73

UNIVERSITY PHYSICS 1

Embed Size (px)

DESCRIPTION

UNIVERSITY PHYSICS 1. Chapter 5 Rotation of a Rigid Body 第五章 刚体的转动. §5-1 Motion of a Rigid body 刚体的平动、转动和定轴转动. §5-2 Torque The Law of Rotation rotational Inertia 力矩 刚体定轴转动定律 转动惯量. §5-3 Applying the Law of rotation 转动定律的应用. - PowerPoint PPT Presentation

Citation preview

Page 1: UNIVERSITY PHYSICS 1
Page 2: UNIVERSITY PHYSICS 1

Chapter 5 Rotation of a Rigid Body 第五章 刚体的转动

Page 3: UNIVERSITY PHYSICS 1

§5-5 Angular Momentum of a rigid Body Conservation of Angular Momentum 定轴转动的刚体的角动量定理 和角动量守恒定律

§5-1 Motion of a Rigid body 刚体的平动、转动和定轴转动

§5-2 Torque The Law of Rotation rotational Inertia 力矩 刚体定轴转动定律 转动惯量

§5-3 Applying the Law of rotation 转动定律的应用

§5-4 Kinetic Energy and Work in Rotational Motion 定轴转动的动能定理

Page 4: UNIVERSITY PHYSICS 1

1. 理解描述刚体定轴转动的基本物理量的定义和性质;

2. 理解力矩、转动动能和转动惯量的物理意义;

3. 掌握定轴转动的转动定律和角动量定理;

4. 掌握定轴转动的角动量守恒定律和机械能守恒定律。

教学基本要求教学基本要求

Page 5: UNIVERSITY PHYSICS 1

Now, we consider the motion of a body with a certain size and shape:

大小和形状!

Page 6: UNIVERSITY PHYSICS 1

For simplicity (为简单) , we ig

nore the deformation( 形变) . In

general, the motion of the body is

more complicated than that discus

sed above.

Why?

猫坠楼,但不易受伤!

Page 7: UNIVERSITY PHYSICS 1

The body without deformation is called a rigid body.

(1) translation (平动) ;

(2) rotation (转动)。Examples: dancing, skating, motion of Earth, motion of electron in the atom world,…….

Its motion includes usually two types:

铁石心肠

不可塑造

Page 8: UNIVERSITY PHYSICS 1
Page 9: UNIVERSITY PHYSICS 1

1. The model of a rigid body 刚体模型 Rigid body (刚体) : an ideal model

刚体是一种理想模型:刚体是在任何外力作用下任意两点间均不发生位移,形状大小均不发生改变的物体。

§51 Motion of a Rigid Body刚体的平动、转动和定轴转动

The distance between two points in a

rigid body maintains constant

forever. Thus the body has a

perfectly definite, unchanged shape

and size .

Page 10: UNIVERSITY PHYSICS 1

2. Translation & Rotation of a rigid body 刚体的平动和转动

( 平动:刚体上所有点的运动轨迹都相,可当作质点来处理。 )

All particles describe parallel

(平行) paths, and have the sa

me velocity & acceleration. Ther

efore,the motion of any point of t

he body can represent the transl

ational motion of entire ( 整个) rigid body.

(1) Translation (平动) :

水平飞行

看成质点

Page 11: UNIVERSITY PHYSICS 1

All particles describe circula

r paths around a line called the

axis (轴) which may fixed o

r may changing its position dur

ing the motion.

(2) Rotation:

( 转动:刚体上各点都绕某一轴作圆周运动,转轴可能是固定的也可能在运动中改变位置。 )

圆周运动

Page 12: UNIVERSITY PHYSICS 1

Often a rigid body can simultaneously( 同时) have two kinds of motions.

(3) Translation and Rotation at same time

平动和转动(轴动)

Page 13: UNIVERSITY PHYSICS 1

平动和转动(转轴位置变)定轴转动

Page 14: UNIVERSITY PHYSICS 1

3. Rotation of a rigid body around a fixed axis刚体的定轴转动

Example: A rotation around a fixed axis

Every point of the rigid body

moves in a circle( 刚体上各点

都作圆周运 动 ).

Page 15: UNIVERSITY PHYSICS 1

( 刚体上各点都绕同一转轴作不同半径的圆周运 动 )

P

Q

All the points in the rigid body:

• Circular motion with different radii.

•To rotate around an axis.

Page 16: UNIVERSITY PHYSICS 1

( 1 ) Characteristic: all points have the same

angular displacement, angular speed & angular

acceleration.

特点:各质点均在垂直转轴的平面内作圆周运动且角位移,角速度和角加速度均相同。

P

Q

,,

Page 17: UNIVERSITY PHYSICS 1

We select (选择) one arbitr

ary( 任意) point P in the body

whose circular motion can repres

ents the motion of the entire bod

y and use its circular plane as a r

eference to analyze (分析) th

e rotation of the rigid body arou

nd the fixed axis.

y

x0

V

r P

P

Q

Page 18: UNIVERSITY PHYSICS 1

( 2 ) Kinematics of rotation of a

rigid body around a fixed axis is th

e same as the circular motion of a

particle that we discussed in chapt

er 1.

Representative( 代表) P :

① Angular position

② Angular displacement

Angular speed td

d

tt d

d

d

d 2Angular acceleration

P

Q

Page 19: UNIVERSITY PHYSICS 1

描述刚体定轴转动的物理量

Angular displacement d

Angular speed td

d

2tt d

d

d

d 2 Angular acceleration

Page 20: UNIVERSITY PHYSICS 1

( 4 ) Relation between two kinds of quantity

r

s2

nt a ra

rVr

y

x0

V

r P ,,,

nt a,a,V,s,r

Page 21: UNIVERSITY PHYSICS 1

§5-2 Torque The Law of Rotation Rotational Inertia 力矩 转动定理 转动惯量

1. Torque

Based on( 根据 ) the concept of torque of a force act

ing on a particle with respect to a fixed point ( in §4-

4), we can define the torque of a force acting on a rigi

d body.

Does a force make a rigid body rotate?

depending on its magnitude and acting position. Torque(力矩) ! F

F

Page 22: UNIVERSITY PHYSICS 1

FrM

FdFsinFrM r

r F

r

z

P

F

轴The torque with respect to z axis is the Z-component of , Mz , briefly labeled as M

M

⑴ If the force acting on a rigid body is located in the plane perpendicular to the axis, the torque with respect to point o is defined as

F

Page 23: UNIVERSITY PHYSICS 1

⑵ If the force is not placed in the plane perpendicular to the axis, we can resolve into ( in the plane)and ( at right angle to the plane). Obviously (显然) , only contributes to ( 有贡献) the torque :

1F

2F

1FF

P

F

F

2F

1F

dFFsinrFM r

Page 24: UNIVERSITY PHYSICS 1

⑶ The resultant Toque 合力矩

MMM

dFdFM z

P

1F

2F

The torque have only two possible directions :

Counterclockwise (反时针): positive

Clockwise( 顺时针): negative

Page 25: UNIVERSITY PHYSICS 1

说明:

与转轴垂直但通过转轴的力对转动不产生力矩; (Why?)

与转轴平行的力对转轴不产生力矩; (Why?)

刚体内各质点间内力对转轴不产生力矩。 (why?)

与转轴垂直但通过转轴的力对转动不产生力矩; (Why?)

与转轴平行的力对转轴不产生力矩; (Why?)

刚体内各质点间内力对转轴不产生力矩。 (why?)

Page 26: UNIVERSITY PHYSICS 1

2. The Law of rotation 转动定理 (very important)

Our method is to treat (处理) the rigid body as a colle

ction (集体) of particles w

ith same angular acceleratio

n and to apply (应用) Ne

wton’s second law to all part

icles , then add up( 相加) al

l equations .

P

F

方法 —对组成刚体的所有质点用牛顿第二定律,再相加。

Page 27: UNIVERSITY PHYSICS 1

Apply Newton’s second law to the ith particle :

法向: 2 iiiniinin rmamfF

iiitiitit rmamfF 切向 :

To ith particle (第 i 个粒子) , we introduce

Fi—the external force on the ith particleiF

fi —the internal force on the ith particleif

ij

iji ff

iff

fif

i

j

Page 28: UNIVERSITY PHYSICS 1

2iiiitiiitiit rmramrfrF

Add all of equations for all particles

)rm(rfrF iiiitiit (5-11)

Considering

iit rf (内力成对出现)and the resultant torque of the external forces about the

axis is

iit rFM

Multiplying (乘) both sides of second equation by ,

we haveir

Page 29: UNIVERSITY PHYSICS 1

Thus (5-11) becomes

)( 2iirmM (5-12)

The sum (求和) on the right size is defined as the

rotational inertia (转动惯量) of the body with respec

t to the axis and labeled as I ( 转动惯量定义 )

2iirmI (5-13)

( 注 意 : 有 的 书 用 J 表示)

Page 30: UNIVERSITY PHYSICS 1

Equation (5-12) becomes

IM (5-14)

转动定理

I

M (5-14‘)

or rewrite it as

P

F

Page 31: UNIVERSITY PHYSICS 1

I

M (5-14‘)

Equation (5-14) is called as the law of rotation . 转动定理表明角加速度与力矩成正比,与转动惯量成反比。

P

F

Page 32: UNIVERSITY PHYSICS 1

Eq.(5-14) has exactly the sam

e form as that for acceleration o

f a particles, by which the rotati

on of a rigid body is governed

( 控制) . Therefore, it is often r

egarded as (称为) Newton’s

second law for rotation.

I

M

Page 33: UNIVERSITY PHYSICS 1

3. Calculation of rotational inertia( 转动惯量的计算 ):

The rotational inertial I is not a unique( 唯一 ) propert

y of the body but depends on the axis. Rotational inertial o

f a body is determined by:

(1) the total mass of the body( 总质量) ;

(2) the mass distribution of the body (质量的分布) ;

(3) the position of the axis (转轴的位置) .

Page 34: UNIVERSITY PHYSICS 1

axis

axis

axis

三个刚体,质量相等,因转轴位置或质量分布不同,转动惯量不相等;

We can use the followi

ng example to show a

bove conclusion( 结论)

Page 35: UNIVERSITY PHYSICS 1

The rotational inertial of a body can be found by

•Experimental method;

• Calculation method.

o

M

m x

高度与时间

Page 36: UNIVERSITY PHYSICS 1

质量离散分布的物体 :

2ii rmI ( 5-15 )

(会计算简单分离物体的 I )

If the mass distribution of a body is known, its

rotational inertial may be calculated as follows:

1r

3r2r

1m

2m

3m

axis

Example:

rmrmrmI

Page 37: UNIVERSITY PHYSICS 1

质量连续分布的物体 :

(记住:棒、圆盘和圆柱体的I )

mrI d2 ( 5-16 )

线积分

面积分

体积分

dVordsord dm

Page 38: UNIVERSITY PHYSICS 1

§5 - 3 Applying the Law of rotation

转动定律的应用( important!!!!)

基本步骤

( 1 )隔离法选择研究对象;( 2 )受力分析和运动情况分析;( 3 )对质点用牛顿定理,对刚体用转动定理;( 4 )建立角量与线量的关系,求解方程;( 5 )结果分析及讨论。

( 1 )隔离法选择研究对象;( 2 )受力分析和运动情况分析;( 3 )对质点用牛顿定理,对刚体用转动定理;( 4 )建立角量与线量的关系,求解方程;( 5 )结果分析及讨论。

Page 39: UNIVERSITY PHYSICS 1

Example 5-3: 一个质量为 M ,半径为 R 的定滑轮(当作均匀圆盘)上面绕有细绳。绳的一端固定在滑轮边上,另一端挂一质量为m 的物体而下垂。忽略轴处摩擦,求物体 m 由静止下落 h 高度时的速度和此时滑轮的角速度 ( 定滑轮的转动惯量 )。2

2

1MRI

解: (1) 研究对象:滑轮和物体m;

T

T

mg

o

M

m x

(2) 受力分析如图:滑轮: T 、 Mg 、和轴的支持力,只有 T 产生力矩( why?) ,顺 时针转动;物体: mg 和 T ,向下运动

Page 40: UNIVERSITY PHYSICS 1

对物体 m :

2

2

1MRIRT

maTmg

Ra

( 3 )对滑轮:

( 4 )以上三式联立,可得物体下落的加速度和速度:

gMm

ma

2

Mm

mghahV

2

42

这时滑轮转动的角速度为Mm

mgh

RR

V

2

41

滑轮和物体的运动学关系为 :

o

M

m x

Page 41: UNIVERSITY PHYSICS 1

Example 5-4: 质量 M=1.1kg ,半径 =0.6m 的匀质圆盘,可绕通过其中心且垂直于盘面的水平光滑固定轴转动。圆盘边缘绕有轻的柔绳,下端挂一质量 m=1.0kg 的物体,如图所示,起初在圆盘上加一恒力矩使物体以速率 V0=0.6m/s 上升,如撤去所加的恒力矩,问经历多少时间圆盘开始作反向转动( )。 2

2

1MrI

解:( 1 )研究对象:物体和圆盘;

( 2 )受力分析如图,设逆时针方向为转动的正向,角加速度为,物体向下的加速度为 a 。

mg

T

T

Page 42: UNIVERSITY PHYSICS 1

( 4 )解上面的方程组:

Imr

rmg

2

( 5 )圆盘作匀加速转动,故有:t 0

其中r

V00 ,代如数据,令 =0 可求得反转时间。

请同学求出反转所需时间!!

(3) 列方 程 :

ra

maTmg

ITr

mg

T

T

Page 43: UNIVERSITY PHYSICS 1

Example 5-5: As shown in below figure, the body A is co

nnected to the body B by the light rope which is through

two uniform solid cylinder (圆柱体) with a mass m a

nd a radius r. The body A has a mass of m and the mass

of B is 2m.There is not relative motion between the rope

and cylinder. Find the tension force between the solid cy

linders with .

mrI

mA B

2m

m,r m,r

T=?

Page 44: UNIVERSITY PHYSICS 1

解:( 1 )研究对象: A 、 B 和两圆柱体;

( 2 )受离分析如图: TA

A B

mg 2mgTA

TB

TTBA 向 上 运 动 , 有加速度 aA;B 向下运动,加速度 aB,

圆 柱 体 顺 时 针 转动。

( 3 )可有下列方程:

raa

maTT

IrTT

IrTT

maTmg

BA

AA

A

B

BB

)(

)(

22

3

11mgT

( 5 )解方程组可得

Page 45: UNIVERSITY PHYSICS 1

Example 5-6:如图,长为 L 质量为 m 的匀质棒,可绕其通过端点的光滑轴在竖直平面内转动。求棒从水平位置转到图中位置的角加速度( )。2

3

1mLI

mg

解:( 1 )研究对象:棒;( 2 )受重力作用,可证明重力对转轴的力矩为:

cosLmgM2

1

( 3 )由转动定理,可得:

L

cosg

mL

cosLmg

Page 46: UNIVERSITY PHYSICS 1

类似的问题:

mg

mg

请同学求出角加速度

Page 47: UNIVERSITY PHYSICS 1

§5-4 Kinetic energy and work in rotational motion

1. Kinetic Energy of Rotation

A moving body has the kinetic

energy. What is the kinetic

energy of a rotating body?

Windmill ( 风车)

唐吉 . 可德(?)

风力发电,水轮机等

Page 48: UNIVERSITY PHYSICS 1

How can we get the the expression (表达式) of kineti

c energy of a rigid body in rotational motion ? — Treat th

e body as a collection of particles.

iik VmE

iiiik rmVmE

(2) Take the sum of kinetic energies o

ver all the particles that make up the

body:

(1) Write the ith particle’s Kinetic energy as

axis

ir im

iV

ii rV i

iirmI 2

Page 49: UNIVERSITY PHYSICS 1

That is

(5-16)2k Iω

2

1E

( 转动动能 )

( 对比质点平动动能 ) 2k mV

2

1E

axis

I

Page 50: UNIVERSITY PHYSICS 1

2. Work done by torque Kinetic theorem of rotation

(1) Work done by torque

When a torque acts on a

rigid body, the rigid body

starts to rotate with an

angular acceleration so that it

store the kinetic energy. This

fact shows that the torque

have done work on the rigid

body.

Page 51: UNIVERSITY PHYSICS 1

In the following, for

simplicity, we consider only a

force applied at point P of

a rigid body rotating about a

fixed axis through o as shown

in Figure.

F

Supposing that the rigid body rotates through a

element angular displacement, the work done by the

force is

ddddd M rFscosFsFW t

Fig. 5-14

axisir

F

d

Page 52: UNIVERSITY PHYSICS 1

The total work done during a finite angular displacement is then

dW M (5-18)

In the special case of M is a constant

MMMW dd (5-19)

Fig. 5-14

axisir

F

d

Page 53: UNIVERSITY PHYSICS 1

Instantaneously power

M

tM

WP

d

d

d

d

t(5-20)

(2) Kinetic energy theorem of rotation 转动动能定理

Rewrite the element work

dd MW

Fig. 5-14

axisir

F

dt

IIM d

d

d

d

d

tI

dIt

tI d

d

d

td

Page 54: UNIVERSITY PHYSICS 1

When the angular speed changes from to , the

work done by the torque is

fi

(5-21)

Equation (5-21) indicates that the work done by torque

equals to the increment (增量) of kinetic energy of r

otation. This is kinetic theorem of rotation.

末动能 初动能

if II 2

1 f

d

i

IWkikf EE

Page 55: UNIVERSITY PHYSICS 1

3.potential energy of weight 刚体的重力势能

iiiiP hmgghmE

Mhmmhmh iiiiiC

设势能零点在 x-axis, hc

为质心到势能零点的距离 .

y

mi

C

hi

hC

o x

M

CP MghE

Page 56: UNIVERSITY PHYSICS 1

如刚体在重力矩作用下转动,计入刚体的重力势能后,如满足守恒条件,即其它力矩作功为零或无其它力矩,机械能守恒定律:

ttanconsI 势能

Page 57: UNIVERSITY PHYSICS 1

Example 5-7 质量为 m 、长为 L 的均质细杆可绕水平光滑轴 O 在竖直平面内转动。若使杆从水平位置开始由静止释放,试求杆转至铅垂位置时的角速度。

mg

L解:可利用动能定理来求解。当杆的 位 置 由 转到 +d

时,重力矩所做元功为:

d2

1dd cosmgLMW

mgLmgLM2

1d

2

1dW 2

0

2

0

cos

两边积分得:

Page 58: UNIVERSITY PHYSICS 1

22

2

10

2

1

2

1 IImgL

L

g3

(事实上,这就是机械能量守恒)

L

由定轴转动动能定理有:

Page 59: UNIVERSITY PHYSICS 1

Example 5-8:一长为 L,质量为m的匀质细杆竖直放置 , 其下端与一固定铰链 o 相连 , 并可绕其转动 .当其受到微小扰动时 ,细杆将在重力的作用下由静止开始绕铰链 o 转动 . 试计算细杆转到与铅直线呈 角时的角加速度和角速度 .

解 :受力分析如图

取任一状态 ,由转动定律

ImgLM sin2

1外

mg

2

3

1mLI

sinL

g

2

3

Page 60: UNIVERSITY PHYSICS 1

( 2 )利用机械能守恒求角速度:取 o 点的重力势能为零,则

cosmgLImgL2

1

2

1

2

1 2

)cos( 12

3

L

g

mg

Page 61: UNIVERSITY PHYSICS 1

§5-5 Angular Momentum (角动量) of a Rigid body Conservation of Angular momentum 角动量守恒定律 1. Angular Momentum of a Rigid body

As shown in the figure, the

angular momentum of the rigid

body about the fixed axis with

an angular speed is defined as

IωL (5-22)

刚体对定轴的角动量

Page 62: UNIVERSITY PHYSICS 1

Note: based on the concept of angular momentum of a

particle with respect to a fixed point we learned in §4-4,

a rigid body is treated as a collection of particles to lead

to (see the text)

IωL axis

ir im

iV

Page 63: UNIVERSITY PHYSICS 1

ωndIL, a对刚体: are about the same axis. This implies t

hat

IωL

may be negative or positive depending on the choice (选择) of direction of rotation:

Counterclockwise : positive

Clockwise : negative

Page 64: UNIVERSITY PHYSICS 1

Take time derivative of equation (5-22), we have

I

tI

t

I(

t

L

dd

d

d

d

d )

Hence:

t

LM

d

d (5-23) 转动定理的另一种形式

It means that the net torque acting on a rigid body

equals the time rate of change of the body’s angular

momentum.

M

Page 65: UNIVERSITY PHYSICS 1

2. Conservation of Angular momentum 角动量守恒定律

If no external torque acts on the body or the system, that is

0M 0

d

d

t

LWe have:

constant IL 角动量守恒定理

Page 66: UNIVERSITY PHYSICS 1

For a system :(here i represents ith rigid body)

which means that if no external torque acting on a rigid bo

dy or a system , the angular momentum will remains const

ant. 如果系统不受外力矩的作用,系统的角动量将保持不变。

constant iii IL (5-24)

Page 67: UNIVERSITY PHYSICS 1

Examples the spin of the earth; the example in ① ②Fig.5-16; the example in Fig.5-17 and Fig 5-19.③

(机械能守恒吗?)

Page 68: UNIVERSITY PHYSICS 1

(2) For a system 对系统

Page 69: UNIVERSITY PHYSICS 1

Example 4-9 一个 质量为 M ,半径为 R 的水平均匀圆盘可绕过中心的光滑竖直轴转动,在盘缘上站着一个质量为 m 的人。初时,他们以角速度 0 作匀速转动,后人从盘缘走到圆盘的中心处,求人在中心时圆盘的角速度。

解:选人 + 盘为系统,重力和压力对转轴的力矩为零,故系统角动量守恒。设人到达圆盘中心时圆盘的角速度为,则

20

22

2

1

2

1MRmRMR )(

0

2 M

mM

Page 70: UNIVERSITY PHYSICS 1

Example 4-10 :如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑轴 o 转动,初始为静止悬挂,现有一个小球自左方水平打击细杆,设小球与细杆之间为非弹性碰撞,则在碰撞过程中,对细杆和小球这一系统:( A )只有机械能守恒;

( B )只有动量守恒;

( C )只有对转轴 o 的角动量守恒;

( D )机械能、动量和角动量守恒;

小球

细杆

Page 71: UNIVERSITY PHYSICS 1

Example 4-11 :光滑的水平桌面上,有一长为 2L 的、质量为m 的匀质细杆,可绕其中点且垂直于杆竖直轴自由转动,起初杆静止,有两个质量均为 m 的小球,各自沿桌面正对着杆的一端,在垂直于杆长的方向上,以相同的速率 V 相向运动,如图所示。当两小球同时与杆的两端点发生完全非弹性碰撞后,就与杆粘在一起转动,求这一系统碰撞后的转动角速度(杆的转动惯量为 。2

3

1mLI

解:显然,这一系统的角动量守恒,则:

)( 22 23

1mLmLmLVmLV

L

V

7

6

mLVmVr

Page 72: UNIVERSITY PHYSICS 1

Example 5 .1 求质量为 m ,长为 l 的均匀细棒对下面转轴的转动惯量:

1) 转轴通过棒的中心并和棒垂直; 2) 转轴通过棒的一端并和棒垂直。(课本 P116 )

解: 1) 在棒上离轴 x 处,取一长度元 dx (如图所示),如果棒的质量线密度为,则长度元的质量为 dm=dx ,根据转动惯量计算公式:

OA

dxx

l

mrI d2

12dd

32

2

220

lxxmrI

l

l

ml 将 代入上式,得: 20 12

1mlI

( 2 )当转轴通过棒的一端 A并与棒垂直时

X ’O’

23

0

22

3

1

3

'd' d' ml

lxxmrII

l

oA

Page 73: UNIVERSITY PHYSICS 1

Example 5-2 求质量为 m 、半径为 R 、厚为 h 的均质圆盘对通过盘心并与盘面垂直的轴的转动惯量。(课本 P116 )解:如图所示,将圆盘看成许多薄圆环组成。取任一半径为 r ,宽度为 dr 的薄圆环,此薄圆环的转动惯量为

R

rdr

O

mrI dd 2其中: dm 为薄圆环的质量。以 表示圆盘的质量体密度,则有

rrhVm d2dd

rhrI d2d 3

hRdrhrIIR 4

0

3

2

12d

hR

m2

代入得 2

2

1mRI