmayr, S. (2006). “Upper alpha ERD and absolute power: their meaning for memory performance,” in, 151–165. doi:10.1016/S0079-6123(06)59010-7.

Klimesch, W., Sauseng, P., and Hanslmayr, S. (2007). EEG alpha oscillations: The inhibition-timing hypothesis. Brain Res. Rev. 53, 63–88. doi:10.1016/j.brainresrev.2006.06.003.

Kremkow, J., Aertsen, A., and Kumar, A. (2010). Gating of Signal Propagation in Spiking Neural Networks by Balanced and Correlated Excitation and Inhibition. J. Neurosci. 30, 15760–15768. doi:10.1523/JNEUROSCI.3874-10.2010.

Kyle, S. D., Morgan, K., and Espie, C. A. (2010). Insomnia and health-related quality of life. Sleep Med. Rev. 14, 69–82. doi:10.1016/j.smrv.2009.07.004.

Laugsand, L. E., Vatten, L. J., Platou, C., and Janszky, I. (2011). Insomnia and the risk of acute myocardial infarction: a population study. Circulation 124, 2073–81. doi:10.1161/CIRCULATIONAHA.111.025858.

Lechuga, D. Y. A., Escandón, O. S., Corona, M. C., Montoya, C. C., R., G. R., Anguiano, A. J., et al. (2011). Electroencephalographic Abnormalities in Patients with Idiopathic Insomnia. Neurosci. & Med. 2, 178–184. doi:10.4236/nm.2011.23024.

Lichstein, K. L., and Rosenthal, T. L. (1980). Insomniacs’ perceptions of cognitive versus somatic determinants of sleep disturbance. J. Abnorm. Psychol. 89, 105–107. doi:10.1037/0021-843X.89.1.105.

Lo, H.-S., Yang, C.-M., Lo, H. G., Lee, C.-Y., Ting, H., and Tzang, B.-S. (2010). Treatment Effects of Gabapentin for Primary Insomnia. Clin. Neuropharmacol. 33, 84–90. doi:10.1097/WNF.0b013e3181cda242.

Malow, B. A., and Vaughn, B. V (2002). Treatment of sleep disorders in epilepsy. Epilepsy Behav. 3, 35–37. doi:10.1016/S1525-5050(02)00507-3.

Manganotti, P., Bongiovanni, L. G., Fuggetta, G., Zanette, G., Fiaschi, A., and Manganotti, P. (2006). Effects of sleep deprivation on cortical excitability in patients affected by juvenile myoclonic epilepsy: a combined transcranial magnetic stimulation and EEG study. J Neurol Neurosurg Psychiatry 77, 56–60. doi:10.1136/jnnp.2004.041137.

Manni, R., Galimberti, C. A., Zucca, C., Parietti, L., and Tartara, A. (1990). Sleep patterns in patients with late onset partial epilepsy receiving chronic carbamazepine (CBZ) therapy. Epilepsy Res. 7, 72–76. doi:10.1016/0920-1211(90)90056-2.

Manni, R., and Terzaghi, M. (2010). Comorbidity between epilepsy and sleep disorders. Epilepsy Res. 90, 171–177.

13

doi:10.1016/j.eplepsyres.2010.05.006. Marx, E., Stephan, T., Nolte, A., Deutschländer, A., Seelos, K. C., Dieterich, M., et al. (2003). Eye closure in darkness animates sensory

systems. Neuroimage 19, 924–934. doi:10.1016/S1053-8119(03)00150-2. Matos, G., Tufik, S., Scorza, F. A., Cavalheiro, E. A., and Andersen, M. L. (2013). Sleep and epilepsy: Exploring an intriguing relationship

with a translational approach. Epilepsy Behav. 26, 405–409. doi:10.1016/j.yebeh.2012.12.003. Meisel, C., Olbrich, E., Shriki, O., and Achermann, P. (2013). Fading Signatures of Critical Brain Dynamics during Sustained

Wakefulness in Humans. J. Neurosci. 33, 17363–17372. doi:10.1523/JNEUROSCI.1516-13.2013. Meisel, C., Schulze-Bonhage, A., Freestone, D., Cook, M. J., Achermann, P., and Plenz, D. (2015). Intrinsic excitability measures track

antiepileptic drug action and uncover increasing/decreasing excitability over the wake/sleep cycle. Proc. Natl. Acad. Sci. 112, 14694–14699. doi:10.1073/pnas.1513716112.

Mendelson, W. B., and Martin, J. V. (1992). Characterization of the hypnotic effects of triazolam microinjections into the medial preoptic area. Life Sci. 50, 1117–1128. doi:10.1016/0024-3205(92)90349-T.

Menon, V., and Uddin, L. Q. (2010). Saliency, switching, attention and control: a network model of insula function. Brain Struct. Funct. 214, 1–13. doi:10.1007/s00429-010-0262-0.

Meyerhoff, D. J., Mon, A., Metzler, T., and Neylan, T. C. (2014). Cortical Gamma-Aminobutyric Acid and Glutamate in Posttraumatic Stress Disorder and Their Relationships to Self-Reported Sleep Quality. Sleep 37, 893–900. doi:10.5665/sleep.3654.

Michel, C. M., and Murray, M. M. (2012). Towards the utilization of EEG as a brain imaging tool. Neuroimage 61, 371–385. doi:10.1016/j.neuroimage.2011.12.039.

Mohler, H. (2006). GABA-A receptors in central nervous system disease: anxiety, epilepsy, and insomnia. J Recept Signal Transduct Res 26, 731–740. doi:J288507103R61018 [pii]\r10.1080/10799890600920035.

Montplaisir, J., Laverdière, M., Saint-Hilaire, J. M., and Rouleau, I. (1987). Nocturnal sleep recording in partial epilepsy: a study with depth electrodes. J. Clin. Neurophysiol. 4, 383–8.

Morgan, P. T., Pace-Schott, E. F., Mason, G. F., Forselius, E., Fasula, M., Valentine, G. W., et al. (2012). Cortical GABA Levels in Primary Insomnia. Sleep 35, 807–814. doi:10.5665/sleep.1880.

Morin, C. M., Bélanger, L., LeBlanc, M., Ivers, H., Savard, J., Espie, C. A., et al. (2009). The Natural History of Insomnia: A Population-Based 3-Year Longitudinal Study. Arch. Intern. Med. 169, 447. doi:10.1001/archinternmed.2008.610.

Morin, C. M., Drake, C. L., Harvey, A. G., Krystal, A. D., Manber, R., Riemann, D., et al. (2015). Insomnia disorder. Nat. Rev. Dis. Prim. 1, 15026. doi:10.1038/nrdp.2015.26.

Murphy, M., Riedner, B. a, Huber, R., Massimini, M., Ferrarelli, F., and Tononi, G. (2009). Source modeling sleep slow waves. Proc. Natl. Acad. Sci. U. S. A. 106, 1608–13. doi:10.1073/pnas.0807933106.

Nan, W., Rodrigues, J. P., Ma, J., Qu, X., Wan, F., Mak, P. I., et al. (2012). Individual alpha neurofeedback training effect on short term memory. Int. J. Psychophysiol. 86, 83–87. doi:10.1016/j.ijpsycho.2012.07.182.

Ng, M. C., and Bianchi, M. T. (2014). Sleep misperception in persons with epilepsy. Epilepsy Behav. 36, 9–11. doi:10.1016/j.yebeh.2014.04.007.

Ogilvie, R. D. (2001). The process of falling asleep. Sleep Med. Rev. 5, 247–270. doi:10.1053/smrv.2001.0145. Okun, M., and Lampl, I. (2008). Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities.

Nat. Neurosci. 11, 535–537. doi:10.1038/nn.2105. Paulus, M. P., and Stein, M. B. (2010). Interoception in anxiety and depression. Brain Struct. Funct. 214, 451–63.

doi:10.1007/s00429-010-0258-9. Pearlmutter, B. A., and Houghton, C. J. (2009). A New Hypothesis for Sleep : Tuning for Criticality. Neural Comput. 21, 1622–1641.

doi:10.1162/neco.2009.05-08-787. Perlis, M. L., Giles, D. E., Mendelson, W. B., Bootzin, R. R., and Wyatt, J. K. (1997). Psychophysiological insomnia: the behavioural

model and a neurocognitive perspective. J. Sleep Res. 6, 179–88. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9358396 [Accessed June 10, 2015].

Perlis, M. L., Merica, H., Smith, M. T., and Giles, D. E. (2001a). Beta EEG activity and insomnia. Sleep Med. Rev. 5, 365–376. doi:10.1053/smrv.2001.0151.

Perlis, M. L., Merica, H., Smith, M. T., and Giles, D. E. (2001b). Beta EEG activity and insomnia. Sleep Med. Rev. 5, 363–374. doi:S1087079201901510 [pii].

Petroff, O. ?C., Pan, J., and Rothman, D. (2002). Magnetic Resonance Spectroscopic Studies of Neurotransmitters and Energy Metabolism in Epilepsy. Epilepsia 43, 40–50. doi:10.1046/j.1528-1157.2002.043s1040.x.

Petroff, O. A. C., Rothman, D. L., Behar, K. L., Hyder, F., and Mattson, R. H. (1999). Effects of valproate and other antiepileptic drugs on brain glutamate, glutamine, and GABA in patients with refractory complex partial seizures. Seizure 8, 120–127.

14

doi:10.1053/seiz.1999.0267. Petroff, O. A. C., Rothman, D. L., Behar, K. L., and Mattson, R. H. (1996). Low brain GABA level is associated with poor seizure control.

Ann. Neurol. 40, 908–911. doi:10.1002/ana.410400613. Petroff, O. A. C., and Spencer, D. D. (2005). “MRS Studies of the Role of Altered Glutamate and GABA Neurotransmitter Metabolism

in the Pathophysiology of Epilepsy,” in Brain Energetics and Neuronal Activity: Applications to fMRI and Medicine (Chichester, UK: John Wiley & Sons, Ltd), 215–237. doi:10.1002/0470020520.ch12.

Peyrache, A., Dehghani, N., Eskandar, E. N., Madsen, J. R., Anderson, W. S., Donoghue, J. A., et al. (2012). Spatiotemporal dynamics of neocortical excitation and inhibition during human sleep. Proc. Natl. Acad. Sci. 109, 1731–1736. doi:10.1073/pnas.1109895109.

Placidi, F., Diomedi, M., Scalise, A., Marciani, M. G., Romigi, A., and Gigli, G. L. (2000). Effect of anticonvulsants on nocturnal sleep in epilepsy. Neurology 54, S25–S32.

Plante, D. T., Jensen, J. E., Schoerning, L., and Winkelman, J. W. (2012a). Reduced γ-Aminobutyric Acid in Occipital and Anterior Cingulate Cortices in Primary Insomnia: a Link to Major Depressive Disorder? Neuropsychopharmacology 37, 1548–1557. doi:10.1038/npp.2012.4.

Plante, D. T., Jensen, J. E., and Winkelman, J. W. (2012b). The Role of GABA in Primary Insomnia. Sleep 35, 17–18. doi:10.5665/sleep.1854.

Poil, S.-S., Hardstone, R., Mansvelder, H. D., and Linkenkaer-Hansen, K. (2012). Critical-state dynamics of avalanches and oscillations jointly emerge from balanced excitation/inhibition in neuronal networks. J. Neurosci. 32, 9817–23. doi:10.1523/JNEUROSCI.5990-11.2012.

Priesemann, V., Valderrama, M., Wibral, M., and Le Van Quyen, M. (2013). Neuronal avalanches differ from wakefulness to deep sleep--evidence from intracranial depth recordings in humans. PLoS Comput. Biol. 9, e1002985. doi:10.1371/journal.pcbi.1002985.

Priesemann, V., Wibral, M., Valderrama, M., Pröpper, R., Le Van Quyen, M., Geisel, T., et al. (2014). Spike avalanches in vivo suggest a driven, slightly subcritical brain state. Front. Syst. Neurosci. 8, 108. doi:10.3389/fnsys.2014.00108.

Riemann, D., Nissen, C., Palagini, L., Otte, A., Perlis, M. L., and Spiegelhalder, K. (2015). The neurobiology, investigation, and treatment of chronic insomnia. Lancet. Neurol. 14, 547–558. doi:10.1016/S1474-4422(15)00021-6.

Riemann, D., Spiegelhalder, K., Feige, B., Voderholzer, U., Berger, M., Perlis, M., et al. (2010). The hyperarousal model of insomnia: a review of the concept and its evidence. Sleep Med. Rev. 14, 19–31. doi:10.1016/j.smrv.2009.04.002.

Rodin, E. A., Luby, E. D., and Gottlieb, J. S. (1962). The electroencephalogram during prolonged experimental sleep deprivation. Electroencephalogr. Clin. Neurophysiol. 14, 544–551.

Rudolph, M., Pospischil, M., Timofeev, I., and Destexhe, A. (2007). Inhibition Determines Membrane Potential Dynamics and Controls Action Potential Generation in Awake and Sleeping Cat Cortex. J. Neurosci. 27, 5280–5290. doi:10.1523/JNEUROSCI.4652-06.2007.

Samsonsen, C., Sand, T., Bråthen, G., Helde, G., and Brodtkorb, E. (2016). The impact of sleep loss on the facilitation of seizures: A prospective case-crossover study. Epilepsy Res. 127, 260–266. doi:10.1016/j.eplepsyres.2016.09.014.

Sánchez-escandón, O., Arana-lechuga, Y., Terán-pérez, G., Ruiz-chow, Á., Esqueda-leon, E., and González-robles, R. O. (2014). Transcraneal Magnetic Stimulation Improves Sleep Parameters in Patients Affected with Imsomnia Associated to Electroencephalographic Abnormalities. Neurosci. Med. 5, 72–77. doi:10.4236/nm.2014.51010.

Sánchez-Escandón, O., Arana-Lechuga, Y., Terán-Pérez, G., Ruiz-Chow, A., González-Robles, R., Shkurovich-Bialik, P., et al. (2016). Effect of low-frequency repetitive transcranial magnetic stimulation on sleep pattern and quality of life in patients with focal epilepsy. Sleep Med. 20, 37–40. doi:10.1016/j.sleep.2015.11.022.

Saper, C. B., and Fuller, P. M. (2017). Wake–sleep circuitry: an overview. Curr. Opin. Neurobiol. 44, 186–192. doi:10.1016/j.conb.2017.03.021.

Saper, C. B., Scammell, T. E., and Lu, J. (2005). Hypothalamic regulation of sleep and circadian rhythms. Nature 437, 1257–1263. doi:10.1038/nature04284.

Schabus, M., Griessenberger, H., Gnjezda, M.-T., Heib, D. P. J., Wislowska, M., and Hoedlmoser, K. (2017). Better than sham? A double-blind placebo-controlled neurofeedback study in primary insomnia. Brain 140, 1041–1052. doi:10.1093/brain/awx011.

Schabus, M., Heib, D. P. J., Lechinger, J., Griessenberger, H., Klimesch, W., Pawlizki, A., et al. (2014). Enhancing sleep quality and memory in insomnia using instrumental sensorimotor rhythm conditioning. Biol. Psychol. 95, 126–134. doi:10.1016/j.biopsycho.2013.02.020.

Scharfman, H. E. (2007). The neurobiology of epilepsy. Curr. Neurol. Neurosci. Rep. 7, 348–354. doi:10.1007/s11910-007-0053-z. Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., et al. (2007). Dissociable Intrinsic Connectivity Networks

15

for Salience Processing and Executive Control. J. Neurosci. 27. Shekleton, J. A., Rogers, N. L., and Rajaratnam, S. M. W. (2010). Searching for the daytime impairments of primary insomnia. Sleep

Med. Rev. 14, 47–60. doi:10.1016/j.smrv.2009.06.001. Shew, W. L., Yang, H., Petermann, T., Roy, R., and Plenz, D. (2009). Neuronal avalanches imply maximum dynamic range in cortical

networks at criticality. J. Neurosci. 29, 15595–600. doi:10.1523/JNEUROSCI.3864-09.2009. Shew, W. L., Yang, H., Yu, S., Roy, R., and Plenz, D. (2011). Information Capacity and Transmission Are Maximized in Balanced Cortical

Networks with Neuronal Avalanches. J. Neurosci. 31, 55–63. doi:10.1523/JNEUROSCI.4637-10.2011. Spiegelhalder, K., Fuchs, L., Ladwig, J., Kyle, S. D., Nissen, C., Voderholzer, U., et al. (2011). Heart rate and heart rate variability in

subjectively reported insomnia. J. Sleep Res. 20, 137–45. doi:10.1111/j.1365-2869.2010.00863.x. Spielman, A. J., Saskin, P., and Thorpy, M. J. (1987). Treatment of chronic insomnia by restriction of time in bed. Sleep 10, 45–56.

Available at: http://www.ncbi.nlm.nih.gov/pubmed/3563247 [Accessed May 17, 2015]. Stam, C. J. (2005). Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin. Neurophysiol. 116, 2266–301.

doi:10.1016/j.clinph.2005.06.011. Tagliazucchi, E., von Wegner, F., Morzelewski, A., Brodbeck, V., Jahnke, K., and Laufs, H. (2013). Breakdown of long-range temporal

dependence in default mode and attention networks during deep sleep. Proc. Natl. Acad. Sci. U. S. A. 110, 15419–24. doi:10.1073/pnas.1312848110.

Tonner, P. H., and Bein, B. (2006). Classic electroencephalographic parameters: Median frequency, spectral edge frequency etc. Best Pract. Res. Clin. Anaesthesiol. 20, 147–159. doi:10.1016/j.bpa.2005.08.008.

Touchon, J., Baldy-Moulinier, M., Billiard, M., Besset, A., and Cadilhac, J. (1991). Sleep organization and epilepsy. Epilepsy Res. Suppl 2, 73–81. Available at: http://www.ncbi.nlm.nih.gov/pubmed/1760099 [Accessed June 14, 2017].

Turrigiano, G. G., and Nelson, S. B. (2004). Homeostatic plasticity in the developing nervous system. Nat. Rev. Neurosci. 5, 97–107. doi:10.1038/nrn1327.

van der Werf, Y. D., Altena, E., van Dijk, K. D., Strijers, R. L. M., De Rijke, W., Stam, C. J., et al. (2010). Is disturbed intracortical excitability a stable trait of chronic insomnia? A study using transcranial magnetic stimulation before and after multimodal sleep therapy. Biol. Psychiatry 68, 950–5. doi:10.1016/j.biopsych.2010.06.028.

Vaughn, B. V., and Ali, I. (2012). Sleep and Epilepsy. Opportunities for Diagnosis and Treatment. Neurol. Clin. 30, 1249–1274. doi:10.1016/j.ncl.2012.08.006.

Vendrame, M., Auerbach, S., Loddenkemper, T., Kothare, S., and Montouris, G. (2011). Effect of continuous positive airway pressure treatment on seizure control in patients with obstructive sleep apnea and epilepsy. Epilepsia 52, e168–e171. doi:10.1111/j.1528-1167.2011.03214.x.

Vendrame, M., Yang, B., Jackson, S., and Auerbach, S. H. (2013). Insomnia and epilepsy: A questionnaire-based study. J. Clin. Sleep Med. 9, 141–146. doi:10.5664/jcsm.2410.

Vogels, T. P., and Abbott, L. F. (2009). Gating multiple signals through detailed balance of excitation and inhibition in spiking networks. Nat. Neurosci. 12, 483–491. doi:10.1038/nn.2276.

Vogels, T. P., Rajan, K., and Abbott, L. F. (2005). Neural Network Dynamics. Annu. Rev. Neurosci. 28, 357–376. doi:10.1146/annurev.neuro.28.061604.135637.

Wan, F., Nan, W., Vai, M. I., and Rosa, A. (2014). Resting alpha activity predicts learning ability in alpha neurofeedback. Front. Hum. Neurosci. 8, 500. doi:10.3389/fnhum.2014.00500.

Watts, F. N., Coyle, K., and East, M. P. (1994). The contribution of worry to insomnia. Br. J. Clin. Psychol. 33, 211–220. doi:10.1111/j.2044-8260.1994.tb01115.x.

Wilson, S., Nutt, D., Alford, C., Argyropoulos, S., Baldwin, D., Bateson, A., et al. (2010). British Association for Psychopharmacology consensus statement on evidence-based treatment of insomnia, parasomnias and circadian rhythm disorders. J. Psychopharmacol. 24, 1577–1601. doi:10.1177/0269881110379307.

Winkelman, J. W., Buxton, O. M., Jensen, J. E., Benson, K. L., O’Connor, S. P., Wang, W., et al. (2008). Reduced brain GABA in primary insomnia: preliminary data from 4T proton magnetic resonance spectroscopy (1H-MRS). Sleep 31, 1499–506. doi:10.1093/sleep/31.11.1499.

Wolynczyk-Gmaj, D., and Szelenberger, W. (2011). Waking EEG in primary insomnia. Acta Neurobiol. Exp. (Wars). 71, 387–92. Wu, Y. M., Pietrone, R., Cashmere, J. D., Begley, A., Miewald, J. M., Germain, A., et al. (2013). EEG power during waking and NREM

sleep in primary insomnia. J. Clin. Sleep Med. 9, 1031–1037. doi:10.5664/jcsm.3076. Zanzmera, P., Shukla, G., Gupta, A., Singh, H., Goyal, V., Srivastava, A., et al. (2012). Markedly disturbed sleep in medically refractory

compared to controlled epilepsy – A clinical and polysomnography study. Seizure 21, 487–490. doi:10.1016/j.seizure.2012.04.005.