136
UNIVERSITY OF PUNE Structure of T.E. (Civil Engineering) 2008 course Semester I Sub. code No. Subject Title Teaching Scheme Hours per week Examination Scheme Total Marks Lect. . Tut. Pract /Drg Pape r TW Pract. Oral 301001 Structural Analysis - II 4 -- -- 100 -- -- -- 100 301002 Infrastructure Engg. and Construction Techniques 4 -- 2 100 25 -- -- 125 301003 Structural Design I 4 -- 4 100 25 -- 50 175 301004 Fluid Mechanics - II 4 -- 2 100 25 -- 50 175 301005 Advanced Surveying 4 -- 2 100 25 -- 50 175 Total 20 -- 10 500 100 150 750 Structure of T.E. (Civil Engineering) 2008 course Semester II Sub. code No. Subject Title Teaching Scheme Hours per week Examination Scheme Total Marks Lect. . Tut. Pract /Drg Pape r TW Pract. Oral 301006 Hydrology & Water Resources Engg. 4 -- -- 100 -- -- -- 100 301007 Project Management & Engineering Economics 4 -- 2 100 -- -- 50 150 301008 Structural Design II 4 -- 4 100 25 -- 50 175 301009 Environmental Engineering I 4 -- 2 100 25 50 -- 175 301010 Foundation Engg. 4 -- -- 100 -- -- -- 100 Seminar -- -- 2 50 -- -- 50 Total 20 -- 10 500 100 150 750

UNIVERSITY OF PUNE Structure of T.E. (Civil Engineering ... 2008 Link.pdfUNIVERSITY OF PUNE Structure of T.E. (Civil Engineering) 2008 course Semester I Sub. code No. Subject Title

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

UNIVERSITY OF PUNE Structure of T.E. (Civil Engineering) 2008 course Semester I Sub. code No.

Subject Title Teaching Scheme Hours per week

Examination Scheme Total Marks

Lect..

Tut. Pract /Drg

Paper

TW Pract. Oral

301001 Structural Analysis - II

4 -- -- 100 -- -- -- 100

301002 Infrastructure Engg. and Construction Techniques

4 -- 2 100 25 -- -- 125

301003 Structural Design I

4 -- 4 100 25 -- 50 175

301004 Fluid Mechanics - II

4 -- 2 100 25 -- 50 175

301005 Advanced Surveying

4 -- 2 100 25 -- 50 175

Total 20 -- 10 500 100 150 750

Structure of T.E. (Civil Engineering) 2008 course Semester II Sub. code No.

Subject Title Teaching Scheme Hours per week

Examination Scheme Total Marks

Lect..

Tut. Pract /Drg

Paper

TW Pract. Oral

301006 Hydrology & Water Resources Engg.

4 -- -- 100 -- -- -- 100

301007 Project Management & Engineering Economics

4 -- 2 100 -- -- 50 150

301008 Structural Design II

4 -- 4 100 25 -- 50 175

301009 Environmental Engineering I

4 -- 2 100 25 50 -- 175

301010 Foundation Engg. 4 -- -- 100 -- -- -- 100 Seminar -- -- 2 50 -- -- 50 Total 20 -- 10 500 100 150 750

Structural Analysis II (301001)

Teaching Scheme Examination Scheme Lectures: - 04 Hours/week Theory: - 100 Marks

SECTION I Unit I (08 hours) a) Slope-deflection method of analysis: Slope-deflection equations, equilibrium equation of slope-deflection method, application to beams with and without joint translation and rotation, yielding of support, application to non-sway rigid jointed rectangular portal frames, shear force and bending moment diagram. b) Sway analysis of rigid jointed rectangular portal frames using slope-deflection method (Involving not more than three unknowns) Unit II (08 hours) a) Moment distribution method of analysis: Stiffness factor, carry over factor, distribution factor, application to beams with and without joint translation and yielding of support, application to non-sway rigid jointed rectangular portal frames, shear force and bending moment diagram. b) Sway analysis of rigid jointed rectangular single bay single storey portal frames using moment distribution method (Involving not more than three unknowns). Unit III (08 hours) a) Three hinged arches: Concepts, types of arches, analysis of parabolic with supports at same and different levels, semicircular arches. Determination of horizontal thrust, radial shear and normal thrust. b) Two hinged arches: analysis of parabolic two hinged arches with supports at same level. Determination of horizontal thrust, radial shear and normal thrust.

SECTION II Unit IV (08 hours) a) Fundamental concepts of flexibility method of analysis, formulation of flexibility matrix, application to pin jointed plane trusses (Involving not more than three unknowns). b) Application of flexibility method to beams and rigid jointed rectangular portal frames (Involving not more than three unknowns). Unit V (08 hours) a) Fundamental concepts of stiffness method of analysis, formulation of stiffness matrix, application to trusses by member approach. Application to beams by structure approach only, (Involving not more than three unknowns). b) Application to rigid jointed rectangular portal frames by structure approach only (Involving not more than three unknowns). Unit VI (08 hours) a) Finite Difference Method – Introduction, application to deflection problems of determinate beams by central difference method b) Approximate methods of analysis of multi-storied multi-bay 2 - D rigid jointed fames by substitute frame method, cantilever method and portal method.

Reference Books

01. Intermediate Structural Analysis: C.K. Wang, McGraw Hills. 02. Basic Structural Analysis: Wilbur and Norris. 03. Structural Analysis: A Matrix Approach by Pundit and Gupta, McGraw Hills. 04. Structural Analysis by Hibbler, Pearson Education. 05. Theory of Structures by L. S. Negi and Jangid, Tata MacGraw Hill. 06. Theory of Structures Vol. I & II by B. C. Punmia, Laxmi Publication. 07. Theory of Structures Vol. I & II by Perumull & Vaidyanathan, Laxmi Publication. 08. Mechanics of Structure vol. II by Junnarkar S B 09.Matrix and Finite Elemen Analysis of structure by Madhujeet Mukhopadhyay,Abdul Hameed Shaikh. 10.Matrix Method for structural engineering.by Gere ,Weaver.

Infrastructure Engineering and Construction Techniques (301002) Teaching scheme: Examination scheme Lecture: 4 hours/week Theory: 100 marks Practical: 2 hours/week Term work: 25 marks

SECTION I

Unit I (08 hours) a. Introduction Role of Civil Engineers in Infrastructure Development, Advantages of Railways as mode of transport, Organizational structure, feasibility studies Permanent Way: definition of track, basic components, ideal requirements Rails: functions, specifications, Tilting of rails and coning of wheels Formation: function suitability and drainage, treatment, failures and remedies, different cross sections of tracks in cutting and embankment Ballast: definition functions specifications, necessity of blanket/ sub ballast, design of ballast sections, grading and quantity of ballast Sleepers: functions, density and spacing, types such as steel, cast iron, pre stressed concrete, synthetic (fiber glass and polymer matrix composite) b. Track Gauges and standards Types of Gauges, choice, necessity of uniformity, track standards related with track structure for BG and MG, Concept of over dimensioning consignment (ODC), Track fittings and fastenings Unit II (08 hours) a. Geometric Design: necessity, types of gradients, curves, grade compensation on curves, alignment, super elevation, equilibrium cant, equilibrium speed, max. permissible limits for cant, cant deficiency, cant excess, speed on curves, safe speed on curves using Indian Railways formula only for fully transition curves, concept of negative cant. Points, Crossings and Turnouts: Functions, components/ elements of points, types of crossings and types of turnouts. b. Construction and Track maintenance: Plate laying method, operations involved, common items of track maintenance, concepts and advantages of Modern Directed Track Maintenance (DTM), use of modern track management systems on Indian railways, track quality assessments and monitoring c. Modernization in railways: with respect to (1) types of railways, (2) traction (3) high speeds, (4) improvements in track structure: components (5) Automation (6) Safety aspects, Introduction to skybus and Metro rails.

Unit III (08 hours) a. Tunneling: Introduction about tunnels, advantages and disadvantages of tunnels compared to open cuts, Criteria for selection of size and shape of tunnels, Advantages of twin tunnels and pilot tunnels, portals and adits, construction of shaft. Factors affecting methods of tunneling. Methods of Driving tunnels in soft ground: General characteristics of soft ground, needle beam method and NATM method of tunneling in practice, TBM. Driving tunnels in hard ground: General sequence of operation and typical distribution of time for each operations, meaning of the term ‘Faces of Attack’, Mucking, methods of removal of muck. Methods of Ventilation, Lighting and aspects of drainage. b. Docks and Harbors: Introduction, Requirements of harbors and ports, classification of harbors with examples, selection of site for harbor. Definitions/ methods of Breakwater, Wet and Dry Dock, Quay, Bulkhead, Wharves, Jetty, Dolphines, Dock fenders, use of Tetrapods, Triars, Quadripads and Hexapods

SECTION II

Unit IV (08 hours) a. Construction Techniques: Introduction, Role of construction activity in the national and global development, High Rise structures and their construction techniques, types, labour movements, material conveyance, erection methods using hoists and cranes, construction difficulties. b. Use of precast/ prefabricated elements such as columns, beams, slabs, wall panels, door frames, production techniques, quality control for prefab elements, autoclave curing, specialty and precautions at joints, consideration such as strength, economy, making light weight, thermal, acoustic and fire insulation in construction. Unit V (08 hours) a. Earth Moving Equipment Power Shovels, Back Hoe, Drag-line JCB-Excavator, Loaders Dozer, Scrapers, Use of Trucks, tractor and Dumpers, Work cycle. Hydraulically operated rock breakers, trenching machinery, factors affecting selection, work cycle out put estimation for operation. b. Economic, maintenance and repair of construction Equipments: Depreciation, equipment working rates, investment cost, repair cost, depreciation cost, cost of fuel and lubricants, cost of labour, overheads, problems based on it, preventive maintenance, record keeping, economic life, and economic replacement calculation

Unit VI (08 hours) a. Concreting methods Under water concreting - dredging techniques, use of barges, dewatering systems, pumps, concreting, concrete pumps, boom placers slip form technique, jump form technique, tunnel form work, slip form pavers. b. Miscellaneous Techniques: Guniting, industrial flooring, Production of crushed sand and crushed aggregates, pneumatic-drilling equipment, Use of RMC plants and jet grouting techniques

Term-work

Term work consist the following.

A) Minimum Three Site Visits covering any of the above topics of the above syllabus

and preparation of reports with necessary drawings, sketches and photographs.

B) Collection of brochures / pamplets regarding various construction equipment.

Information pertaining to the following aspects should be collected.

a. Types, different makes of equipment

b. Cost, useful life, area of use

c. Equipment performance data

C) Student should study repetitive Civil Engineering operation and workout cycle time

and cost of production of any two equipments.

D) An internal seminar on any one of the topic from above syllabus.

E) Report on special guest lectures arranged on any topic from the above syllabus.

Reference Books

1. Construction Planning, Methods & Equipment: Puerifoy – Tata McGraw Hill

2. Construction Equipments & its Management: S. C. Sharma, Khanna Publications.

3. Railway Track Engineering: J. S. Mundrey, Tata McGraw Hill

4. Harbour, Dock and Tunnel Engineering: R. Srinivasan

5. Docks and Harbour Engineering: Hasmukh P. Oza and Gautam H. Oza – Charotar

Book Stall

Structural Design I (301003) Teaching Scheme Examination scheme Lecture: 4 hrs/week Theory: 100 marks Practical: 4 hrs/week Term work: 25 marks

Oral: 50 marks Design should be based on IS, 800-2007

SECTION I

Unit I (12 hours)

a) Types of steel structures, grades of structural steel, various rolled steel sections, relevant IS specifications such as IS:800-2007, IS:808-1989, IS:875 part I to III, SP: 6(1), SP: 6(6), IS:4000-1992, codes for welded connections. Philosophy of limit state design for strength and serviceability, partial safety factor for load and resistance, various design load combinations, classification of cross section such as plastic, compact, semi-compact and slender. b) Tension member: various cross sections such as solid threaded rod, cable and angle sections. Limit strength due to yielding, rupture and block shear. Design of tension member: using single and double angle sections, connections of member with gusset plate by bolts and welds. Unit II (12 hours)

a) Buckling classification as per geometry of cross section, buckling curves, design of struts in trusses using single and double angle section, connections of members with gusset plate by bolts and welds. Design of axially loaded column using rolled steel section. b) Design of built-up column, lacing and battening, connection of lacing/battening with main components by bolts and welds. Column base under axial load: design of slab base, gusseted base. Column base for axial load and uniaxial bending.

SECTION II

Unit III (12 hours)

a) Flexural member- Laterally supported and unsupported beams using single rolled steel section with and without flange plate, strength in flexure, low and high shear, check for deflection. Secondary and main beam arrangement for floor of a building, design of beam to beam and beam to column connections using bolt / weld. b) Design of eccentrically loaded column subjected to uniaxial bending (check for section strength only). Design of column base for axial load and uniaxial bending. Unit IV (12 hours)

a) Design of welded plate girder: design of cross section, curtailment of flange plates, stiffeners and connections. b) Roof truss: assessment of dead load, live load and wind load, design of purlin, design of members of a truss, detailing of typical joints and supports.

Term work

Term work consists of the following.

A) Four numbers of half imperial size sheets showing structural detailing based on syllabus. (minimum 16 sketches) B) Design of industrial building including roof truss, purlin, bracings, column, column base and connections. C) Design of welded plate girder, design of cross section, curtailment of flange plates, stiffeners and connections.

OR

C) Design of building including primary and secondary beams, column, column base and connections. D) Two site visits: Report should contain structural details with sketches.

Four half Imperial size drawing sheet out of which one drawing sheet shall be drawn by using any drafting software.

Oral Examination shall be based on the above term work. Note: Maximum number of students in a group not more than three to five for design.

Reference Books

1. Design of Steel Structure by N Subramanian, Oxford University Press, New Delhi. 2. Design of steel structure by Limit State Method as per IS: 800- 2007 by Bhavikatti S S, I K International Publishing House, New Delhi. 3. Limit state design of Steel Structure by V L Shah & Gore, Structures Publication, Pune. 4. Teaching materials of National Workshop on design of steel structure by limit state method organized for faculty of Pune University, Pune. 5. Teaching Resource Material by INSDAG.

Fluid Mechanics-II (301004) Teaching scheme Examination scheme Lectures: 4 hours/week Theory: 100 marks Practical: 2 hours/week Term Work: 25 marks Oral: 50 Marks

SECTION I

Unit-I (08 hours) a) Fluid Flow around Submerged Objects: Practical problems involving fluid flow around submerged objects, Definitions and expressions for drag, lift, drag coefficient, lift coefficient, types of drag. Drag on sphere, cylinder, flat plate and aerofoil, Karman's vortex street, Effects of free surface and compressibility on drag, Development of lift, Lift on cylinder and Aerofoil, Magnus effect, Polar diagram. b) Unsteady Flow: Types of unsteady flow; Flow through openings under varying head, Fluid compressibility, Celerity of elastic pressure wave through fluid medium; Water hammer phenomenon; Rise of pressure due to water hammer-rigid water column and elastic water column theories; simple cases neglecting friction. UNIT-II (08 hours) a) Impact of Jet: Force and work done due to impact of jet on stationary and moving, flat and curved surfaces using linear momentum principle. b) Centrifugal Pumps : General classification of pumps, Centrifugal pumps- Classification, theory working, Centrifugal head, Work done by impeller, Heads and efficiencies, minimum starting speed, Cavitation in centrifugal pumps, multistage pumping, Introduction to reciprocating pump and submersible pumps. Selection of pumps. UNIT-III Hydraulic Turbines (08 hours) a) Hydropower generation: Elements of hydropower plant; hydraulic turbines- Classification, heads and efficiencies, Design and governing of Pelton Wheel, Francis turbime-parts and working. Cavitation in hydraulic turbines, b) Performance of hydraulic turbines : Prediction of performance in terms of unit quantities and specific quantities, Specific speed, Characteristic curves, Dimensional analysis as applied to hydraulic turbines, selection of turbines,

SECTION II

UNIT-IV (08 hours) a) Introduction to open channel flow: Classification of channels, and Channel flows. Basic governing equations of Channel flow viz. continuity equation, energy equation and momentum equation . One dimensional approach, Geometric elements of channel, Velocity distribution in open channel flow, current meter, flow through notches weirs. b) Uniform flow in open channels : Characteristics and establishment of uniform flow, uniform flow formulae : Chezy's and Manning's formulae; Factors affecting Manning's roughness coefficient; Important terms pertaining to uniform flow, viz. normal depth, conveyance, section factor, hydraulic exponent, Uniform flow computations. Most efficient channel section.

UNIT-V (08 hours) a) Depth-Energy Relationships in Open Channel Flow : Specific energy, Specific force Specific energy diagram, Specific force diagram, Depth-discharge diagram. Critical depth, Conditions for occurrence of critical flow; Froude's number, flow classification based on it. Important terms pertaining to critical flow viz. section factor, hydraulic exponent; Critical flow computations; channel transitions, b) Hydraulic Jump Phenomenon of hydraulic jump; Location and examples of occurrence of hydraulic jump; Assumptions in the theory of hydraulic jump; Application of momentum equation to hydraulic jump in rectangular channel : Conjugate depths and relations between conjugate depths. Energy dissipation in hydraulic jump; Graphical method of determination of energy dissipation, Classification of hydraulic jump; Practical uses of hydraulic jump, venturiflume, standing wave flume, UNIT-VI (08 hours) a) Gradually Varied Flow in Open Channels Definition and types of non-uniform flow; Gradually Varied Flow (GVF) and Rapidly Varied Flow (RVF); Basic Assumptions of GVF; Differential equation of GVF - Alternative forms; Classification of channel bed slopes, Various GVF profiles, their general characteristics and examples of their occurrence; Control section. b) Gradually varied flow computations: Methods of GVF computations. Direct Step method, Graphical Integration method,. Standard Step method, direct Integration method, Ven Te Chow method.

Term Work

Term work will consist of a journal giving the detailed report on experiments and assignments performed and visit report.

List of Experiments. Following experiments and assignments based on the above syllabus shall be performed. A) Experiments 1. Flow around a Circular Cylinder/ airfoil 2. Impact of Jet on flat/curved surface. 3. Characteristics of a Pelton Wheel Turbine. 4. Characteristics of a Centrifugal Pump. 5 Study of Uniform Flow Formulae of Open channel. 6. Velocity Distribution in Open Channel Flow. 7. Calibration of Standing Wave Flume / Venturi / Partial flume. 8. Study of Hydraulic Jump as Energy Dissipater. B) Assignments (all compulsory): (a) Study of Specific Energy Diagram/Specific Force Diagram. (b) Characteristics of various GVF Profiles and computer program on G V F. (c) Design of Pelton Wheel Turbine/Centrifugal Pump. C) Site visit to Hydropower generation plant/Research Institute. Oral Examination shall be based on the above term work.

Reference Books

1. Engineering Fluid Mechanics by Garde, Mirajgaonkar, Scitech 2. Fluid Mechanics by Dr Jain A. K., Khanna Pub. 3. Open Channel Flow: K. G. Ranga Raju - Tata McGraw Hill. 4. Open Channel Flow by K Subranmanya, TMH, Third Ed. 5. Open Channel Hydraulics: Ven te Chow - Tata McGraw Hill. 6. Hydraulics and Fluid Mechanics by P. N. Modi & S. N. Seth Standard book house

Advanced Surveying (301005)

Teaching Scheme Examination Scheme Lectures: 4 Hours /Week Paper: 100 Marks Practical: 2 hours/Week Oral : 50 Marks

SECTION I

Unit-I (08 hours) Geodetic Surveying & GPS a) Objects, Methods of Geodetic Surveying, Introduction to Triangulation, classification of Triangulation Systems, Triangulation figures, Concept of well conditioned Triangle, selection of stations, intervisibility and height of stations. b) Introduction to GPS, GPS systems (viz. Glonoss, Galileo etc…) and their features, Segments of GPS (Space, Control and User), their importance and role in GPS, Absolute Position and Differential Position GPS, Role of Differential Position GPS in establishing controls, Factors governing accuracy in GPS positioning, Different types of errors in GPS positioning. Unit-II (08 hours) Triangulation Adjustment Kinds of errors, Laws of weights, Determination of most probable values (MPV) of conditioned and independent quantities, Method of Least Squares, Indirect observations, Probable error and its determination, Distribution of error to the field measurements, Normal equation, Method of correlates, station and figure adjustment of Geodetic Quadrilateral without central station, Spherical triangle, Calculations of spherical excess and sides of spherical triangle. Unit –III (08 hours) Trignometric Levelling and Setting out works a) Trignometric Levelling - Terrestrial refraction, Angular corrections for curvature and refraction, Axis Signal correction, Determination of Difference in Elevation by single observation and reciprocal observations. b) Setting out of Construction works. Setting out of a bridge, determination of the length of the central line and the location of piers. Setting out of a tunnel – surface setting out and transferring the alignment underground.

SECTION II

UNIT IV (08 hours) Aerial Photogrammetry - Objects, Applications, Aerial camera, comparison of map and aerial photograph, Vertical, Tilted and Oblique photographs, Scale of vertical photograph, Relief displacement in vertical photograph, Measurement of parallax, parallax bar and determining the differential equation, Mirror stereoscope and parallax equation, Flight planning, Ground control points (GCPs) and their importance in conventional and digital photogrammetry, radial line method, Introduction to digital photogrammetry, different stereo viewing techniques in digital photogrammetry, Method of creation of elevation data, Different products of digital photogrammetry.

Unit – V (08 hours) Remote Sensing and Geographical Information System a) Remote Sensing Introduction and definition, Necessity, importance and use of remote sensing, Ideal Remote Sensing System, Electromagnetic energy and spectrum and its interaction with atmosphere and objects, Atmospheric window, Spectral signature, Platforms for RS, Difference between Aerial photograph and satellite image, image interpretation and elements of visual image interpretation such as size, shape, tone, texture, etc. Advantages and limitations of RS, Different applications of RS- (Land use and land cover mapping, Disaster management Flood & Earth Quake, and Resource Inventory management,) Digital Image processing, its objectives and different methods. b) Geographical Information System Introduction, Definition, Objectives, Components, Coordinate systems and projections, Georeferencing, Input data, GIS data Types (Raster, vector, attribute data), introduction to data analysis, vector and raster analysis methods -- query analysis and network analysis for vector, DEM, Visibility analysis , Slope analysis, Watershed analysis for raster, limitations of GIS, Applications of GIS, management and analysis of different types of data using GIS. Unit-VI (08 hours) Hydrographic Surveying Objects, applications, Establishing controls, Shore line survey, Sounding, Sounding Equipment, Methods of locating soundings – conventional and using GPS , Reduction of soundings, Plotting of soundings, Nautical Sextant and its use, Three point problem and its use, solution of three point problem by all methods, Tides and tide gauges, determination of MSL

Term work

Term work shall consist of the following practicals and project.

Geodetic Surveying and Trignometrical leveling (Any two) 1. Measurement of horizontal and vertical angles with 1” theodolite. 2. Determination of elevation of inaccessible objects by trignometrical leveling. 3. Establishing control station using single or dual frequency GPS receiver

Hydrographic Surveying (Any Two) 1. Study and use of nautical sextant and measurement of horizontal angles 2. Plotting of river cross-section by hydrographic surveying 3. Solution to three point problem by analytical and any one graphical method Aerial Photogrammetry (Any Two) 1. Study of Aerial photograph and finding out the scale of the photograph. 2. Determination of Air Base distance using mirror stereoscope. 3. Determination of differential elevation by differential parallax Remote Sensing and GIS (Any two) 1. Study of RS images and visual interpretation 2. Classification of satellite image using image processing software 3. Study of any one GIS software 4. Study of vector and raster data products and bringing out difference between them. Project: (Any one)

1. Adjustment of Geodetic Quadrilateral without central station by approximate method and method of correlates

2. Field survey (500 sq.m.) using Differential GPS (Control as well as mapping). 3. Survey of a small property with total station and preparation of map using any post

processing software.

Oral examination based on above term work.

Reference Books

1. Surveying: Vol. II. and III by Dr. B. C. Punmia : Laxmi Publication - New Delhi. 2. Surveying and Levelling Vol. II by T. P. Kanetkar and S. V. Kulkarni Pune Vidyarthi Publication. 3. Surveying - Vol. II and III by Dr. K. R. Arora Standard Book House 4. Elements of Photogrammetry by Paul R. Wolf, McGraw Hill Publication 5. Remote sensing and Geographical Information System, By A. M. Chandra and S. K. Ghosh, Narosa Publishing House. 6. Remote sensing in Civil Engineering by J. M. Kennie and M. C. Matthews. 7. The GIS book, 5th Edition, George B Korte, PE onward Press 8. Advanced Surveying -Total Station, GIS and Remote Sensing by Satheesh Gopi, R.Sathikumar and N. Madhu , Pearson publication 9. Surveying Vol. 2 by S. K. Duggal, McGraw Hill Publication

Hydrology And Water Resource Engineering (301006)

Teaching Scheme: Examination Scheme: Lectures: 4 hrs./ week. Paper: 100 Marks.

SECTION-I Unit – I (08 hours) Introduction to Hydrology: Application of hydrology, Precipitation: Forms, : Types of precipitation, measurement, analysis of precipitation data, mass rainfall curves, intensity-duration curves, concepts of depth-area-duration analysis, frequency analysis, computation of mean rainfall Evaporation and Infiltration : Elementary concepts of evaporation and infiltration, effect of infiltration on runoff and recharge of ground water, evapotranspiration. Consumptive use factors affecting measurement and computations for evaporation, infiltration and evapo- transpiration. Stream Gauging: Selection of site, various methods and instruments of discharge measurements. Unit – II (08 hours) Runoff: . Factors affecting runoff, rainfall-runoff relationships, runoff hydrograph, unit hydrograph, theory, S-curve hydrograph, synthetic unit hydrograph, use of unit hydrograph. Floods: Estimation of peak flow, rational formula and other methods, flood frequency analysis Gumbells method, Design floods, Unit III (08 hours) Reservoir Planning.

Types of developments: Storage and diversion works. Purpose: Single and multi-Reservoir Planning, investigation for locating a reservoir, Selection of site, estimation of required storage, mass curves, reservoir sedimentation, flood routing, height of dam, reservoir operation, economics of reservoir planning, Benefit-Cost ratio, application of optimization techniques, system approach. Unit – IV (08 hours) Water Requirements of Crops: Soil classification, soil moisture and crop water Relationship, factors governing consumptive use of water, principal Indian crops, Their season and water requirement, crop planning agricultural practices, calculations of canal and reservoir capacities – duty, delta, irrigation efficiency, water quality for irrigation. Introduction to Irrigation: Definition, functions, advantages and necessity, methods of irrigation, surface irrigation, subsurface irrigation, micro irrigation. Assessment of Canal Revenue . Various methods.

Unit – V (08 hours) Ground Water Hydrology: Occurrences and distribution of ground water, specific yield of aquifers, movement of ground water, Darcy, s law, permeability, safe yield of basin. Hydraulics of wells under steady flow condition in confined and unconfined aquifers, specific capacity of well, well irrigation: tube wells, open wells, their design and construction. Unit VI (08 hours) Lift Irrigation Schemes: Various components and their design principles, lifting devices Water Management: Distribution, warabandi, rotational water supply system, Water Logging and Drainage:

Causes of water logging, Preventive and Curative measures, drainage of irrigated lands, reclamation of water logged, alkaline and saline lands.

Reference Book 1. Irrigation Engineering - S. K. Garg. 2. Irrigation, Water Resources and water power engineering- Dr. P. N. Modi Publ Standard book house. 3. Irrigation and water power Engineering.- Dr. Punmia and Dr . Pande, Standard Publisher 4. Irrigation Engineering Bharat Singh 5. Engineering hydrology – Subramanyam Tata McGraw Hill. 6. Hydrology & water resoures – R.K. Sharma Dhanpatrai & sons 7. Theory & design of irrigation structures Vol.I, II, IIIVarshney Gupta and Gupta Nemchand and brothers publication 8. Water Management – Jasapal Singh, M.S.Achrya, Arun Sharma – Himanshu Publication.

Project Management & Economics (301007)

Teaching Scheme Examination Scheme Lectures 4 hours/week Theory: 100 Marks Practicals- 2hours/week Oral: 50 Marks SECTION-I Unit 1 (08 Hours) a) Introduction to Project management & organization. Importance, objectives & functions of management, Categories of project, Project life cycle, importance of organization, Principles of organization, Authority, Delegation of authority Types of Project Organization- Line, Functional, Line & Staff, Matrix Structure, Project Structure b) Project Planning & Scheduling. Gantt chart & its limitations, Network Planning, Network Analysis- C. P. M. Activity on Arrow (AOA), Critical path & type of floats, Activity on Nodes-Precedence network analysis, P. E. R. T. Unit 2 (08 Hours) Project Time Control, Project cost Control, Crashing, Resource Allocation & leveling, Updating, Monitoring & Control, Unit 3 Materials Management. (08 hours) Objectives of Materials management and balancing with emphasis on supply management and cost reduction, material requirement, scheduling monitoring, receipts, storage, Inspection, inventory control- ABC analysis, EOQ, Break-even analysis.

SECTION II Unit 4 Site layout and Safety Engineering. (08 Hours) Site layout-factors for site layout selection, Site layout for various Civil engineering projects. Safety Engineering Causes of accidents on various sites, Safety measures and safety policies to be adopted, Determination of safety parameters, Personal protective equipment. Unit 5 Project Economics. (08 Hours) Introduction to project economics, Definition, principles, Importance in construction Industry, Difference between Cost, Value, Price and its relevance to Marketing utility, Law of Diminishing Marginal Utility. Demand, demand schedule, law of demand, demand curve, elasticity of demand, supply, supply schedule, supply curve, elasticity of supply, law of substitution, Equilibrium, Equilibrium price, Equilibrium amount, factors affecting price determination. Unit 6 Project Appraisal. (08 Hours) Technical Appraisal -General, brief discussion relevant to particular project. Financial appraisal- Definition of Money, Rent, simple and compound interest, profit, Annuities, Capital, Types of Capital, Working and fixed Capital. Cost composition, benefits, interest rates, discount rate, time value of money, parameters and criteria for project selection, benefit - cost analysis-B/C ratio, NPV, IRR, Pay-back period.

Term Work:-

1. To draw C.P.M network for a small Civil engineering Project having about 25 activities. Determination of Critical path and calculation of floats for the project.

2. Assignment based on Crashing. 3. Assignment on Resource Leveling/Updating. 4. Assignment based on ABC analysis. 5. Assignment using computer software for Project Planning and Scheduling 6. Assignment based on Project selection criteria.(Benefit Cost Analysis) 7. Visit to any 2 construction sites and preparing Site layout plan and safety plan for the

2 construction sites visited. Oral Examination shall be based on the above term work.

Reference Books

1. Construction Engineering and Management by S. Seetharaman, Umesh Publications, New Delhi. 2. Total Project Management – The Indian Context by P. K. Joy Macmillan India Ltd. 3. PERT and CPM Principles and Applications by L. S. Srinath, Affiliated East West Press Pvt. Ltd. New Delhi. 4. Construction Project Management-Planning, Scheduling and Controlling by K. K. Chitkara, Tata McGraw Hill Publishing Company, New Delhi. 5. Construction Management and Planning by B. Sengupta and H Guha, Tata McGraw Hill Publishing Company, New Delhi. 6. The Essentials of Project Management by Dennis Lock, Gower Publishing Ltd. UK. 7. Financial Management by Prasanna Chandra, Tata McGraw – Hill Publication. 8. Engineering Economics, James Riggs, David Bedworth, Sabah Randhawa, McGraw Hill 9. Essentials for Decision Makers by Asok Mukherjee, Scitech Publication, New Delhi.

Structural Design II (301008)

Teaching scheme Examination scheme Lectures: 4 hours/week Theory: 100 Marks Practical: 4 hours/week Term work: 25 Marks Oral: 50 Marks Design should be based on IS: 456- 2000

SECTION I

Unit I (12 hours) a) Introduction to various design philosophies R.C structures: Historical development, working stress method, ultimate load method and limit state method. Working stress method: Moment of resistance of singly reinforced rectangular R.C. sections, under reinforced, balanced and over reinforced sections. Moment of resistance of doubly reinforced rectangular sections. b) Limit state method: Limit state of collapse, limit state of serviceability and limit state of durability. Characteristic strength, characteristic load, concept of safety - probabilistic approach, semi probabilistic approach. Partial safety factors for material strengths and loads. Study of structural properties of concrete. Assumptions of Limit state method, strain variation diagram, stress variation diagram, design parameters for singly reinforced rectangular R.C. section, Moment of resistance of Under reinforced and balanced section, M.R. of doubly reinforced rectangular section and flanged section. Unit II (12 hours) a) Design of slab: One way, simply supported, cantilever and continuous slabs. Two way slab: simply supported, continuous and restrained. b) Design of staircase: Dog legged and open well.

SECTION II

Unit III (12 hours) Design of flexural members: Simply supported, continuous, cantilever beams (singly reinforced, doubly reinforced and flanged) for flexure, shear, bond and torsion. Redistribution of moments. Unit IV (12 hours) a) Column: Introduction, strain and stress variation diagrams, axially loaded short column with minimum eccentricity requirements. Design of short column for axial load, uni-axial, Biaxial bending using interaction curves. b) Design of isolated column footing for axial load, uni-axial and biaxial bending.

Term work

Design Assignments (Term work) a) Design of G + 2 (residential/commercial/public) building covering all types of slabs, beams, columns, footings and staircase (two flights). Detailing of reinforcement should be as per SP-34 & IS 13920 Full imperial drawing sheets in four numbers.

Out of which one drawing sheet shall be drawn by using any drafting software. b) Reports of two site visits. (Building under construction) Oral Examination shall be based on the above term work. Note: Maximum number of students for projects not more than three.

Reference Books

1. Limit State Theory and Design: Dr. V. L. Shah and Dr. S.R. Karve - Pune Vidyarthi Gruh Publication, Pune. 2. Limit State Analysis and Design: P. Dayaratnram, Wheeler Publishing company, Delhi. 3. Comprehensive Design of R.C. Structures by Punmia, Jain and Jain – Standard Book House, New Delhi. 4. RCC Analysis and Design: Sinha, S, Chand and Co. New Delhi. 5. Reinforced Concrete Design by Varghese, PHI, New Delhi. 6. Reinforced Concrete Design by Pillai Menon, Tata Mc Graw Hill, New Delhi. 7. Design of Concrete Structure by J N Bandyopadhyay, PHI, New Delhi.

Environmental Engineering-I (301009)

Teaching Scheme Examination scheme Lecture: 4 hrs/week Theory: 100 marks Practical: 2 hrs/week Term work: 25 marks Practical: 50 marks

SECTION I Unit I (08 hours) a. Introduction to water supply scheme: Data collection for water supply scheme, components and layout. Design period, factors affecting design period. b. Water intake structures: General design considerations, types such as river intake, canal intake and reservoir intake. Conveyance of raw water: Different types of pipes used, Different valves, designing of rising main, hydraulic design of pumping station. c. Quantity: Rate of water consumption for various purposes like domestic, industrial, institutional, commercial, fire demand and water system losses, factors affecting rate of demand, Population forecasting. d. Quality: Physical, Chemical, Radioactivity and Bacteriological Characteristics. Standards as per IS: 10500. Unit II (08 hours) a. Water treatment: Principles of water treatment processes. Introduction to different types of water treatment flow sheets. b. Aeration: Principle and Concept, Necessity, Methods, Removal of taste and odour. Design of aeration fountain. c. Sedimentation: Plain and chemical assisted - principle, efficiency of an ideal settling basin, settling velocity, types of sedimentation tanks, design of sedimentation tank. Design of tube settlers. d. Coagulation and flocculation: Theory, common coagulants, coagulant aids like bentonite clay, lime stone, silicates and polyelectrolytes, mean velocity gradient “G” and power consumption, design of flocculation chamber, Design of clariflocculator. Unit III (08 hours) a. Filtration: Theory of filtration, mechanism of filtration, filter materials, types of filters- Rapid gravity filter, slow sand filter and pressure filter, multimedia and dual media filters, components, under drainage system, working and cleaning of filters, operational troubles, Design of filters. b. Disinfection: Theory, factors affecting disinfection, types of disinfectants, types and methods of chlorination, break point chlorination, bleaching powder estimation.

SECTION II

Unit IV (08 hours) a. Water softening methods: lime-soda, zeolite and ion exchange. b. Demineralization: Industrial water treatment for boilers and process water, methods like R.O., electrodialysis and ion exchange. c. Water treatment of swimming pools. d. Adsorption: odour and colour removal. e. Fluoridation and defluoridation.

Unit V (08 hours) a. Water distribution system: System of water supply- Continuous and intermittent system. Different distribution systems and their components. ESR- Design of ESR capacity. Wastage of Water- Detection and Prevention. b. Rainwater harvesting: Introduction to rainwater harvesting, need of rain water, methods of rainwater harvesting, components of domestic rain water harvesting system, design of roof top rainwater harvesting system. Unit VI (08 hours) a. Noise pollution: Sources and effects of Noise Pollution. Sound measurements – Sound pressure, Intensity, Sound pressure level, Loudness, Equivalent noise level and Cumulative noise level. Noise control techniques. b. Air pollution: Classification of air pollutants, Primary and Secondary air pollutants and their importance, Atmospheric stability, mixing heights, plume behaviour and meteorological parameters. Air pollution control mechanism. Equipment for particulate contaminants. Principle and working of Settling chamber, Cyclone, Fabric filter, ESP. Gaseous contaminants control by adsorption and absorption technique.

Term Work

The term work shall consist of the following: List of Practical A) Determination of 1. pH and Alkalinity 2. Total hardness and its components 3. Chlorides 4. Chlorine demand and residual chlorine 5. Sodium or Potassium or Calcium using flame photometer. 6. Turbidity and optimum dose of alum. 7. Most Probable Number (MPN) 8. Fluorides or Iron 9. Ambient air quality monitoring for Suspended particulate matter, SOX, NOX and ambient noise levels. B) Site visit to water treatment plant. C) Study of Software or programming for analysis of water distribution system or programming for design of water treatment units. Practical examination will be based on above exercises.

Reference Books

1. Water Supply Engineering: S. K. Garg, Khanna Publishers, NewDelhi. 2. Water Supply and Treatment Manual: Govt. of India Publication. 3. Water Supply and Sanitary Engineering: G. S. Birdie and J. S. Birdie, Dhanpat Rai

Publishing Company, New Delhi. 4. Environmental Engineering: Peavy and Rowe, McGraw Hill Publications. 5. Environmental Engineering 1: Water Supply Engineering: B. C. Punmia, Ashok Jain

and Arun Jain. Laxmi Publications (P) Ltd. 6. Environmental Engineering: M. R. Gidde and R. K. Lad, Nirali Prakashan.

7. Optimal Design of Water Distribution Networks: P. R. Bhave, Narosa Publishing House.

8. Rain Water Harvesting: Making water every body’s business by CSE (Centre for Science and Environment) www.cse.org

9. Harvesting Faith: Linda K. Hubalek. Published by Butterfield books. 10. Air Pollution: H. V. N. Rao and M. N. Rao, TMH Publications.

Foundation Engineering (301010) Teaching Scheme Examination Scheme Lectures: 4hours/week Theory:100 marks

SECTION I Unit-I Subsurface Investigations for Foundations. (08 hours) Purpose and planning of subsurface exploration. Methods of Investigation: Trial pits, borings and methods of boring depth & number of exploration holes, RQD. Geophysical methods –Seismic refraction and Electrical resistivity method. Disturbed and undisturbed sampling, types of samplers, degree of disturbance of a sampler. Field testing-SPT, DCPT, SPCT and its correlation with soil properties. Pressure meter test, Final report of investigation with recommendation analysis. Unit-II Bearing capacity. (08 hours) Basic definitions, Modes of shear failure . Bearing capacity analysis- Terghazi’s Henson’s, Meyerhof’s and Skempton equations - Rectangular and Circular Footings. Estimation of bearing capacity using plate load test, SPT, DCPT and SPCT. Presumptive bearing capacity, Bearing capacity of layered soil. Effect of water table on bearing capacity. Effect of eccentricity. Plate load test and its limitations, Housel’s perimeter shear concept. Types of shallow foundation: types and applications. Floating foundation. Unit-III Settlement Analysis and Consolidation settlement. (08 hours) Elastic settlement: Causes of settlement. Pressure bulb, contact pressure, & seat of settlement, Elastic settlement, I.S. criteria- Total, Differential settlement and tolerable settlement, Effect of lowering of water table. Use of Plate load test and SPCT in settlement analysis, Allowable soil pressure. Consolidation settlement: Introduction, spring analogy, Terzaghi’s consolidation theory, Laboratory consolidation test, Determination of coefficient of consolidation, Square root of time fitting method and logarithm of time fitting method. Time factor, Actual time and Cv relationship. Rate of settlement and its applications in shallow foundation. Normal consolidation, over consolidation and preconsolidation pressure.

SECTION II Unit-IV Deep Foundations. (08 hours) Introduction. Pile classification, Pile installation-Cast in situ, driven and bored pile displacement and non displacement piles. Load carrying capacity of pile by static method, Dynamic methods-Engineering news formula,\ and Modified ENR formula. Pile load test and Cyclic Pile load test. Group action-Feld rule, Rigid block method. Negative skin friction. Settlement of pile group in cohesive soil by approximate method. Piers and Caissons- Definition. Types and uses. Drilled piers and methods of installations. Well foundation: components, sand island method. Unit V Sheet Piles and Cofferdams and Foundation on Black Cotton Soils. (08 hours) Strutting for excavation, pressure distribution, design of cantilever sheet pile- Approximate method, Anchored sheet piles, free earth support. Cofferdams and it’s types with steel sheet piles and precast concrete piles, interlocking circular piles, RC Diaphragm wall method

Foundation on Black Cotton Soils: Characteristics of black cotton soil, swelling potential and its evaluation methods, Engineering problems, Swelling pressure measurement, Foundations on black cotton soil: design principles, Construction techniques in B.C soils, under reamed piles-Design principles and its construction Techniques. Stone columns, preloading technique and viabrofloating method.

Unit VI (08 hours) Soil Reinforcement and Earthquake Geotechnics. Mechanism of reinforced soil. Factors affecting behavior and performance of reinforced soil: reinforcement, reinforcement distribution. Geosynthetics: type’s, functional properties and requirements. Geosynthetic applications in Civil Engineering. Earthquake Geotechnics: Types of earthquakes. Seismic waves, Location of earthquakes, Strength of an earthquake, Strong ground motion, Factors influencing ground motion, Seismic hazards, liquefaction, Effect of liquefaction on Built Environment, Evaluation of liquefaction susceptibility, liquefaction hazard mitigation.

Reference Books

1. Soil mechanics and Foundations by B.C Punmia, Laxmi Publications 2. Soil Mechanics and Foundation Engineering- V. N. S Murthy 3. Geotechnical Engineering- C.Venkatramaiah. 4. Geotechnical Engineering by Conduto, PHI, New Delhi. 5. Geotechnical Engineering by Shahi. K.Gulati & Manoj Dutta, Tata McGraw Hill 6. Basic and applied soil mechanics by Gopal Ranjan and A.S.Rao, New Age Publications 7. A Text book of Geotechnical Engineering- Iqbal H. Khan 8. Foundation Design Manual: N V Nayak, Dhanpat Rai Publications.

1

UNIVERSITY OF PUNE TE (COMPUTER ENGINEERING)- 2008 COURSE

Term-I Sub Code

Subject Teaching Scheme

Examination Scheme

Total Marks

Lect Pract Th TW Pr Or

310241

Database Management Systems 03

100

100

310242 Data Communications 03 — 100 — — — 100

310243

Microprocessors and Micro-controllers

03

100

100

310244 Digital Signal Processing 04 — 100 — — — 100

310245 Theory of Computation 03 — 100 — — — 100

310246

RDBMS and Visual Programming Laboratory

02

04

50

50

100

310247 Signal Processing Laboratory — 04 — 25 — 50 075 310248 Hardware Laboratory — 04 — 25 50 — 075

Total 18 12 500 100 100 50 750

Total of Part I (A) 30 Hrs 750

Term-II

Sub Code

Subject Teaching Scheme

Examination Scheme Total Marks

Lect Pract Th TW Pr Or

310249

Principles of Programming Languages

03

100

100

310250 Computer Networks 03 — 100 — — — 100

310251

Finance and Management Information Systems

04

100

100

310252

Systems Programming & Operating Systems

04

100

100

310253 Software Engineering 03 — 100 — — — 100

310254 Software Laboratory — 04 — - 25 50 — 075

310255 Computer Networks 01 04 — 25 — 50 075 310256

Software Development Tools Laboratory

02

50

050

310257

Seminar and Technical Communication

02

50

050

Total 18 12 500 150 50 50 750 Total of Part II (B) 30 Hrs 750

Grand Total 1500 Th: Theory Tw: Term Work Pr: Practical Or: Or al

2

310241: DATABASE MANAGEMENT SYSTEMS

Teaching scheme: Examination Scheme: Lectures: 3 Hrs/Week Theory: 100 Marks Objectives:

• To implement an entity relationship diagrams (ERD) to express requirements and demonstrates skills to model data requirements and create data models in to normalized designs

• To develop understanding of database systems theory in order to apply that knowledge to any particular database implementation using SQL

• To learn and understand various Database Architectures and Applications Prerequisites:

• Discrete Structures • Data Structures

Unit I : Introduction to DBMS (06 Hrs) Introduction : Basic concepts, Advantages of a DBMS over file-processing systems, Data abstraction, Database Languages, Data Models: Introduction to Hierarchical, Network, ER, and Object Relational Model, Data Independence, Components of a DBMS and overall structure of a DBMS, Multi-User DBMS Architecture, System Catalogs Data Modeling: Basic Concepts, entity, attributes, relationships, constraints, keys, E-R and EER diagrams: Components of E-R Model, conventions, converting E-R diagram into tables, EER Model components, converting EER diagram into tables Relational Model: Basic concepts, Attributes and Domains, Codd's Rules, Relational Integrity: Domain, Entity, Referential Integrities, Enterprise Constraints, Views, Schema Diagram Unit II : Relational Algebra & SQL (08 Hrs) Relational Query Languages: Relational Algebra Introduction to SQL: Characteristics and advantages, SQL Data Types and Literals, DDL, DML, SQL Operators, Tables: Creating, Modifying, Deleting, Views: Creating, Dropping, Updating using Views, Indexes, Nulls SQL DML Queries: SELECT Query and clauses, Set Operations, Predicates and Joins, Set membership, Tuple Variables, Set comparison, Ordering of Tuples, Aggregate Functions, Nested Queries, Database Modification using SQL Insert, Update and Delete Queries, concept of Stored Procedures, Cursors, Triggers, assertions, roles and privileges Programmatic SQL: Embedded SQL, Dynamic SQL. Unit III : Relational Database Design (06 Hrs) Purpose of Normalization, Data Redundancy and Update Anomalies, Functional Dependencies: Basic concepts, closure of set of functional dependencies, closure of attribute set, canonical cover, Decomposition: lossless join decomposition and dependency preservation, The Process of Normalization: 1NF, 2NF, 3NF, BCNF, 4NF, 5NF. Unit IV : File Systems & Query Processing (06 Hrs) File Organization, Organization of records in files, Indices, Static and Dynamic Hashing, B-trees and B+ Trees Introduction to Query Processing: Overview, Measures of query cost, Selection and join operations, Evaluation of Expressions, Introduction to Query Optimization, Estimation, Transformation of Relational Expressions

3

Unit V : Transaction Management (06 Hrs) Basic concept of a Transaction, Properties of Transactions, Concept of Schedule, Serial Schedule, Serializability: Conflict and View, Cascaded Aborts, Recoverable and Non-recoverable Schedules, Concurrency Control: Need, Locking Methods, Deadlocks, Timestamping Methods, Optimistic Techniques, Multi-Version Concurrency Control, Different Crash Recovery methods such as Shadow-Paging and Log-Based Recovery: Deferred and Immediate, Checkpoints Unit VI : Object-Oriented Databases and Database Architectures (06 Hrs) Need of OODBMS, Storing Objects in Relational Database, Introduction to OO Data Models, Persistent Programming Languages, Pointer Swizzling Techniques Database Architectures: Centralized and Client-Server Architectures, 2 Tier and 3 Tier Architecture, Introduction to Distributed Database systems. Introduction to data mining using association rules, introduction to data warehousing and its components. Text Books:

1. Silberschatz A., Korth H., Sudarshan S., "Database System Concepts", 5th Edition, McGraw Hill Publishers, 2002, ISBN 0-07-120413-X

2. Elmasri R., Navathe S., "Fundamentals of Database Systems", 4* Edition, Pearson Education, 2003, ISBN 8129702282

Reference Books:

1. Rab P. Coronel C. "Database Systems Design, Implementation and Management", 5th

Edition, Thomson Course Technology, 2002, ISBN 981-243-135-7 2. Connally T., Begg C., "Database Systems", 3rd Edition, Pearson Education, 2002, ISBN 81-

7808-861-4 3. Date C., "An Introduction to Database Systems", 7th Edition, Pearson Education, 2002,

ISBN 81 -7808-231- 4 4. Ramkrishna R., Gehrke J., "Database Management Systems", 3rd Edition, McGraw-Hill,

2003, ISBN 0-07- 123151 –X 5. Atul Kahate, “Introduction to Database Management System”, 3rd Edition, Pearson

Education 2009, ISBN 978-81-317-0078-5.

4

310242: Data Communications

Teaching scheme: Examination Scheme: Lectures: 3 Hrs/Week Theory: 100 Marks

Objectives: • To learn and understand basic communication techniques

Prerequisites:

• Discrete Structures • Electronic devices and communication

Unit I: Basics of communication Communication System, Baseband and Carrier Communication, transmission modes, Baud rate, bit rate, SNR, Channel Bandwidth and rate of communication, Introduction to analog modulation techniques (AM, FM, PM, QAM) Bandwidth Requirements in analog modulation techniques Digital Continuous Wave Modulation techniques: Modems, ASK, FSK, PSK, BPSK, QPSK Multiplexing techniques: TDM, FDM, WDM, CDMA (06 Hrs.) Unit II: Pulse modulation Pulse amplitude modulation techniques: sampling theorem, Pulse modulation, PAM, Pulse time modulation, Pulse Transmission over Band Limited Channel, Effect of Gaussian Type Noise on Digital Transmission, Crosstalk Pulse digital modulation techniques: PCM, PCM Encoder and Decoder, DPCM, ADPCM, Delta modulation, Adaptive Delta Modulation, Bandwidth requirement of digital modulation techniques, quantization noise Line Coding techniques: Bipolar, Unipolar, RZ, NRZ, Manchester, AMI, B8ZS, Block coding techniques (06 Hrs) Unit III: Information and Coding Information rate, Shannon's theorems on channel capacity, Optimum Codes, Huffman Code, Code Efficiency, Error Control Coding, Methods of Controlling Errors, Types of Errors, Types of Codes, Linear Block Codes: Matrix Description of Linear Block Codes, Error detection and correction capabilities, Hamming Distance, Hamming Bound, Hamming Codes, CRC Block Codes, Syndrome Calculation, Error Detection and Correction, Handshaking Techniques, FEC, ARQ - Stop and Wait, Go Back N, Selective Repeat, Channel Throughput and Efficiency. (06 Hrs) Unit IV: Communications Technologies & Computer Networks Communication technologies: PSTN, DSL technologies SONET, Video on Demand, Bluetooth, Cellular telephony, Broadband wireless technologies Computer Networks: Need and Applications of Network, Protocols and Standards, OSI Model, TCP/IP Model, Network topology (Physical & logical), LAN standards, Ethernet, Wireless LAN, Virtual LAN, DQDB, SMDS, Frame relay, ATM (06 Hrs) Unit V : Physical layer Transmission media: Guided transmission media - Twisted Pair, Coaxial and Fiber-optic cables, Wireless transmission: Electromagnetic spectrum, Radio and Micro Waves, Infrared, Lightwave, Spread Spectrum Systems, Digital hierarchy– Signaling system, DS lines, T lines, E lines, Cable modem Switching techniques: Circuit switching, Packet switching and message switching,

5

Network Hardware Components: Connectors, Transceivers and Media Converters, Repeaters, hubs, NICs, Bridges and Switches (06 Hrs) Unit VI :Data link control Data link layer design issues: Services, Framing, Error and flow control, Stop-and-Wait protocol, Sliding Window protocol, HDLC, Data link layer in Internet and ATM Medium access control sublayer: Channel allocation: Static and Dynamic allocation, Multiple Access Protocols: ALOHA, CSMA, Collision-free and limited-contention protocols, Virtual LANs (06 Hrs) Text books:

1. Lathi B. "Modern Digital and Analog Communication Systems", 3rd Edition, Oxford University Press, 2003, ISBN 0-19-511009 - 9

2. Fourauzan B., "Data Communications and Networking", 4th edition, Tata McGraw-Hill Publications, 2006, ISBN 0 - 07 – 0634145

References Books:

1. Andrew S. Tenenbaum ,”Computer Networks”,4th Edition,PHI,ISBN 81-203-2175-8. 2. Stallings W., "Data and Computer Communications", Sixth Edition, Prentice Hall of India

Pvt. Ltd., 2002, ISBN 81-203-2067-0 3. Shanmugam K., "Digital and Analog Communication Systems", John Wiley & Sons (Asia)

Pvt. Ltd. ISBN 9971-51-146-0 4. Gupta P., "Data Communications", PHI, 2004, ISBN 81 - 203 - 1118 - 3 5. Wayne Tomasi “Introduction to Data Communications and Networking” Pearson

Education, 2007, ISBN 81-317-0930-2 6. Godbole A., "Data Communications and Networks", Tata McGraw-Hill Publications, 2002,

0 - 07 - 047297 - 1

6

310243: MICROPROCESSORS AND MICROCONTROLLERS

Teaching scheme Examination scheme Lectures: 3 hrs/week Theory: 100 Marks Learning objectives:

• Introduce Intel super-scalar architecture. • Study of Intel Pentium architecture and programming. • Study of architecture and programming of 8051 microcontroller. Prerequisite:

• Microprocessors and Interfacing techniques

Unit I: Introduction to Pentium microprocessor (7 hrs.) Historical evolution of 80286, 386, 486 processors. Pentium features and Architectures,

Pentium Real mode, Pentium RISC features, Pentium super-scalar architecture - Pipelining, Instruction paring rules, Branch prediction, Instruction and Data caches. The Floating point Unit- features, pipeline stages & data types. Unit II : BUS cycles and Memory organization (6 hrs.)

Initialization and configuration, Bus operations – Reset, Non pipelined and pipelined (read and write). Memory organization and I/O organization. Data transfer mechanism – 8bit, 16bit, 32bit. Data bus interface. Pentium programmers model, Register set, Addressing modes, Data Types, BUS cycle.

Unit III: Protected Mode Architecture (7 hrs.)

Introduction, segmentation, support registers, related instructions, descriptors, memory management through segmentation, logical to linear address translations, protection by segmentation, privilege-level, protection, related instructions, inter-privilege level, transfer control, Paging-support registers, related data structures ,linear to physical address translation ,TLB ,page level protection.

Unit IV : Multitasking, Interrupts, Exceptions and I/O (6 hrs.) Multitasking -support registers, related data structures, Task switching, Nested task, I/O

permission bit map. Virtual mode -features, address generation, privilege level, instruction and registers available, entering and leaving V86 mode. Interrupt structure - real, protected, virtual 8086 mode. I/O handling in Pentium, I/O instructions Comparison of all three modes. Unit V: 8051 Microcontroller- Part I (6 hrs)

Features, Micro-controller MCS-51 family architecture. Programmers model-register set, register bank, SFR’s, addressing mode, instruction set, Memory organization on-chip data memory External data memory and program memory. Memory interfacing-external RAM/ROM interface. Unit VI :8051 Microcontroller- Part II (6 hrs )

CPU timings, Interrupt structure, Timers and their programming, Serial port and programming, Power saving modes in 8051. Introduction to 8096 Microcontroller - features and architecture.

7

Text books:

1. James Antonakos , “The Pentium Microprocessor” , 2004, Pearson Education ISBN – 81-7808-545-3

2. Muhammad Ali Mazidi and Janice Gillispie Mazidi, “ The 8051 Microcontroller and embedded systems”, 2009, Pearson education. ISBN – 81-7808-574-7

3. Intel 8 bit Microcontroller manual. 4. Ajay Deshmukh, “Microcontrollers – (Theory and application)” , 2004, TMH

ISBN 0-07-058595-4 5. Intel 8096 16-bit Microcontroller manual. Reference Books: 1. The 8051 Microcontroller and Embedded systems using Assembly and C.

(K.J.Ayala/ D.V.Gadre) -Cengage learning ISBN 9788131511053 2. Jeffry and Royer, “IBM PC Hardware and Assembly Language”, BPB Publication 3. 8051 Microcontroller Hardware, Software and applications.

(V Udayshankara and M.S.Mallikarjunaswamy) (TMH)

8

310244: DIGITAL SIGNAL PROCESSING

Teaching Scheme Examination Scheme Lectures: 4 Hrs/ Week Theory: 100 Marks Objectives: • To learn methodology to analyze signals and systems • Study transformed domain representation of signals and systems • Design of filters as DT systems • To get acquainted with the DSP Processors and DSP applications

Prerequisite: • Knowledge of basic Engineering Mathematics

Unit I: Signals and Systems Continuous time (CT), Discrete-time (DT) and Digital signals, Basic DT signals and Operations. Discrete-time Systems, Properties of DT Systems and Classification, Linear Time Invariant (LTI) Systems, Impulse response, Linear convolution, Linear constant coefficient difference equations, FIR and IIR systems, Periodic Sampling, Relationship between Analog and DT frequencies, Aliasing, Sampling Theorem, A to D conversion Process: Sampling, quantization and encoding. (09 Hrs)

Unit II: Frequency Domain Representation of Signal Introduction to Fourier Series, Representation of DT signal by Fourier Transform (FT), Properties of FT: Linearity, periodicity, time shifting, frequency shifting, time reversal, differentiation, convolution theorem, windowing theorem .Discrete Fourier Transform (DFT), DFT and FT, IDFT, Twiddle factor, DFT as linear transformation matrix, Properties of DFT, circular shifting, Circular Convolution, DFT as Linear filtering, overlap save and add, DFT spectral leakage (08 Hrs) Unit III: Fast Fourier Transform (FFT) and Z-Transf orm (ZT) Effective computation of DFT, Radix-2 FFT algorithms: DIT FFT, DIF FFT, Inverse DFT using FFT, Z-transform (ZT) , ZT & FT, ZT &DFT , ROC and its properties, ZT Properties , Rational ZT, Pole Zero Plot, Behaviour of causal DT signals, Inverse Z Transform (IZT): power series method, partial fraction expansion (PFE) , Residue method. (09 Hrs) UNIT IV: Analysis of DT - LTI Systems: System function H(z), H(z) in terms of Nth order general difference equation, all poll and all zero systems, Analysis of LTI system using H(Z), Unilateral Z-transform: solution of difference equation, Impulse and Step response from difference equation, Pole zero plot of H(Z) and difference equation, Frequency response of system, Frequency response from pole-zero plot using simple geometric construction, Ideal frequency selective filters, magnitude and phase response (08 Hrs)

Unit V: Digital Filter Design Concept of filtering, Ideal filters and approximations, specifications, FIR and IIR filters, linear phase response, FIR filter Design: Fourier Series method, Windowing method, Gibbs Phenomenon, desirable features of windows, Different window sequences and its analysis, Design examples: IIR filter design: Introduction, Mapping of S-plane to Z-plane, Impulse Invariance method, Bilinear Z transformation (BLT) method, frequency warping, Prewarping, Design examples, Practical filters e.g. Butterworth filters, Comparison of IIR and FIR Filters, Finite word length effect (08 Hrs)

9

Unit VI: Filter Structures and DSP Processors Basic Structures for FIR Systems: direct form, cascade form, structures for linear phase FIR Systems, Examples Filter structures for IIR Systems: direct form, cascade form, parallel form, examples. DSP Processors Architecture Study: ADSP 21XX series: features, comparison with conventional processor, Functional Block diagram: ALU, MAC, Barrel shifter, DAG, Registers

Introduction to Applications of DSP in speech and image processing (08 Hrs)

Text Books: 1. Proakis J., Manolakis D., "Digital signal processing", 4th Edition, Pearson Education,

ISBN 9788131710005 2. Oppenheium A., Schafer R., Buck J., "Discrete time signal processing", 2nd Edition,

Pearson Education, ISBN 9788131704929

Reference Books: 1. Babu R., "Digital Signal Processing", 4th Edition, Scitech Publications, ISBN 978-81-

8371-081-7 2. Mitra S., "Digital Signal Processing: A Computer Based Approach", Tata McGraw-Hill,

1998, ISBN 0-07-044705-5 3. Vallavraj A., "Digital Signal Processing", ISBN 0-07-463996-X 4. Ifeachor E. C., Jervis B. W., “Digital Signal Processing: A Practical Approach “,

Pearson-Education, 2002 5. S.Poornachandra, B.Sasikala, “DSP”,3rd Edition, McgrawHill,ISBN-13:978-07-

067279-6

10

310245: THEORY OF COMPUTATION

Teaching Scheme Examination Scheme Lectures: 3 Hrs/Week Theory: 100 marks Objectives:

• Study abstract computing models • Learn about the theory of computability and complexity.

Prerequisites:

• Discrete Structures • Data Structures and Algorithms

Unit I: Basic Mathematical Objects Sets, Logic, functions, Relations,

Languages: Languages in abstract, defining languages, Kleene closure. Recursive Definitions: New method for defining languages, important languages. Finite Automata: An Informal Picture of FA, Deterministic Finite Automaton (DFA): How a DFA processes Strings, Simpler Notations for DFA, Extending the transition function to strings, the language of DFA, Non-deterministic Finite Automaton (NFA): NFA, Extended transition function, the language of an NFA, Equivalence of NFA and DFA, FA with e-transitions: Use of e-transitions, NFA with e, e-closures, Extended transitions and languages for e-NFA, Eliminating €-transitions-Con version of NFA with e to NFA without e, Conversion of NFA without e to DFA, Conversion of NFA with 6 to DFA (direct method), FA with output: Moore and Mealy machines -Definition, models, inter-conversion. (6 hrs.) Unit II: Regular Expressions (RE) and Languages Regular Expressions - Operators of RE, Building RE, Precedence of operators, Algebraic laws for RE, Arden's Theorem, FA and RE: DFA to RE, RE to DFA (RE to s-NFA & e-NFA to DFA and RE to DFA-direct method), FA limitations, Properties of Regular Languages: pumping lemma for regular languages, closure and decision properties of regular languages, Equivalence and minimization of automata, Application of RE: Regular expressions in Unix, GREP utilities of Unix, Lexical analysis and finding patterns in text. (6 hrs.) Unit III: Context Free Grammars (CFG) and Languages Context Free Grammar- Definition, derivations, languages of a grammar, sentential form, Parse Tree- inference, derivation and parse tree, from inference to tree, Ambiguity in grammars and languages: removal of ambiguity, inherent ambiguity, Properties of CFL- Normal forms- Chomsky Normal Form and Greibach Normal Form(GNF), Eliminating unit productions, useless production, useless symbols, and e-productions, Regular Grammar - definition, left linear and right linear Regular Grammar, Regular Grammar and Finite Automata, FA to RG and RG to FA, Inter-conversion between left linear and right linear regular grammar. The pumping lemma for CFL, Closure properties of CFL, Decision properties of CFL, Chomsky Hierarchy, Application of CFG: Parser, Markup languages, XML and Document Type Definitions. (6 hrs.) Unit IV: Push Down Automata (PDA)

Definition, The Language of PDA, Equivalence of PDA's and CFG- CFG to PDA, PDA to CFG, Deterministic Push Down Automata (DPDA) - Regular language and DPDA, DPDA and CFL, DPDA and ambiguous grammar, Non-deterministic Push Down Automata (NPDA). (6 hrs.) Unit V: Turing Machine

11

Problems that computer cannot solve, The Turing Machine(TM)-Notation, the language of TM, TM and Halting, Programming techniques to TM, Extensions to basic TM, TM and Computers. Post Machine: Introduction to Post Machines, Comparison between FA, PDA, Post Machine and TM (6 hrs.) Unit VI: Recursively enumerable languages

Recursively Enumerable and Recursive, Enumerating a Language, More General Grammars Context-Sensitive Languages and the Chomsky Hierarchy, Not All Languages are Recursively Enumerable. Un-decidability: A Language that is not recursively enumerable, An un-decidable problem that is RE, Post Correspondence Problem, Other Undecidable Problems. (6 hrs.) Text books:

1. Hopcroft J., Mptwani R., Ullman J., "Introduction to Automata Theory, Languages and Computations", Third edition, Pearson Education Asia.

2. John C Martin. "Introduction to Language and Theory of Computation", Third edition, Tata McGraw- Hill

3. Daniel Cohen., "Introduction to Computer Theory", Second edition, Wiley Publications (india).

References Books:

1. Lewis H., Papadimitriou C., "Elements of Theory of Computation", Second edition, Pearson 2. Moret B., “The Theory of Computation", Pearson Education Asia 3. Mishra K., Chandrasekaran N., 'Theory of Computer Science (Automata, Languages and

Computation)", Second Edition, Prentice Hall of India

12

310246: RDBMS AND VISUAL PROGRAMMING LABORATORY

Teaching Scheme: Examination Scheme: Theory: 2 Hrs/Week Term Work: 50 Marks Practical: 4 Hrs/Week Practical: 50 Marks Objectives:

• To learn and understand Visual Programming Paradigms • To learn and understand SQL, PL/SQL ,Embedded SQL

• To learn any Relational Database such as Oracle/MySQL/SQL Server etc. • To learn and understand Database Project Life Cycle.

Part I: Visual Programming Language Concept of Event Driven Programming, Visual basic 6.0 Integrated Development Environment, Visual Basic 6.0 Projects – Standard EXE, ActiveX EXE/DLL , ActiveX user Control, Visual Basic 6.0 – Data types, Control statements, loops, Array & dynamic array handling, Sub routines & functions, File Handling- sequential files, Binary files, random access files. Visual Basic 6.0 - Text Box, Command, Label, Picture Box, Image Box, Graphics Control, List Box, Combo Box, Check Box, Option Box, Frame, Image list box, Image combo box, Drive box, Directory list box, File list box, OLE Control, Timer, Rich Text Box, Treeview Control, Progress bar, Tool bar, Status bar, Tab strips, Sliders, Horizontal scrollbar, Vertical scrollbar, Common Dialog Control, Message box, Input box, Menu, Properties, Events & Methods, MDI forms, Control Array, ActiveX DLL, ActiveX user Control. Part II: RDBMS - SQL, PL/SQL Introduction to SQL, Introduction to DDL, DML, DCL, TCL, Data types, Integrity constraints, SQL Operators, SQL SET Operators, SQL Functions -Character, Date, Null Values, Aggregate, Group By, Having Clause, Order By, Joins, Subquery, Multi table Inert & Merge, Case Expression. DDL Statement : Create, Alter, Drop – Table, View, Index, sequence, and synonyms, User, Role DML Statement: Insert, Select, update, Delete – Table, View DCL Statement : Grant, Revoke TCL Statement : Commit, Rollback, Save Point Introduction to PLSQL, PL/SQL Block, Data types, Control structure, Loops, Operators Cursors : Implicit, Explicit, REF., Collection and Record Sub Program : Stored Functions & Stored Procedures, Package Database Triggers : Row level & Statement level. Exception Handling : Built in Exception & User defined Exception Embedded SQL and Dynamic SQL

Part III : Mini Project : Database Project Life Cy cle • Project Requirement Gathering and Scope

• Database Analysis and Design

Design Approach – Bottom Up, Top Down, inside – Out, Mixed strategy. Design Entity Relationship Model

Relational Model

13

Database Normalization

• Implementation : Front End : Visual Basic 6.0 Backend : Oracle/ MySQL / SQL Server Report : Data Report Database Programming : ODBC, OLEDB, ADO, RDO

• Testing : Form Validation Group of students should submit the Project Report which will be consist of Title of the Project, Abstract, Introduction, scope, Requirements, Entity Relationship Diagram with EER features, Data Dictionary, Relational Database Design, Database Normalization, Graphical User Interface, Source Code, VB Forms and Data Reports, Testing document, Conclusion. Instructor should maintain progress report of mini project throughout the semester from project group and assign marks as a part of the term work

Suggested List of Assignments

Part I : Visual Programming (Visual Basic 6.0)

1. Design and Develop Scientific Calculator using control array 2. Design and Develop Menu driven Text & Image editor 3. Design and Develop an application which demonstrates the use of Drive box, Directory list

box, File List box and Tree view control 4. Design and Develop a program for animation(traffic signal, bouncing ball, flying butterfly) 5. Design and Develop features of Paint Brush application 6. Design and Develop ActiveX user control (numeric text box, string manipulation function) 7. Set Properties, Methods, Events, and demonstrate the use of ActiveX Control in Standard 8. EXE project 9. Design and Develop ActiveX DLL for linear search & binary search and demonstrate the

use of ActiveX DLL in Standard EXE project 10. Develop a program for Sequential and Random Access file handling. 11. Design student Information form using Visual Basic 6.0 and Implement validation for Text,

Number, Email, Length, Upper Case, Lower Case, Date, Password, Character matching etc.

Part II : RDBMS – SQL, PL/SQL

1. Design and Develop SQL DDL statements which demonstrate the use of SQL objects such as Table, View , Index, Sequence, Synonym

2. Design at least 10 SQL queries for suitable database application using SQL DML statements: Insert, Select, Update, Delete with operators, functions, set operators, Clauses.

3. Design at least 10 SQL queries for suitable database application using SQL DML statements: all types of Join, Sub-Query and View.

4. Write a PL/SQL block to calculate the grade of minimum 10 students. 5. Write a PL/SQL block to implement all types of cursors. 6. Write a PL/SQL stored procedure and function. 7. Write a database Trigger (Row level and Statement level). 8. Implement Embedded SQL queries using C/C++ as host language.

The problem definition should allow the use of cursors and all commonly used command and bi-directional transfer of information (Between host language data items and backend Database)

14

Part III: Mini Project : Database Project Life Cyc le

1. Design Employee Information form using Visual Basic 6.0. Implement Database navigation operations ( add, delete, edit etc. ) using ODBC/OLEDB.

2. Write a program in Visual Basic 6.0 to access stored procedure and functions using ODBC/OLEDB

Instructions:

� Instructor should frame minimum six Practical Assignments on Part I � Instructor should frame minimum six Practical Assignments on Part II ( SQL : 3 &

PL/SQL : 3 ) � Instructor should frame a Practical Assignment on embedded SQL � Instructor should frame minimum two Practical Assignments and Develop mini project on

Part III � Submission of each Practical Assignment should be in the form of handwritten write-ups,

printout of source code and output � Instructor should assign a mini project to a group of 3 - 4 students based Part III � Practical Examination will be based on the all topics covered from Part I, Part II & Part III

and questions will be asked to judge understanding of practical performed at the time of practical examination

Reference Books:

1. “ Visual Basic 6 Programming - Black Book”, DreamTeach Press 2. “ Mastering Visual Basic 6 ”, Envagelos Petroutsos, bpb Publication 3. “ Visual Basic 6 Programming ”, Tata McgrawHill ,Content Development Group 4. “ SQL and PL/SQL for Oracle 10g Black Book”, Dr. P.S.Deshpande, DreamTech 5. “ SQL, PL/SQL: The Programming Language of Oracle”, Ivan Bayross, BPB Publication 6. “ Oracle 9i/10g The Complete Reference”, Kevin Loney, George Koch, Tata McGraw Hill 7. “ Managing and Using MySQL”, Reese G., Yarger R., King T., Williums H, 2nd Edition,

Shroff Publishers and Distributors Pvt. Ltd., ISBN 81 - 7366 - 465 – X 8. “ SQL Server – Black Book”, Dalton Patrik, DreamTech Press

15

310247: SIGNAL PROCESSING LABORATORY Teaching Scheme: Examination Scheme Practical: 4 Hrs/week Term Work: 25 Marks

Oral: 50 Marks Suggested List of Assignments Part I

1. Find the output of a given system for given input sequence using linear convolution. 2. Write a C program to generate samples of sine, Cosine and exponential signals at specified

sampling frequency and signal parameters. (Test the results for different analog frequency (F) and sampling frequency (Fs) )

3. Find the output of a system described by given difference equation and initial conditions for given input sequence. (Solution of difference equation) (Obtain the response for different systems by changing Degree of difference equation (N) and coefficients and also for different input sequence x(n). Observe the response by considering system as FIR and IIR system)

Part II

1. Write a C program to plot the magnitude and phase response of a Fourier Transform (FT). (Observe the spectrum for different inputs. Observe the Periodicity.)

2. Find the N point DFT / IDFT of the given sequence x (n) .Plot the magnitude spectrum |X(K)| Vs K. (Analyze the output for different N and the same input sequence x(n).Also observe the periodicity and symmetry property)

3. Compute N point DFT using linear transformation matrix. 4. Find the N point circular convolution of given two sequences. Test it for linear convolution 5. Compute the circular convolution of given two sequences using DFT and IDFT.

Part III

1. Implement the N-point radix-2 DIT or DIF FFT algorithm to find DFT or IDFT of given sequence x (n). (Analyze the output for different N Program should work for any value of N (generalized))

2. Find DFT of a given sequence using Goertzel algorithm. (Analyze the output for different N)

3. Draw a pole zero plot from a given system function H(Z) expressed as rational function. (Display pole zero table and pole zero plot)

4. Write a C program to plot the magnitude and phase response of a given system ( given: h(n): impulse response of system S) (Observe the frequency response for different systems. Compare the frequency response of a system (filter) for different length h(n) i.e filter coefficients)

Part IV

1. Obtain the Fourier transform of different window functions. Plot the magnitude and phase spectrums. (Observe and compare the desirable features of window sequences. Observe the main and side lobes)

2. Design an FIR filter from given specifications using Fourier Series method 3. Design an FIR filter from given specifications using windowing method ( Program should

work for different types of filter specifications i.e LPF, HPF, BPF etc and all window sequences. Plot the frequency response for different frequency terms i.e. analog and DT frequency)

16

4. Design of IIR filter for given specifications using Bilinear Transformation. (Programshould work for different types of filter specifications i.e LPF, HPF, BPF etc and for different transfer functions of an analog filter)

5. Study of DSP Processor

Note: • All Assignments should be developed in C/C++. [Compare the output(s) of at least six

programs with the output of any software package related to signal processing like Sigview/Octave/Matlab etc]

• Students will submit Term Work in the form of a Journal, which includes at least 13 assignments as mentioned below plus study assignment on DSP Processor.

• Assignments: All 3 from Part I + Any 4 from Part II + Any 3 from Part III (assignment on Implementation of FFT algorithm is compulsory) + Any 3 from Part IV.

• Each assignment should include algorithm analysis and program listing. • Oral Examination will be based on the Theory and Term Work (Subject knowledge and

assignments ) Text Books:

1. Ingale V., Proakis J., "Digital Signal Processing :A MATLAB based approach ” , Cengage Learning , ISBN 9788131509050

2. Schuler C., Chugani M, "Digital Signal Processing- A hands on Approach", Tata McGraw-Hill Edition, ISBN 0-07-058966-6

3. Herniter M., "Programming in Matlab", Cengage Learning , 1st Edition 2009 4. ISBN 978-81-315-1060-5

Reference Book: 1. Manuals - ADSP 21XX family DSP.

17

310248: HARDWARE LAB

Teaching scheme Examination scheme Practical: 4 hrs/week Practical: 50 Marks Term Work: 25 Marks

1. Write an ALP to simulate TYPE command using PSP. 2. Write an ALP to simulate COPY command using PSP. 3. Write an ALP / in line code for displaying boot sector of floppy and boot record of hard

disk. 4. Write an ALP / in line code for displaying file content using root directory and FAT for

floppy disk. 5. Write an installable DOS device driver for printers. 6. Write a C program for PC to PC communication.

a. File Transfer b. Full duplex character transfer (chat application)

7. Write ALP for Mouse interface (Assignment old as it is) 8. Write ALP for DPMI (Assignment old as it is) 9. Study of Pentium motherboard. 10. Write ALP to implement multitasking using Pentium programming. 11. Write an 8051 ALP for rate generation using Timer0/Timer1 by using

a. Polling method b. ISP method

12. Write an 8051 ALP for serial port programming to transfer block of data using a. Polling method b. ISP method

13. Write an 8051 ALP to interface stepper motor for following operations a. Full step b. Half step c. Clock wise d. Anticlockwise

18

TE TERM-II

310249: PRINCIPLES OF PROGRAMMING LANGUAGES Teaching Scheme Examination Scheme Lectures: 3 Hrs/Week Theory: 100 Marks Objectives:

• To understand the basic building blocks of programming languages. • To learn and understand various programming paradigms.

Prerequisites: • Data Structures and Algorithms • Theory of Computation

Unit I: Introduction Role of programming languages, need to study programming languages, characteristics of a good programming languages, Introduction to various programming paradigms: Procedural, object-oriented, logic and functional programming, Parallel Programming, Concurrent Programming Data Types: properties of structured and non-structured data types and Objects, variables, constants, Derived and abstract data types, declaration, type checking. Binding and binding times, type conversion, scalar data type, composite data types, Implementation and Storage representation of data types and control flow statement. Procedures: Procedure call and return, recursive subprogram, Different parameter passing methods, Lifetime of variables, Scope rules: Static and Dynamic scope, Referencing environment: activation records (Local, Non local and Global), Storage management (static and Dynamic), Exceptions and exception handling (8 Hrs) Unit II: Procedural Programming Design Principles, Control flow: statement-oriented and block-oriented structure programming, Execution steps, desirable and undesirable characteristics of procedural programming. Procedural Programming with Pascal: Program structure, Lexical elements, Data Types, Operators and punctuators, variable and type declarations, I/O, type conversion, control structures: conditional and iterative, arrays, procedures and functions, local and global variables, nested procedures and scope rules, pointers, parameter passing, User defined data types, comparative study of C and PASCAL (6 Hrs) Unit III: Object Oriented Programming Design Principles: Objects, classes, Messages and methods, Implementation of Object-oriented Programming, Object oriented programming with Java: Program structure, Object and class declarations, constructors, inheritance, polymorphism, access specification, interfaces, packages, exception handling, Java I/O, Java applications and applets, introduction to Java threads and multithreading, Socket Programming, JDBC, Comparative study of C++ and Java. (6 Hrs) Unit IV: Introduction to .NET Technology and C#: Brief introduction to Microsoft .NET - The Microsoft .NET platform, .NET framework, advantages, introduction to C#, type system, classes, method, Properties, Arrays, Interfaces, Delegates and event handlers, Assemblies and Modules, late binding, creating and executing code at Run Time, Multithreading Patterns, Exception Handling. (6 Hrs)

19

Unit V: Logic Programming Logic programming language model, logical statements, resolution, unification, search structures: backward and forward, Applications of logic programming Logic Programming with Prolog: Program structure, logical variable, syntax structure, Control structure, resolution and unification, depth-first search, backtracking, cut operator, recursive rules, Prolog facilities and deficiencies (6 Hrs) Unit VI: Functional Programming Introduction to functional programming, Lambda calculus: Ambiguity, free and bound identifiers, reductions, typed lambda calculus, application of functional programming Functional Programming with LISP: Elements of functional Programming, Function declaration, Expression evaluation, type checking (6 Hrs) Text Books: 1. Roosta S., "Foundations of Programming Languages", Thomson Brookes/Cole, ISBN 981 -243-

141-1 2. Sethi R., "Programming Languages concepts & constructs", 2nd Edition, Pearson Education,

ISBN 81 - 7808 - 104 – 0 References Books: 1. Scbesta R., "Concepts Of Programming Languages", 4th Edition, Pearson Education, ISBN-81-

7808-161-X 2. Balagurusamy E., "Programing with C#", Tata McGraw-Hill, 2002, ISBN 0 - 07 -047339-0 3. K.Venugopal., "Programming in Turbo PASCAL", Tata-McGraw Hill, 4. Herbert Schildt "The Complete Reference Java2", 5th Edition, Tata McGraw-Hill 0 - 07-

049543-2 5. Winston P., Klaus B., Horn P., "LISP", 3rd Edition, Pearson Education, 81 - 7808 -155-5 6. Carl Townsend ,”Programming in turbo PROLOG”, Tata-McGraw Hill

20

310250: COMPUTER NETWORKS

Teaching Scheme Examination Scheme Lectures: 3 Hrs/Week Theory: 100 Marks Objectives:

• To understand the Network Architecture. • To learn and understand various Networking Protocols & Layers .

Prerequisites: • Data Communication & Networking

Unit I: Introduction to computer network and intern et What is internet? Network edge, Network core, Protocol layers and services model, Network standardization. Introduction to application layer services, DNS, HTTP, FTP, SMTP, DHCP, TELNET. (06 hrs.) Unit II: Transport Layer Transport services, Connection management, UDP, TCP, Socket Programming(TCP & UDP),TCP Flow control, TCP Congestion Control. (08 hrs.) Unit III: Quality of service and Traffic Management Introduction to quality of services, scheduling, congestion control, differentiated services, integrated services, RSVP. (06 hrs) Unit IV: Internetworking Network Layer design issues, IPV4, IPV6, ARP, RARP, ICMP(V4&V6) (06 hrs.) Unit V : Routing Principles Introduction to IP routing, Classification of routing algorithms, distance vector, link state, hierarchical, adhoc Net, MACA, MACAW. Routing protocols-RIP, OSPF, BGP, IGRP. (08 hrs) Unit VI: Lower level protocols and implementation HDLC, PPP protocols, internetworking devices like hubs, switches, routers, bridges. Link virtualization (ATM, MPLS) (06 Hrs) Text books: 1. Kurose, Ross, “ Computer Networking-a top down approach featuring the internet “,Pearson

Education 2. Andrew S. Tenenbaum ,”Computer Networks”,4th Edition,PHI,ISBN 81-203-2175-8.

References Books: 1. Fourauzan B, “Data communication and Computer Networks”, Tata McGraw Hill) 2. Olifer & Olifer ,”Computer Networks-principles, technologies & protocols for network design”,

WILEY 3. Comer D, “Computer networks and internet”, Pearson Education

21

310251: FINANCE & MANAGEMENT INFORMATION SYSTEMS

Teaching Scheme: Examination Scheme: Lectures: 3 Hrs/Week Theory: 100 Marks Unit I: Basic of management theory & practice Evolution of management thoughts, system approach to management process, functions of manager, social responsibilities of manager. International management and Multinational Corporation, cultural differences in international management. Quality perspective, HR management and selection, performance appraisal and carrier strategies (6 hrs) Unit II: Finance Overview of financial management: goal of financial management, fundamental principle of finance, risk return trade off, forms of business organization .Financial statements taxes and cash flow: balance sheet, profit and loss account, finance topics, taxes, free cash flow. Time value of money: time lines and notations, present and future value of single amount. Mergers & acquisition: Mergers, acquisition, takeover, privatization, Divestitures. Corporate Security: Share, debentures & International Security (8 hrs) Unit III: Basics of MIS -Decision making: Concepts, process and organizational decision making, role of MIS in decision making. Development process of MIS: MIS plan, development & implementation of MIS. Strategies design of MIS, business process reengineering, relevance of IT, DSS concepts, philosophy and application, knowledge management and system. (8 hrs) Unit IV: E-business E-business enterprise: Organization of business in digital form, e-business, e-commerce, e-communication, e-collaboration and real time enterprise. Modern business technology: security and businesses, web enabled business management, CMS, ECM, enterprise portal. (6 hrs) Unit V : Enterprise and global management Enterprise management system: EMS, ERP, SCM, CRM. Information security challenges, Global management: outsourcing and off-shoring, cultural, political and economical challenges, global business IT strategies and applications, global IT platform, global data access issues. (6 hrs) Unit VI: Laws and case studies Law: cyber law, IT act, right to information act, IPR law, IT impact on society. Case studies: Refer case studies given in the text book (6 hrs) Text books:

1. W.S. Jawadekar, “Management information system, text and cases: A digital firm perspective” 4th edition, Tata Mcgraw hill, 2009

2. J.A.O’Brien, “Management information system”, 9th edition, Tata Mcgraw hill, 2009 3. H. Koontz, “Essentials of management: An international perspective”, 8th edition, Tata

Mcgraw hill, 2010 4. P. Chandra, “Financial management theory and practice”, 6th edition, Tata Mcgraw hill, 2007

References Books: 1. P.K.Goel, “Business law for managers”, priztantra, 2009 2. V. Sharan, “Fundamentals of financial management”, Pearson, 2nd edition 3. E.Turban, “Information technology for management”, 6th edition, Wiley edition, 2008 4. R. Mclead, “Management information system”, 10th edition, Pearson

22

310252: SYSTEMS PROGRAMMING AND OPERATING SYSTEMS

Teaching Scheme: Examination Scheme: Lecturers: 4 Hrs/Week Theory: 100 Marks Objectives:

• To understand the concepts and components of Systems Programming • To Learn and understand the fundamentals of Operating systems • To study the operations performed by Operating System as a resource manager.

Prerequisites:

• Data Structures • Computer Organization • C programming

Unit I: Introduction to Systems Programming Introduction: Components of System Software, Language Processing Activities, Fundamentals of Language Processing. Assemblers: Elements of Assembly language programming. Simple assembler scheme, Structure of an assembler, Design of single and two pass assembler Macro Processors: Macro Definition and call, Macro expansion, Nested Macro Calls, Advanced Macro Facilities, Design of a two-pass and nested macro-processor (10 hrs) Unit II: Loaders and Linkers Loaders: Loader Schemes: Compile and go, General Loader Scheme, Absolute loaders, subroutine linkages, relocating loaders, direct linking loaders, overlay structure, Design of an absolute loader, design of direct linking loader. Linkers: Relocation and linking concepts, Design of linker, self relocating programs, Static and dynamic link libraries, use of call back functions, Dynamic linking with and without import (8 hrs) Unit III: Introduction to OS and Process management Introduction to OS :Architecture, Goals & Structures of O.S, Basic functions, Interaction of O. S. & hardware architecture, System calls, Batch, multiprogramming. Multitasking, time sharing, parallel, distributed & real -time O.S. Process Management Process Concept, Process states, Process control, Threads, Uni-processor Scheduling: Types of scheduling: Preemptive, Non preemptive, Scheduling algorithms: FCFS, SJF, RR, Priority, Thread Scheduling, Real Time Scheduling. System calls like ps, fork, join, exec family, wait. (6 hrs) Unit IV: Concurrency control Concurrency: Principles of Concurrency, Mutual Exclusion: S/W approaches, H/W Support, Semaphores, pipes, Message Passing, signals, Monitors, Classical Problems of Synchronization: Readers-Writers, Producer Consumer, and Dining Philosopher problem. Deadlock: Principles of deadlock, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, System calls like signal, kill. (8 hrs) Unit V: Memory Management Memory Management requirements, Memory partitioning: Fixed and Variable Partitioning, Memory Allocation: Allocation Strategies (First Fit, Best Fit, and Worst Fit), Fragmentation, Swapping, and Paging. Segmentation, Demand paging

23

Virtual Memory: Concepts, management of VM, Page Replacement Policies (FIFO, LRU, Optimal, Other Strategies), Thrashing. (7 hrs) Unit VI: I/O & File management I/O management & Disk scheduling: I/O Devices, Organization of I/O functions, Operating System Design issues, I/O Buffering, Disk Scheduling (FCFS, SCAN, C-SCAN, SSTF), RAID, Disk Cache. File Management: Concepts, File Organization, File Directories, File Sharing, Record Blocking, Allocation methods, Free Space management (6 hrs) Text books: 1. Stalling William, "Operating Systems" , Pearson Education, fifth edition. 2. John J. Donovan,” Systems programming” ,TMGH References Books: 1. Beck L., "System Software: An Introduction to Systems Programming", 3rd Edition Pearson

Education 2. Milan Melankovic ”Operating systems”., Second edition ,TMGH. 3. Silberschatz A., Galvin P., Gagne G., "Operating System Concepts ", John Wiley and Sons, 8th

Edition. 4. Petzold C., "Programming Windows", 5th Edition, Microsoft Press, 81-7853- 007-4 5. Dhamdhere D.M., "Systems Programming and Operating Systems", 2nd revised Edition, TMGH 6. Adam Hoover, “System Programming with C and UNIX”, Pearson Education

Sibsankar Haldar, Alex A Arvind, “Operating Systems”, Pearson Education

24

310253: SOFTWARE ENGINEERING

Teaching Scheme Examination Scheme Lectures: 3 Hrs/Week Theory: 100 Marks

Objectives:

• To learn and understand the Concepts of Software Engineering • To Learn and understand Software Development Life Cycle • To apply the project management and analysis principles to S/W project development. • To apply the design & testing principles to S/W project development.

Unit I: Introduction To Software Engineering Nature of Software, Software Process, Software Engineering Practice, software Myths, Generic Process model, Process Models: Waterfall Model, Incremental Models, Evolutionary Models, Concurrent, Specialized Process Models, Personal and Team Process Models, Agile Process models: Agile process, Extreme programming. (06 Hrs) Unit II: Requirements Engineering Requirements Engineering, Initiating the process, Eliciting Requirements, Building the Requirements Model, Negotiating, Validating requirements, Requirements Analysis, Scenario-Based Analysis, Requirements Modeling strategies, Flow-Oriented Modeling, Class based modeling, SRS. (06 Hrs) Unit III: Design Engineering Design Process, Design Concepts, The Design Model: Data Design, Architectural, interface Design Elements. Architectural Design: Software Architecture, Architectural Styles, Architectural Design, User Interface Design: Rules, User Interface Analysis and Design, Applying Interface Design Steps, Issues, Web App Interface Design Principles (06 Hrs) Unit IV: Testing Testing Strategies: A Strategic approach to Software Testing, Strategic Issues, Testing Strategy for Conventional Software and Object-Oriented Software, Testing strategies for Web App, Validation Testing, System Testing, Validation and Verification, Debugging. Testing Tactics: Testing Fundamentals, White Box Testing: Basis Path Testing, Control Structure Testing, Black Box Testing. (06 Hrs) Unit V: Project management Concepts Management Spectrum, people, product, process, project, critical practices, Process and project Metrics: Metrics in process and project domains, software measurement metrics for software quality, Estimation for software project: project planning process, software scope and feasibility, resources, Decomposition Techniques, Empirical Estimation Models, Estimation Empirical, Estimation for Object Oriented project ,Specialized Estimation techniques, Make by decision.

(06 Hrs)

25

Unit VI: Project Planning Risk Management: Reactive versus proactive Software Risk, Risk Identification, risk projection, risk refinement, risk mitigation, monitoring & management, The RMMM plan. Project Scheduling: Task set for Software project, defining a task network, scheduling, earned value analysis, Product Metrics: A framework for product metrics, Software Quality: Software Quality Factors, Software configuration management: software configuration management, the SCM Repository, SCM process. (06 Hrs) Text Books:

1. Pressman R., "Software Engineering, A Practitioners Approach", 7th Edition, Tata MCGraw Hill Publication,2010, ISBN 978-007-126782-3

Reference Books: 1. Mall R., "Fundamentals of Software Engineering", Second Edition, Prentice Hall India,

2004, ISBN 81 -203-2445-5 2. Vliet H., "Software Engineering Princilpes and Practices", Second Edition, John Wiley and

Sons, ISBN 9971-51-357-9 3. Sommerville “Software Engineering” 8th Edition, Person Education 4. Behfarooz A:, Hudson F., "Software Engineering Fundamentals", Oxford University Press,

2002, ISBN 0-19-510539-7 5. Pankaj Jalote “An Integrated Approach to Software Engineering” ,Third Edition, Springer .

26

310254: SOFTWARE LABORATORY

Teaching scheme: Examination scheme: Practical: 4 Hrs/Week Practical: 50 marks

Term work: 25 marks List of assignments

1. Design suitable data structures and implement pass-I of a two-pass assembler for 8 bit microprocessor/ pseudo-machine. Implementation should consist of a few instructions from each category and few assembler directives

2. Implement pass-II of a two-pass assembler for 8-bit microprocessor/ pseudo-machine. The output of assignment-1 (intermediate file and symbol table) should be input for this assignment.

3. Design suitable data structures and implement pass-I of a two-pass macro-processor. 4. Write a program for pass-II of a two-pass macro-processor. The output of assignment-3

(MNT, MDT and file without any macro definitions) should be input for this assignment NOTE: For Above 4 assignments use proper table handling techniques like hashing 5. Write a program to create Dynamic Link Library for any mathematical operation and write

an application program to test it 6. Write a program to implement following scheduling algorithms 7. First Come First Serve, Shortest Job First (Preemptive), Priority/Round-Robin (Non-

Preemptive). 8. Write a program to implement following scheduling algorithms: 1. Least Recently Used 2.

Optimal page replacement 9. Write a program to implement Reader-writer problem using mutex/ semaphore 10. 9 Write a program to implement Banker’s Algorithm 11. Implement producer-consumer algorithm using multi-threading concept 12. Study UNIX system calls like ps, fork, join, exec family, wait. for process management 13. Study of kernel, types of kernel, UNIX/ Linux kernel re-compilation.

Instructions: Students must submit the term-work in the form of journal. Each assignment has to be well documented. Staff in charge will assess the assignments continuously and grade or mark each assignment on completion date declared for each assignments. Operating systems assignments should be STRICTLY conducted using Open-Source platform . Reference Books:

1. Adam Hoover, “System Programming with C and UNIX”, Pearson Education 2. Richard Stevens: Advanced Programming in the UNIX environment, Pearson Education 3. “Beginning Linux Programming”, Wrox Press

Note: The practical examination will be based on the assignments performed by the candidates as part of the term-work. Questions will be asked during the practical examination to judge the understanding of the students. It is expected that the student know the theoretical aspect of the problem.

27

310255: COMPUTER NETWORKS LABORATORY

Teaching Scheme: Examination Scheme: Theory: 1 Hr/Week Term Work: 25 Marks Practical: 4 Hrs/Week Oral: 50 Marks Instructor should conduct classroom lectures and demonstrations to cover following topics

• HTML and XHTML: Introduction, Basic Syntax, HTML Document structure, HTML Tags, Text formatting, Graphic Objects, Lists, Tables, Frames, Forms, Style Sheets, Prominent features of HTML Editor such as MS Front Page

• XML: Introduction, Syntax, XML Document structure, Document Type Definitions (DTDs), XML Schema, CSS and XSLT

• Introduction to client-side scripts using VBScript/JavaScript • PHP: Introduction, General syntax, Primitives, Operations, Expressions, Control statements,

Arrays, Functions, Form Handling, Session Tracking, Cookies, Database Connectivity and Access

• Case Study of a Campus Network, design details, trouble shooting • Demonstration of a protocol analyzer tool • Network Configuration and Administration in Linux and Windows

Suggested List of Assignments

1. Setting up a small network(2PC’s, 4 PC’s) and configuration for sharing resources.

2. Study of protocol analyzer (Ethereal)Packet analysis (wireshark)

3. Installing and configuring DHCP server(windows 2003 server) ,Linux

4. Studying Linux network configuration and commands.

5. Installation and configuration web server(Client-server based)

6. Write a program using socket programming for TCP preferably in C.

7. Write a program using socket programming for UDP preferably in C.

8. Design a website using HTML for any application.

9. Design dynamic web pages and validate them using VB script or JAVA script.

10. Write a PHP script to access the data from assignment no 9

(Note: Instead of assignments 8, 9 & 10 lab teacher can frame a mini, web based project in a

group of 3 to 4 students)

11. Write a program to create TCP/IP packet using standard TCP/IP include files and send it to

the server [Linux platform].

12.Create a DTD for a catalog of cars, where each car has the child elements and two or three

child elements have their own child elements, each of these elements are required and has the

possible values Yes or No. Create an XML document with instances of the car elements defined

in the DTD and process this document using the DTD and produce a display of raw XML

document. Create an XML schema and CSS style sheet for the above-mentioned XML

document. Create an XSLT style sheet for one car element of the XML document and use it to

create a display of that element.

28

310256: SOFTWARE DEVELOPMENT TOOLS LABORATORY

Teaching Scheme: Examination Scheme: Practical: 2Hrs/Week Term Work: 50 Marks Objectives

• To implement principles of software engineering. • To motive students to learn latest technologies. • To enhance leadership, team member and communication qualities among students. • To motivate students for self learning and lifelong learning. • To bridge the gap between curriculum and industry demand.

1. Assignments

Instructor should frame six assignments based on one of the following group of technologies • Part I: .NET Technology

1) ASP 2) C# 3) VC++

• Part II: Java Technology 1) J2EE 2) J2ME

• Part III: Rich Internet Application 1) Flex 2) Flash 3) Cold Fusion

• Part IV Any other technology which is demanded by industry.

2. Mini Project Students should work in a group of 2 to 4 for each project. They should come up with project topic in the area of systems or business applications. They are free to choose any latest technology for implementation of project. The group should work on following phases of software development lifecycle.

1) Requirement Analysis 2) System Design 3) Coding 4) Testing

Instructions: Students should submit Term Work in the form of journal that should include at least six assignments and a mini project. Each assignment should consist of laboratory work such as design, write-up, algorithm, important test cases, program listing with proper documentation and printout if any. A mini project should consist of 15-20 pages report and softcopy of project.

29

Reference Books:

1. Prosise J., “Programming Windows with MFC”, Second Edition, Microsoft Press, 1999, ISBN 81-7853-012-0

2. Kruglinski D., Sheperd, Wingo, “Programming Microsoft Visual C++”, Fifth Edition, Microsoft press, ISBN 81-2853-005-8

3. Stephen Walther, “ASP .NET 3.5 Unleashed”, Pearson Education, 2008, ISBN 9788131719466

4. Kogent, “C# 2008 Programming Blacl Book”, Wiley, 2008, 9788177228328 5. McGrovern, “J2EE 1.4 Bible”, Wiley, 2005, ISBN 8126504536 6. Michael J. Yuan, “Enterprise J2ME: Developing Mobile Java Applications”, Pearson

Education, 2004, ISBN 9788131704387 7. Adobe, “Adobe Flash CS3 Professional Classroom in a Book”, Pearson Education, 2007,

ISBN9788131715765 8. Balderson, Peter Ent, Heider, Et. Al., “Professional Adobe Flex 3”, Wiley, 9788126521692. 9. Adam Phillip Churvis, “Cold Fusion MX Bible”, Wiley.

30

310257: SEMINAR AND TECHNICAL COMMUNICATION

Teaching Scheme Examination Scheme Practical: 2 Hrs/Week Term Work: 50 Marks Objective:

• To explore the basic principles of communication (verbal and non-verbal) and active, empathetic listening, speaking and writing techniques.

• To expose the student to new technologies, researches, products, algorithms, protocols etc. Instructions for student

• Each student will select a topic in the area of Computer Engineering and Technology preferably keeping track with recent technological trends and development.

• The topic must be selected in consultation with the institute guide. • Each student will make a seminar presentation in the term making use of audio/visual aids

for a duration of 20-25 minutes and submit the seminar report in the form of bound journal (two copies) duly signed by the guide and Head of department.

• Attendance at seminars for all students is compulsory. • A panel of staff members from the institute will assess the seminar internally during the

presentation. Format of the Seminar Report

• Title Page with Title of the topic, Name of the candidate with Exam Seat Number, Roll Number, Name of the Guide, Name of the Department, Institution and Year

• Seminar Approval Sheet • Abstract • Table of Contents, List of Figures, List of Tables and Nomenclature • Introduction with section describing organization of the report • Literature Survey • Details of Analytical and/or experimental work, if any • Discussions and Conclusions • Acknowledgement, • References

Note:

1. The total workload of the seminar head can be calculated as follows: Total Workload = (Number of students*2)/9 2. The maximum number of seminars assigned to every eligible faculty should not be more than 9.

FACULTY OF ENGINEERING

Syllabus for the

T.E. Electrical Engineering

(w.e.f. 2010-2011)

University of Pune

T.E. Electrical Engineering 2008 - Course (w.e.f. 2010-2011)

Note : Practical/ Oral is based on Term Work. *The Term Work marks for Seminar will be Based on the presentation and oral examination. The Examination will be conducted by two internal Examiners ( among the approved teachers only) appointed by Principal of concerned college .

SEMESTER_I

Sr. No.

Subject Code

Subject Title Teaching Scheme

Examination Scheme

Total Marks

L P P TW PR OR

1. 311121 Engineering Economics & Management

04 - 100 - - - 100

2. 303141 Micro-controller Applications

04 02 100 - - 50 150

3. 303142 Electrical Machines-II 04 02 100 25 50 - 175

4. 303143 Power Electronics 04 02 100 25 50 - 175

5. 303144 Electrical Installation, Maintenance & Testing

04 02 100 50 - - 150

20 08 500 100 150 750

SEMESTER-II

Sr. No.

Subject Code

Subject Title Teaching Scheme

Examination Scheme

Total Marks

L P P TW PR OR

1. 303145 Power System-II 04 02 100 25 50 - 175

2. 303146 Energy Audit & Management

04 -- 100 -- - -- 100

3. 303147 Utilization of Electrical Energy.

04 --- 100 -- -- -- 100

4. 303148 Design of Electrical Machines

04 04 100 25 - 50 175

5. 303149 Control System -I 04 02 100 50 --- -- 150

6. 303150 Seminar * - 02 - 50 - - 50 20 10 500 150 100 750

311121 : Engineering Economics and Management

Teaching scheme Exam scheme Lectures-4 hrs/week paper-100 marks UNIT -I Business organizations -Types of business ownership- proprietary firm, partnership firm, joint stock company, public sector under takings, cooperative society’s, private public partnership, BOT, BOLT Introduction to economics -Basic economics concepts- supply, demand, elasticity of demand, elasticity of supply, law of variable proportion, methods of demand forecasting, Role of government in macro economics [07 Hrs] UNIT -2 Management- Meaning, scope, function, and importance of management. Difference between administration and management, contribution of F.W.TAYLOR, HENRY FEYOL, ELTON MAYO, meaning of organization, principles, types of organization structure. Current Trends in management- Just-In-Time ( JIT ), SIX SIGMA , Kanban, lean manufacturing, TQM, ISO Standards, QS and CMM for software companies, Production and inventory Management- Plant layout, product layout types, Types of inventory, ABC Analysis, Purchasing and store keeping Procedures. [07 Hrs] UNIT -3 Marketing Management – Marketing function, marketing and selling, marketing planning, market survey and market research, Online Marketing. Financial management- Definition of financial management, cost, types of costs, and methods of costing, price, capital, debit, credit, books of accounts, final accounts, financial ratios, break even analysis, budget and budget re-control, depreciation, merger and acquisition. [07 Hrs] UNIT -4 Motivation 1.Motivation, human needs ,theories of work motivation, Maslow theory of need hierarchy, X &Y theory, Herzberg theory. 2.Group dynamics- theories of group formation,types and interactions of groups,formation of teams,team work, conflicts 3.Leadership, importance, theories and styles, qualities of good leadership. 4. Entrepreneurship-Definition, concept, traits, qualities of entrepreneur [07 Hrs]

UNIT -5 Human resource management, introduction, importance, scope, HR planning, recruitment, selection, training and development, performance management. Industrial Relations and Labour Welfare. Personality, development of personality, attitude, job satisfaction and organizational commitment, self development, time and stress management. Process and principles of learning. Professional and business ethics. [07 Hrs] UNIT -6 Disaster management – Concept, definition, importance and scope-types of disasters, Preparedness and mitigation of disasters, Government machinery in India for disaster management, Use of GIS and GPS for disaster management, preparation of disaster management plan for cases like earthquake, floods, fire, tsunami, fatal road accident, terrorist attack Industrial maintenance and TPM, industrial safety and safety measures. [07 Hrs] Texts books :

1. O.P. Khanna, industrial engineering and management , Dhanpatrai & Sons, New Delhi

2. E. H. McGrah, S. J. Basic managerial skill for all 3. Disaster Management text and case studies- DBN Murthy, Deep and deep, 2007,

XXII, ISBN 81-7629-906-5 Reference Books : 1. C. B. Mamoria- Personnel Management 2. Harold Koonz and O D’onnel – Management 3. Philip Kotler- Marketing Management 4. M.Kay Dupont, Business Etiquette & Professionalism, Vira Book Pvt.Ltd 5. Dandi Daly Mackally, Self Development, Vira Book Pvt.Ltd, Mumbai. 6. Susan L. Brock, Better Business Writing Vira Book Pvt. Ltd Mumbai. 7. Robert Heller, Managing Teams, Dorling Kindersley, London. 8. Robert Heller, Communicate Clearly, Dorling Kindersley, London. 9. dale H. Basterfields, TQM Person Education, Delhi. 10. Kelly John M, Total Quality Management, InfoTech Standard, Delhi. 11. Managerial Economics – K. L. Maheshwari

303141 : Micro controller and its Applications Teaching Scheme Examination Scheme Theory: 4 Hrs/Week Paper: 100 Marks Practical: 2 Hrs/Week Oral: 50 Marks Unit 1 Introduction to concept of microcontroller, comparison of Microprocessor and microcontroller, Comparison of all 8 bit microcontrollers, Intel 8051 microcontroller architecture, Pin diagram, Memory organization of 8051. Internal structure of I/O ports . (8 Hrs) Unit 2 Addressing modes of 8051 Instruction set of 8051, Stack and Stack Related instruction Data exchange, byte level logical operations, bit level logical operations, rotate and swap operations, instruction affecting flags, incrementing, decrementing, arithmetic operations, jump and recall instruction, Call and subroutines, Stack Organization and stack related instruction, Assembly language programming of 8051. (8 Hrs) Unit 3 Timer ,Counter and its programming. Interrupts and interrupt programming . Serial communication and its programming. Study of SPI,I2C Modbus CAN bus MOST Bus ,FLEX RAY Bus Communication protocols. (8 Hrs) Unit 4 Microcontroller development systems, study of simulator, emulator, assemblers, programmers, cross assembler for microcontrollers. Interfacing of 8051 with external memory Interfacing of 8051 with 8255 for expanding of I/O, Interfacing of 8051 with PC through RS232. (8 Hrs) Unit 5 Programming and Interfacing of 8051 with 8 bit ADC(0809) , DAC(0808) , Stepper motor (speed /position) Measurement of physical parameters such as pressure, temperature flow, level, humidity. (8 Hrs) Unit 6 Interfacing of 8051 with Keyboard and LCD Interfacing of 8051 with single key and matrix(4 x 4 ) Keyboard Measurement of voltage, current, power(KVA,KVAR,KW), frequency using 8051 Speed control of ac and dc motors, using 8051 (8 Hrs)

List of Experiments: Note : Experiment No. 1 to 6 are compulsory and any 6 out of experiment number 7 to 15. All experiments should be performed on 89C51 Trainer kit.

1. Study and use of 8051 Microcontroller trainer kit. 2. Assembly Language Program for addition of 8 bit numbers stored in array. 3. Assembly Language Program for Multiplication by successive addition of two 8

bit numbers. 4. Assembly Language Program for finding largest number from a given array of 8

bit numbers 5. Assembly Language program to arrange 8 bit numbers stored in array in

ascending order. 6. Assembly Language Program of conversion of 8 bit numbers. 7. Stepper motor control by 8051 Microcontroller. 8. Interfacing of 8 bit ADC 0809 with 8051 Microcontroller. 9. Interfacing of 8 bit DAC 0800 with 8051 Microcontroller. 10. Implementation of Serial Communication by using 8051 serial ports. 11. Assembly Language Program for use of Timer/Counter for various applications. 12. Programming 8051 using cross assembler. 13. LCD interface with 8051 14. Interfacing of matrix keyboard 7 segment display with 8051 15. Measurement of frequency /Pulse using 8051

Text Books:

1. K. J. Ayala , The 8051 Microcontrollers- Architecture, Programming and Applications, Peram International Publications

2. Muhammad Ali Mazidi, J.G. Mazidi, The 8051 Microcontroller and Embeded Systems.

3. Ajay Deshmukh Microcontroller 8051 –TATA McGraw Hill 4. Theagrajan, Microprocessor and Microcontroller , BS Publication

Reference Books.

1. 8051 Microcontroller by Scott Mackenzie –Pearson Education. 2. Intel Microcontroller data book. 3. Intel Corporation 1990- 8 bit embedded controller handbook.

303142:Electrical Machines-II

Teaching Scheme Examination Scheme Theory: 4 Hrs/Week Paper: 100 Marks Practical: 2 Hrs/Week Practical:50 Marks

Termwork: 25 Marks Total marks :175

Unit 1 : Three phase Synchronous machines, Construction, principle of generator action & motor action. Rotating-field type & rotating-armature type construction, salient-pole type & non-salient-pole type construction. Their comparison. Introduction to 3-phase armature windings, e.m.f. equation & winding factors. Generator on no-load. Effect of balanced load : effects of armature currents, resistance drop, armature copper loss, leakage flux & leakage reactance drop & armature reaction m.m.f. Electro-magnetic torque developed. Losses, power – flow chart & efficiency of generator. Ratings brushless synchronous generator. Definition of voltage regulation at a given load. Definition of short-circuit ratio. Determination of regulation by direct-loading test. Predetermination of regulation of non-salient-pole alternators by e.m.f. i.e. synchronous impedance method, m.m.f. method, Potier method. Power- power angle relation for non-salient pole alternators. Operating chart of alternator. ( 8 Hrs ) Unit 2 : Blondel’s two-reaction theory for salient-pole machines : Direct-axis & quadrature-axis synchronous reactances, their determination by slip test. Phasor diagram of Salient-pole alternator & calculation of regulation Parallel operation of 3-phase alternators : Load sharing between two alternators in parallel. Parallel-Generator theorem Process of synchronizing an alternator with infinite bus-bars by lamp methods & by use of synchroscope. Synchronizing torque, power and current. Motor action of a synchronous machine; Why a synchronous motor is not self-starting ? Various methods of starting. Phenomenon of hunting or phase – swinging – its remedies. Operation of 3-phase Synchronous motor with constant excitation & variable load. Significance of torque angle, load characteristics Phasor diagram on the basis of synchronous impedance. Power flow chart , losses. Operation of 3-phase synchronous motor with a constant mechanical load on its shaft & variable excitation. ‘V’ Curves & ‘inverted V’ (pf) curves. ( 8 Hrs ) Unit 3 : Introduction to synchronous – induction motor. Applications of 3-ph synchronous motors & comparison of 3 ph synchronous motor with 3-phase induction motor and 3 phase synchronous induction motor. Speed control of three phase induction motor by V/f and rotor resistance control methods. Introduction to testing of three phase induction motor as per IS:325 & IS: 4029,IEC 60034-2001.

Action of 3-phase induction motor as an induction generator, applications as induction generator. 3-phase Induction voltage regulator : construction, principle of working, comparison with autotransformer & tap-changing transformer. ( 8 Hrs ) Unit 4 : Operation of d.c. series motor on a.c. supply, nature of torque developed, problems associated with a.c. operation. Plain Series motor : direct & quadrature axis fluxes. Transformer & rotational emfs in the field winding and the armature winding. Approximate phasor diagram ( ignoring leakage fluxes, magnetising current & currents in the short-circuited armature coils ). Circle diagram, performance characteristics from circle diagram. Drawbacks of plain series motor. Universal motors : ratings, performance & applications, comparison of their performance on a.c. & d.c. supply. Compensated series motor : Compensating winding, conductively & inductively compensated motor. Use of compoles for improving commutation, connection of compole winding, shunted compoles. Ratings & applications of Compensated Series motors. ( 8 Hrs ) Unit 5 : Harmonics in induction motors & synchronous generators, concept of time & space harmonics, their generation in machines. Effects of these harmonics on the performance of induction motors and synchronous generators. Remedies to reduce the harmonics. ( 4 Hrs ) Special Motors ( Descriptive Treatment Only ) Construction, principle of working, characteristics, ratings & applications of Brushless d.c. motors, Stepper motors (only permanent and variable reluctances type), Permanent Magnet motor & linear induction motors. (4 Hrs) Unit 6 : Mmf produced by 1-phase stator winding carrying an alternating current. Its representation by two revolving fields. Construction of 1-phase induction motor. Equivalent circuit & torque-slip characteristics on the basis of double revolving field theory. Tests to determine the parameters of equivalent circuit & calculation of performance characteristics of motor. Methods to make 1-phase induction motors self-starting. Types of 1-phase induction motors : Split-phase motors ( resistor split-phase motor, Capacitor-start motor, Capacitor motor ), Shaded pole motor – their construction, connections, torque-slip characteristics & applications. Comparison of 1-phase induction motor with 3-phase induction motor. Introduction to cross-field theory ( 8 Hrs )

Experiments: Minimum ten experiments are required to be performed. Experiment number 1 to 7 , 14 are compulsory and any two experiments can be conducted from the remaining list of experiments.

1. Determination of regulation of cylindrical rotor alternator by following methods a) EMF method b) MMF method 2. Determination of regulation of cylindrical rotor alternator by Potier method. and Regulation of alternator by Direct loading. 3. Determination of regulation of salient pole alternator by slip test.

4. V & ∧ V curves of synchronous motor at constant load. 5. No load & blocked-rotor test on a Capacitor-start 1-phase induction motor & determination of its equivalent circuit parameters. 6. Simulation of performances characteristics of three phase induction motor by any sowftware. 7. synchronization of three phase alternator by Lamp & Synchroscope methods. 8. Determination of current locus of 3 phase synchronous motor at constant excitation but varying load. 9. Load test on 1-phase induction motor. 10. Load test on 1-phase series motor. 11. Performance characteristics of single phase series motor using circle diagram. 12. Performance characteristics of stepper motor 13. Study of BIS for standards of energy efficient three phase induction motor 14. speed control of three phase induction motor by V/F method.

Text Books

1. Nagrath & Kothari , Electrical Machines , 2nd Ed.,Tata McGraw Hill. 2. S. K. Bhattacharya, Electrical Machines, Tata McGraw Hill. 3. A.S. Langsdorf, Theory of Alternating Current Machinery , Tata McGraw Hill 4. P. S. Bimbhra, Electric Machinery, Khanna Pub. 5. B.R. Gupta & Vandana Singhal -Fundamentals of Electric Machines, New Age

International (P) Ltd. 6. E.Openshaw Taylor, Performance & design of a.c. commutator motors, Wheeler

Publishing.

Reference Books : 1. M.G. Say , Performance & Design of A.C. Machines ( 3rd Ed.) , ELBS 2. C.G. Veinot, J.E. Martin ,Fractional & sub-fractional kW Motors, McGraw Hill –

International student edition 3. Krishna Reddy –electrical machines vol.I,II,III, SCI Tech publication

303143: Power Electronics

Teaching Scheme Examination Scheme Theory: 4 Hrs/Week Paper: 100 Marks Practical: 2 Hrs/Week Practical:50 Marks, Termwork: 25 Marks (175)

Unit 1 Thyristor Power Devices: SCR: Static and dynamic Characteristics, specifications (Latching current, Holding current, dv/dt, di/dt, I2t rating), Two-Transistor Analogy, Gate Characteristics, Trigering Circuits (R, R-C, UJT), Protection (over voltage, over current, and Thermal), GTO. (8Hours) Unit 2 AC to DC Converters (1phase & 3 phase) : Single phase Converter (mid point, bridge), three phase semi-controlled and fully controlled bridges with R, R-L and RLE loads. Rectification and Inversion mode of operation, Concept of overlap Angle and associated Voltage drop calculation. Dual converter. Selection of transformers and semiconductor devices for Converters. Numerical for R and RL Load only (8Hours) Unit 3 AC Voltage Controllers & Protection of Power Circuits .(a) DIAC, TRIAC- four mode operation, triggering of TRIAC using DIAC; AC Voltage regulator principle, Single phase & three phase, analysis with R & RL Load, applications of two stage, three stage & multi stage Voltage Controllers. (b)Protection of Power Circuit: Protection from over voltage, over current, thermal, design of snubber circuit . (8Hours)

Unit 4 Transistor Power Devices: Characteristics, Specifications, Safe Operating Areas (SOA) Protection and Switching action of Power MOSFET, IGBT, MCT and their control circuit requirement. Comparison and Area of application of these devices. (8Hours) Unit 5 DC to DC Converter : Principle of operation of chopper, classification on the basis of Operating quadrants. Control techniques: CLC,TRC, PWM and FM Techniques. Analysis of Step up Chopper and Numericals with RLE load. Areas of application. Necessity of input filter. Numericals (8Hours) Unit 6 DC to AC Inverter : Single phase & three phase inverters, Principle of operation, VSI and CSI inverters, applications, their operating frequency range. PWM inverters: Single Pulse, Multiple Pulse and Sinusoidal Pulse modulation PWM Techniques for voltage control and harmonic elimination. (8Hours)

List of Experiments Note: Any 8 experiments, however three (03) simulation experiment should be covered using any professional software 1. V-I characteristics of SCR , DIAC,TRIAC ( any2 ) 2. V-I characteristics of power semiconductor devices: GTO, MOSFET, IGBT (any 2) 3. 1-ph half controlled and full controlled converter. (R & RL Load ) 4. 3-ph converter ( R, RL,RLE Load ) 5. Step down chopper circuit (TRC techniques ) 6. 3-ph voltage source transistorized inverter. 7. Firing circuit for 3-ph converter.. 8. 1-ph or 3-ph. AC Voltage Regulator. 9. 3-ph AC-DC converter with RLE Load. 10. 1-Ph PWM bridge Inverter. 11. Commutation circuits of SCR. 12. Design of Snubber Circuit

Books for reference: Text Books : � M.H.Rashid - Power Electronics 2nd Edition, Pearson publication � Ned Mohan, T.M. Undeland, W.P. Robbins - Power Electronics,3rd Edition,

John Wiley & Sons (International) student edition. � B.W. Williams: Power Electronics 2nd edition, Macmillan publication � Ashfaq Ahmed- Power Electronics for Technology, LPE Pearson Edition. � Dr. P.S. Bimbhra, Power Electronics, Thrid Edition, Khanna Publication. � K. Hari Babu, Power Electronics , Scitech Publication.

Reference Books : � Vedam Subramanyam - Power Electronics , New Age International , New Delhi � Dubey, Donalda, Joshi,Sinha, Thyristorised Power controllers, Wiely Eastern

New Delhi. � M. D. Singh and K. B. Khandchandani, Power Electronics, Tata McGraw Hill � Jai P. Agrawal, Power Electronics systems theory and design LPE, Pearson

Education. Asia. � L. Umanand, Power Electronics – Essentials & Applications Wiley Publication. � Randall Shaffer – Fundamentals of Power Electronics with Matlab. � J. Michael Jacob – Power Electronics Principal & Applications.

303144 : Electrical Installation, Maintenance and Testing

Teaching Scheme Examination Scheme Theory: 4 Hrs/Week Paper: 100 Marks Drawing: 2 Hrs/Week TW: 50 Marks Unit-1 Distribution systems: Classification of Supply systems. Types of supply systems (State only) Details of supply systems: 1) 1 Phase 2 wire system 2) 3 Phase 3 wire systems 3) 3 Phase 4 wire systems. Comparison of these systems, on the basis of volume requirement for conductor, for overhead and underground systems. AC Distribution system Design: Types of primary distribution systems, types of secondary distribution systems, Voltage drops in ac distributors, Kelvin's law, and limitation of Kelvin's law. General design considerations, load estimation. Design of primary and secondary distribution design, economical design of distributors. (8 Hrs)

Unit 2 Substation and Earthing: Substation: Classification and types, Layout of substation, Function and technical specifications of each equipment. Voltage levels and clearances. Earthing : Necessity and types of earthing systems. Substation grounding. Tolerable limits of body currents, Estimation of soil resistance and its management. Tolerable step and touch voltages. Different electrode configurations. Steps in grid design reference to IEEE standard 80-2000. (8 Hrs) Unit-3 Condition Monitoring and Maintenance: Importance and necessity of maintenance, different maintenance strategies like breakdown maintenance, planned maintenance and condition based maintenance. Planned and preventive maintenance of transformer, induction motor, generators and powercables. Insulation stressing factors, insulation deterioration, DC test for measurement of insulation resistance, polarization index, dielectric absorption ratio, dielectric discharge ,concept or condition monitoring of electrical equipment ( 8 Hrs ) Unit-4 Condition Monitoring of transformers: Testing and condition monitoring of oil as per the IS/IEC standards. Filtration/reconditioning of insulating oil. Failure modes of transformer. Condition monitoring of transformer bushings, insulation, on load tap changer dissolved gas analysis, degree of polymerization, partial discharge measurement. IS/Specifications for testing of transformer bushing and oil. ( 8 Hrs )

Unit-5 Testing of other electrical equipments:AC testing of insulation, tan delta, partial discharge as per relevant standard. Testing of –

i. Power cables – Causes of cable failure, fault location methods. ii. Induction motor – Various abnormal conditions, trouble shooting, faults, causes,

remedies. Signature analysis, Thermograpy. (8 Hrs)

Unit-6 Basics, Troubleshooting and Maintenance of Household Appliances: Study of constructions, working, troubleshooting and maintenance of Fan, Mixer, Refrigerator, Water Pump, Washing machines, Electric Oven, Microwave (Limited to electrical faults) (8 Hrs)

Drawing: 1. Single line diagram of 132 or 220 or 400 KV substation (based on actual field

visit) Symbols, Plate or Pipe earthling – Using AutoCAD or other CAD software. 2. Project report on area electrification. 3. Project design and estimation of power circuit of labs/ workshops.

Experiments: 1. Measurement of insulation resistance of motors and cables. 2. Measurement of tan delta and partial discharge of transformer insulation either in

the college or by arranging visit to industry/ HV Lab 3. Study of troubleshooting of electrical equipment based on actual visit to repair

workshop (Any One). I. Three phase induction motor

II. Transformer. 4. Study of thermography images and analysis based on these images. 5. Assignment – Construction, working and troubleshooting of any one household

electrical equipment

Text Books:

1) S. Rao, Testing Commissioning Operation & Maintenance of Electrical Equipment, Khanna publishers.

2) S.L.Uppal - Electrical Power - Khanna Publishers Delhi. 3) Hand book of condition monitoring by B.K.N.Rao, Elsever Advance

Tech.,Oxford(UK). 4) S. K. Shastri – Preventive Maintenance of Electrical Apparatus – Katson

Publication House 5) B. V. S. Rao – Operation & Maintenance of Electrical Equipment – Asia

Publication References : IS/IEEE Standards. 1. IS : 1180 – Distribution Transformer 2. IS : 2026 – Power Transformer 3. IS : 4029 – Testing of 3 Phase Induction Motor. 4. IS : 996 – 1 Phase AC and Universal Motor. 5. IS : 694:1986 – PVC insulated cables for working voltages upto and including 1100 V 6. IS : 900:1992 – Code of practice for installation and maintenance of Induction Motors 7. IEEE 80:2000 – IEEE Guide for Safety in AC Substation Grounding. Books

1. B. R.Gupta- power system analysis and design, 3th edition wheelers publication. 2. P.S Pabla –electric power distribution, 5th edition, tata McGraw Hill.

303145: Power System II Teaching Scheme Examination Scheme Theory: 4 Hrs/Week Paper: 100 Marks Practical: 2 Hrs/Week Practical: 50 Marks Prerequisite: 1. constants of transmission line ,circuit representation and generalized constants of short, medium and long transmission lines. 2.Calculation of inductance and capacitance for symmetrical and unsymmetrical configuration of transmission lines Objective: To develop analytical ability for Power system subject with prerequisite of power system I Unit 1: Performance of Transmission Line

Concept of complex power, power flow using generalized constants, receiving end power circle diagram for transmission line(assuming ABCD constants are already given), surge impedance loading, line efficiency, regulation and compensation, basic concepts. Numerical based on: Power flow, circle diagram.

8

Unit 2: EHV-AC transmission: Role of EHV-AC transmission, standard transmission voltages, average values of line parameters, power handling capacity and line losses, phenomenon of corona, disruptive critical voltages, visual critical voltages, corona loss, factors and conditions affecting corona loss, radio and television interference, reduction of interference, Numerical Based on power handling capacity, Corona and Corona loss

7

Unit 3: (a) Per unit system: Impedance & reactance diagrams and their uses, per unit quantities, relationships, selection of base, change of base, reduction to common base, advantages and application of per unit system. Numerical based on network reduction by using per unit system. (b) Symmetrical Fault Analysis Sudden 3-phase short-circuit analysis of unloaded alternator, sub-transient, transient and steady state current and impedances, D.C. Offset, and effect of the instant of short-circuit on the waveforms, estimation of fault current without pre-fault current for simple power systems, selection of circuit-breakers and current limiting reactors and their location in power system (Descriptive treatment only) Numerical Based on symmetrical fault analysis

9

Unit 4: Unsymmetrical Fault Analysis: Symmetrical components, transformation matrices, sequence components, power in terms of symmetrical components, sequence impedances and sequence networks, solution of unbalances by symmetrical components, L-L, L-G, and L-L-G fault analysis of unloaded alternator and simple power systems with and without fault impedance. Numerical based on symmetrical component and unsymmetrical fault calculation.

9

Unit 5: Load Flow Analysis: Network topology, driving point and transfer admittance, concept of Z-bus and Y-bus matrices, Introduction to load flow analysis, power- flow equations, generalization to n-bus systems, classification of buses, Newton- Raphson(using polar method) , Gauss- Seidal methods, (Descriptive treatment only)

8

Unit 06 HVDC Transmission ( Descriptive treatment only ) Classification and components of HVDC systems, advantages and limitations of HVDC transmission , comparison with HVAC systems, introduction to HVDC control methods - constant current, constant ignition angle and constant extinction angle control , recent developments.

7

LIST OF EXPERIMENTS NOTE: Five experiment are compulsory out of first six experiments and any three from remaining using professional software 1. Measurement of ABCD parameters of a medium transmission line 2. Measurement of ABCD parameters of a long transmission line 3. Plotting of receiving end circle diagram to evaluate performance of medium transmission line 4. Study of the effect of VAR compensation on the profile of receiving end voltage using capacitor bank. 5. Static measurement of sub-transient reactances of a salient-pole alternator. 6. Measurement of sequence reactances of a synchronous machine. 7. Formulation and calculation of Y- bus matrix of a system using a software. 8. Solution of a load flow problem using Gauss-Seidal method using a software. 9. Solution of a load flow problem using Newton-Raphson method using a software. 10. Unsymmetrical fault analysis of a 3-bus system a software 11. Calculation of inductance and capacitance for symmetrical and unsymmetrical configuration of

transmission line using a software. Visit : Compulsory visit to EHV-AC substation/ HVDC substation TEXT BOOKS : 1. I.J. Nagrath & D.P. Kothari – Modern Power System Analysis – Tata McGraw Hill, New Delhi. 2. B R Gupta , “Power System Analysis and Design”, S.Chand 3. Abhijit Chakraborty and Sunita Haldar, “Power System Analysis” 4. J.B.Gupta.”A course in power systems”. 5. P.S.R. Murthy, “Power System Analysis”, B.S. Publications. 6. Hemalatha and Jayachrista, “Power System Analysis”, Scitech Publication. REFERENCE BOOKS : 1. H. Hadi Sadat: Power System Analysis, Tata McGraw-Hill New Delhi. 2. Stagg & Abid – Computer Methods in Power System Analysis – Tata McGraw Hill, New Delhi. 3. M.E.El-Hawary, Electric Power Systems: Design and Analysis, IEEE Press, New York. 4. Rakash Das Begamudre, “Extra High voltage A.C. transmission engineering”, New age publication. 5. M.A.Pai, “Computer Techniques in Power System Analysis”, Tata McGraw Hill Publication 6. Stevenson W.D. – Elements of Power System Analysis ( 4th Ed. ) - Tata McGraw Hill, New Delhi. 7. K.R.Padiyar: HVDC Transmission Systems, New Age International Publishers Ltd, New Delhi. 8. Olle I. Elgard – Electric Energy Systems Theory – Tata McGraw Hill, New Delhi.

303146: Energy Audit and Management

Teaching Scheme Examination Scheme Theory: 4 Hrs/Week Paper: 100 Marks Unit 1 Global & Indian Energy Scenario:-

Commercial & non-commercial energy, primary & secondary sources, commercial energy production, final energy consumption, Energy needs of growing economy, short terms and long terms policies, energy sector reforms, Distribution reforms and Upgaradation management, energy security, importance of energy conservation, energy and environmental impacts, emission check standard, salient features of EC Bill 2001 & Electricity act 2003. Indian & Global energy scenario. Introduction to IE Rules. Study of Energy Conservation Building Code (ECBC),Concept of Green Building. ( 7 Hrs )

Unit 2 Demand Side Management:-

Scope of demand management, Advantages and Barriers, areas of developement of demand side management viz, agricultural,domestic, commercial,duties of energy manager and energy auditor , general structure of energy management/manager. ( 7 Hrs )

Unit 3 Energy Audit:-

Definition, need of energy audit, types of audit, procedures to follow, data and information analysis, energy consumption – production relationship, pie chart, sankey diagram, cusum technique, least square methods,numericals based on it, finding of audit, action plans, bench marking energy performance, energy audit instruments, report writing. ( 7 Hrs )

Unit 4 Financial analysis and Energy conservation:-

Costing techniques:- cost factors, budgeting, standard costing, sources of capital, cash flow diagrams and activity chart. Financial appraisals:- criteria, simple payback period, return on investment, net present value method, time value of money, break even analysis, sensitivity analysis, cost optimization, cost of energy, cost of generation, PF tariff, TOD tariff, apparent energy tariff, ABT tariff. ( 7 Hrs )

Unit 5 Energy Conservation in: - Motive power.

a) Illumination b) Heating and HVAC system c) Cogeneration and waste heat recovery systems. d) Pumping System

Few numericals based on them ( 7 Hrs )

Unit 6 Energy Audit Case Studies: -

1) Steel industries/heavy manufacturing industries 2) Paper & pulp industry 3) Sugar industries 4) Petroleum / chemical industries 5) Commercial organization / Municipal corporation 6) Textile industry 7) Thermal power stations 8) T & D Sector 9) Agricultural sector 10) IT Industry

11 ) Educational institutions ( 7 Hrs ) Books: - 1) Utilization of electrical energy by S. C. Tripathi. 2) Generation of electrical energy by B. R. Gupta 3) Energy management by Murphy 4) Energy Management W R Murthy & Mckay, BS Publication Website:- 1. www.energymanagertraining.com 2. www.em-ea.org

303147: Utilization of Electrical Energy Teaching Scheme Examination Scheme Theory: 4 Hrs/Week Paper: 100 Marks

Section - I Unit 1: -Electric Heating IntroductionAdvantages of electrical heating Heating methods: - Resistance heating – Direct resistance heating, indirect resistance heating, electric ovens, different types of heating materials, temperature control of resistance furnaces, design of heating element, domestic water heaters and other heating appliances.Induction heating – Principle, core type and coreless induction furnaces. Electric arc heating – Direct and indirect arc heating, arc furnaces. Dielectric heating – Principle and applications in various industrial fields. (5 Hours) Electric Welding Welding methods–Electric arc wielding and resistance wielding. Modern wielding techniques like ultrasonic wielding and laser welding (3 Hours) Unit 2: -Electrochemical Process Need of electro-deposition.Applications of Faraday’s laws in electro-deposition. Factors governing electro-deposition. Objectives of electroplating. Equipments and accessories for electroplating plant, Electroplating on non-conducting materials, Principle of anodizing and its applications. (2 Hours) Control devices-construction and working of push button, limit switches, float switches pressure switches, contactors, thermostats, timers, relays Application of above devices in 1) Automatic water level controller 2) reverse forward operation of 3 –ph induction motor 3) Temperature controller in electric furnace 4) Air compressor circuit. (3 Hours) Electrical Circuits Used in Refrigeration, Air Conditioning and Water Coolers Brief description of vapour compression refrigeration cycle.Description of electrical circuits used in –Refrigerator, Air Conditioner,Water Cooler (3 Hours) Unit 3: -Illumination Definitions of flux, solid angle, luminous intensity, illumination, luminous efficiency, depreciation factor, coefficient of utilization, space to height ratio, reflection factor; Laws of illumination. Calculation of number of light points for interior illuminations; Calculation of illumination at different points, considerations involved in simple design problems and illumination schemes, indoor and outdoor illumination level.different sources of light: differences in incandescent and discharge lamps – their construction and characteristics; fittings required for filament lamp, mercury lamp, fluorescent lamp, sodium lamp, halogen lamp, compact fluorescent lamp, metal halide lamp, electroluminescent lamp-LEDs, types, LASERs .Comparison of all above luminaries. Main requirements of proper lighting, absence of glare contrast and shadow. Principles of street lighting. (8 Hours)

Unit 4: -Electric Traction Advantages of electric traction. Traction systems – i) Steam engine drive, ii) electric drive, iii) diesel electric drive.Introduction to metro system,mono rail system. Systems of track electrification: D.C. system, single phase low frequency A.C. system, 3 phase low frequency A.C. systems, composite systems – kando systems, single phase A.C. to D.C. systemDifferent accessories for track electrification such as overhead wires, conductor rail system, current collector-pentagraph .Electrical block diagram of an electric locomotive with description of various equipments and accessories. (8 Hours) Unit:-5 Traction Mechanics Speed time curves, trapezoidal and quadrilateral speed-time curves, average and schedule speed.Tractive efforts.Specific energy consumption.Mechanics of train movement, coefficient of adhesion. (8 Hours) Unit 6: -Traction Motors, Control of Traction Motors, Train Lighting Desirable characteristic of traction motors. Suitability of D.C. series motor, A.C. series motor,3 phase induction motor and linear induction motor for traction.Control of traction motors, Series-parallel control, Shunt and bridge transition.Electrical breaking, Regenerative breaking in traction, Suitability of different motors for braking. Train lighting system and Rosenberg generator. Railway signalling:- history, necessity, block system route relay interlock and necessity. Electromechanical system for route relay interlock.Introduction to train tracking system, types. Anti-collision system-brief treatment only (8 Hours) Reference Books:- 1.‘Art and science of Utilization of Electrical Energy’ by H. Partab, Dhanpat Rai & Co.(P) Ltd - Delhi 2.‘Utilization of Electric Power and Electric Traction’ by J.B. Gupta, S.K. Kataria & sons, Delhi. 3.‘Generation, Distribution and Utilization of Electrical Energy’ by C. L. Wadhwa, Eastern Wiley Ltd. 4.‘A text book on Power System Engineering’ by A. Chakraborti, M. L. Soni, P. V. Gupta, U.S. Bhatnagar, Dhanpat Rai & Co.(P) Ltd – Delhi 5.‘Utilization of Electrical Energy’ by E. O. Taylor – Revised in S.I. Units by V.V.L. Rao, Orient Longman. 6.Modern Electric Traction by H. Partb, Dhanpat Rai & Co. (P) Ltd - Delhi 7.“Lamps and lighting” by M. A. Cayless and A. M. Marsden 8.“BIS, IEC standards for Lamps, Lighting Fixtures and Lighting” By Manak Bhavan, New Delhi 9.“Illumination Engineering from Edison’s Lamp to the Laser” Joseph B. Murdoch 10. “Practical railway engineering” By Clifford F.Bonntt (Imperial college press). 11.“Two centuries of Railway signalling” by Geoffrey, Kichenside and Alan Willims (Oxford publishing CO-op). 12. Modern traction system by H.Pratab

303148: Design of Electrical Machines Teaching Scheme Examination Scheme Theory: 4 Hrs/Week Paper: 100 Marks Drawing: 4 Hrs/Week Oral: 50 Marks,

TW: 50 Marks

Unit 1: Principles of Electrical Machine Design Fundamentals of magnetic circuit, magnetization curve, Magnetic leakage. Determination of iron losses, pulsation loss ,Magnetic leakage calculations ,effects of leakage flux, leakage reactances slot leakage, tooth top leakage, zig-zag leakage ,overhang leakage, leakage reactance calculation for polyphase machines, leakage reactance with fractional pitch winding field form- Carter’s fringe curve and air-gap flux distribution (curve) factor. [ 7 Hrs ]

Unit 2: Transformer Design (Part-I):- Modes of heat generation, various methods of cooling, temperature-rise, heating / cooling cycles, heating time constant, cooling time constant, maximum temperature rise and their estimation.Types, constructional features, Specifications as per IS 2026, Output equation, design of main dimensions, core, yoke, windings (including selection). [ 8 Hrs ]

Unit 3: Transformer Design ( Part-II ) :- Evaluation of resistance, leakage reactance of windings, no-load current, estimation of losses, efficiency and regulation.Cooling of transformers, design of tanks, temperature rise estimation, and calculation of mechanical forces developed under short circuit conditions, measures to overcome this effect. [ 8 Hrs]

Unit 4: Design of 3-phase Induction Motor (Part-I):- Constructional features, types of ac windings, output equation, specific electrical and magnetic loadings, ranges of specific loadings, turns per phase, number of stator slots, calculations for main dimensions and stator design parameters. [ 7 Hrs ]

Unit 5: Design of 3-phase Induction Motor (Part-II):-

Selection of length of air gap, factors affecting length of air gap, design of rotor, unbalanced magnetic pull and its estimation, harmonic field effect on the performance of 3-phase induction motor, suitable combinations of stator & rotor slots, design of squirrel-cage and wound rotor. [ 8 Hrs ]

Unit 6 :Design of 3-phase Induction Motor (Part-III):- Calculation of magnetic circuit, mmf calculations for air gap, stator teeth, stator core, rotor teeth and rotor core, effect of saturation, effects of ducts on calculations of magnetizing current, calculations of no-load current, leakage fluxes and leakage reactance’s, performance calculations from circle diagram, calculations of losses, efficiency and temperature rise. [8 Hrs ]

Term work:

The term work shall consist of three drawing sheets (Minimum one sheet to drawn in AutoCAD.)

1. Details and assembly of 3- phase transformer with design report. 2. Details and layout of AC winding with design report. 3. Assembly of 3- phase induction motor.(only sheet) 4. Report based on Industrial visit to a manufacturing unit.(Transformer or

Induction motor)

Text Books : 1. A.K.Sawhney – A Course in Electrical Machine Design’ 10th Edition, - Dhanpat Rai

and sons New Delhi. 2. M.G. Say – Theory & Performance & Design of A.C. Machines, 3rd Edition, ELBS

London Reference Books

1. K.L. Narang , A Text Book of Electrical Engineering Drawings, Reprint Edition : 1993 / 94 – Satya Prakashan, New Delhi.

2. A Shanmugasundaram, G. Gangadharan, R. Palani, - Electrical Machine Design Data Book, 3rd Edition, 3rd Reprint 1988 - Wiely Eastern Ltd., - New Delhi

3. Vishnu Murti, “ Computer Aided Design for Electrical Machines”, B.S. Publications.

303149: Control Systems I

Teaching Scheme Examination Scheme Theory: 4 Hrs/Week Paper: 100 Marks Practical: 2 Hrs/Week Term Work: 50 Marks Unit-1 Introduction: Basic Concepts of Control System, Open loop and Closed loop systems, Classifications, effect of feedbacks on Control System performance. Transfer function modeling and representation of Control system, pole & zero concept, Linear mathematical physical systems “Mechanical System” (Translational and Rotational), Electrical analogy, Block reduction techniques, Signal flow graph, Mason’s gain formula. (8 hours) Unit-2 Time Domain Analysis: Type and Order of Control system, Typical tests signal “ Step, Ramp, parabolic and Impulse signals”, Time Response of first and second order systems to unit step input. Steady state errors “Static error coefficients”, series and dynamic error coefficients, Generalized Error Series method. Time Domain Specifications of Second Order System, Dominant Closed loop Poles of Higher Order Systems. (8 hours) Unit-3 Stability Concept of Stability: absolute, relative and marginal, nature of system response for the various location of roots in S-plane of characteristic equation, stability analysis using Hurwitz’s criterion, Routh’s criterion.Basic properties of Root Loci, construction of Root loci. Angle and magnitude condition for stable systems, concept of inverse root locus and root contour. (8 hours) Unit-4 Frequency Domain Analysis

Steady state response of a system due to sinusoidal input; Relation between time & frequency response for second order systems. Frequency response specifications. Stability Analysis with bode plots, polar plots, conformal mapping, principal of argument, Nyquist stability criterion. (8 hours) Unit-5 State Variable Analysis of Linear System Introduction to state space analysis, advantages, important definitions- state, state variables, State vector, state space, state equation, output equation etc. State space representation for i) Electrical Network ii) nth order differential equation iii) Transfer function. State model from transfer function using: Direct, parallel,cascade ,decomposition method. TF of system using state model. (8 hours) Unit-6 Control system components and controllers (only theoretical treatments) Modeling and transfer function of control system components- Potentiometer, synchros, DC and AC Servomotors, gear trains, tacho-generators ac and dc . Design concepts of a) -P, PI, PD, PID controllers b) Compensator Networks-lag and lead

(8 hours) LIST OF EXPERIMENTS: Minimum eight experiments should be conducted. Note: Any professional software can be used. 1. Study of potentiometers- Modeling, transfer function and characteristics 2. Study of A.C. Servo Motor/DC. Servo Motor- modeling, Transfer function and characteristics 3. Study of Syncros: Modeling, transfer function, and characteristics 4. Study of time response characteristics of second order control system using Software 5. To design PI / PID controllers for conceptual systems and simulate the closed loop system using Software 6. To obtain the model of the Inverted pendulum and study the closed loop performance using experiments on Bytronic® Inverted Pendulum/ using Software 7. Stability analysis using a) Bode plot b) Root locus c) Nyquist plot using Software 8. To design a Lead compensator and to obtain the characteristics by simulation using Software. Verify the performance using experiments with the compensator circuit made of passive elements. 9..To design a Lag compensator and to obtain the characteristics by simulation using Software. Verify the performance using experiments with the compensator circuit made of passive elements. 10.To conduct experiments on the Level Process Control Station and to study the working of a level control loop. TEXT BOOKS : a. Nagrath & Gopal, “Control system engineering”, New Age International Publishers,

3rd Edition, 2001. b. N.C. Jayan, “Control Systems”, 2nd Edition, B.S. Publications. c. Ananda Natrajan, “Control System Engineering”, 2nd Edition, Scitech Publication (i REFERENCES: 1. K. Oggata, “Modern control system engineering”, Pearson Education Asia, 4th Edition, 2002. 2. B. C. Kuo, “Automatic control system”, Prentice Hall of India, 7th Edition, 1995. 3. Richard C Dorf & Robert H Bishop, “Modern control system”, Pearson Education Asia. 8th Edition, 2004. 4. Nise N. S. John willey & sons, “Control System Engineering”, 4th Edition, 2004

303150 : Seminar Teaching Scheme: Examination Scheme : Practicals : 2Hrs/Week Term Work : 50 Seminar should be based on a detailed study of any topic related to Electrical Engineering preferably the advance areas/application and the topic should preferably on the topic outside the syllabus of Electrical Engineering. Format of the Seminar report should be as follows:

1. The report should be neatly written or typed on white paper. The typing shall be with normal spacing and on one side of the paper.(A-4 size).

2. The report should be submitted with front and back cover of card paper neatly cut and bound together with the text.

3. Front cover: This shall have the following details with Block Capitals a. Title of the topic. b. The name of the candidate with roll no. and Exam. Seat No. at the middle. c. Name of the guide with designation below the candidate’s details. d. The name of the institute and year of submission on separate lines at the

bottom. 4. Seminar approval sheet. 5. The format of the text of the seminar reports:

The report shall be presented in the form of technical paper. The introduction should be followed by literature survey. The report of analytical or experimental work done, if any, should then follow.

The discussion and conclusions shall form the last part of the text. They should be followed by nomenclature and symbols used and then acknowledgement. The reference shall form the last section.

The total number of typed pages, excluding cover shall from 20 to 25 only. All the pages should be numbered.

Two copies of the seminar report shall be submitted to the college. The candidate shall present the seminar before the examiners. The total duration of presentation and after-discussion should be about 30 minutes.

The assessment for the subject shall be based on 1 1. Report submitted. 2. Presentation, 3. Discussion.

CONTROL SYSTEMS (304181)

Teaching Scheme Examination Scheme Lectures / Week: 3 Hrs Paper: 100 Marks ___________________________________________________________________________

Unit I: Introduction (6 Hours)

Definition of control system, Open loop and Closed loop, Feedback and Feed-Forward control, The Design process (with a case study) Mathematical modeling of a physical system: Differential equations of a physical system, Laplace transforms, and concept of transfer function Block Diagram Algebra, Signal flow graph – Mason’s Gain formula

Unit II: Time Domain Analysis and Design (6 Hours)

Standard test inputs, Time response of first order and second order systems, Steady state analysis: steady state error and error constants, transient response specifications. Stability analysis – Routh-Hurwitz criterion. Root Locus technique, Design of compensators using Root Locus.

Unit III: Frequency Domain Analysis and Design (6 Hours)

Correlation between time and frequency response, frequency domain specifications, Nyquist plots, Bode plots – gain margin, phase margin, design of lead/lag compensators using Bode plots.

Unit IV: State Variable Analysis and Design (6 Hours)

Concept of state, state variables and state model, State models for continuous time systems (SISO, MIMO) – derivation of transfer function from state models and vice versa, Solution of state equations – state transition matrix, Controllability and Observability, State feedback controller using pole placement, Observers.

Unit V: Controllers (6 Hours)

PID Controllers: basic algorithm, structures, practical modifications – ISA PID control law, discrete implementation Programmable Logic Controller (PLC) – Concept, Architecture, Programming and Interfacing, Application case studies.

Unit VI: Advances in Control (6 Hours)

Digital Control, SCADA, Distributed Control System, Adaptive Control – Gain Scheduling, MRAS and Self Tuning, Feedback Linearization Control, Predictive Control, Optimal Control, Robust Control. Application case studies in Motion Control, Process Control, Automotive Control, Aircraft and Missile Guidance & Control.

Text Books:

1. Nagrath I. J. and M. Gopal, “Control Systems Engineering”, 5th Ed. New Age International.

2. Norman S. Nise, “Control System Engineering”, 5th Edition, Wiley.

Reference Books:

1. Ogata Katsuhiko, “Modern Control Engineering”, 4th Edition, PHI. 2. Curtis D. Johnson, “Process Control Instrumentation Technology”, 8th Edition, PHI. 3. William S. Levine, “The Control Handbook”, CRC – IEEE Press. 4. Les Frnical, “Control System”, CENGAGE Learning, India.

DIGITAL COMMUNICATION (304182)

Teaching Scheme Examination Scheme Lectures / Week: 4 Hrs Paper: 100 Marks Practical /Week: 2Hrs. Practical: 50 Marks

Unit I: Digital Baseband Modulation Techniques and Waveform Coding Techniques

(7 Hours)

Base band system, Formatting textual data, messages, characters & symbols, Formatting analog

information, Sources of corruption, PCM, Uniform and Non uniform quantization, Baseband

modulation, Noise consideration in PCM systems, , DPCM, DM,ADM, LPC.

Unit II: Baseband Demodulation Detection Techniques (7 Hours)

Signals & noise, Data formats, synchronization and multiplexing, Intersymbol interference, Equalization,

Detection of binary signals in presence of Gaussian noise, Matched and optimum filters.

Unit III: Random Process (8 Hours)

Introduction, Mathematical definition of a random process, stationary processes, mean, correlation &

covariance function, Ergodic processes, transmission of a random process through a LTI filter, Power

spectral density, Gaussian process, noise, narrow band noise, representation of narrowband noise in

terms of in phase & quadrature components, representation of narrowband noise

Unit IV: Digital Bandpass Modulation Technique (8 Hours)

Digital band pass modulation techniques, detection of signals in Gaussian noise, coherent detection,

non coherent detection, complex envelope

Unit V: Detection and Performance Analysis of Bandpass Signals (7 Hours)

Error performance for binary systems, M-ary signaling & performance, symbol error performance for M-

ary systems for M= 2,4,8,16.

Unit VI: Spread Spectrum Techniques (8 Hours)

Spread spectrum techniques: Introduction, pseudo noise sequences, a notion of spread spectrum,

direct sequence spread spectrum with coherent BPSK, Signal space dimensionality & processing gain,

probability of error, frequency hop spread spectrum

Multiuser radio communication: Multi access techniques, satellite communication, radio link analysis,

wireless communication, statistical characterization of multipath channels, binary signaling over a

Rayleigh fading channel, TDMA & CDMA wireless communication systems, source coding of speech for

wireless communication, adaptive antenna arrays for wireless communication

Text Books:

1. Bernard Sklar, “Digital Communications fundamentals and Applications” Second Edition. ,

Pearson Education

2. Simon Haykin “Communication Systems” Fourth Edition , John Wiley& sons

Reference Books:

1. A.B Carlson, “Principles of communication systems”, Third Edition, TMH.

2. Taub Schilling, “Principles of Communication system”, Fourth Edition, TMH.

3. John G. Proakis, Masoud Salehi, Gerhard Bauch, “Contemporary Communication System using

MATLAB”, Cengage learning.

List of Practicals:

1. Verification of sampling theorem.

2. Study of PCM with uniform & nonuniform quantization, SNR measurement for PCM system with

uniform quantization.

3. Study of DM & ADM systems.

4. Generation & reception of BPSK & its spectral analysis (DSO).

5. Generation & reception of FSK & its spectral analysis (DSO).

6. Generation & reception of QPSK & its spectral analysis (DSO).

7. Spectral analysis of line codes.

8. Detection of digital baseband signal using matched filter in the presence of noise

9. Generation & detection of DS-SS BPSK.

10. Simulation of any digital communication system using COMPSIM/MATLAB®.

NETWORK SYNTHESIS AND FILTER DESIGN (304183)

Teaching Scheme Examination Scheme Lectures / Week: 3 Hrs Paper: 100 Marks Practical /Week: 2Hrs. Termwork:50 Marks

Unit I: Network Functions & Fundamentals of Network Synthesis (5 Hours)

Network functions, properties of all types of network functions, Effect of poles and zeros on the system

function, network synthesis problems, elements of reliability, causality and stability, Hurwitz’s

polynomial, Positive real function testing, elementary synthesis procedures.

Unit II: Synthesis of One Port Networks (6 Hours)

Properties of RC, RL and LC driving point functions and their synthesis in Foster and Cauer forms.

Synthesis of RLC driving point functions in terms of partial fraction and continued fractions for simple

driving point functions.

Unit III: Synthesis of Transfer Functions (6 Hours)

Properties of transfer function, zeros of transmission, synthesis of Y21 and Z21 with 1ohm termination.

Synthesis of voltage transfer functions using constant resistance networks. Synthesis of open circuit

transfer function (Ladder development).

Unit IV: Passive Filter Design (7 Hours)

Introduction to various approximation techniques, Butterworth and Chebyshev approximation,

derivation of normalized low pass filter transfer function upto 3rd

order by Butterworth approximation

from basic principles. Evaluation of transfer function for Chebyshev filters from pole zero plots.

Synthesis of above mentioned filters with 1ohm termination. Frequency transformation to high pass,

band pass and band stop forms. Normalized low pass filters, frequency scaling and Impedance scaling.

Unit V: Active Filter Design (6 Hours)

Factored forms of the functions, cascade approach, Biquad topologies: positive and negative feedback

topology, coefficient matching techniques for obtaining element values. Sallen Key low pass circuits. RC

to CR transformations for high pass filter design of Sallen Key band pass circuit. Substitution of passive

elements by FDNR, Gyrator and GIC.

Unit VI : Sensitivity and Performance Parameters (6 Hours)

Definition of sensitivities. Sensitivity analysis of the above circuits with respect to parameters like Q, ωo

and component values. Multi-element deviation, Gain sensitivity. Factors affecting gain sensitivity,

Contribution of the approximation functions, choice of the circuit and component types.

OP-AMP frequency characteristics and compensation techniques, Effect of Op-amp frequency

characteristics on filter performance and other op-amp characteristics like Dynamic range, slew rate,

offset voltage and currents, noise, common mode signals.

Text Books:

1. Franklin Kuo, “Network Analysis and Synthesis”, Wiley international.

2. Gobind Daryanani, “Principles of Active Network Synthesis and Design”, Wiley International.

Reference Books:

1. M.E. Van Valkenberg, “Analog Filter Design”, Harcourt Brace Jovanovich College Publishers.

2. Wai-Kai Chen , “Passive and Active Filters, theory and implementations”, Wiley international

3. Lawrence Huelsman, “Active and Passive Analog Filter Design”, McGraw-Hill Inc.

List of Practicals:

(Minimum 3 practicals to be performed using software like MultiSim®

)

1. For two port LC network, find all network functions and sketch plot poles and zeros. 2. To carry out synthesis of one port LC network into any of the Canonical forms and

verify practically. 3. To synthesize given transfer function into constant resistance network (Bridge T or

Lattice) and verify practically. 4. Design a Butterworth low/high pass filter Sallen Key circuit and verify (at least 2nd

order). 5. Design a Chebyshev low/high pass filter Sallen Key circuit and verify (at least 2nd

order). 6. To find gain of biquad op amp circuit & study sensitivity of gain against the different

components. 7. To study effect of op amp characteristics on filter performance and compensation

techniques for the same at least one parameter to be studied practically. 8. Design build and test a simple audio equalizer using filter concepts.

MICROCONTROLLERS AND APPLICATIONS (304184)

Teaching Scheme Examination Scheme Lectures / Week: 3 Hrs Paper: 100 Marks Practical /Week: 2 Hrs. Practical: 50 Marks

Unit I: Introduction to Microcontrollers (3 Hours)

Microprocessors and Microcontrollers, CISC and RISC Processors, Harvard and Von Neumann

Architectures, Architecture of a Microcontroller, Family members, Microcontroller resources, Resources

in Advanced and Next Generation Microcontrollers.

Unit II: 8051 Architecture (6 Hours)

MCS-51 architecture, Pin description, Internal and external memories, timing diagrams for memory

interfacing, Counters and Timers, Serial communication, Stack and Stack Pointer, Port Structure and

Interrupts.

Unit III: MCS-51 Addressing modes and Instructions (7 Hours)

8051 Addressing modes, MCS-51 Instruction set, Microcontroller Application Development tools-

Simulator, Emulator, In-circuit Emulator (ICE), Logic Analyzer, ISP, Cross assembler, Embedded C.

Unit IV: Serial and Parallel Port Interfacing (8 Hours)

RS 232, RS 485, I2C bus standard, Interfacing ADC, DAC, memory, RTC with 8051/89C51 using I

2C bus.

Interfacing 8051/89C51 to LED with and without interrupt, ADC, DAC, LCD and keypad (consider

debounce), Stepper motor, SPI bus.

Unit V: PIC Microcontroller (6 Hours)

Introduction to PIC architecture 18FXX series, Programming PIC in C

Unit VI: System Design (6 Hours)

Case Study- system design using 8051/89C51/PIC microcontrollers - General Data Acquisition system,

TCP-IP based application, Robot development.

Text Books:

1. Muhammas Mazidi, Janice Mazidi and Rolin McKinlay, ‘The 8051 Microcontroller and

Embedded Systems using Assembly and C’, Pearson Education, 2nd

edition.

2. Kenneth J. Ayala, ‘The 8051 Microcontroller’, Cengage Learning.

3. Mazidi, Rolin McKinlay and Danny Causey, ‘PIC Microcontroller and Embedded Systems using

Assembly and C for PIC18’, Pearson Education.

Reference Books:

1. Myke Predko, ‘Programming and customizing the 8051 microcontroller’, TATA McGraw Hill.

2. Ajay Deshmukh, ‘Microcontrollers Theory and Applications’, TATA McGraw Hill.

3. Subrata Ghoshal, ‘Embedded Systems and Robots- Projects using the 8051 Microcontroller’,

Cengage Learning.

List of Practicals:

1. Programming of 8051on simulator (simple programs)

2. Programming of 8051on simulator (complex programs)

3. LED interfacing with 8951 using timer with interrupt

4. LCD and keypad interfacing with 8951 using assembly and C in 4 bit and 8 bit mode

5. ADC interfacing using I2C bus with 8951/PIC 18FXX

6. DAC interfacing using I2C bus with 8951/PIC 18FXX

7. Stepper motor interfacing with 8951/PIC 18FXX

8. Serial communication using RS 232 using serial port of 8951 with and without interrupt

9. Case Study – I*

10. Case Study – II*

* Any two designs specified in Unit 6 should be implemented and tested using any microcontroller

DIGITAL SIGNAL PROCESSING (304185)

Teaching Scheme Examination Scheme Lectures/Week: 4 Hrs Paper: 100 Marks

Practicals/Week: 2Hrs Oral: 50 Marks

________________________________________________________________________

Unit I: Characterization of LTIDT System (8 Hours)

Basic elements of DSP system, advantages of DSP over analog processing, Sampling theorem, practical

sampling, aliasing.

Time Domain Analysis of DT System: Difference equations, Recursive solution of difference equation,

zero input response, unit impulse response, system response to external input, convolution sum, total

response of DT system, causal LTIDT system stability.

Systems with Finite Duration and Infinite Duration Impulse response, structures for the realization of

LTIDT systems, Direct form I & II.

Unit II: Fourier Analysis of DT System (6 Hours)

DTFS & DTFT, Power & Energy density of periodic and aperiodic signals, computation of DTFT, DFT ,

properties of DFT, FFT, DIT, DIF..

Unit III: DT System Analysis Using Z- Transform (8 Hours)

Need of Z – transform, Definition, Inverse, properties, Z-Transform solution of difference equations,

Connection between DTFT and Z-Transform, System Stability and Z-Transform, classification of system

using pole zero plot.

Unit IV: Digital Filters (8 Hours)

Realization of digital filter, Causality & its implications, Time domain equivalence criterion, IIR design by

impulse invariance method, bilinear transformation, FIR design

Linear phase conditions, time domain equivalence method, frequency sampling method.

Unit V: Multirate Sampling (8 Hours)

Introduction, Decimation, Interpolation, sampling rate conversion, polyphase implementation of filter.

Applications: DAC in compact Hi-Fi Systems, Acquisition of High quality data, Multirate narroband digital

filtering , Hi resolution narrow band spectral analysis.

Unit VI: DSP Hardware Platform (8 Hours)

Introduction, Difference between Microprocessor and DSPs, General Architecture of DSPs.

Case Study of TMS320C67XX, Speech processing, Interpolation and Decimation implementation ,

Convolution Sum.

Text Books:

1. John G.Proakis, D.G.Manolakis, “Digital Signal Processing”, Pearson Prentice Hall.

2. Emmanuel C, Ifeachor , B.W.Jervis, “Digital Signal Processing”, Academic Press.

Reference Books:

1. B.P. Lathi, “Signal Processing and Linear Systems”, Oxford University Press.

2. S.K. Mitra, “Digital Signal Processing Computer Based Approach”, TMH.

3. B.Venkataramani, M. Bhaskar, “Digital Signal Processors”, Architecture programming &

applications, TMH.

4. Avtar Singh, “Digital Signal Processor”, Cengage Learning.

5. TEXAS DSP Manual.

List of Practicals: Software platform: C++/MATLAB®

Minimum 12 practical, out of following 15 practicals including at least two practicals on filters, one

on multirate sampling and one on DSP Hardware Platform.

1. To find total response of DT system described by the difference equation.

2. To study sampling theorem and aliasing.

3. To find DTFS for periodic and DTFT for non periodic signal.

4. To find DFT of DT signal.

5. To find the response of DT system using convolution.

6. To find the stability of DT system using the concept of convolution.

7. To perform convolution using overlap and add method.

8. To find Z and inverse Z transform and draw sketch pole zero plot of Z-domain transfer function.

9. To solve the difference equation and find the system response using Z transform.

10. To find the impulse invariance IIR digital filter to realize the first order analog

Butterworth filter.

11. To design IIR filter for first order analog Butterworth approximation using bilinear

transformation.

12. To find and plot the frequency response for the rectangular and Hamming window.

13. To Design FIR filter using frequency sampling method.

14. To study interpolation and decimation.

15. To implement any two of the following applications using DSPs.

i) Convolution Sum ii ) Speech processing iii) Interpolation and Decimation .

ELECTRONIC DESIGN PRACTICE (304186)

Teaching Scheme Examination Scheme Lectures / Week: 1 Hrs Oral: 50 Marks Practical /Week: 2Hrs

1) Design of Linear Regulated Power Supply:

Assignment of Linear Power Supplies for Laboratory use should be selected from any one type given

below:

1) Dual Tracking.

2) Multiple Outputs CV-CC Modes.

Scope of Design:-

a) Design of Transformer.

b) Proper selection of Rectifier and its appropriate rating.

c) Filter Design and Proper selection of Filter component with rating.

d) Justified selection and Design of Regulator Circuit.

e) Current boosting using external pass/parallel transistor.

f) Over current/ Short-circuit, Over voltage, Thermal Protection.

g) Indication of V, I and mode of operation on Panel by Meter or Display.

h) Indicators for Over Voltage, Over Current.

i) Input Power considerations and Protection circuit like EMI Filters, Fuses, MCB.

j) Thermal considerations- Heat Sink calculations.

k) Enclosure Design.

l) Component List in the form of Bill of Material.

m) Performance Analysis.

2) FSM / ASM Based Digital Design.

Assignment should be based upon real life problems like Traffic Light Control, Elevator Control, Vending

Machine, Lift Control etc.

Scope of Design:-

a) Selection of State Machines: - Moore and Mealy Machines.

b) State Table and State Diagram.

c) Implementation of Combinational Logic Design in State Machine using

MSI, LSI Devices like Multiplexers, Decoders, ROM’s, PLD’s

d) Fuse Map generation techniques, Design using PAL/PLA.

e) ASM technique includes: - Justified Algorithm and ASM Chart.

f) Representation using Simplified Block diagram.

g) Justified selection of digital circuit for each block.

h) List of digital IC’s with their Logic Family Specifications and Features.

3) Data Acquisition System.

Assignment should be based on Specific Industrial Application. It should have at least Two Channel

inputs.

Scope of Design:-

a) Selection of appropriate Signal Sensing Schemes.

b) Design of signal conditioning circuits.

c) Signal conditioning may consists of V to F, F to V, Chopper Amplifier etc.

d) Selection of suitable A to D Converter.

e) Selection of Micro-controller with appropriate Interfacing circuit.

f) Output Interfacing such as V/I, Relay, RS 485, Fiber Optic Link.

g) Indication of Parameters using Analog Meter, LED/LCD Display,

a) Alphanumeric DPM (Use Simple scheme and one type of indication only).

h) System should include circuits such as RMS to DC Converter, PLL,

b) Log-Amplifier, Programmable Gain Amplifier, Multiplier/Divider,

c) Balanced Mixer, Error-Amplifier as and when required.

i) Component List in the form of Bill of Material.

4) Audio Amplifier System Design.

Assignment should be based on at least three source signals with all possible features considering the

latest Audio Amplifier Systems. It should be specified with Power Output (Maximum 100 watt), Speaker

Load resistance (Maximum 100 Ohm) and Number of Graphic Equalizer Bands (Maximum 7 bands).

Scope of Design: -

a) Sources of signals like Microphone, CD, Tape-head Auxiliary Input.

b) Design of source signal conditioning.

c) Equalization Design of front end High Input Impedance stage.

d) Pre driver and appropriate Power Amplifier Configuration Design

e) Special Features like Volume Control & Tone Control Design.

f) Sound Level Indication by Bar Graph Display.

g) Considerations of Performance Parameters like Distortion, Hum & Noise.

h) Considerations of short circuit protection. Consideration of SOA.

i) Selection of required Power Supply for the system.

j) Facility to support Battery operation.

k) Justified selection of IC’s or Transistors.

l) Enclosure Design.

m) Component List in the form of Bill of Material.

n) Performance Analysis.

References:

Data and Application Manuals and Application Notes from:

1) RS Component Catalog.

2) National Semiconductor regulator design manual.

3) Analog Devices Data Manual.

4) Motorola, “Linear / Switch mode power supplies”.

5) Motorola Power Transistors & Thyristors data hand book.

6) Philips Audio Data Manual.

7) BEL Transistor Manual

8) Tower’s Data Manual.

9) “PIC 16XX data book.”

10) Texas instruments, “Linear interface and applications circuit design”

11) CEDT References.

12) “ATMEL micro controller data book.”

13) Intel Peripheral Manual.

Reference Books:

1) Paul Horowitz, “Art of Electronics”.

2) B.S.Sonde, “Power Supplies”.

3) B.S.Sonde, “System Design Using Integrated circuits”.

4) Hill and Peterson, “Digital System Design”.

5) Franklin P. Prosser, David E. Winkel, “The art of digital design”, (PHI).

6) Fletcher, “Introduction to digital design”.

7) Tubay Grame & Huelsmann (student Edition-Burr Brown), “Operational amplifiers”

8) Sergio Franco, “Design with Operational amplifiers and analog Integrated circuits”, (3rd edition-

TMH).

9) Peatman, “Micro controller system design”.

10) Gotlib, “Power Supply Design”.

11) Palls-Areny, “Analog Signal Processing”.

12) Handbook on Sound Engineering.

13) Charles H. Roth Jr., “Fundamentals of Logic design”, Fourth Edition, Jaico Book.

Web References:

1) www. Alldatasheets.com

2) www. national.com (use free power supply design tool from National Semiconductor website

and design a multi output voltage SMPS using this tool).

3) www.microchip.com

4) www.atmel.com/products

5) www.8051_hw.com

6) www.8052.com

7) www.ti.com

SIGNAL CODING AND ESTIMATION THEORY (304187)

Teaching Scheme Examination Scheme Lectures / Week: 4 Hrs Paper: 100 Marks Practical /Week : 2Hrs. Practical: 50 Marks

Unit I: Information Theory and Source Coding (7 Hours)

Introduction, Uncertainty, Information and Entropy, Source coding theorem,

Huffman , Shanon Fano , Arithmetic , Adaptive coding , RLE , LZW Data compaction, , LZ-77, LZ-78

Discrete Memory less channels, Mutual information, channel capacity, Channel coding theorem,

Differential entropy and mutual information for continuous ensembles

Unit II: Channel Coding (6 Hours)

Information, Capacity theorem, Implication of the information capacity theorem, Information capacity

of colored noise channel, Data compression : JPEG , DCT , Introduction to Wavelet Error Control Coding:

(Linear Coding ) Error Coding Introduction , Decoding , Circuit Implementation , Error Probability of :

LBC, Cyclic, CRC (Except Error probability ) .Perfect Code , Error Coding Techniques :Fire Code, Golay

Code, Hamming codes,

Unit III: Convolution Codes and Coding methods (8 Hours)

Introduction to convolution codes, Tree codes and trellis codes, Polynomial description of convolution

codes, distance notions for convolution codes, Distance Notation The generating functions, Matrix

description of convolution codes, Vterbi decoding of convolution codes, Distance bounds for

convolution codes, Performance bounds, Known good convolution codes, Turbo codes, decoding,

Introduction to TCM, Concept of coded modulation, Mapping by set partitioning, Ungerboeck’s TCM

design rules, TCM decoder, FEC and ARQ systems , Performance of all codes.& Computation of Dfree.

Unit IV: Application of Information Theory (8 Hours)

Group , Field , Vector , GF addition , multiplication rules. Introduction to BCH codes, Primitive elements,

Minimal polynomials, Generator polynomials in terms of Minimal polynomials, Some examples of BCH

codes,& Decoder, Reed- Solomon codes & Decoder, Implementation of Reed Solomon encoders and

decoders,

Data compression: Introduction to data compressions

Introduction to Cryptography: DES, AES Algorithm, Overview of Encryption Techniques, RSA algorithm,

Unit V: Estimation Theory (8 Hours)

Maximum Likelihood estimation (MLE): exact and approximate methods (EM, alternating max, etc)

Cramer-Rao lower bound (CRLB) Minimum variance unbiased estimation, best linear unbiased

estimation Bayesian inference & Least Squares Estimation Basic ideas, adaptive techniques, Recursive

LS, etc Kalman filtering (sequential Bayes)

Unit VI: Detection Theory (7 Hours)

Likelihood Ratio testing, Bayes detectors, Minimax detectors,

Multiple hypothesis tests Neyman-Pearson detectors (matched filter, estimator-correlator etc),

Generalized likelihood ratio tests (GLRTs) Applications

Text Books:

1. Simon Haykin ,” Communication Systems” , 3E

2. Khalid Sayood ,” Introduction to Data Compression” , Morgan Kaufmann Publishers

Reference Books:

1. David Soloman , “Data Compression”, Springer

2. Ranjan Bose, “Information Theory coding and Cryptography” ,TMH.

3. Bernard Sklar, “Digital Communication-Fundamentals & Application” ,Pearson Education: 2nd

Edition.

4. J. G. Proakis, “Digital Communication”, MGH International: 4th

Edition.

5. Heinrich Mery, Marc Moeneclary, Stefan A. Fechtel, “Digital Communication Receivers

Synchronization , Channel Estimation and Signal Processing” , Wiley Publication

6. S.M. Kay, “Fundamentals of Statistical Signal Processing: Detection Theory”, Vol. 1, 2.

List of Practicals :

1) Implementation of algorithms for determination of various entropies and mutual information of a

given channel. Test various types of channel such as

a) Noise free channel.

b) Error free channel

c) Binary symmetric channel

d) Noisy channel

2) Implementation of algorithm for generation and evaluation of variable length source coding using

a) Shannon – Fano coding

b) Huffman Coding

c) Decoder for any one of the above

3) Implementation of algorithms for generating and decoding linear block codes.

4) Implementation of algorithms for (7,4) generating and decoding of cyclic code

5) Implementation of algorithms for generating convolution codes using

a) Code Tree

b) Code Trellis

6) Implementation of algorithms for decoding convolution codes using Viterbi’s algorithm.

7) Implementation of algorithms for decoding of BCH algorithm.

8) Case Study of : Digital Video Broadcasting or Digital Phase Lock Loop or RS Coding & Decoding

SYSTEM PROGRAMMING AND OPERATING SYSTEMS (304188)

Teaching Scheme Examination Scheme Lectures / Week: 3 Hrs Paper: 100 Marks Practical /Week: 2Hrs. Term work: 50 Marks

Unit I: Basics of system programming (6 Hours) Language processors: Language processing activities, Fundamentals of language processing, Fundamentals of language specification, Language processor development tools. Data structures for language processing: Search data structure, Allocation data structures. Scanning and parsing, Assembler: Assembly language programming, simple assembly scheme, pass structure of assembler, design of two pass assembler Unit II: Macro processor, Compliers and Interpreters (6 Hours) Macro definition and call, macro expansion, Machine Independent macro processor features, Nested macro calls, advanced macro facilities, Design of macro preprocessor. Basic compliers function, Phases of compilation, memory allocation, compilation of expression, compilation of expressions, compilation of control structures, code of optimization, interpreter. Unit III: Linkers and Loaders and Software tools (6 Hours)

Basic loaders functions, central loaders scheme Absolute loaders, Subroutine linkers, relocation Loader, Direct linking loader, Dynamic linking loader, Design of absolute loaders direct linking loader, Implantation of MS DOS linker, Software tools for program development, editors, debug monitor, programming environment, user interfaces. Unit IV: Introduction to Operating System, Process and threads and Deadlocks (6 Hours)

Evolution of O. S. Function, various OS, OS concepts, OS structure Processes, threads, inter process communication, IPC problems, scheduling Resources, introduction to deadlock, ostrich algorithm, deadlock detection and recovery, avoidance, prevention, other aspects Unit V: Memory management (6 Hours)

Basics of memory management, Swapping, Virtual memory, Page replacement algorithm, FIFO, second chance PR, clock PR, least recently used, working set PR, WS clock PR, Design issues for Paging systems, OS involvement with paging, page fault handling, Segmentation

Unit VI: Input and Output, File system (6 Hours)

Review of computer hardware, principles of I/O hardware, principles of I/O software, I/O software layers, disks, clocks, graphical user interface, network terminal, power management Files, directories, file system and implementation, file system layout, implementing files, implementing directories, shared files, disc space management, examples of file system: CDROM, MSDOS, Win98, Unix

Text Books:

1. D. M. Dhamdhare, “Systems Programming and Operating System”, TMH.

2. Andrew S. Tanenbaum, “Modern Operating Systems”, Second Edition, PHI.

Reference Books:

1. J. J. Donovan, “Systems Programming”, McGraw Hill.

2. Siberschatz A; Galvin P.B; Gagne G, “Operating System Concepts”, John Wiley.

3. Leland L. Beck, “System Software,” Pearson Editions.

List of Practicals

1. a Write C Program to implement Lexical Analyzer for simple arithmetic operation. Involving equal

to E) P arithmetic operators (+,-) Expected O/P to Create:

1. Identifier Table 2.Literal Table 3.Symbol Table 4.Uniform Symbol Table

1. b To implement simple arithmetic operation using Lexical analyzer and compiler using LEX and

YACC

2. Design of PASS I of two pass assembler for a subset of 8086

3. Design of a MACRO PASS-I

4. Design of a MACRO PASS-II

5. Implement Job scheduling algorithms:

1. FIFO 2. Shortest Path First 3. Round Robin

6. Bankers Algorithm for deadlock detection and avoidance

7. Implementation page replacement algorithm :

1. FIFO 2. LRO

8. Write an interactive shell program on UNIX / LINUX

9. Case Study:

A. UNIX/LINUX/WIN 2000

B. Device drivers

COMPUTER ORGANIZATION AND ARCHITECTURE (304189)

Teaching Scheme: Examination Scheme :

Lectures: 4 hrs / week Theory: 100 Marks

Unit I: Computer Architecture and Arithmetic (7 Hours)

Computer Architecture, Von Neumann Architecture, Functional Units, Basic Operational Concepts,

Performance, Processor organization, Bus Structure, Register Organization, Instructions and Instruction

Sequencing, Addressing Modes;

Arithmetic: Multiplication of positive numbers, Signed Operand Multiplication, Booths Algorithm, Fast

multiplication, Integer Division, Floating point Numbers and Operations, IEEE standards, Floating point

arithmetic.

Unit II: The Central Processing Unit (7 Hours)

Basic Processing Unit: Single Bus Organization, Register Transfer, Performing an arithmetic or logic

operation, Fetching and storing word from/to memory, Execution of complete instruction, branch

instruction, Multi-bus Organization;

Hardwired Control: Design methods – State table and classical method, A complete Processor,

Micro-programmed Control: Microinstructions, micro- program sequencing, wide branch addressing,

microinstructions with next address field, perfecting microinstructions, emulation.

Unit III: Input-Output and Memory Organization (7 Hours)

I/O Organization: Accessing I/O devices, Interrupts: Interrupt Hardware, enabling and disabling

interrupts, handling multiple requests, Controlling devices, exceptions, Interface circuits, Standard I/O

Interfaces: PCI, SCSI, USB;

The Memory System: Memory Hierarchy, Internal organization of memory chips, Cache memory,

Performance Considerations, Virtual Memories

Unit IV: Introduction to 16 bit microprocessor (7 Hours)

The 8086 microprocessor, architecture of 8086, pin diagram, programming model of 8086, logical to

physical addressing, addressing modes, Instruction set, interrupt structure, 8086 Assembly language

programming.

Unit V: Introduction to 32 bit microprocessor (7 Hours)

The 80386 microprocessor, Features and Architecture, Pin Description, Functional Description, Register

Set, programming model of 80386: real mode, protected mode and virtual mode, paging and

segmentation, Multitasking, Interrupts, Exceptions and I/O

Unit VI: Parallel Architectures and ARM (7 Hours)

Parallel architectures, classification, Instruction level pipelining and Superscalar Processors, The

structure of general purpose multiprocessor, Multiple Processor Organizations, Closely and loosely

coupled multiprocessors systems,

Advanced RISC Machines (ARM): Introduction to RISC, Instruction execution, characteristics, RISC

architecture and pipelining, RISC Vs CISC.

Text Books:

1. C. Hamacher, V. Zvonko, S. Zaky, “Computer Organization”, McGraw Hill, 2002, 5th

edition.

2. Douglas Hall, “Microprocessors & Interfacing”, McGraw Hill, Revised 2nd

Edition, 2006.

3. Turley, “Advanced Programming of 80386”.

Reference Books:

1. J. Hays, “Computer Architecture and Organization”, 2nd

Edition, McGraw-Hill, 1988 ISBN 0 – 07

– 100479 – 3

2. Stallings William, “Computer Organization and Architecture: Principles of structure and

function”, 2nd

Ed, Maxwell Macmillan Editions, 1990 ISBN 0 – 02 –946297 – 5

3. John Uffenbeck, “The 8086/88 Family: Design, Programming & Interfacing”, PHI,

4. Liu, Gibson, “Microcomputer Systems: The 8086/88 Family”, 2nd

Edition, PHI,2005

INDUSTRIAL MANAGEMENT (304190)

Teaching Scheme Examination Scheme

Lectures/Week: 4 Hrs Paper: 100

Marks

Practical/Week: 2 Hrs Practical: 50

Marks

_____________________________________________________________________

Unit I: Current Industrial Management Practices (6 Hours)

The basics of management theory and practices; Quality concepts, phases in quality management;

Economic framework, productivity, efficiency and cost-minimization for peer group competitiveness;

Globalization perspective; Examples of global business failures.

Unit II : Rise of Convergence Technology and its implication for technology industry and for

incumbent industry models with risk of competitive failure from rise of upstart businesses

(6 Hours)

Convergence of computing telecommunications, consumer electronics, and content, Surveys; Elements

of Convergence Technology (CT); Impact of CT on electronics, software and telecommunications

industry; Impact of CT on incumbent industry models with risk of competitive failures, Examples.

Unit III: Impact of CT by way of formulation of innovative, internetworked open system view of

business as potential source of information, i. e., as business IS view, and need to go beyond TQM

and Reengineering: (6 Hours)

Mobility as value networking (creating) across the enterprise and inter-enterprise wide supply

chains; Development of CT driven innovative, internetworked business models;

Example(s) of business failures in case of non-application of CT driven business models;

Examples of information economy based business models; Issues in implementation,

Inadequacy of TQM and reengineering techniques; Need for future development in QIS and its

organizational and social implications-Complexity Advantage.

Unit IV: Conceptual Foundations – Designing business IS view for complex and changing markets

(6 Hours)

Shift from material and energy processing based exogenous business decision- making to information-

origination based endogenous (dynamic) decision-making for business opportunities; Shift from task

based business model to process-based business model, Shift from decision-making based on minimal

(computing) information to dynamic decision-making based on maximal, shared information; Shift from

Collective to Individual Design Decision leading to IS view of an engineering system/ an organization/ a

firm/ a company/ a business; Description of maximal information for competitive advantage; Systems

view of business process IS view and its integrity requirements; Implications of uncertainty in IS view -

System failure from Complex Errors, Need for Information Evaluation - Introduction to Information

Integrity (I*I) index, Information Integrity Risk (I*I Risk); Definitional statement of Information Integrity

Technology as a new market opportunity space.

Unit V: Introduction to System Dynamics Modeling and Computer Simulation Language Tool for I*I

Technology Development (6 Hours)

System Dynamics Approach for Large, Complex Real World Problems, Problem Identification and its

System Conceptualization, Introduction to the Computer Simulation Language, Model Formulation,

Model Testing and Further Development, Policy Analysis and Recommendation;

Study of System Dynamics Modeling software – STELLA (its educational version).

Unit VI: Information Integrity Technology Development System (6 Hours)

Information as a composite good of interrelated attributes namely, Usefulness (Relevance),

how usable is information, and integrity (index of correctness and exactness of information);

Attributes of Information integrity; I*I measurement – a definitional treatment; Graphical

representation of cost-benefit analysis of I*I for obtaining optimum I*I for minimizing I*I risk in

business information decision and achieve competitive advantage; Defining of information

topology; Descriptive development of application of information envelope on information

topology to generate flexible business information decision; Presentation of systems view of I*I

Technology Development System, and its descriptive application to an illustrative problem using System Dynamics

methodology.

Text Books:

1. Dinesh Seth and Subhash C. Rastogi, “Global Management Solutions”, Cengage Learning,

Second Edition, USA.

2. B. Davis and Margrethe H. Olson, "Management Information Systems", Mc-Graw-Hill

International Editions.

3. George P. Richardson and Alexander L. Pugh III, "Introduction to System Dynamics Modeling",

System Dynamics Series, PEGASUS Communic1tions.

4. O. P. Khanna, “Industrial Engineering and Management”, Dhanpatrai publications Ltd, New

Delhi.

Web Reference:

www.ciir.org.in

Reference Books:

1. V. Rajaraman, and V. V. Mandkc, Editors, "Information Integrity: Issues and Approaches".

2. Don Tapscott, “Digital Economy”, McGraw-Hill, Inc., USA.

3. Michael Hammer, “Beyond Reengineering”, Profile Books, London.

WAVE THEORY AND ANTENNA (304191)

Teaching Scheme Examination Scheme Lectures / Week: 3Hrs Paper: 100 Marks Practical /Week: 2Hrs. Practical: 50 Marks

Unit I: Electro Magnetic Waves: (6 Hours)

Maxwell Equations in phasor form, Wave Equation, Uniform Plane wave in Homogeneous, free space,

dielectric, conducting medium. Polarization: Linear, circular & Elliptical polarization, unpolarized wave.

Reflection of plane waves, Normal incidence, oblique incidence, Electromagnetic Power and Poynting

vector.

Unit II: Wave propagation: (5 Hours)

Fundamental equations for free space propagation. Ground, sky & space wave propagations. Structure

of atmosphere. Characteristics of ionized regions. Effects of earth’s magnetic field. Virtual height, MUF,

Skip distance. Ionospheric abnormalities. Multi-hop propagation. Space link geometry.

Unit III: Antenna fundamentals: (5 Hours)

Introduction, Types of Antenna, Radiation Mechanism.

Antenna Terminology: Radiation pattern, radiation power density, radiation intensity, directivity, gain,

antenna efficiency, half power beam width, bandwidth, antenna polarization, input impedance,

antenna radiation efficiency, effective length, effective area, reciprocity. Radiation Integrals: Vector

potentials A, J, F, M, Electric and magnetic fields electric and magnetic current sources, solution of

inhomogeneous vector potential wave equation, far field radiation.

Unit IV: Wire Antennas and Antenna Arrays: (8 Hours)

Analysis of Linear and Loop antennas: Infinitesimal dipole, small dipole, and finite length dipole half

wave length dipole, small circular loop antenna.

Antenna Arrays: Two element array, pattern multiplication N-element linear array, uniform amplitude

and spacing, broad side and end-fire array, N-element array: Uniform spacing, non uniform amplitude,

array factor, binomial and dolph chebyshev array.

Unit V: LF to HF Antennas: (6 Hours)

Structural details, dimensions, radiation pattern, specifications, features and applications of following

antennas: Hertz & Marconi antennas. Effects of ground & antenna height. Electrically short antennas.

Beverage antenna. Medium frequency antennas: Tower radiation, construction, feed, ground system.

HF antennas: Resonant & non-resonant antennas. Harmonic antenna. V- Antenna. Rhombic antenna.

TW antennas. Loop antenna. Ferrite rod antenna. Whip antenna.

Unit VI: VHF to SHF Antennas: (6 Hours)

Structural details, dimensions, radiation pattern, specifications, features and applications of following

antennas: Folded dipole, Yagi-Uda, Biconical, Helical, Horn, Slot, Microstrip, Turnstile, Super turnstile &

Lens antennas. Antennas with parabolic reflectors.

Text Books:

1. C.A. Balanis, “Antenna Theory - Analysis and Design", John Wiley.

2. E.C. Jordon and E.G. Balman, Electro-magnetic Waves and Radiation Systems, Prentice Hall India.

Reference Books:

1. K. D. Prasad, “Antenna & Wave Propagation”, Satya Prakashan, New Delhi.

2. J. D. Kraus, “Antennas”, Mc Graw Hill.

List of Practicals:

Group A

To Measure Radiation pattern, Return Loss, Impedance, Gain, Beam width for the following antennas

(Any Five)

1. Dipole antenna

2. Folded Dipole

3. Yagi-Uda

4. Horn

5. Parabolic Reflector

6. Micro strip Antennas

Group B

Plot Standing Wave pattern and Measure SWR for open, short and matched termination

Group C

MATLAB Simulation of following antenna arrays (Plotting radiation pattern)

1. Broad side linear array with uniform spacing and amplitude

2. End fire linear array with uniform spacing and amplitude

3. Binomial array

4. Dolph-Tchebyshev

Any three of above experiments to be carried out by using any student trial version EM simulation

software such as CAD-FEKO, NEC, IE3D etc.

MINI PROJECT AND SEMINAR (304192)

Teaching Scheme Examination Scheme Practical: 2 Hrs/Week Oral: 50 Marks ____________________________________________________________________________

1. Maximum Group Size: Minimum 2 and maximum 3 students can form a group for the mini project.

2. Project Type: The selected mini project must be based on development of a prototype electronic system/product mandatorily having a hardware component with supporting software.

3. Guidelines for Mini Project : • Projects enhancing the programming skills of the students and making use of

softwares like Matlab, pspice, labview, cadfeko and programming languages like c, c ++ and VHDL must be promoted.

• At an institute level, projects must preferably justify all the domains like Signal processing, Telecommunication engineering etc.

• Theme based projects can be practiced at an institute level. • Software projects must be tested and analysed with all the possible inputs and

must take software engineering principals into consideration.

4. Execution steps for Mini Projects: (i) Complete Paper work Design using datasheets specifying :

• Selection criteria of the components to be used.

• Specifications of system i/p and desired o/p. • Module based hardware design.

• Test points at various stages in various modules (ii) The circuit should be simulated using any of the standard simulation

software available ( either complete circuit to be simulated , if possible or an appropriate part of the circuit can be simulated)

(iii) Algorithm and the flow chart of the software part must be defined. (iv) Result verification for hardware and testing the algorithms. (v) Comparison with the paper design to identify the discrepancies, if any.

Justification of the same must be given. (vi) Verified circuit should be assembled and tested on breadboard or general

purpose board. (vii) Simulation results and/or the snapshots indicating the current and voltage

readings or detailing the test point results at various stages must be preserved and included in the project report.

(viii) Art work / layout of the circuit using standard layout tools. (ix) Assembling and testing of circuit on final PCB. (x) Design and fabrication of suitable enclosure and outside fittings such as

switches, Buttons, knobs, meters, indicators, displays etc. (xi) Final testing of the circuit using the earlier defined test points. (xii) Preparing Bill of components and materials. (xiii) Drawing entire circuit diagram ( component level), outlining various blocks

indicating test points, inputs and outputs at various stages on A3 graph sheet

5. Guidelines for the Seminar :

• Seminar is based on the Mini Project topic. • The seminar shall consist of the Literature Survey, Market survey, Basic project

work and Applications of Mini project. • Seminar Assessment shall be based on Innovative Idea, Presentation skill, depth

of understanding, Applications, Future Scope and Individual Contribution. • Maximum three students can deliver a seminar on one topic.(Three students per

group) • Each group shall be given time of 20 mins for presentation and 5 mins for

question answer session. • A certified copy of seminar/ project report shall be required to be presented to

external examiner at the time of final examination.

TEST & MEASUREMENT TECHNIQUES (304193)

Teaching Scheme Examination scheme

Theory/Week: 01 Hr

Practical /Week: 2Hrs. Oral: 50 Marks

List of Experiments:

1) Statistical Analysis

a) Calculate mean , standard deviation, average deviation, Variance

b) Probable error for one reading & for mean

c) Plot histogram

d) Compare results with 3 ½ & 6 ½ digit DMM

2) Study of DSO

a) Different modes DSO such as Roll , Average ,Peak Detection

b) Capture transients

c) FFT analysis

d) Various MATH operations

3) Study of True RMS meter

Measure RMS , Peak , Average of various waveforms

For example output of Half controlled rectifier & Full controlled rectifire Circuit

4) Virtual Instrument Modelling using software like LABVIEW.

5) Study of programmable LCR meter

a) Measure L , C & R

b) Measure Q , Dissipation factor & Power factor of given component.

6) Study of Spectrum Analyzer

c) Harmonic analysis

d) Test frequency response of filters & HF amplifier

e) Spectrum of AM & FM

7) Study of Logic Analyzer

Timing & state analysis of given DUT

8) Study of OTDR

a) Measure cable length

b) Locate faults in the fiber cable

c) Calculate/ observe various losses such as attenuation loss , bending loss etc

9) Study of Frequency Counter

Principle of frequency counter, study of its different modes of measurement & different

techniques for High frequency measurement

Measurement of various parameters such as frequency, time, ratio & pulse width.

10) Calibration of DVM

a) Calibrate DVM for DC Voltage measurement.

b) Calibration for AC Voltage measurement.

c) Calibration for DC Current measurement.

11) Study of Network Analyser

a) Gain/Phase measurement

b) Impedance/Reflection measurement

��������

������������� ���������������������������

���������������������������

�������

������ ������������������ �� ��!"����

#� $%&� $� ��� '�� $�� ��� �

� ���������(� � � � � � � �

������ �� ������������������ � �� ���� ��� � � ����

������ ��������������� � �� ���� � � ��� ����

������ � ����������� ��������� � �� ���� � ��� � ����

���������������� �����������!�

��� ������������������ � � ���� � � � ����

������"��#�����$��������%���������

�� ���� � �� ���� � � ��� ����

����&� '����������� � �� � ��� � � ���

� ��� ����)��������������� ��� ��� *��� ���� *�� ���� +*��

� ���������((� � � � � � � �

����(� �� ����������������� � �� ���� � ��� � ����

����)� ���������!�*�������"�������� � �� ���� ��� � � ����

����+� ���,���� ������ � �� ���� � ��� � ����

������� �� ���������� � �� ���� ��� � � ����

������� -�������������!�.���"������������� � �� ���� ��� � � ����

������� /��0� �#�1������������ � �� � ��� � � ���

� ��� ��������� ����������� ��� ��� *��� �*�� ���� � +*��

��� � �����#�#������� �������������2��

���� � �������3��0����0�������������� ����,������������������� �������,����

#���� �,�� 4�� 4��������

� � 15��� 1��������5����3�����

� � 1� 1�#����

� � �/� �����3��0��

� � $��� $�����

� � 1��� 1����������

� � ��

��������

-��.�����/����$���0�$����

����������� ��$���(�����������������

1���2���3�4(5��&��(65�7�(�

������������� � ����������������

4�������� � ��53��0� � � ����� ������0��

1��������� �� ��53��0� � �����3��0�� �����0��

� � �

� ��������(� ����

�� ����0�8�/��� ����9 ����� ���

� ����,��������������� ���6�� ��������������� ��,��������������� �����������������������6�

.2'22 2� ����� ���� � ���� ������6� � ���� ������� ,����� ��� �������� ��������6� "����������7��

� ������

8�/�,��������������06�������6��������6�8�����������������0���6������������#�����2�

���9 �����9��������#����6�����������#������������:�,���,�� ���#������#����2�

�� $�:�������:�� )�

� ;����� ��� � �����6� �����#��� ������ ����3�6� ���<��� ��������� 3�� � �<����� ���� ���#�=������

� �����6� ��������0���� ����36� ������� ��������� ���<��6� ������� ��� #�3��� ����3�3�� � �<�����

�������#�=������� �����6���������������3�>��0�����"�����#�������2�

�� ��� � �� ��� � �������� )�

� ��� � �"�����?�

@����� ��#������ ����3�����������6� ��#�����3���������� ����3�6�,����������������������� 6�

���0������A����6� �2'2$2�������� ����3� � �����6� ,����� ������ �������6� �������������� �������

,������>��������� ���6����������������#��#��������������#������������:������,���6�����������

����� ��� ,���� #����6� ���<��� ��<��������� ���� ,���� ��� ������6� ���������� ��� ���������

���������6������������������,��0��2�

�� � �"�����,�

/������� ���,���6� ��A�������� ���� ������������ ��� 3������ >�����6� ,���� ���� ������� 3����6�

��������� ��� ,���� ���� ������� 3����6� ������� � ��� ,���6� #�������� ���� �����A����� ������� 3����6�

�:������ ������� ��������������3������ >�����6� ���������� ����� ��� #����� ���3����6�3������

>��������,>���������,����������������������������2�

� ��������((� �

� &���������) /:�� � ���

� ;����������� �<������� ��� ������6� ���<��� ��������6� '������������ ��� �������� �������

�������� ���� ��#��� ���� ���#��� � ���6� ;����������� ��� �#����!� ������6� ���0� ���� �������

���3 ����6����������������3 ����������������6������������������������������3 ���������

A��������##���������6���������������������������3 ����2��

�� ������ ��9������� )�

� ��#��6��##�����������������������������#�����6������������������������<������������ �������

���#�������� �#�����6� ������ ��� ����6� ������� ��� ������� ���� �������� �#�����6� �#������ ���

�����������#�������6� ����������� ������� �#�����6� ������� ���������#�����6������������ �#�����

B� ������������������������C�' ���#������2��

&� ;� ��� �<�9��&��.��� )�

� ;� �� ��.�?��

��������������������������������������D�,����6�������������������� �#����������� ����,���6�

#�3�������������,����6������#��������#�!�����#6����������������6����������������������������6�

��:�����#�3������������6�����������������������D�,����������������������7�����������6�

,���� ����������� ��� ���6� ������A�� ��A�������� ���� ������������ ��� ����� ���� D� ,����6�

������������������##��������������������,����2�

��������

�������9��?��

"���������������3���� ��#��6� ���� ���3���� ��#��6� ��������� ���3���� ��#�6� �������������3����

��#��6���#������������������������������2�

��������=�

�����3��0�� ��������������?�

�2�� �/$�������� #��>����� ,�������� �,�A�������2� �� � �������#��>���� � ���� �������� ��� �3��

���� ��#������ B.�C� ��=�� � ����?� � ���� ��A��A��� �����,��� ���3���� 3�� � �� #���� ����� ����

�A������ ����������� ���� �� ��� � ���� ��A��A���� ���3����� ��� ����A������ ���#������2�

������������� ����������6� �������� ����� � ���,���� �������������� ����������� � ����� ,��

�#�������� ��� ��� ��� ��0�� ��� 3��0���� ���3���2� .� ������� ��#���� ��A���� ���� ����������

������������� ��� � �� ������� ��� ���#������� ���� �����,��� � ����� ,�� ��,������� ��� ��

��#����������2�

�������#��>������ �����,������ ����������E������������ �������'�����7����#����������

��� ���� ��������� ��A����� ��� � �� �����,��2�������� ����� ,��0� � ���� ,�� �����3 ���A���

��������������� ��A���������������������������#������2�

�2�� ;���� ����������������,���������,�A�������2�

<������� �����

$����������#��>�������3������ �����,����������������������������������".��

����3�����

<���������;��=��

�2� ' ������ F2 2� ���� ��� 0�� "2-26� G�� ������� ����������� ������H6�I��3� �����������

1�,���������"�2�4��2���

�2� '#����� 2;2� ���� ' ��#� �2 2� 6G������� ��� �� ���� �������H� 61�������� �����

�������������2�

�2� @ �������D2@�6G������������ ���� �������H6�������I��3������1�,���������"�2�4��2�

2� @���0�12�2�����$2� ������.�����6G�� ����������H6�I��3������@��0�"�2����2�

�2� /�������"2�$�� 3���6G�� ����"��#�������������H6/���� 1�,��� ����"�2� ���� F�����

1�,���������������2�

&2� G�����������H612'2I2�"������������� ������6�"���,�����2�

(2� F�A�����-2"6G;����������������� ����"��#�������������H6F� ��/���������'���2�

)2� ����� .2'26� ����3��0�� .2-2� ���� 4��� ���� �2I6G� ����� ���� 1��,����� ��� �� ����

������H�6�'� ���7��$�������'�����2�

�������

-��.�����/����$���0�$�����

����������� ��$���(����������������

1���2��4�3���<35�)�<�

������������� � ����������������

4�������� � ��53��0� � � ����� ������0��

1��������� �� ��53��0� � 1��������� �����0��

� � �

� ��������(� �

�� �����9���� ������������4���) �:� ���

� '������ ���� ��������� ������ ���� ��������6� ����� ��� ���� ��������6� � ���� # �������

��� �����6�4�3����� ������������6�� ��������������A���6�A����,���� ��������������A���6�

���� ��������� ������������6� ������#��� ���� ���������#��� ���������6� ����������� ���������2�

���������������������� ��������������

� ���������������� ����������������<����������"���������������������������������������

��� ;������6� 1������� ����4�#����� �<�������2� � ����@�������� ����������� B���#�������6�

���� ���:��������A������C2� ���������������� ����������������<�������� ���������������

�����# �������������������B�������A�����C������������������������������������������2�

�� '��� �������� ���� /������������ �������� )�

� 3�� ���� ��������������� ���#������������#������3���6� ����3���������6� ����3��# ���6�

� ������������������������6���������� � ��0���������������������������������������# �������

,������

$���������������������������� ���������������3�� ������������������ ������������������

#�����3���6���������������# ���2�

�� ����� � ��������� )�

� ��#��� ��� ����6� ��A������� �<������� ���� ��������� ������ ���������� ����� ����6� ��������� ����

���������������6�� �����������<������������B3�� ��������������C�����2�;�������������6�����

�������A�����6��A�����������������A�����2�

-���� /������������ ������?�@�������,��6�;����������,��6�������������������

���#��������� �������#��6�A���������������������������#������������������6�

� ��������((� �

� ���� �< ������� ���

� 1 ������������������6�@���0�,�������������6�'#�����������������������A��#�3��6����������

����� ��������6� '������@���=����� ��36�-��������� ��3��� 1���0�6�/����6�8��� ���7�� ����

4��,����� ������� ��36� ������������ ���� ���������6� '������� �,���#����6� ����������� ����

������������6�������A���6�-���������A��3�������6�� ����������A��3�������6����������� ����

�:� �����,��3�����3��,���0���������������������������6��������������6�����������������

�������,���������� ��6������������ �����

�� $�����9 �����4������.������� )�

� �� �������������������������������A������6������������A������ �������������

������������6����A�������,��������������?�A���������������#�������6���������������

���,��������� ����# �������������������6����������������,���������3��A���,�����6����3�

��������������������������������������6������������A��������A���,�����6����������#�������

���������������������������������������A�������

&� ��� ��������� �;�� ���� )�

� ;���� 3���6� ���#� 3���� ������������6� ��#��� ��� ,������6� #���� ,������� ���A�� ���� �������

,�������# ���������B%���������������������C���

4��� ��������?� "�������������� ��� ���� �:� ������6� ���#�������� ������,������ ���

��������

#�������6� �������� ���3� �����������6� ���������� ���� �A�#������6� �A������ ���� ���������

�����������6� �������� ������6� 4�������� ���#�������� ����������� ��� ��� ���� %�J�

�������A������ ��� ��� ��� ��������� ���� ������� ���� ��=���� ��� ���� �:� ������6� �������

��������6� #��������� �##���������� ��� ���� �:� ������6� ������������� ��� ���� ���������

���������������� ��<���2�

���������������� ����#�#��

#���������9���������

.��� �� �� :#���������B����C��������������������B�����C������� �������3���������

�2� ������������������ ��������������A������������������

�2� ������������������ ��������������A������������������#�3�����

�2� ������������������ ��������������A����������#������3����

2� ����������������� ���������������������������������������A��������

�2� ����������������� ��������������������������������������A��������

&2� ��������������������#��������������,�����6���������������������������5�����������A������2��

(2� �����������������������A����������������������

)2� �����������������'������@���=��������������

+2� ������������������<��A������� ��������������A������� ����#�#�2�

��2�'��������#����,�������# ��������������������������������������� �������:2��

��2��������������� ��� ��������� ���#�������� ����������6� �A������ ���� ��������� ������������ ���������

������A��������� �����:� ���������#�����������������������3�������������

��2�$��������������������A������������ �������������#��,����������������������I��,���� �����

��2���$��� ����������� ��� ������� ������ ���� ��������� ,�� ������ ���� ����3���� B#������,��� ";�C5�

��������������������� ���

<���������;��=��,��

�2� F212�������6��������������6�D��� ������6��I��3�������

�2� K�����.2�"�����6���������������9.�1���������.##���� 6�������I��3�������

�2� 2�2�-�� ���6� ��������������������������������6�����

������6�4�:���1�,���������6�

%�3���� �2��

2� �2�'2�8����6������.���������������6�'2828�������!�'���6��� �2��

�2� 12�82�%��6��������������6����������3������1�,��� ����"��#����4��26%�3���� �2�

&2� '�0 �����'2�16�.���:��@��0�$����������������B�+)+C�6��������

������6�$������4��������

4��26�%�3���� �2��

(2� " �#����.2F26�;����������������������������6��D� �

������2�F� ��/��������2�

)2� 2�� ��������� 3��6�;������������������������������������6�1������� ��������2��

+2� '�����������%2�D26� ������������������������6�1�������������������6���,���

��2������#����������/���6�;�����������������������������������6�F� ��/��������2�

��2�$=���0��2�%26�����������������.�@�����.##���� 6��I��3������%�3�K��02�

��2�8�� ������������"216��������������������@��06�%�3�.���B�C6�%�3���� �2��

&�������

-��.�����/����$���0�$�����

����������� ��$���(����������������

1���21���4�'<>�')��3�4(5���7((�

������������� � ����������������

4�������� � ��53��0� � � ����� ������0��

1��������� �� ��53��0� � $���� �����0��

� ��������(� ����

�� )��������� ������0�;�=���?�&/���������� ���

� )��������,�

;�������� ���� ��#��� ��� ��������6� ��3����� ��������6� ;�������� ��� �������� #����6� ;�������� ������6�

;���������:��6�;������������,��������������������������0���� �����2�

)��������� ������,�

1�A��� ���� "������ ��������6� 1����� ����� ��6� "���� ����� 6� "����������� ����� 6� ���<���

���������������#�����2��

;�=���?� /����������,�

���������� ��#������,��0��6�' ���,��0��6� :��������������������� ���,��0��6�@���0�,��0��6�

@����,��0��6�@��������,���0�,��0��6�@��0�������<���6�������������#�������,���#���������

���������������#��������������2�

�� ���?�)� �:���� )�

� ��#��������������������3���6���������������������������������� �������3��6���������������

��� ���� #�������� ���� ��A��� �����3��� �������6� ��������� ��� ����� 3�� � �#�������� ����������

����������������6������������6��������������6��� ���������������?�#�������������6����������

���A������ ���� ������������6� 8������������� �<��A������ ������6� F��#� # ��������2�

������������������A�������������A��2��

�� 6/�����9���� �(���� ����������6�.������� )�

� I������#��6������#������������#���������6��������#������#��6������������������#������#���

���� �#6�����#�����6�����A� �����2���

������������� ��� I�A������6� ��#��� ������������ ��A������ B/���6� 1�����6� ���� ���������

��A������ ����C6� ������������ �����6� ��A������ ������� ���� ��A������ #�3��� 3�� � ����������

���������6� �������A���6� ���,�����6� ���� ������� ���� ������6� ��������6� ���������A�����2� B%��

%������������������C��

� ��������((� �

� 8�������������9���6���� ���

� "�������������������##������������������6�����������������������6���3�����������6�A��������

����������6����>������������6�������������� 6�#�� �����������6���������������6��������������6�

������������6� ��� ���� ��� �A���� ������������� ���� ������������6� ������� ��� ������� ���������

A��������6����������,��3������������� 2�

�� 8������������4� �� 0�;�.� �� ������6����� )�

� 4� �� ������?��

�����������6�A����������,������ ���� 6� ���<��������������6��#������������� ����������������

����������2�

����������?�!�.� ������,�

�����������6���������������������� �#�6����� �������6����<��������������2�

&� (���������6��� ��/������� �6��������� )�

� ���������������� �������6� ��#����������� ������� �� ���#��6� ���#����6� ��A�����������#��������

����� ������6� �������������#������������� ������6� ���<������ ��������#�����������6� ���#�����

�#�������������������6�,�A����#�������������������2�

(�������

��������=�

� �������3��0�� ���������������������������� �������3�����:#���������?�

�2� ��������������<������������������#������������������������� 2�

�2� ��� �������� � �� #�3��� ������������ ,�� � �� ������������ ��� #�3��� �,���,��� ,�� � ��

,��0�2�

�2� ���A������� ������>��#�# ��������2�

2� ������3�����#������������A���������#�����������3����������2�

�2� ��� ���������� � �� � ������������� ���A��� ���� ������������ ��A������ ���� ��� ����� ����

������������������������A�������������,�����2�

&2� ��� ������ A������� ��#��� ��� ����,�:��� ��� � ��?� ����������� ����� ,�:6� '��� ����� �

����,�:6������������������,�:6����1�D�����,�:2�

(2� ������3����>������#�������������������������#�������������� 2�

)2� ��������������A��������������� �#��������������������� ��������������������������������0�

� ���������������2�

+2� ��������������������������<������� ����������<���������#������������������2�

<���������;��=���

�2� ����� �����'��# ���6�G�� ����������� ����H6� �3����.�������1�,��������2�

�2� @�A�����6H�� ���������� ����H6�4�������1�,���������

�2� ' ������ F2� 2� ���� J��0��6� F� F6� G� ����� ����� ����� ������ ������H6� ��������������

������6���I��3���������2�

2� @��������12�42�G� ���������� ����H6�8 �����1�,���������2�

�2� F����� �4���6�G� ���������� �����G6�����#�������@��0�"�2�1A�2�4��2�%2���� �2�

&2� 8 ����6�-2�'2�����I�#��6�F2�82H�� ���������� ����H6� �������1�,��� ����������B1A�2C�

4��26�%�3���� �2�

(2� .2�I �� ����06�G� ���������� ������������ ����H6� ����/����1A�2�4��2�

)2� '2'2-�����G� ����������� ���H6������I��3�����2�

+2� ��2D212���� 6H� ����������� ���H6�� ��#�������������2�

��2�"2'2' �����!�0����� �1��� ��6H�� ����������� ����������� �����H61��2�

��2���A����2���=0�6�H�� ����������� �����H6�1��22�

)�������

-��.�����/����$���0�$�����

������������� ��$���(���������������

1���22�(5&-��<(3#��56(5��<(56�?����45'#'6>��3536���5���

������������� � ����������������

4�������� ����5�/��0� � � ����� ������0��

� ��������(� ����

�� ������������������ )�

� @����� �����#��� ���� ���������� ��� ����������6� "�����,������ ��� ������� ���� ;����� ���

����������� ����������6� ���A������ ���� "������6� ����37�� ������ �� ��� �����6�

D����7���:#��������� ����6�4������ �#�'�����6�"������������ ����6���������������2��

$ ���#�������0�#/����� ������ �4� ����

4�������?� ��#�������� ���� �������� ���������� #����� ��������6� '������ ���� ��������������

���������#��,����6�4�����?�%���6���#�������6�$,>����A�������1�����#������������#�����

������6� ��#��� ��� ������� ���� �##���������6� �������� ��������?� $,>����A��6� ���������6�

#�����#���������������� �������6���#��������������� ���������<��#������������������6��

�� $�� ����.��/�� ����=���� /���� � )�

� 1�������A���?� ����������� ���� ��#��6� 8����� ��� 1�������A���� ��������6� #�������A����

��#��A��������� ���2��

/��0� '����?� ������������6� ��� ��<���� ��� 3��0� �����6� �� ��� ������ 9� #��������6�

���������� ��� ��<���6� 1�����#���� ��� ������� �������6� ������������ ��������6� /��0�

������������ 9� ����� �����6� 3��05� ����A���� ���#����6� 1������������� ������� �����

���������6�F�,��A�������������������������9�1��������������� ���2�

�� $�� �������$ ������� �(�.�����/������� �� ���

� ������������6� ;��������� ��� 11"6� ;����������� ������� 9� ��A���� �A�����6� �:#���������

����� ���6�"�#������#�������6� ����������#����������#��������9������ ���#�������� ����

#����������:�������������2� ��A���������������9�1��#���6� ��#��6� ���������6�,����� $*6�

������� ����0� ��A������� �������� �������� B%��������� ���������C6� �������A�� �������� ���

��A�������.@"6�;'6�D �2��

1��>���� ���������?� 1 -�5� "16� "���� ����������� ���� �������6� ��������� ��� ����6�

��#���������6� ��� ��� ���� ������������ ��#���������6� ,���0� �A��� ��������6� ���������

�������6�A����������������6�=����,�����,��������2��

� ��������((� �

� ����� ��/����������� )�

� "����#�� ���� �������� ��� ��� ������6� �A�������� ���� ���3� � ��� ��� ������6� ����� ����

������������� ��� ����������� ���� ��� ������6� ��#���� ��� ��� ������� ��� �������� ����

,�������6������������� ������6�#���������� ������6�����#���������� ������2���

"��#�����A�� ��A�������� � ���� � ��3� ��� ��������?� 1������� ��A���#����6�� �����

����������� ,���0� ���� � ��� ���0���,��� #������� 9� ����� ��� ��A�������� ��� ��� �������

��A���#����2� 4��0���� ,��3���� ��� ������6� ��A���#����� ���� ���#�������6����������

������� �������A���#�����B-!��C����������������������#��#����2��

�� ����� ���� �)����������� �3����������� )�

� :#��������?� �������A�6� �:���#�������6� ���3� � ���A��6� ��� ������� ����������6�

�������A�?�����A���������6����# �����������������6������������3���������

��� ������� .���������?� ��� ������� � ����6� ��� ���������� ������� �#� ���� �����3���

� �#6� ��� ������� ��<��������6� �������� ��� ����A������ ���� ������A���6� ����A������

�����������

&� ����� ��/�������/��� ���

� "����#��6� ��#��6� 0��� #�����#���6� �����3��0� ���� ������������ ��� ������� ��������6�

��� ������� �����������?� ��� ��<���� ���� �##��������6� ��� ������� ���������� ����

+�������

.,���#����?�-����������������6�����A�������������������A����������6��#����������������6�

1��>��������������������#�����������#�����������������3���� ��������6���� �������

���������#�������B�1-C���

<���������;��=�,��

�2� ����0�8 ����6�E���������������� ������7��I��3�����2�%�3���� �2�

�2� D�8�%��������6�E����������� ���������������A����������"��#�����A��.�A������76�

1������� ���������.����

�2� I�����6�E����,��0�$����� ����������������76�����3�����6�

2� ����� ���� 6�'�, �� �"2�-������6��EI��,�������������������������9�"�����������������

�2� '2%2" ���6�E1����������!�$#�����������������67�������I��3�����6�%�3���� �2�

&2� �4$6�����������������3��0��������

(2� 8 �����$212��������������� ���2!�����������6�� ��#������#�,���������6�%�3���� ��

)2� "�����-22!�;������6�3��0�������

+2� @�3����.2�826�E1����������#���������������7�'�����1�,��������6�%�3���� �6����2��

��2�.������F2-2�9�������������������������������������6�#�������������������4��2�

��2�I�#��0��� ���6�G������������������6H�F� ��/�����1�,���������6��

��2�42�"2�F ��,6�G������������������6H� A������1�,����������

���������

-��.�����/����$���0�$����

������������� ��$���(����������������

1���2*��'�$-��<�'<(�5��&�5-��<(�3#����4'&��

������������� � ����������������

4�������� ����5�3��0� � � ����� ������0��

1���������� �����53��0� � 1���������� �����0��

� � �

� ��������(� �

�� <���������@�������� �5������ �(���������� )��

� %�3���� -�# ���� ��� ��6� �������� %�3���� -�# ���� ��� ��6� ���� '�������A��

�##��:����������� ��2�

���#�=����������6�'��#���7��-�����B�5�����6��5)

� �C6��I�����*������������ ������#����6�

��#����6�����,���������������9����#�=����������6�'��#���7���5�� ������2�

�� (����9� ������ �&�������������� )��

� 4�������7�� �����#�������6� %�3���7�� �����#�������� 9� ;��3���6� @��03���6� � �������

�����#�������6� '#����� �����#��������� ��,��6� ��A����� �����#�������6� �:���#�������2�

���������������2�

�� ���� ��������@������� ����

� I����� ������������� ��6�#�������#�A�����6�� ������������ �����������������������:6�

I��������������� ��6�I��������������� ���3�� �����:�����6���

� ��������((� �

� ���.��)�������� �������� )��

� 4������<�������� ��<���������� �� ����6�<����������<������6�#�3����<������6��:#���������

�<������2�

�����������##��:���������

�� 5������ ��� ����������'&�� )��

� ����������������� ��6� ������� ��6��������� ������� ��6�-�����8������� �����

���������������������� ������6�1���������������������� ��6���������������<�������2�

&� )������ �������������� �� ����

� ������������������������������������� ��6�@��������A�����#��,���������:�����������������

�<������������������������������������6� �1� ���1���,�����9��:#�����6�"���0�%�� �������

��� ��6���#��,������<��������6����� ���#�����<�������2�

#�������3����������,�

�2� 1����������<���������@�������

�2� 1����������5������ �(����������

�2� 1����������(����9� �����

2� 1�������������� ��������@�������

�2� 1�������������.��)�������

&2� 1����������'&��

(2� 1����������)������ �������������� ��

)2� $����������������������,�A����#�������������������,���'��A����

��%���?�.���� ��������������� �����,�����#���������������������,������A��2�

6�� � ����������� �������$����� �������

�2� $���#����������J����%���2�

�2� .�������#����������������������&��#�����3�� ���������

���������

<���������;��=��

�2� '��A���"2�" �#��6�-������� 12�"�����6�%����������� ���� ���� ��������6� 5�6� �����

�I��3������ �������6�����6��'@%����(��(�(���

�2� ��2� @2� '2� I���3��6� %��������� �� ���� ��� ����������� ���� '������6� (5�6� 8 �����

1�,��� ���6��'@%�)��(��+�����&�

�2� '��A��� "2� " �#��6� .##����� %��������� �� ���� 3�� � .�4.@� ���� ��������� ����

'��������6��5�6��������I��3�����1�,��� ����"��4��6����)6��'@%����(��&)����6�

2� 2� 82� F���6� '� -� 8� �������6� -� 8� F���6� %��������� �� ���� ���� '���������� ����

����������� "��#��������6� �5�� %�3� .��� �������������� 1�,��� ���� �'@%� ��� +()�)��

�����������)���

�2� I�����5� / ������6� .##����� %��������� .�������6� &5�6� 1������� ��������� .���6� �����

�'@%�)��()�)��&(��

&2� @2� D2� -�����6� ��� ��� ����������� �� �������6� ����� �I��3� ����� 1�,��� ����

"��#����4��6�%�3���� �6��'@%���?����(��&��+�L�

���������

-��.�����/����$���0�$����

������������� ��$���(����������������

1���2A����(53<��

������������� � ����������������

� � � � �

1��������� �����5�/��0� � �����3��0�� �����0��

� � �

��9���

� ������������#�������,���

•� �� ������� ����������2��

•� @������������������#���������,>����2��

•� -���������������������������������2��

� �� ��#��� � ����� ,�� ,����� ��� ������� ������� � #�#��� #�,��� ��� ��� ������� ��������������

"�������������5����������������>����������5�������������#�,��� ������#����������2��2��

�������#� ,�

�:�������A������������ ����3��0������������������������#�������2�� �� ���������� ����� �A��

��������������������#�����������#�����������2���������������� ������������������3��0�������� ��

�������#��6�� ���� �������#������������������,����������2���

���������������=,�

'������� ��#���� � ����� ,�� ��� ��� ��� ��� #����2� � �� �������� ��#��������� ,�� �#����� ,����2� ;���

���������=���������� ������������#������ �������3������������ �����,����������������3��2�

•� 1������=��?���������.�

•� ��#�������?��2������ ���

•� @������������?��2������ ���

•� 4����������?��2����� ���

•� -�� ��������?��2����� ���

•� 1������:��?�;������������%�3�-����M����#�����

•� 4����'#������?��2��4�����

•� 1����%��,����?�-�� �����������������������2�;����������%�3�-����M����#�����

•� ���������?�%�3�������-����6���#����6�@��������

•� "����������� ?�.��� ��������� � ���������� � ��������� ����������"��������������������,���,��

� ����#�������2�

•� � ������������������ �����,��������������������� �#���2�-����������� ����� �A��� ��

�����3�����������

;���@��0�?�

�2�G���������@��0HM�.�� ���M�1�,��� ��M� ������M�

;���1�#���?�

�2�G���������1�#��HM�.�� ���M�"�����������������M�K���2�

���������

��=���

�2�� '�������-�A��3�� ���

�2� '�������-�#����� ���

�2�� 1������������ � ���

2� *�������5�.��3���� ����

•� ��������������A��3������,����0�������������� �������� ����������� �A������������� ����#���

���������,���A�����������������0���

•� .��� ��������� �A�� ��� #������� � ���� ��������� ����A�������� ��� ������ ��� � �� #����� ��� ��������

���,���������#�������2��

•� :����������3���� ,�� ����������,�� �3�� ��������� �:�������� B������ � �� �##��A��� ���� ����

����C��##�������,��� ��1�����#������� �������������������2���

•� '� �����������������#�����������������,�����#����������������,���������������3��3��0�����

��A����2��

��������

-��.�����/����$���0�$����

����������� ��$���((�����������������

1���2+��3�4(5��&��(65�((��

������������� � ����������������

4�������� � ��53��0� � � ����� ������0��

1��������� �� ��53��0� � $����� �����0��

� � �

� ��������(� ����

�� <� �����������;������� )�

� ��#��� ��� �������� �������� ,�������6� ������� ���� �������� ����� ��������� ��#�������6�

'���,��07���<������6��<��A������,�����������6�������������������� �#6��������������,�������

����6� ���������� ��� �������� �������� ,�������� �����������������7�� ���������6� ��#��� �������

,������6�������� ����������� ���������� �#���6�,�������3�� �#��,�,��������� ���A�A����� ���

� ���+�N6���,�������������������������,�������6�#�����������������������������,�������6�

��#���������������������������������,��������9��������������������6������������������������

����� ����6� �������������,�������� ���������������##���������� ��0����������A���"��������6�

3 �����������������2�

�� � � �����������;������� ���

� #�!���������� �,�

1��#������6�������A�������������������6����������������,�������6�#��#������������������������

,����������������2��

4/ �� /����� �!�������,�

� �������� ��������������,��������6���� ���������#����������A���#����������������6�

�3�� ������������ -�������� �<������6� � ����� ��� ����������� ����� ���� ����������� � ����

>�������,������6�'��������������,��6�-������������@������� ��6� ���#�������� ����6�

#���������� ��� ,������� ������6� ����� � ��� ��������� �����6� ����� ,������� #�������6� �������

�������������������������������� ��0����2�

�� &����������) ���������#� �� )�

� '������ �������������� �� ������� !� ��������6� ������������ ��������6� �������� �������6� '�%�

���A�6� ���������� �����6� ���� � �������A���6� ���������� ������� � ���������� �������6�

��A������ ��������6� ������� ���� ������� ���� ��������� ����6� ��������A�� ������� ��� ��������

�������6� '����,���� ���� I������� �������6� �������� ������� ��� ���#������� ������

���,����� ��������� ��� � ��� � ����6� ,����� ���� �#������ B$���� � ���������� ���������� ����

,������>�����C2��

� ��������((� �

� &���������)��������� ������� �;�=���� �

� )��������� �����6����������������������������������������������� ��6����<����������������

��#�������6������������������#����6�������#����6��������������������������� ��6���#������

��������� ���������6� � ���� ��A�������6� ����������� ���� ���������� ���������6� �����#�� ���

���#��������������������� ��#�������2��

;�=��� �������,���,���,��,��0�6�������� �������������� ���#�A�����,���0�,��0��� ����

����� � ��6� ��������� �:#������� � ��� ,��0�6� ���0� ,��0�6� ���#�������� ����� ��� ,��0��

�#�������2���

�� &����������9���� �4� �� �6���� )�

� (���� �������

"����������������������6����������������#�����������6�������,���#��#������������������������

��������������6� ��������� ����� ���� � �������6��������������� ���� � ������������ �������

�������,���������

���������

�9��������

%��,������ ���� � ���� �����3��� 6� ��������������� ����������������3 ���6� ��������������6�

,���� ������� � B4�3��C� �<������6� A�������� ������6� ���A���� ������6� ����� ��������������

������6� �������A�� ����� ��� ����6�3���� ������� � B@��0��� ��7�C� �<������6� ����������� ���

�������,��������,��������3����������� 6��������������������������� ������,��A��������

�����������@��0��� ��7���<������2�

4� �� ������

�����A����� ���� ������� ������6� A������� ��� ��� ���� 6� ������ ��������6� ,���� ���� 3����

������� �6� �������A�� ����� ��� ����� ���� 6� �������������� �������� ���� � ����� ,�� A��������

�����������@��0��� ��7���<������2�

&� &���������;�.� �� ������6���� ���

� ;�.� �������

'����� ������ �,�A������������������������������������������� �#6��������A�����,������

���� 6���������������6��������������������,�A��������6�,��������3����������� �6���������

���� � ����� ,�� A�������� ������� ���� @��0��� ��7�� �<������6� �������A�� ����6� ������� ���

������ ������ �,�A��������6����������������������������,�A��������6������������������#�����

,�A������������� �#�����������������#�������3�� ������� ������ �,�A��������6����������

���,�A��������2��

�����6�����

/���� ����3��������� ������������ ���� ������������ ��������� �#6� ��#��� ���3���� ����

3���������6��������������������6�������������������3������������A��6�������������3����

������������������������6�3��������3����3 ������������6�������� �����3���������������

3���� �����6� � ������ �������������� ��� 3���� ����� ���A�6� ��#��� ��� ��������� ��� 3����

�������6���� ���������,���������

�����:��=�,��

�����3��0�� ���������������G�/$H��������#��>����?��

�2� ;������������#��>����3���������������������#��������=��� ���6���A��A���������,�������

������������3�������������� �����,��0�������,��2���

�2� '�������������#��>����3����,��,�������������6�3 �� �� ��������������� �3����#������

��=�� � ����� 9� ���� ��A��A���� �����,��� ���3���� ���� �� ��� �������2� � � �� �����,���

���3���� � ����� �������� � �� #���� ����� ���� �A������ ����������6� ���� �������� � �����

���������������A���������#������6�������������������������6�������������� ����,���6�

���� ���������� ����������� � ����� ,�� �#�������� ��� ��� ��� ��0�� ��� 3��0���� ���3���2��

���������#������A����������������������������������� ������������� �����#�����������

�����,���� �����,����,����������� ����#����������2���

������������,��0�� ����,��������:�����A��������� ���������������� �����#������2�

� ��������:����������� ����,��,��������� ���,�A�������3��02���

����

�&�������

<������� ������

�2� .�� ���� ��� #����,��6� #���������� � ����� ,�� ��A��� ��� #��#���� ���3���� � ���� ��� ������

������� #��>���� ������ ����".�� ����3���� ���� ���3���� � ����� ��� � �� ������� �������

#��>����� �����,�����3����������2��

�2� .� ������ A����� ��� ��������� ���� ,�� ��������� ��� ���� � �� �������������� ��� ��� ����

��������� ���� �����,����� ������� � �� ��������2� ������� � �� A����6� � �� ��������� ����

�:#���������A��������������������������������������������������2�.���#�������� ���A�����

����,��������������� �������3��02�

<���������;��=��,��

�2� ' ������F2 2�������� 0��"2-6�G�� ������� �����������������H6�������I��3�����2�

���'#���7��2;2�����' ��#��2 6�G������������ ������������H6�1��������������������������2�

�2� @ �������D2@6�G������������� ������������H6������I��3������1�,����"�2�4��26�B'������

������C2�

2� @���0�12�2�����$2� ������.����6G�� ����������H�6��I��3������@��0�"�2�4��2�

�2� /������� "2� $�� 3���� 6G�� ���� "��#������� ������H6� /����1�,2� "�2� ��� F����� 1�,2�

�����2�

&2� G�����������H�612'2I2�"������������� ������6�"���,�����2�

(2� F�A�����-2"6�G;����������������� ����"��#�������������H�6F� ��/���������'���2�

)2� �����.2'26�����3��0��.2-2�����4��� �����2I6G� ���������1��,���������� ����������H�

6�'� ���7����������������2�

�(�������

-��.�����/����$���0�$����

����������� ��$���((�����������������

1���2�����<'#'6>�?�B-3#(�>��'5�<'#�

������������� � ����������������

4�������� � ��53��0� � � ����� ������0��

1��������� �� ��53��0� � �����3��0�� �����0��

� � �

� ��������(� ����

�� �������������� � �?����9������ )�

� ����������� '�������� C� 1�����#���� ��� �������������������6� ����� ���6� 3�A������ 6�

��#��� ���� �������� ��� �����6� ���������6� ���#�������6� 1������� �����������6� .���������

#��������6� � '��#� �������!�������� ,���06�4������ ���� �.������������������� B'���� ,��6�

'����������6�.��������������6�.������O������A����������C6�"���,�������

���9����7� �� ������6� 1��������6� $#�����6� ���������� B�������A�C6� ����������

B4D��C2�

" ��0������������������������6���� �����������������������?�4�� �6���������6�������2�

�� (�������������� )�

� (�������������7� 1�����#��6� %14� ��������������6� ;�������� ���������� ��� ���#� ������6�

1����������6�4���������������������

������� )����� ����������7� '������� ��:����6� ���������� �������� ����� � ,�� '������

1��,�6�����������!����������6�.�������������������������?��� ����

&���������6��������#������������6�������6�����6�����������6�������7��#�����#��2�

�� ����� ��/��������:���� � ���

� �������������� � ����� ����������6��>��6� �������A�6�;���0������6���#���!�����������

����3�� ������������6�;��������"�����������������2��

6�������� ��/7�I���� �����6�I���������������?�I���� ���� �D������6� ��������� � ���6�

,�����������6�-������6�1�������1��>�����6��������0��7����������#�2�

3 .����������������� ��/7�"������������������������ ���6�J��A����������������

��� ���6�4�����������������6�.������������#�������������6�$������$����������#�������

��� ����A�����2�

� ��������((� �

� (���� ����������B� ��/�� �B� ��/���� ������ )�

� ������7��1�".61�'.��������!�F��������������##���� 6�*�������'���������6�"�������

<�������!�A��������<������6�'�A���*������������?�� ��0�� ���6����3�� ���6�1��������������6�

������ !� ������� �������6� �������� �������6� @����� ��������M� *������� ������M� "����������

�����������M�������@��,���������������<��������3���2�

�� ��� �B� ��/������������� )�

� *������������������#�������6��'6�8��=��6�8��,��6�F��6�1�0����0�6�*'�B�'$�+���6��'�

�&++6�'$�����6�*������������CM��16�; ".6�;�.M�P�����������2�

&� �������� �@� ��/������� � ���

� '�����������<����������������'����������������#�6�;��<�������������6�"����#�����A��������

��������6� �������� � ���� ���� A����,��� !� �����,���6� 1������� ��#�,�����6� ������������ #�������

�������6�"����#������'�:������?��.�"2�

.���#������ '��#����� ?� � '��#����� ���#������6� $"� "��A�� ���� ���� � �������������6�

���#����� ��� ���6� '��#����� 1���?� ���#������6� ������������ ��� ���#��� ��=�6� .$*6�

1��,�,���������.���#�����2�

�)�������

��������=��

3D���9����������3�/�������

�2� �����������������4�����5�.�����������������������#����������#��������5����#���������

���������������������2�

�2� 1���������.������������������������'����,��5'����������6�.�������������5�.�����

��00��2���

�2� �� ���������.����������������������3����� ������0���4�� �6�������6���������2�

2� ������������������3�� ������������;��������������������������2�

�2� ����������������������� �� ��0�����,����������� �D�������"���#��5�"��������� ���5�'#���

����������2�

&2� �������������������������5-������������������ ����������#������2�

(2� "���,������������������������������������,�������������2�

)2� ����������������'������������������������#����������2�

+2� '�����!��##�������������#�������#��>������!��������0��7����������#�2�

��2����#����������1����������>�,�,��'�����������#��������������2�

;D��3������������.���������3��������������,��������'����,������<���������������

�D��(� ����� �.�����-�#����������������������������,>���2�

<���������;��=��,������ ��/�

�2� �����82F2��� ������������������������������1�,�����������

�2� .2�/2�F����6�G �����������1��������������������H6�" �#�������������

�2� F����-282�9� �������������������6�8 �����1�,��������2�

2� %��������8242� �������������������2�

�2� I������F2;�!�' ��,����"2-2�����������������������2�

&2� �2�"2�I�#��6�G �������������������H6�� ��#������1�,�����������

(2� 8��0�����D2�.2�����@�3����.2�826�H������������������������H6�������I��3������"�2�

4��2��

<���������;��=��,�B� ��/������� �

)2� F�����F2�26�G*�����������,��0H6��I��3������1�,���������2��

+2� I�����'2126�G'�����������*�������"������H6�������I��3� ����1�,��������2�

��2�;��������2�;�����6���0�.2�"�����6�G����,��0���������������������������H6��

��2����������26�/����3��� 6� '������� I������6� G�������� ���� ���� *������� "������� ������

��#��A�����H6�/�����1�,��������2�

��2�82�F22����������I2��2�' ��#6�G1�����������������H6���������1�,�����������

��2�.'� 6�G����,��0�����������������������H6�1����������������������4��2��

�+�������

-��.�����/����$���0�$�����

����������� ��$���((�����������������

1���2E��-<;'��3�4(5����

������������� � ����������������

4�������� � ��53��0� � � ����� ������0��

1��������� �� ��53��0� � $���� �����0��

� � �

� ��������(� ����

�� (���� �������������!��������/� )�

� ��#����� ��������� #�����#��� ���� ���� �##���������2� ;����� �:������� ��� ��:��� #����6�

��A���������#������������A���A����6�����������#�����6�A����������������������� ������������6�

3��0�������<�������6�����������2��

(�9� �����������!����� � � � � �����������

1������ 3 ���� 9� ������������6� #�����#��� ��� 3��0���6� A�������� ��������� ���� ��������6�

���������#�������A�����������#������������ �������������6��#��������#���2�

�� <���������������!����� )�

� "��������������6�;�����������8�#�������,���6������������������������6�A�����������������

���� ��������6� ������ ��,��� 9� ��#��� ���� ��������6� ��A�������6� ������� ���� ��������6�

#������������ ��������������������A������6��#��������#���2�

�� ��������!����� ���

� '�������==����� <�����������A��������������������3������B%������A�����C���#�������

�##���������2��

"�������������6�����������������������6����#��������������������,����6�A�����������������

���� � ��������� ��� ��#����� ���� ��������� ���,����2B������� ���� ����������C6� ��A������6�

#������������ �������������6�3�� ������������

� ��������((� �

� 6�����!������ )�

� � ����� ���� ������������� ��� I��� ���,���6� #�����#��� ���� ��������������6� F������ "����6�

�����#�������������#���I������,����6���������������6����#������������������,���6�3��0�

�����6��������������������������������I������,����#����6��A�������#�3���#�����6����,����6�

���,�#��#6����,�>���B3�� ��������������������C!����0���2��

�� <���/�$��9�� )�

� "�������������6� ���#������� ��� ������������ #��#�6� A������� ������ ����������� 3�� �

������������#��#6�A������� ����6�A�������� ���������� ���� � ���� ��������6� ������������������

,����������6���A�������6�%1'�6�� �������A��������������6�#����������#��#�6�������������6�

�#��������#��������#��#���������������6�#������������ �����������������������������#��#2�

.:���� � ����6� �����������6� ����,���� ���� ��������6� ������� ���� #�������� �#�������� ���

#��#�6����������������������A�6�3����� ������#��,�������#��#����������2�

&� ��������� ����9������� ���

� ��������� � ���9������� ,� "�����������6� ���3� #������� ��� ��'� �������6� A��������

������������ ����7��3��06� ���#� ����������� ��������������3��0� ��#��6� �������3��0� ��#��6�

����������#���������6�#���3 ����������6��������6�� �0���6����������� �������������2�

3�� � ���9������� ,� "�����������6� A�������� ���������� ���� ���� ��������6� ��������������

#���������6� #�������� ����� ���� ������������ ������ ��� ���3� 3�� � ���� 3�� ���� ��������6�

��������� � �������������2� ������������� ��� ;���� ���� ,��3���6� ������������� ��� ���������

���#������������<������A�����2�

���������

#���������9���������

�2� D������������������������#�����#��2�

�2� '������������������1������3 ��������#������������#�������5������ �������������2�

�2� '��������������������������������������,��������#������������#�������5������ �������������2�

2� '������������������������������#��#�����#������������#��������� �������������2�

�2� '���������������A���������#��#�2�

&2� ����������������������������#�������5���������������#������2�

(2� D�������� ����#�3���5�������5�I������,����#�3���#����2�

)2� D��������#��#�����������2��

+2� ����������#��#����������6������������������������������������������2�

��2�'��������%�==���2�

5�����

�2� �� �� �:#��������� ����� �,�A�� ����� � ����� ,�� #��������� ���� ���3 �� � ��� ������ ����� �������

� �����,�����������2�

�2� ������������������������#���������� �����,�������=���,�����������������,�������3���2�

<���������;��=���

�2� ���2�12�%�!�'�� 2�'2�%2� �G�����������;������� ������������ �����H6�'��������@��0�

�����6�%�3���� �2�

�2� D2�12�D��������6�G� �������������������� �����H6�8 �����1�,��� ���6���� �2�

�2� ��2�F2�4��6�G������������ ����H6�����#�������@��0�"�2�1A�2�4������ �2�

2� 8������06�G�����@��0����1��#�H6��������I��3�������4��2�%�3���� �2�

�2� -�K���A6�G�'�����!�I������,����H�"�������1�,26�.��� �,��2�

&2� F�8�F���6�I������,����� ���������F���1��#������H�8 �����1�,26�%�3���� �2�

(2� "� ��6�-�����6�G�I������,����� ����H6�4�������1�,���������2�

)2� I�#��8��� ���6�G�.����������������,���� ����H6�'����� �1�,���������6�" ������B�����C2�

+2� 8����,��D2�!�1������26�G����,���� �����H6�%�3�.�����������������1�,��������6�%�3�

��� �2�

��2��2'2�8�����G;������� ���������;�����1�3��� ����������H6�8��������#�,��������2�

���������

-��.�����/����$���0�$�����

����������� ��$���((�����������������

1���*�����43�<'5(���

������������� � ����������������

4�������� � ��53��0� � � ����� ������0��

1��������� �� ��53��0� � �����3��0�� �����0��

� � ��

� ��������(� �

�� (���� ������������������� ����� ������� )�

� ������������� ��� �� ��������6� � ����������� �������6� � '������ � �������������6�

"���������������������������������'������6�

@�������A�����"�������6�@������"�������6���������

4�A��������������6�������������������?�'������I�����1�����#���6���#��6��������������

��������6�4����"����6����#��������"��#��������62���

���#��������������������?�� ��������6�-��6�� �������#����

�� ������ ���������� )�

� ���#��������� !� 1�������� '������?� 1�������������� '�����6� "�#�����A�� ���� �������A��

'������6��D����,���-����������'������6�4������D����,������������������������������

������'������?��������������������-������$#������ �������6���� ��������3�� ����#���

���������������������<��������

�� ���.�������� ������� ���)�� ���� ��� )�

� �����.�<��������� ������?� �����#�� ��� ���#����6� ���#���!� ���� �#�������6� ������� ���

�����������A������6����������������������A������2�

����������������'".�.�!������##����������

'������ �����?� �� ��������� ������6� ������������� ��� ��� ������6� ����������6� ������

����� �������������2�-�����������������������������������6�@����������#���������������

��������2�

� ��������((� �

� ������ ���$�����9 ���� ���

� "�������'������?���#�������������� ������6�$#��� ���#6�������� ���#��������6� ���������

���������6������,��0�������������3������������������������� �����##�����������

1�������" �������������?�1��������<������6�1�����������6� ����6�D����,��������6�"�������

1���������-����6����������2��

�� ������ ����� ���� )�

� "����������"��������������?�1��#���������"���������6����������"���������6�����A���A��

"���������6�3�� ���� ����������<�������6���A�������6������A�������������##���������2��

"��#������"��������������?�1��#��������6�1��#���������Q����������B1�C6�1��#���������

Q� ����A���A�� B1�C6� 1��#��������� Q� ��������� Q� ����A���A�� B1��C� � "����������6� 3�� �

���#����������������������2���

&� &�������������$������������� �� )�

� -����� "����������� ���� 4������ ��������?� 4������ �������� �������6� ���� 4������

�������� :��#���2��

1��������,��� 4����� "����������� ?� -����� ��<�������6� 14"� 1����������� "����#��6�

�����6�,��������������6� � ��#��5����#���#���������6� ������6� ��������� �������������������6�

� �������������6��������������������#����������6��������������14"�6��

"����������������� ���������3�� ������������##���������� ��0��3�� ������� ���6���� �

3�� ��6�,��������������#����6����A����6�,������������������2�

���������

#���������9���������

������� ��� ��� �:#��������� ����� � �� �����3���M� ���� ��� 3 �� � �:#�������� ��2� ��� ���

���#������6������� ����,����������������2�������6�� ������������������2�&������������3����������

����(2�-����������:#�������������������������� ����,����,����������� ����������>������2�

�2� "���,�������������3�������2�

�2� "���,����������� �������#���5�-��2�

�2� '��������4����"����2�

2� '��������A���������#���������������2��

�2� ���#��������������������5���A��������������2�

&2� D���������������16�1Q�6�1Q�6�1Q�Q�����������������2�

(2� '��������LK�#�����������������������2�

)2� '������������������A�������������������2�

+2� '�����������������,���#������������������2�

��2���A���#����������������������5#�����������14"�������A����������6�#�������������������

������ ������ ��������������������##��������2�

��2�'��������.5�������5.����A������2�

��2�'��������;��#�;��#������������2�

��2�'��������.##������������$#�9�.�#���������2�

�2�'���������������<���������������2�

��2�'���������3��� ���!��������

�����;��=��

�2� F� �����"2��26�1�������"�������������������������� ������6�1����������������������1A��

4��26�%�3���� �2�

<���������;��=��

�2� ���,����� 2�$26������������'������9�.##�������������������6�������I��3������

1�,����������4��6�%�3���� �2�

�2� @������/2�6��� ���������9� �����������"�������'������������ ����������� ����������

����������6�1�������9� ���������B'����#���C�1��2�4��2�

�2� -������"2�'26�'�����I2�-26�����D2�'26�����������������9���A����������'������6������

�I��3������1�,��� ����"��#����4��26�%�3���� �2�

2� ��������@2��26�.����������2�I26������������������� ������������������������'������2�

�2� ��6��� ��������6���2�

&2� � ���0�%2�126��� ���������9�1�����#���6������#��������##���������6�������I��3������

1�,��� ����"��#����4��6�%�3���� �2�

(2� 8��0�-2�.26�' ������26��� ���������'�������������6�D�0���1�,��� ������������� �2�

���������

-��.�����/����$���0�$�����

����������� ��$���((�����������������

1���*��<�)<(6�<3�('5�35&�3(<7�'5&(�('5(56��

������������� � ����������������

4�������� � ��53��0� � � ����� ������0��

1��������� �� ��53��0� � �����3��0�� �����0���

� ��������(� ����

�� )�� ���� �����<������������ )�

� -�A��3� ��� � �� � ������������ #��������?� ���� �����6� �������#��6� #������#��6� ����

� ���������#��������6� ����#���������������1� �!������ ������������� ����6�,� �A�������

3��0������������������# ����� ����2�

%���� ��� �������������� ���� ���� �##���������� ��� �������6� ����������6� ����� #���������� ����

������ ���2��

-�A������"������������3�� ���������A�#���6����#���A�#�������#������������������,�����

���#���������6���A�����������#���������D""������"�����������2�

���������������� ������� �������������?�.��� �������������?�@����"�����������-�A�����

@������� �����6� A����:� ��,�6� � ������������6� ��������� �������������6� �����������

-������������2�

�� F9�������9���������/����� ���

� D�#�������#���������������3�� ������������6������A��6�������������� �����:� �����0�

�����������#��������#�������������#��������������D""6�#���������D""2�

F9����3!���9������/�����

������������6� ���#��� A�#���� �,���#����� ������6� #��������� A�#���� �,���#����� ������6�

"$1���� ��� ������ A�#���� �,���#����� ������6� ���������� ������������ �������������,���,����

#���6�3�������������������6���� ����,��������,���#�����������6����#�������,��3����

D""�����D."6�"���������������,���#������������������?��������������6����,����������

�� <����������� )�

� ������,��� #��#������� ��� ������������6� ��������������� ��� ������������6� ����������

������������6� ���������A�� ������������6� $=���� ��#������� 1��������� B$�1C� I��,���

/������� 1��������� BI/1C6� �����# ����� ����6� ������ <��A������ /������� ��#����

B� /�C6������������?�����A���6��������6���������������� �����

�� ���$���������/������

������������6��������������������������6��������������#�������6��3�����������#��������

3�� ����� ���������A���������<���������������6��16�41������A���6�����������#�������3�� �

�����#����A�#������?�����A���������������#����:#�������A��A��6�����A���������#��������

3�� � ���#����� ���#�������� ���� ���� � ������������6� #��#��� ������������ ������6�

��������������?��##�������������� �������������A���������

� ��������((� �

� $�/�������/� ���

� ������������6�#��� �������� �����6��������#��� ��������� ���6�#��� ��������#��������6�

����,����� ����������� ���#�������6� �A�#�����A�� �������6� � ������� ���� ������?� ������ ����

��<��������������6�,��#������������������6�������������������6�����,�������:��������3������

�������6� �����#�� ��� '�;6�-'�;6�I'�;6� -'�;6�.�1� B���������� ���#��� ���������

������������� ��� ���#��� ."� ������� ������� 3�� � ������� ���� �������C6� �����#�� ���

�����������������A����������2�

������ �������6� �������A�� ���#�������6� .'�-. � �������� � ���6� �������� ������������

������������6������������<���������<���������6�A�������������<���������2�

�� <�������������/��������9�������� )�

� /��0���� #�����#��6� ��������������6� �##��������?� ���#�������6� ����������6� �A�#�������6� �

��������

�:#���������A������������������

3��7���� ����������/������

����������6�������?���������������#������6���������������?�������M�3�������������������

."��������6���������������M�����3�����������M�����3�����������M�A����,������������������3�

����A����,�������A�������������6�������������������������������������2�

3������ ����������/��������9��������

$#��������#�����#��6� ,����� ������������� ���� ��#��?�.������������J���6� ;���"����J���6�

���#���6��������6���##��������������������6��������?�"$�M����0�6��=������>�������

������������6��������6����������������6���������,���� ����������������2�

&� &������ )�

� ������������6������������������������6��������������6�#����������������6����3�� ���� �����6�

#�������� ������� ��� ����6� ��������� ������6� �������� ������6� ���� ���3� � ���� � ���#��� �����

������6� �<��A������ ��������6� ��� ���� ��� ����� ������� ������?� �<���� ��������6� A��������

���������6������������������ ���B�������������������������������C�

;�������������������������##���������?�������3�6���#����������6�,������������������ ����

)�� �$�����.�����

"����#�� ���� ����� ��� ����� � ���6� ����� ��������6� �������� ���� ��������� �����# ����

B".5.C���������6�#���������6�,���������=���6��*;6�#���������=���6��#���������=���2�

��������=�

� �������� ������������������������������������ ���:#��������������� �������3�����

�2� ��������A�#�������#�����������������

�2� ����������������������������������

�2� ������������#��������������

2� ��������A�#�����,���#��������������

�2� ��������� ����#��#�

&2� ���������������������������������������������������������B���#�������������C�

(2� '��������������������5�#�������5������������#�����������������������������������

)2� ����������������������������������������������������B����������5A����C�

+2� D����������������������������������������������#�����B���#������C�����3������ ����#�������

���

��2�� �����������������������������������������������#�����#��������

<���������;��=��

�2� .����� ���� ���0���3��6� -������������� ���� .��������������6� � ��#������ ���� "��#���6�

%�3���� ��

�2� .�����"�16�-�����������������.���"�����������6�������I��3�������

�2� �������-���F26�1�����#������-������������6�'2�2�D������6/����� �������4������6������

2� ��� ���1�����6�-�����������������.���������������6�/����� �������4������6��+)��

�2� @��������12426�-�����������������.���������������6�8 �����1�,��� ���6�%�3���� �6��++��

&2� 8 �����-2'2�����I�#���F2826�-�����������������.���������������6� �������1�,��� ����������

B1C�4��26�%�3���� �6��++�

(2� '���0��� /2;2� ���� F����� F2/26� -������������� ���� .���������������6� �I��3� �����

������������������������+)��

)2� � ���0����F2426�E� ������ �A����������� ����������6�1����������������2�%�3���� ��

+2� .'�-. �!��'�-. �����,��0�

��2�.�����������6�@��������-�����������������.���"�����������6�������I��3�����1�,����������

��2�-�����4���6�.�����������������������?�������6�"�����������������������������

��2�'�#����'2%26�-�����������������.���"�����������6�1���4��������1A�2�4��26�%�3���� ��

���������

-��.�����/����$���0�$����

������������� ��$���((�����������������

1���*���'<8��4'$�$<3��(���((��

������������� � ����������������

� � � � �

1��������� �����5�/��0� � �����3��0�� �����0��

� � �

�� �"��������������<������������#�����������,����� �������3�����

$���3�?�$������#������>�,������������������ ������������#���������A�������#������������

4�� �6���������6����������� ������������������������������������ �����.����,��2��

$���;�?��������������5�F�,����"%"���� ����3 �� �� ����������������'��#��������������#���

��������$#����������

$�����?�$���>�,�������������� ������������������I����"��������#����������

F�������� ����������������������#�������� ���������,�A��>�,�2��