21
URANS computations of an unstable cavitating vortex rope. Platform for Advanced Scientific Computing Conference 2016. 08-10 June 2016, Lausanne, Switzerland Dr. Jean Decaix* and Pr. C´ ecile M¨ unch, Univ. of Applied Sciences and Arts - Western Switzerland Valais, Sion, Switzerland. Dr. Andres M¨ uller and Pr. Fran¸cois Avellan, Ecole Polytechnique F´ ed´ erale de Lausanne, Laboratory for Hydraulic Machines, Lausanne, Switzerland. *[email protected] J. Decaix PASC16, Lausanne, 08-10 June 2016 1

URANS computations of an unstable cavitating vortex rope. · URANS computations of an unstable cavitating vortex rope. Platform for Advanced Scientific Computing Conference 2016

  • Upload
    others

  • View
    11

  • Download
    0

Embed Size (px)

Citation preview

Page 1: URANS computations of an unstable cavitating vortex rope. · URANS computations of an unstable cavitating vortex rope. Platform for Advanced Scientific Computing Conference 2016

URANS computations of an unstable

cavitating vortex rope.

Platform for Advanced Scientific Computing Conference 2016.08-10 June 2016, Lausanne, Switzerland

Dr. Jean Decaix* and Pr. Cecile Munch, Univ. of Applied Sciences and Arts - WesternSwitzerland Valais, Sion, Switzerland.Dr. Andres Muller and Pr. Francois Avellan, Ecole Polytechnique Federale de Lausanne,Laboratory for Hydraulic Machines, Lausanne, Switzerland.

*[email protected]

J. Decaix PASC16, Lausanne, 08-10 June 2016 1

Page 2: URANS computations of an unstable cavitating vortex rope. · URANS computations of an unstable cavitating vortex rope. Platform for Advanced Scientific Computing Conference 2016

CONTEXTFP7 ENERGY no: 608532 HYPERBOLE

HYdropower plants PERformance and flexiBle Operation towards Lean integration of new renewable Energies

https://hyperbole.epfl.ch

J. Decaix PASC16, Lausanne, 08-10 June 2016 2

Page 3: URANS computations of an unstable cavitating vortex rope. · URANS computations of an unstable cavitating vortex rope. Platform for Advanced Scientific Computing Conference 2016

NEW CHALLENGES

The energy production and market are strongly

variable

J. Decaix PASC16, Lausanne, 08-10 June 2016 3

Page 4: URANS computations of an unstable cavitating vortex rope. · URANS computations of an unstable cavitating vortex rope. Platform for Advanced Scientific Computing Conference 2016

NEW CHALLENGES

The energy production and market are strongly

variable

The electrical network requires stabilityJ. Decaix PASC16, Lausanne, 08-10 June 2016 3

Page 5: URANS computations of an unstable cavitating vortex rope. · URANS computations of an unstable cavitating vortex rope. Platform for Advanced Scientific Computing Conference 2016

SOLUTION

To use hydropower plants for stabilizing the grid

⊲ Fast response.

⊲ Renewable energy.

⊲ Reversible energy using pump-storage power plants.

J. Decaix PASC16, Lausanne, 08-10 June 2016 4

Page 6: URANS computations of an unstable cavitating vortex rope. · URANS computations of an unstable cavitating vortex rope. Platform for Advanced Scientific Computing Conference 2016

SOLUTION

To use hydropower plants for stabilizing the grid

⊲ Fast response.

⊲ Renewable energy.

⊲ Reversible energy using pump-storage power plants.

Challenge: how to make the power plant moreflexible

J. Decaix PASC16, Lausanne, 08-10 June 2016 4

Page 7: URANS computations of an unstable cavitating vortex rope. · URANS computations of an unstable cavitating vortex rope. Platform for Advanced Scientific Computing Conference 2016

FLEXIBILITY

⇒ RUNNING AT OFF DESIGN OPERATING POINT

Vortex rope

J. Decaix PASC16, Lausanne, 08-10 June 2016 5

Page 8: URANS computations of an unstable cavitating vortex rope. · URANS computations of an unstable cavitating vortex rope. Platform for Advanced Scientific Computing Conference 2016

CAVITATING VORTEX ROPE

J. Decaix PASC16, Lausanne, 08-10 June 2016 6

Page 9: URANS computations of an unstable cavitating vortex rope. · URANS computations of an unstable cavitating vortex rope. Platform for Advanced Scientific Computing Conference 2016

CAVITATING VORTEX ROPE

RUNNER

DRAFT TUBE

J. Decaix PASC16, Lausanne, 08-10 June 2016 7

Page 10: URANS computations of an unstable cavitating vortex rope. · URANS computations of an unstable cavitating vortex rope. Platform for Advanced Scientific Computing Conference 2016

TEST CASE

Q > Q BEP

Inlet

Outlet

Vortex rope

Parameter H (m) T (N m) E (J kg−1) N (rpm) Q (m3s−1)Value 26.8 1’400 263 800 0.515

J. Decaix PASC16, Lausanne, 08-10 June 2016 8

Page 11: URANS computations of an unstable cavitating vortex rope. · URANS computations of an unstable cavitating vortex rope. Platform for Advanced Scientific Computing Conference 2016

FLOW MODELLING

Homogeneous URANS Equations

∂ρ

∂t+∇ ·

(

ρ ~C)

= 0

∂ρ ~C

∂t+∇ ·

(

ρ ~C ⊗ ~C)

= −∇p +∇ · (¯τ + ¯τt)

Viscous and turbulent stresses 1

¯τ = µ(

∇ ~C +∇t ~C)

¯τt = µt

(

∇ ~C +∇t ~C)

−2

3ρ k tr

(

¯I)

µt =ρa1k

max (a1ω; SF2)

1F.R. Menter. Zonal two equation k − ω turbulence models for aerodynamic flows. In AIAA 93-2906, 24th Fluid Dynamics

Conference Orlando, Florida, 1993.

J. Decaix PASC16, Lausanne, 08-10 June 2016 9

Page 12: URANS computations of an unstable cavitating vortex rope. · URANS computations of an unstable cavitating vortex rope. Platform for Advanced Scientific Computing Conference 2016

CAVITATION MODELLINGTransport equation for the vapour volume fraction rg

∂rg

∂t+

(

~C · ∇)

rg =1

ρg(Sv + Sc)

Source terms

Sv = Fv3rnuc (1− rg ) ρg

Rnuc

2

3

|pv − p|

ρfsgn (pv − p) if p < pv

Sc = Fc3rgρgRnuc

2

3

|pv − p|

ρfsgn (pv − p) if p > pv

Parameters

Fv = 50 Fc = 0.01 rnuc = 510−4Rnuc = 10−6

m

J. Decaix PASC16, Lausanne, 08-10 June 2016 10

Page 13: URANS computations of an unstable cavitating vortex rope. · URANS computations of an unstable cavitating vortex rope. Platform for Advanced Scientific Computing Conference 2016

MESH

Sub-Domain Number of nodes(in million)

Spiral Case 1.69

Stay Vanesand 3.17

Guide Vanes

Runner 2.63

Draft Tube 3.10

Total 10.59

J. Decaix PASC16, Lausanne, 08-10 June 2016 11

Page 14: URANS computations of an unstable cavitating vortex rope. · URANS computations of an unstable cavitating vortex rope. Platform for Advanced Scientific Computing Conference 2016

NUMERICAL SET UP

ANSYS CFX set up

⋄ Time step: ∆ t = 2e−4 s ⇔ 1 degree of runner revolution per time step.

⋄ Second order scheme for time discretization.

⋄ Transient rotor/stator interface with GGI interpolation.

⋄ High order scheme for spatial discretization.

Boundary conditions

⋄ Inlet: flow discharge.

⋄ Outlet: opening pressure condition.

⋄ Solid wall: no slip wall with wall law.

J. Decaix PASC16, Lausanne, 08-10 June 2016 12

Page 15: URANS computations of an unstable cavitating vortex rope. · URANS computations of an unstable cavitating vortex rope. Platform for Advanced Scientific Computing Conference 2016

SIMULATIONS

σ = 0.38 σ = 0.20 σ = 0.11

Section 1

Operating point Head [m] Torque [N m]

σ = 0.38 26.10 (26.75) 1441 (1409)σ = 0.20 26.33 (26.80) 1443 (1428)σ = 0.11 24.37 (26.75) 1322 (1426)

J. Decaix PASC16, Lausanne, 08-10 June 2016 13

Page 16: URANS computations of an unstable cavitating vortex rope. · URANS computations of an unstable cavitating vortex rope. Platform for Advanced Scientific Computing Conference 2016

σ = 0.38

J. Decaix PASC16, Lausanne, 08-10 June 2016 14

Page 17: URANS computations of an unstable cavitating vortex rope. · URANS computations of an unstable cavitating vortex rope. Platform for Advanced Scientific Computing Conference 2016

σ = 0.2

J. Decaix PASC16, Lausanne, 08-10 June 2016 15

Page 18: URANS computations of an unstable cavitating vortex rope. · URANS computations of an unstable cavitating vortex rope. Platform for Advanced Scientific Computing Conference 2016

σ = 0.11

J. Decaix PASC16, Lausanne, 08-10 June 2016 16

Page 19: URANS computations of an unstable cavitating vortex rope. · URANS computations of an unstable cavitating vortex rope. Platform for Advanced Scientific Computing Conference 2016

PRESSURE COEFFICIENT

SECTION 1

CFD results Experimental results

J. Decaix PASC16, Lausanne, 08-10 June 2016 17

Page 20: URANS computations of an unstable cavitating vortex rope. · URANS computations of an unstable cavitating vortex rope. Platform for Advanced Scientific Computing Conference 2016

CONCLUSION

⊲ The use of hydraulic power plants to stabilize the electrical networkrequires to extend the range of operating points of the turbines.

⊲ Such an extension requires to better understand the behavior of thecavitating vortex rope.

⊲ Two-phase URANS simulations are useful and accurate tools toinvestigate cavitating flow in hydraulic turbines.

⊲ CFD results allow to improve our knowledge of the transition betweenstable and unstable vortex rope.

J. Decaix PASC16, Lausanne, 08-10 June 2016 18

Page 21: URANS computations of an unstable cavitating vortex rope. · URANS computations of an unstable cavitating vortex rope. Platform for Advanced Scientific Computing Conference 2016

RUNNER CAVITATION

σ = 0.38 σ = 0.20 σ = 0.11

J. Decaix PASC16, Lausanne, 08-10 June 2016 19