32
8/6/2019 Upper Bounds for Ring Linear Codes http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 1/32 Upper Bounds for Ring-Linear Codes Eimear Byrne, Marcus Greferath, Axel Kohnert, Vitaly Skachek Upper Bounds for Ring-Linear Codes Eimear Byrne 1 , Marcus Greferath 1 , Axel Kohnert 2 , Vitaly Skachek 1 1 Claude Shannon Institute and School of Mathematical Sciences University College Dublin Ireland 2 Dept Mathematics University of Bayreuth Germany May 19 2009

Upper Bounds for Ring Linear Codes

Embed Size (px)

Citation preview

Page 1: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 1/32

Upper Bounds

forRing-Linear

Codes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

Vitaly

Skachek

Upper Bounds for Ring-Linear Codes

Eimear Byrne1, Marcus Greferath1, Axel Kohnert2,

Vitaly Skachek1

1Claude Shannon Institute andSchool of Mathematical Sciences

University College DublinIreland

2Dept MathematicsUniversity of Bayreuth

Germany

May 19 2009

Page 2: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 2/32

Upper Bounds

forRing-Linear

Codes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

Vitaly

Skachek

Outline

Codes over finite fields

Code optimalityBounds for codes for the Hamming weight

Ring-linear coding

The homogeneous weight

Bounds on the size of a code for the homogeneous weight

Page 3: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 3/32

Upper Bounds

forRing-Linear

Codes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

Vitaly

Skachek

Notation

F  = GF (q ), q  = p m some prime p 

R  is a finite ring with identity

R̂  := HomZ(R ,C×) the characters on (R , +)

χ ∈ R̂  is a character on (R , +)

C  is a code of length n and minimum distance d 

Page 4: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 4/32

Upper Bounds

forRing-Linear

Codes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

Vitaly

Skachek

Using Codes for Error Correction

One parameter that indicates the error-correcting capability of a code is its minimum distance.

Page 5: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 5/32

Upper Bounds

forRing-Linear

Codes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

Using Codes for Error Correction

One parameter that indicates the error-correcting capability of a code is its minimum distance.The higher the minimum distance, the more errors that can bedetected and corrected by the receiver.

Page 6: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 6/32

Upper Bounds

forRing-Linear

Codes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

Using Codes for Error Correction

One parameter that indicates the error-correcting capability of a code is its minimum distance.The higher the minimum distance, the more errors that can bedetected and corrected by the receiver.

Page 7: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 7/32

Upper Bounds

forRing-Linear

Codes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

Using Codes for Error Correction

One parameter that indicates the error-correcting capability of a code is its minimum distance.The higher the minimum distance, the more errors that can bedetected and corrected by the receiver.

Page 8: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 8/32

Upper Bounds

forRing-Linear

Codes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

Code Optimality

The Main Coding Problem:

1 For fixed length n and minimum distance d , what is themaximum size of any code over R ?i.e., what is AR (n, d )?

2 For a fixed length n and minimum distance d , what is the

maximum size of any linear code over R ?i.e., what is B R (n, d )?

Page 9: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 9/32

Upper Bounds

forRing-Linear

Codes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

Some Distance Functions

Definition (Hamming Metric)

Let u, v ∈ R n. The Hamming distance between u and v is thenumber of components where u and v differ, i.e.

dHam(u, v) = |{i  : u i  = v i }|

u = [0, 0, 1, 1, 3, 3], v = [1, 2, 2, 1, 1, 3] ∈ Z4

d Ham(u, v) = 4.

Page 10: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 10/32

Upper Bounds

forRing-LinearCodes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

Some Distance Functions

Definition (Lee Metric)

Let u , v  ∈ Zm. The Lee distance between u  and v  is theabsolute value modulo m of  u − v , i.e.

dLee(u , v ) = |u − v |m =

u − v  if  u − v  ∈ {0, ..., m/2}v  − u  otherwise

If u, v ∈ Znm then dLee(u, v) =

i =1..n |u i  − v i |m.

u = [0, 0, 1, 1, 3, 3], v = [1, 2, 2, 1, 1, 3] ∈ Z4

d Lee(u, v) = 1 + 2 + 1 + 2 = 6

Page 11: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 11/32

Upper Bounds

forRing-LinearCodes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

Some Bounds for Codes over Finite Fields

Singleton: |C | ≤ Aq (n, d ) ≤ q n−d +1

Hamming: |C | ≤ Aq (n, d ) ≤ q n

V q (n, d −12

),

Plotkin: |C | ≤ Aq (n, d ) ≤ d d −γ n

, γ  = q −1q 

, if  n < d γ 

Gilbert-Varshamov: Aq (n, d ) ≥ q n

V q (n,d −1)

Elias-Bassalygo bound

Mc-Eliece-Rodemich-Rumsey-Welch boundLinear Programming bound

Page 12: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 12/32

Upper Bounds

forRing-LinearCodes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

Asymptotic Representations

Page 13: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 13/32

Upper Bounds

forRing-LinearCodes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

Codes over Finite Rings

Definition

An code of length n over R  is a nonempty subset of  R n. A(left) linear code of length n over R  is a left R -submodule of R n.

We will usually assume that R  is a finite Frobenius ring.

Many of the foundational results of classical coding theory (e.g.the MacWilliams’ theorems) can be extended to the finite ringcase when R  is Frobenius.

[Wood, Honold, Nechaev, Greferath, Schmidt..]

Page 14: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 14/32

Upper Bounds

forRing-LinearCodes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

Finite Frobenius Rings

For a finite ring R , R̂  is an R  − R  bimodule via

χr (x ) = χ(rx ), r χ(x ) = χ(xr )

for all x , r  ∈ R , χ ∈ R̂ .R is a finite Frobenius ring iff 

R R  R R̂ 

Then R R̂  = R χ for some (left) generating character χ

Page 15: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 15/32

Upper Bounds

forRing-LinearCodes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

Finite Frobenius Rings

Let R  and S  be finite Frobenius rings, let G  be a finite group.The following are examples of Frobenius rings.

integer residue rings Zm

Galois rings

principal ideal rings

R  × S 

the matrix ring M n(R )the group ring R [G ]

Page 16: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 16/32

Upper Bounds

forRing-LinearCodes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

Homogeneous Weights

Definition

A weight w  : R  −→ Q is (left) homogeneous , if  w (0) = 0 and

1 If  Rx  = Ry  then w (x ) = w (y ) for all x , y  ∈ R .

2 There exists a real number γ  such that

y ∈Rx 

w (y ) = γ |Rx | for all x  ∈ R  \ {0}.

Page 17: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 17/32

Upper Bounds

forRing-LinearCodes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

Examples of Homogeneous Weights

ExampleOn every finite field Fq  the Hamming weight is a homogeneousweight of average value γ  = q −1

q .

Example

On Z4 the Lee weight is homogeneous with γ  = 1.

x  0 1 2 3

w Lee(x ) 0 1 2 1

Page 18: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 18/32

Upper Bounds

forRing-LinearCodes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

Examples of Homogeneous Weights

ExampleOn Z10 the following weight is homogeneous with γ  = 1:

x  0 1 2 3 4 5 6 7 8 9

whom(x ) 0 1 54 1 5

4 2 54 1 5

4 1

Page 19: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 19/32

Upper Bounds

forRing-LinearCodes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

Examples of Homogeneous Weights

Example

On the ring R  of 2 × 2 matrices over GF(2) the weight

w  : R  −→ R, X  →

0 : X  = 0,2 : X  singular, X  = 0,1 : otherwise,

is a homogeneous weight of average value γ  = 32 .

Page 20: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 20/32

Upper Bounds

forRing-LinearCodes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

Examples of Homogeneous Weights

Example

On a local Frobenius ring R  with q -element residue field theweight

w  : R  −→ R, x  →

0 : x  = 0,q 

q −1 : x  ∈ soc (R ), x  = 0,

1 : otherwise,

is a homogeneous weight of average value γ  = 1.

Which finite rings admit a homogeneous weight?

Up to the choice of  γ , every finite ring admits a uniquehomogeneous weight .

Page 21: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 21/32

Upper Bounds

forRing-LinearCodes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

Homogeneous Weights of FFRs

Theorem (Honold)

Let R be a finite Frobenius ring with generating character  χ.

Then the homogeneous weights on R are precisely the functions 

w  : R  −→ R, x  → γ 

1 −1

|R ×|

u ∈R ×

χ(xu )

where  γ  is a real number.

Page 22: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 22/32

Upper Bounds

forRing-LinearCodes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

Bounds on AR (n, d ) for the Homogeneous Weight

The following bounds have been found for codes over FFRs forthe homogeneous weight.

Sphere-packing (Hamming)

Sphere-covering (Gilbert-Varshamov)

Plotkin-like bounds

Elias-like bounds

Singleton-like boundLinear programming bound

Page 23: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 23/32

Upper Boundsfor

Ring-LinearCodes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

A Key Lemma

Lemma

Let C  ≤ R R n

be a linear code, and let x  ∈ R n

. Then1

|C |

c ∈C 

w (x  + c ) = γ |supp(C )| +

i ∈supp(C )

w (x i ).

C

Page 24: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 24/32

Upper Boundsfor

Ring-LinearCodes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

Residual Codes

Definition

Let C  ≤R  R n, c  ∈ R n. Res (C , c ) := {(x i ) : x  ∈ C , c i  = 0}.Example

Let C  be the Z4-linear code generated by

1 0 0 0 3 1 2 10 1 0 0 1 2 3 10 0 1 0 3 3 3 20 0 0 1 2 3 1 1

.

Let c  = [0, 0, 0, 2, 0, 2, 2, 2]. Then Res (C , c ) is generated by

1 0 0 30 1 0 10 0 1 3

0 0 0 2

.

R id l C d

Page 25: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 25/32

Upper Boundsfor

Ring-LinearCodes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

Residual Codes

Theorem

Let C  ≤ R R n have minimum homogeneous weight d, and let c  ∈ C satisfy  (c ) := w Ham < d 

γ . Then Res (C , c ) has 

length n − (c ),

minimum homogeneous weight d  ≥ d  − γ(c ),

|Res (C , c )| =|C |

|Rc |and 

|C | ≤ |Rc | d  − γ(c )d  − γ n

.

B d B ( d) f h H W i h

Page 26: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 26/32

Upper Boundsfor

Ring-LinearCodes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

Bounds on B R (n, d ) for the Homogeneous Weight

Corollary (BGKS)

Let C  ≤ R R 

n

be a linear code of minimum homogeneous weight d and minimum Hamming weight  where  ≤ n ≤ d γ 

. Then

|C | ≤ |R |d  − γ

d  − γ n.

B d B ( d) f h H W i h

Page 27: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 27/32

Upper Boundsfor

Ring-LinearCodes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

Bounds on B R (n, d ) for the Homogeneous Weight

Corollary (BGKS)

Let C  ≤ R R n be a linear code of minimum homogeneous 

weight d and minimum Hamming weight  where  < n ≤ d γ 

.Let Q be the maximum size of any minimal ideal of R. Then

|C | ≤ Q d  − γ

d  − γ n.

A Pl tki O ti l C d

Page 28: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 28/32

Upper Boundsfor

Ring-LinearCodes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

A Plotkin Optimal Code

ExampleLet R  = F

2×22 . Let C  be the length 16m − 1 Simplex Code over

R . Then |C | = 16m,

d  = |R |mγ  = 16mγ,

:= dHam(C ) = 16m −16m

4=

3

416m.

R  has 3 minimal ideals, each of size Q  = 4 and so

|C | ≤ Q  d  − γd  − γ n

= 416mγ − 3

4 16mγ 

16mγ − (16m − 1)γ = 4

16m

4= 16m.

B d B ( d) f th H W i ht

Page 29: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 29/32

Upper Boundsfor

Ring-LinearCodes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

Bounds on B R (n, d ) for the Homogeneous Weight

Singleton-like bounds:

Theorem (BGKS)

Let C  ≤ R R n be an [n, d ] linear code and suppose that n ≤ d γ 

.Then

n − |R | − 1

|R |

γ 

log|R | |C | − 1

.

Theorem (BGKS)

Let C be an [n, d ] code over R satisfying n ≤d γ  and  (C ) < n.

Let P  := max{|Ra| : a ∈ R n, Ra ≤ C , (a) < n}. Then

n −

P  − 1

γ 

≥ logP  |C | − logP  |R | .

A Class of MDS Codes

Page 30: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 30/32

Upper Boundsfor

Ring-LinearCodes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

A Class of MDS Codes

Example

Let R  be a chain ring of length 2. Then R × = R \rad R  and|R | = q 2. Let U  := R 2\rad R 2, let P  := {xR  : x  ∈ U }. Then

|P| = q 2

+ q .Let C  < R R n be the length n := q 2 + q  code with 2 × ngenerator matrix whose columns are the distinct elements of  P .

Clearly (c ) < n for each c  ∈ C .

C  is free of rank 2 and the maximal cyclic submodules of  C have size P  := |R | = q 2.

Let r  = logP  |C | − 1 = logq 2 q 4 − 1 = 1.

Page 31: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 31/32

Upper Boundsfor

Ring-LinearCodes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

Example (cont.)

Setting γ  = 1, each word xG  of  C  has weight

w (xG ) =

q 2 + q  if  x  ∈ U q 3

q −1 if  x  ∈ radR 2,

=⇒ n −

P  − 1

P d 

= n −

q 2 − 1

q 2(q 2 + q )

= n − q 2 + q − 1 −1

= q 2 + q − q 2 − q + 1 = 1 = r .

References

Page 32: Upper Bounds for Ring Linear Codes

8/6/2019 Upper Bounds for Ring Linear Codes

http://slidepdf.com/reader/full/upper-bounds-for-ring-linear-codes 32/32

Upper Boundsfor

Ring-LinearCodes

Eimear Byrne,Marcus

Greferath,Axel Kohnert,

VitalySkachek

References

E. Byrne, M. Greferath and M. E. O’Sullivan, The linear programming bound for codes over finite Frobenius rings,Designs, Codes and Cryptography, Vol. 42 , 3 (2007), pp.289 - 301.

I. Constantinescu and W. Heise, A metric for codes over 

residue class rings of integers , Problemy PeredachiInformatsii 33 (1997), no. 3, 22–28.

M. Greferath and M. E. O’Sullivan, On Bounds for Codes over Frobenius Rings under Homogeneous Weights ,Discrete Mathematics 289 (2004), 11–24.

T. Honold, A characterization of finite Frobenius rings,Arch. Math. (Basel), 76 (2001), 406–415.

J. A. Wood, Duality for modules over finite rings and applications to coding theory, Amer. J. Math. 121

(1999), 555–575.