28
volume 6, issue 4, article 112, 2005. Received 14 November, 2004; accepted 25 August, 2005. Communicated by: L. Pick Abstract Contents Home Page Go Back Close Quit Journal of Inequalities in Pure and Applied Mathematics A RELATION TO HARDY-HILBERT’S INTEGRAL INEQUALITY AND MULHOLLAND’S INEQUALITY BICHENG YANG Department of Mathematics Guangdong Institute of Education Guangzhou, Guangdong 510303 P. R. China. EMail : [email protected] c 2000 Victoria University ISSN (electronic): 1443-5756 223-04

University of Adelaideemis.maths.adelaide.edu.au › journals › JIPAM › images › ... · volume 6, issue 4, article 112, 2005. Received 14 November, 2004; accepted 25 August,

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

Page 1: University of Adelaideemis.maths.adelaide.edu.au › journals › JIPAM › images › ... · volume 6, issue 4, article 112, 2005. Received 14 November, 2004; accepted 25 August,

volume 6, issue 4, article 112,2005.

Received 14 November, 2004;accepted 25 August, 2005.

Communicated by: L. Pick

Abstract

Contents

JJ II

J I

Home Page

Go Back

Close

Quit

Journal of Inequalities in Pure andApplied Mathematics

A RELATION TO HARDY-HILBERT’S INTEGRAL INEQUALITYAND MULHOLLAND’S INEQUALITY

BICHENG YANGDepartment of MathematicsGuangdong Institute of EducationGuangzhou, Guangdong 510303P. R. China.

EMail : [email protected]

c©2000Victoria UniversityISSN (electronic): 1443-5756223-04

Please quote this number (223-04) in correspondence regarding this paper with the Editorial Office.
Page 2: University of Adelaideemis.maths.adelaide.edu.au › journals › JIPAM › images › ... · volume 6, issue 4, article 112, 2005. Received 14 November, 2004; accepted 25 August,

A Relation to Hardy-Hilbert’sIntegral Inequality andMulholland’s Inequality

Bicheng Yang

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 2 of 28

J. Ineq. Pure and Appl. Math. 6(4) Art. 112, 2005

http://jipam.vu.edu.au

Abstract

This paper deals with a relation between Hardy-Hilbert’s integral inequality andMulholland’s integral inequality with a best constant factor, by using the Betafunction and introducing a parameter λ. As applications, the reverse, the equiv-alent form and some particular results are considered.

2000 Mathematics Subject Classification: 26D15.Key words: Hardy-Hilbert’s integral inequality; Mulholland’s integral inequality; β

function; Hölder’s inequality.

Contents1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Some Lemmas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Main Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Some Particular Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

4.1 The first reversible form. . . . . . . . . . . . . . . . . . . . . . . . 164.2 The second reversible form. . . . . . . . . . . . . . . . . . . . . . 194.3 The form which does not have a reverse. . . . . . . . . . . 23

References

Page 3: University of Adelaideemis.maths.adelaide.edu.au › journals › JIPAM › images › ... · volume 6, issue 4, article 112, 2005. Received 14 November, 2004; accepted 25 August,

A Relation to Hardy-Hilbert’sIntegral Inequality andMulholland’s Inequality

Bicheng Yang

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 3 of 28

J. Ineq. Pure and Appl. Math. 6(4) Art. 112, 2005

http://jipam.vu.edu.au

1. IntroductionIf p > 1, 1

p+ 1

q= 1, f, g ≥ 0 satisfy 0 <

∫∞0

fp(x)dx < ∞ and 0 <∫∞0

gq(x)dx < ∞, then one has two equivalent inequalities as (see [1]):

(1.1)∫ ∞

0

∫ ∞

0

f(x)g(y)

x + ydxdy

sin(

πp

) {∫ ∞

0

fp(x)dx

} 1p{∫ ∞

0

gq(x)dx

} 1q

;

(1.2)∫ ∞

0

(∫ ∞

0

f(x)

x + ydx

)p

dy <

π

sin(

πp

)p ∫ ∞

0

fp(x)dx,

where the constant factors πsin(π/p)

and[

πsin(π/p)

]p

are all the best possible. In-

equality (1.1) is called Hardy- Hilbert’s integral inequality, which is importantin analysis and its applications (cf. Mitrinovic et al. [2]).

If 0 <∫∞

11xF p(x)dx < ∞ and0 <

∫∞1

1yGq(y)dy < ∞, then the Mulhol-

land’s integral inequality is as follows (see [1, 3]):

(1.3)∫ ∞

1

∫ ∞

1

F (x)F (y)

xy ln xydxdy

sin(

πp

) {∫ ∞

1

F p(x)

xdx

} 1p{∫ ∞

1

Gq(y)

ydy

} 1q

,

Page 4: University of Adelaideemis.maths.adelaide.edu.au › journals › JIPAM › images › ... · volume 6, issue 4, article 112, 2005. Received 14 November, 2004; accepted 25 August,

A Relation to Hardy-Hilbert’sIntegral Inequality andMulholland’s Inequality

Bicheng Yang

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 4 of 28

J. Ineq. Pure and Appl. Math. 6(4) Art. 112, 2005

http://jipam.vu.edu.au

where the constant factor πsin(π/p)

is the best possible. Settingf(x) = F (x)/x,

andg(y) = G(y)/y in (1.3), by simplification, one has (see [12])

(1.4)∫ ∞

1

∫ ∞

1

f(x)g(y)

ln xydxdy

sin(

πp

) {∫ ∞

1

xp−1fp(x)dx

} 1p{∫ ∞

1

xq−1gq(x)dx

} 1q

.

We still call (1.4) Mulholland’s integral inequality.In 1998, Yang [11] first introduced an independent parameterλ and theβ

function for given an extension of (1.1) (for p = q = 2). Recently, by introduc-ing a parameterλ, Yang [8] and Yang et al. [10] gave some extensions of (1.1)and (1.2) as: Ifλ > 2−min{p, q}, f, g ≥ 0 satisfy0 <

∫∞0

x1−λfp(x)dx < ∞and0 <

∫∞0

x1−λgq(x)dx < ∞, then one has two equivalent inequalities as:

(1.5)∫ ∞

0

∫ ∞

0

f(x)g(y)

(x + y)λdxdy

< kλ(p)

{∫ ∞

0

x1−λfp(x)dx

} 1p{∫ ∞

0

x1−λgq(x)dx

} 1q

and

(1.6)∫ ∞

0

y(p−1)(λ−1)

[∫ ∞

0

f(x)

(x + y)λdx

]p

dy < [kλ(p)]p∫ ∞

0

x1−λfp(x)dx,

where the constant factorskλ(p) and [kλ(p)]p (kλ(p) = B(

p+λ−2p

, q+λ−2q

),

B(u, v) is theβ function) are all the best possible. By introducing a parameter

Page 5: University of Adelaideemis.maths.adelaide.edu.au › journals › JIPAM › images › ... · volume 6, issue 4, article 112, 2005. Received 14 November, 2004; accepted 25 August,

A Relation to Hardy-Hilbert’sIntegral Inequality andMulholland’s Inequality

Bicheng Yang

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 5 of 28

J. Ineq. Pure and Appl. Math. 6(4) Art. 112, 2005

http://jipam.vu.edu.au

α, Kuang [5] gave an extension of (1.1), and Yang [9] gave an improvementof [5] as: If α > 0, f, g ≥ 0 satisfy0 <

∫∞0

x(p−1)(1−α)fp(x)dx < ∞ and0 <

∫∞0

x(q−1)(1−α)gq(x)dx < ∞, then

(1.7)∫ ∞

0

∫ ∞

0

f(x)g(y)

xα + yαdxdy

α sin(

πp

) {∫ ∞

0

x(p−1)(1−α)fp(x)dx

} 1p{∫ ∞

0

x(q−1)(1−α)gq(x)dx

} 1q

,

where the constant πα sin(π/p)

is the best possible. Recently, Sulaiman [6] gavesome new forms of (1.1) and Hong [14] gave an extension of Hardy-Hilbert’sinequality by introducing two parametersλ andα. Yang et al. [13] provided anextensive account of the above results.

The main objective of this paper is to build a relation to (1.1) and (1.4) witha best constant factor, by introducing theβ function and a parameterλ, relatedto the double integral

∫ b

a

∫ b

af(x)g(y)

(u(x)+u(y))λ dxdy (λ > 0). As applications, the re-version, the equivalent form and some particular results are considered.

Page 6: University of Adelaideemis.maths.adelaide.edu.au › journals › JIPAM › images › ... · volume 6, issue 4, article 112, 2005. Received 14 November, 2004; accepted 25 August,

A Relation to Hardy-Hilbert’sIntegral Inequality andMulholland’s Inequality

Bicheng Yang

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 6 of 28

J. Ineq. Pure and Appl. Math. 6(4) Art. 112, 2005

http://jipam.vu.edu.au

2. Some LemmasFirst, we need the formula of theβ function as (cf. Wang et al. [7]):

(2.1) B(u, v) :=

∫ ∞

0

1

(1 + t)u+vtu−1dt = B(v, u) (u, v > 0).

Lemma 2.1 (cf. [4]). If p > 1, 1p

+ 1q

= 1, ω(σ) > 0, f, g ≥ 0, f ∈ Lpω(E) and

g ∈ Lqω(E), then one has the Hölder’s inequality with weight as:

(2.2)∫

E

ω(σ)f(σ)g(σ)dσ ≤{∫

E

ω(σ)fp(σ)dσ

} 1p{∫

E

ω(σ)gq(σ)dσ

} 1q

;

if p < 1 (p 6= 0), with the above assumption, one has the reverse of (2.2),where the equality (in the above two cases) holds if and only if there exists non-negative real numbersc1 andc2, such that they are not all zero andc1f

p(σ) =c2g

q(σ), a. e. inE.

Lemma 2.2. If p 6= 0, 1, 1p+ 1

q= 1, φr = φr(λ) > 0 (r = p, q), φp+φq = λ, and

u(t) is a differentiable strict increasing function in(a, b) (−∞ ≤ a < b ≤ ∞)such thatu(a+) = 0 andu(b−) = ∞, for r = p, q, defineωr(x) as

(2.3) ωr(x) := (u(x))λ−φr

∫ b

a

(u(y))φr−1u′(y)

(u(x) + u(y))λdy (x ∈ (a, b)).

Then forx ∈ (a, b), eachωr(x) is constant, that is

(2.4) ωr(x) = B(φp, φq) (r = p, q).

Page 7: University of Adelaideemis.maths.adelaide.edu.au › journals › JIPAM › images › ... · volume 6, issue 4, article 112, 2005. Received 14 November, 2004; accepted 25 August,

A Relation to Hardy-Hilbert’sIntegral Inequality andMulholland’s Inequality

Bicheng Yang

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 7 of 28

J. Ineq. Pure and Appl. Math. 6(4) Art. 112, 2005

http://jipam.vu.edu.au

Proof. For fixedx, settingv = u(y)u(x)

in (2.3), one has

ωr(x) = (u(x))λ−φr

∫ b

a

(u(y))φr−1u′(y)

(u(x))λ(1 + u(y)/u(x))λdy

= (u(x))λ−φr

∫ ∞

0

(vu(x))φr−1

(u(x))λ(1 + v)λu(x)dv

=

∫ ∞

0

vφr−1

(1 + v)λdv (r = p, q).

By (2.1), one has (2.4). The lemma is proved.

Lemma 2.3. If p > 1, 1p

+ 1q

= 1, φr > 0 (r = p, q), satisfyφp + φq = λ, andu(t) is a differentiable strict increasing function in(a, b) (−∞ ≤ a < b ≤ ∞)satisfyingu(a+) = 0 andu(b−) = ∞, then forc = u−1(1) and0 < ε < qφp,

I :=

∫ b

c

∫ b

c

(u(x))φq− εp−1u

′(x)

(u(x) + u(y))λ(u(y))φp− ε

q−1u

′(y)dxdy

>1

εB

(φp −

ε

q, φq +

ε

q

)−O(1) ;(2.5)

if 0 < p < 1 (or p < 0), with the above assumption and0 < ε < −qφq (or0 < ε < qφp), then

(2.6) I <1

εB

(φp −

ε

q, φq +

ε

q

).

Page 8: University of Adelaideemis.maths.adelaide.edu.au › journals › JIPAM › images › ... · volume 6, issue 4, article 112, 2005. Received 14 November, 2004; accepted 25 August,

A Relation to Hardy-Hilbert’sIntegral Inequality andMulholland’s Inequality

Bicheng Yang

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 8 of 28

J. Ineq. Pure and Appl. Math. 6(4) Art. 112, 2005

http://jipam.vu.edu.au

Proof. For fixedx, settingv = u(y)u(x)

in I, one has

I :=

∫ b

c

(u(x))φq− εp−1u

′(x)

[∫ b

c

(u(y))φp− εq−1

(u(x) + u(y))λu′(y)dy

]dx

=

∫ b

c

(u(x))−1−εu′(x)

∫ ∞

1u(x)

1

(1 + v)λvφp− ε

q−1dvdx

=

∫ b

c

u′(x)dx

(u(x))1+ε

∫ ∞

0

vφp− εq−1

(1 + v)λdv

−∫ b

c

u′(x)

(u(x))1+ε

∫ 1u(x)

0

vφp− εq−1

(1 + v)λdvdx(2.7)

>1

ε

∫ ∞

0

vφp− εq−1

(1 + v)λdv −

∫ b

c

u′(x)

(u(x))

[∫ 1u(x)

0

vφp− εq−1dv

]dx

=1

ε

∫ ∞

0

vφp− εq−1

(1 + v)λdv −

(φp −

ε

q

)−2

.

By (2.1), inequality (2.5) is valid. If 0 < p < 1 (or p < 0), by (2.7), one has

I <

∫ b

c

u′(x)

(u(x))1+εdx

∫ ∞

0

1

(1 + v)λvφp− ε

q−1dv,

and then by (2.1), inequality (2.6) follows. The lemma is proved.

Page 9: University of Adelaideemis.maths.adelaide.edu.au › journals › JIPAM › images › ... · volume 6, issue 4, article 112, 2005. Received 14 November, 2004; accepted 25 August,

A Relation to Hardy-Hilbert’sIntegral Inequality andMulholland’s Inequality

Bicheng Yang

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 9 of 28

J. Ineq. Pure and Appl. Math. 6(4) Art. 112, 2005

http://jipam.vu.edu.au

3. Main ResultsTheorem 3.1. If p > 1, 1

p+ 1

q= 1, φr > 0 (r = p, q), φp + φq = λ, u(t) is a

differentiable strict increasing function in(a, b) (−∞ ≤ a < b ≤ ∞), such that

u(a+) = 0 andu(b−) = ∞, andf, g ≥ 0 satisfy0 <∫ b

a(u(x))p(1−φq)−1

(u′ (x))p−1 fp(x)dx <

∞ and 0 <∫ b

a(u(x))q(1−φp)−1

(u′ (x))q−1 gq(x)dx < ∞, then

(3.1)∫ b

a

∫ b

a

f(x)g(y)

(u(x) + u(y))λdxdy

< B(φp, φq)

{∫ b

a

(u(x))p(1−φq)−1

(u′(x))p−1fp(x)dx

} 1p

×{∫ b

a

(u(x))q(1−φp)−1

(u′(x))q−1gq(x)dx

} 1q

,

where the constant factorB(φp, φq) is the best possible. Ifp < 1 (p 6= 0),{λ; φr > 0 (r = p, q), φp + φq = λ} 6= φ, with the above assumption, one hasthe reverse of (3.1), and the constant is still the best possible.

Proof. By (2.2), one has

J :=

∫ b

a

∫ b

a

f(x)g(y)

(u(x) + u(y))λdxdy

Page 10: University of Adelaideemis.maths.adelaide.edu.au › journals › JIPAM › images › ... · volume 6, issue 4, article 112, 2005. Received 14 November, 2004; accepted 25 August,

A Relation to Hardy-Hilbert’sIntegral Inequality andMulholland’s Inequality

Bicheng Yang

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 10 of 28

J. Ineq. Pure and Appl. Math. 6(4) Art. 112, 2005

http://jipam.vu.edu.au

=

∫ b

a

∫ b

a

1

(u(x) + u(y))λ

[(u(x))(1−φq)/q

(u(y))(1−φp)/p

(u′(y))1/p

(u′(x))1/qf(x)

[(u(y))(1−φp)/p

(u(x))(1−φq)/q

(u′(x))1/q

(u′(y))1/pg(y)

]dxdy

≤{∫ b

a

[∫ b

a

(u(y))φp−1u′(y)

(u(x) + u(y))λdy

](u(x))(p−1)(1−φq)

(u′(x))p−1fp(x)dx

} 1p

×{∫ b

a

[∫ b

a

(u(x))φq−1u′(x)

(u(x) + u(y))λdx

](u(y))(q−1)(1−φp)

(u′(y))q−1gq(y)dy

} 1q

.(3.2)

If (3.2) takes the form of equality, then by (2.2), there exist non-negative num-bersc1 andc2, such that they are not all zero and

c1u′(y)(u(x))(p−1)(1−φq)

(u(y))1−φp(u′(x))p−1fp(x) = c2

u′(x)(u(y))(q−1)(1−φp)

(u(x))1−φq(u′(y))q−1gq(y),

a.e. in (a, b)× (a, b).

It follows that

c1(u(x))p(1−φq)

(u′(x))pfp(x) = c2

(u(y))q(1−φp)

(u′(y))qgq(y) = c3, a.e. in (a, b)× (a, b),

wherec3 is a constant. Without loss of generality, supposec1 6= 0. One has

(u(x))p(1−φq)−1

(u′(x))p−1fp(x) =

c3u′(x)

c1u(x), a.e. in (a, b),

Page 11: University of Adelaideemis.maths.adelaide.edu.au › journals › JIPAM › images › ... · volume 6, issue 4, article 112, 2005. Received 14 November, 2004; accepted 25 August,

A Relation to Hardy-Hilbert’sIntegral Inequality andMulholland’s Inequality

Bicheng Yang

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 11 of 28

J. Ineq. Pure and Appl. Math. 6(4) Art. 112, 2005

http://jipam.vu.edu.au

which contradicts0 <∫ b

a(u(x))p(1−φq)−1

(u′ (x))p−1 fp(x)dx < ∞. Then by (2.3), one has

(3.3) J <

{∫ b

a

ωp(x)(u(x))p(1−φq)−1

(u′(x))p−1fp(x)dx

} 1p

×{∫ ∞

0

ωq(x)(u(x))q(1−φp)−1

(u′(x))q−1gq(x)dx

} 1q

,

and in view of (2.4), it follows that (3.1) is valid.For0 < ε < qφp, settingfε(x) = gε(x) = 0, x ∈ (a, c) (c = u−1(1));

fε(x) = (u(x))φq− εp−1u

′(x), gε(x) = (u(x))φp− ε

q−1u

′(x),

x ∈ [c, b), we find

(3.4)

{∫ b

a

(u(x))p(1−φq)−1

(u′(x))p−1fp

ε (x)dx

} 1p

×{∫ b

a

(u(x))q(1−φp)−1

(u′(x))q−1gq

ε(x)dx

} 1q

=1

ε.

If the constant factorB(φp, φq) in (3.1) is not the best possible, then, there existsa positive constantk < B(φp, φq), such that (3.1) is still valid if one replaces

Page 12: University of Adelaideemis.maths.adelaide.edu.au › journals › JIPAM › images › ... · volume 6, issue 4, article 112, 2005. Received 14 November, 2004; accepted 25 August,

A Relation to Hardy-Hilbert’sIntegral Inequality andMulholland’s Inequality

Bicheng Yang

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 12 of 28

J. Ineq. Pure and Appl. Math. 6(4) Art. 112, 2005

http://jipam.vu.edu.au

B(φp, φq) by k. In particular, by (2.6) and (3.4), one has

B

(φp −

ε

q, φq +

ε

q

)− εO(1)

< ε

∫ b

a

∫ b

a

fε(x)gε(y)

(u(x) + u(y))λdxdy

< εk

{∫ b

a

(u(x))p(1−φq)−1

(u′(x))p−1fp

ε (x)dx

} 1p{∫ b

a

(u(x))q(1−φp)−1

(u′(x))q−1gq

ε(x)dx

} 1q

= k,

and thenB(φp, φq) ≤ k (ε → 0+). This contradicts the fact thatk < B(φp, φq).Hence the constant factorB(φp, φq) in (3.1) is the best possible.

For 0 < p < 1 (or p < 0), by the reverse of (2.2) and using the sameprocedures, one can obtain the reverse of (3.1). For0 < ε < −qφq (or 0 < ε <qφp), settingfε(x) andgε(x) as the above, we still have (3.4). If the constantfactorB(φp, φq) in the reverse of (3.1) is not the best possible, then, there existsa positive constantK > B(φp, φq), such that the reverse of (3.1) is still valid ifone replacesB(φp, φq) by K. In particular, by (2.7) and (3.4), one has

B

(φp −

ε

q, φq +

ε

q

)> ε

∫ b

a

∫ b

a

fε(x)gε(y)

(u(x) + u(y))λdxdy

> εK

{∫ b

a

(u(x))p(1−φq)−1

(u′(x))p−1fp

ε (x)dx

} 1p{∫ b

a

(u(x))q(1−φp)−1

(u′(x))q−1gq

ε(x)dx

} 1q

= K,

Page 13: University of Adelaideemis.maths.adelaide.edu.au › journals › JIPAM › images › ... · volume 6, issue 4, article 112, 2005. Received 14 November, 2004; accepted 25 August,

A Relation to Hardy-Hilbert’sIntegral Inequality andMulholland’s Inequality

Bicheng Yang

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 13 of 28

J. Ineq. Pure and Appl. Math. 6(4) Art. 112, 2005

http://jipam.vu.edu.au

and thenB(φp, φq) ≥ K (ε → 0+). This contradiction concludes that theconstant in the reverse of (3.1) is the best possible. The theorem is proved.

Theorem 3.2.Let the assumptions of Theorem3.1hold.

(i) If p > 1, 1p

+ 1q

= 1, one obtains the equivalent inequality of (3.1) asfollows

(3.5)∫ b

a

u′(y)

(u(y))1−pφp

[∫ b

a

f(x)

(u(x) + u(y))λdx

]p

dy

< [B(φp, φq)]p

∫ b

a

(u(x))p(1−φq)−1

(u′(x))p−1fp(x)dx;

(ii) If 0 < p < 1, one obtains the reverse of (3.5) equivalent to the reverse of(3.1);

(iii) If p < 0, one obtains inequality (3.5) equivalent to the reverse of (3.1),

where the constants in the above inequalities are all the best possible.

Proof. Set

g(y) :=u′(y)

(u(y))1−pφp

[∫ b

a

f(x)

(u(x) + u(y))λdx

]p−1

,

Page 14: University of Adelaideemis.maths.adelaide.edu.au › journals › JIPAM › images › ... · volume 6, issue 4, article 112, 2005. Received 14 November, 2004; accepted 25 August,

A Relation to Hardy-Hilbert’sIntegral Inequality andMulholland’s Inequality

Bicheng Yang

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 14 of 28

J. Ineq. Pure and Appl. Math. 6(4) Art. 112, 2005

http://jipam.vu.edu.au

and use (3.1) to obtain

0 <

∫ b

a

(u(y))q(1−φp)−1

(u′(y))q−1gq(y)dy

=

∫ b

a

u′(y)

(u(y))1−pφp

[∫ b

a

f(x)

(u(x) + u(y))λdx

]p

dy

=

∫ b

a

∫ b

a

f(x)g(y)

(u(x) + u(y))λdxdy ≤ B(φp, φq)

×{∫ b

a

(u(x))p(1−φq)−1

(u′(x))p−1fp(x)dx

} 1p

×{∫ b

a

(u(y))q(1−φp)−1

(u′(y))q−1gq(y)dy

} 1q

;(3.6)

0 <

{∫ b

a

(u(y))q(1−φp)−1

(u′(y))q−1gq(y)dy

}1− 1q

=

{∫ b

a

u′(y)

(u(y))1−pφp

[∫ b

a

f(x)

(u(x) + u(y))λdx

]p

dy

} 1p

≤ B(φp, φq)

{∫ b

a

(u(x))p(1−φq)−1

(u′(x))p−1fp(x)dx

} 1p

< ∞.(3.7)

It follows that (3.6) takes the form of strict inequality by using (3.1); so does

Page 15: University of Adelaideemis.maths.adelaide.edu.au › journals › JIPAM › images › ... · volume 6, issue 4, article 112, 2005. Received 14 November, 2004; accepted 25 August,

A Relation to Hardy-Hilbert’sIntegral Inequality andMulholland’s Inequality

Bicheng Yang

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 15 of 28

J. Ineq. Pure and Appl. Math. 6(4) Art. 112, 2005

http://jipam.vu.edu.au

(3.7). Hence one can get (3.5). On the other hand, if (3.5) is valid, by (2.2),∫ b

a

∫ b

a

f(x)g(y)

(u(x) + u(y))λdxdy

=

∫ b

a

[(u

′(y))

1p

(u(y))1p−φp

∫ b

a

f(x)

(u(x) + u(y))λdx

] [(u(y))

1p−φp

(u′(y))1p

g(y)

]dy

{∫ b

a

u′(y)

(u(y))1−pφp

[∫ b

a

f(x)

(u(x) + u(y))λdx

]p

dy

} 1p

×{∫ b

a

(u(y))q(1−φp)−1

(u′(y))q−1gq(y)dy

} 1q

.(3.8)

Hence by (3.5), (3.1) yields. It follows that (3.1) and (3.5) are equivalent.If the constant factor in (3.5) is not the best possible, one can get a contra-

diction that the constant factor in (3.1) is not the best possible by using (3.8).Hence the constant factor in (3.5) is still the best possible.

If 0 < p < 1 (or p < 0), one can get the reverses of (3.6), (3.7) and (3.8),and thus concludes the equivalence. By (3.6), for 0 < p < 1, one can obtain thereverse of (3.5); for p < 0, one can get (3.5). If the constant factor in the reverseof (3.5) (or simply (3.5)) is not the best possible, then one can get a contradictionthat the constant factor in the reverse of (3.1) is not the best possible by usingthe reverse of (3.8). Thus the theorem is proved.

Page 16: University of Adelaideemis.maths.adelaide.edu.au › journals › JIPAM › images › ... · volume 6, issue 4, article 112, 2005. Received 14 November, 2004; accepted 25 August,

A Relation to Hardy-Hilbert’sIntegral Inequality andMulholland’s Inequality

Bicheng Yang

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 16 of 28

J. Ineq. Pure and Appl. Math. 6(4) Art. 112, 2005

http://jipam.vu.edu.au

4. Some Particular ResultsWe point out that the constant factors in the following particular results of The-orems3.1– 3.2are all the best possible.

4.1. The first reversible form

Corollary 4.1. Let the assumptions of Theorems3.1– 3.2hold. For

φr =

(1− 1

r

)(λ− 2) + 1 (r = p, q),

0 <

∫ b

a

(u(x))1−λ

(u′(x))p−1fp(x)dx < ∞

and

0 <

∫ b

a

(u(x))1−λ

(u′(x))q−1gq(x)dx < ∞,

settingkλ(p) = B(

p+λ−2p

, q+λ−2q

),

(i) If p > 1, 1p

+ 1q

= 1, λ > 2 −min{p, q} , then we have the following twoequivalent inequalities:

(4.1)∫ b

a

∫ b

a

f(x)g(y)

(u(x) + u(y))λdxdy

Page 17: University of Adelaideemis.maths.adelaide.edu.au › journals › JIPAM › images › ... · volume 6, issue 4, article 112, 2005. Received 14 November, 2004; accepted 25 August,

A Relation to Hardy-Hilbert’sIntegral Inequality andMulholland’s Inequality

Bicheng Yang

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 17 of 28

J. Ineq. Pure and Appl. Math. 6(4) Art. 112, 2005

http://jipam.vu.edu.au

< kλ(p)

{∫ b

a

(u(x))1−λ

(u′(x))p−1fp(x)dx

} 1p{∫ b

a

(u(x))1−λ

(u′(x))q−1gq(x)dx

} 1q

and

(4.2)∫ b

a

u′(y)

(u(y))(p−1)(1−λ)

[∫ b

a

f(x)

(u(x) + u(y))λdx

]p

dy

< [kλ(p)]p∫ b

a

(u(x))1−λ

(u′(x))p−1fp(x)dx.

(ii) If 0 < p < 1 and2− p < λ < 2− q, one obtains two equivalent reversesof (4.1) and (4.2),

(iii) If p < 0 and 2 − q < λ < 2 − p, we have the reverse of (4.1) and theinequality (4.2), which are equivalent. In particular, by (4.1),

(a) settingu(x) = xα (α > 0, x ∈ (0,∞)), one has

(4.3)∫ ∞

0

∫ ∞

0

f(x)g(y)

(xα + yα)λdxdy

<1

αkλ(p)

{∫ ∞

0

xp−1+α(2−λ−p)fp(x)dx

} 1p

×{∫ ∞

0

xq−1+α(2−λ−q)gq(x)dx

} 1q

;

Page 18: University of Adelaideemis.maths.adelaide.edu.au › journals › JIPAM › images › ... · volume 6, issue 4, article 112, 2005. Received 14 November, 2004; accepted 25 August,

A Relation to Hardy-Hilbert’sIntegral Inequality andMulholland’s Inequality

Bicheng Yang

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 18 of 28

J. Ineq. Pure and Appl. Math. 6(4) Art. 112, 2005

http://jipam.vu.edu.au

(b) settingu(x) = ln x, x ∈ (1,∞), one has

(4.4)∫ ∞

1

∫ ∞

1

f(x)g(y)

(ln xy)λdxdy

< kλ(p)

{∫ ∞

1

xp−1(ln x)1−λfp(x)dx

} 1p

×{∫ ∞

1

xq−1(ln x)1−λgq(x)dx

} 1q

;

(c) settingu(x) = ex, x ∈ (−∞,∞), one has

(4.5)∫ ∞

−∞

∫ ∞

−∞

f(x)g(y)

(ex + ey)λdxdy

< kλ(p)

{∫ ∞

−∞e(2−p−λ)xfp(x)dx

} 1p

×{∫ ∞

−∞e(2−q−λ)xgq(x)dx

} 1q

;

(d) settingu(x) = tan x, x ∈ (0, π2), one has

(4.6)∫ π

2

0

∫ π2

0

f(x)g(y)

(tan x + tan y)λdxdy

Page 19: University of Adelaideemis.maths.adelaide.edu.au › journals › JIPAM › images › ... · volume 6, issue 4, article 112, 2005. Received 14 November, 2004; accepted 25 August,

A Relation to Hardy-Hilbert’sIntegral Inequality andMulholland’s Inequality

Bicheng Yang

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 19 of 28

J. Ineq. Pure and Appl. Math. 6(4) Art. 112, 2005

http://jipam.vu.edu.au

< kλ(p)

{∫ π2

0

tan1−λ x

sec2(p−1) xfp(x)dx

} 1p{∫ π

2

0

tan1−λ x

sec2(q−1) xgq(x)dx

} 1q

;

(e) settingu(x) = sec x− 1, x ∈ (0, π2), one has

(4.7)∫ π

2

0

∫ π2

0

f(x)g(y)

(sec x + sec y − 2)λdxdy

< kλ(p)

{∫ π2

0

(sec x− 1)1−λ

(sec x tan x)p−1fp(x)dx

} 1p

×

{∫ π2

0

(sec x− 1)1−λ

(sec x tan x)q−1gq(x)dx

} 1q

.

4.2. The second reversible form

Corollary 4.2. Let the assumptions of Theorems3.1– 3.2hold. For

φr =λ− 1

2+

1

r(r = p, q),

0 <

∫ b

a

(u(x))p 1−λ2

(u′(x))p−1fp(x)dx < ∞

and

0 <

∫ b

a

(u(x))q 1−λ2

(u′(x))q−1gq(x)dx < ∞,

Page 20: University of Adelaideemis.maths.adelaide.edu.au › journals › JIPAM › images › ... · volume 6, issue 4, article 112, 2005. Received 14 November, 2004; accepted 25 August,

A Relation to Hardy-Hilbert’sIntegral Inequality andMulholland’s Inequality

Bicheng Yang

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 20 of 28

J. Ineq. Pure and Appl. Math. 6(4) Art. 112, 2005

http://jipam.vu.edu.au

settingkλ(p) = B(

pλ−p+22p

, qλ−q+22q

),

(i) If p > 1, 1p+ 1

q= 1, λ > 1−2 min{1

p, 1

q} , then one can get two equivalent

inequalities as follows:

(4.8)∫ b

a

∫ b

a

f(x)g(y)

(u(x) + u(y))λdxdy

< kλ(p)

{∫ b

a

(u(x))p 1−λ2

(u′(x))p−1fp(x)dx

} 1p

×

{∫ b

a

(u(x))q 1−λ2

(u′(x))q−1gq(x)dx

} 1q

;

(4.9)∫ b

a

u′(y)

(u(y))p 1−λ

2

[∫ b

a

f(x)

(u(x) + u(y))λdx

]p

dy

<[kλ(p)

]p∫ b

a

(u(x))p 1−λ2

(u′(x))p−1fp(x)dx,

(ii) If 0 < p < 1, 1− 2p

< λ < 1− 2q, one can get two equivalent reversions of

(4.8) and (4.9),

(iii) If p < 0, 1 − 2q

< λ < 1 − 2p, one can get the reversion of (4.8) and

inequality (4.9), which are equivalent. In particular, by (4.8),

Page 21: University of Adelaideemis.maths.adelaide.edu.au › journals › JIPAM › images › ... · volume 6, issue 4, article 112, 2005. Received 14 November, 2004; accepted 25 August,

A Relation to Hardy-Hilbert’sIntegral Inequality andMulholland’s Inequality

Bicheng Yang

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 21 of 28

J. Ineq. Pure and Appl. Math. 6(4) Art. 112, 2005

http://jipam.vu.edu.au

(a) settingu(x) = xα (α > 0, x ∈ (0,∞)), one has

(4.10)∫ ∞

0

∫ ∞

0

f(x)g(y)

(xα + yα)λdxdy

<1

αkλ(p)

{∫ ∞

0

xp−1+α(1−p 1+λ2

)fp(x)dx

} 1p

×{∫ ∞

0

xq−1+α(1−q 1+λ2

)gq(x)dx

} 1q

;

(b) settingu(x) = ln x, x ∈ (1,∞), one has

(4.11)∫ ∞

1

∫ ∞

1

f(x)g(y)

(ln xy)λdxdy

< kλ(p)

{∫ ∞

1

xp−1(ln x)p 1−λ2 fp(x)dx

} 1p

×{∫ ∞

1

xq−1(ln x)q 1−λ2 gq(x)dx

} 1q

;

(c) settingu(x) = ex, x ∈ (−∞,∞), one has

(4.12)∫ ∞

−∞

∫ ∞

−∞

f(x)g(y)

(ex + ey)λdxdy

Page 22: University of Adelaideemis.maths.adelaide.edu.au › journals › JIPAM › images › ... · volume 6, issue 4, article 112, 2005. Received 14 November, 2004; accepted 25 August,

A Relation to Hardy-Hilbert’sIntegral Inequality andMulholland’s Inequality

Bicheng Yang

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 22 of 28

J. Ineq. Pure and Appl. Math. 6(4) Art. 112, 2005

http://jipam.vu.edu.au

< kλ(p)

{∫ ∞

−∞e(1−p 1+λ

2)xfp(x)dx

} 1p{∫ ∞

−∞e(1−q 1+λ

2)xgq(x)dx

} 1q

;

(d) settingu(x) = tan x, x ∈ (0, π2), one has

(4.13)∫ π

2

0

∫ π2

0

f(x)g(y)

(tan x + tan y)λdxdy

< kλ(p)

{∫ π2

0

tanp 1−λ2 x

sec2(p−1) xfp(x)dx

} 1p

×

{∫ π2

0

tanq 1−λ2 x

sec2(q−1) xgq(x)dx

} 1q

;

(e) settingu(x) = sec x− 1, x ∈ (0, π2), one has

(4.14)∫ π

2

0

∫ π2

0

f(x)g(y)

(sec x + sec y − 2)λdxdy

< kλ(p)

{∫ π2

0

(sec x− 1)p 1−λ2

(sec x tan x)p−1fp(x)dx

} 1p

×

{∫ π2

0

(sec x− 1)q 1−λ2

(sec x tan x)q−1gq(x)dx

} 1q

.

Page 23: University of Adelaideemis.maths.adelaide.edu.au › journals › JIPAM › images › ... · volume 6, issue 4, article 112, 2005. Received 14 November, 2004; accepted 25 August,

A Relation to Hardy-Hilbert’sIntegral Inequality andMulholland’s Inequality

Bicheng Yang

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 23 of 28

J. Ineq. Pure and Appl. Math. 6(4) Art. 112, 2005

http://jipam.vu.edu.au

4.3. The form which does not have a reverse

Corollary 4.3. Let the assumptions of Theorems3.1– 3.2hold. For

φr =λ

r(r = p, q), if p > 1,

1

p+

1

q= 1, λ > 0,

0 <

∫ b

a

(u(x))(p−1)(1−λ)

(u′(x))p−1fp(x)dx < ∞

and

0 <

∫ b

a

(u(x))(q−1)(1−λ)

(u′(x))q−1gq(x)dx < ∞,

then one can get two equivalent inequalities as:

(4.15)∫ b

a

∫ b

a

f(x)g(y)

(u(x) + u(y))λdxdy

< B

p,λ

q

) {∫ b

a

(u(x))(p−1)(1−λ)

(u′(x))p−1fp(x)dx

} 1p

×{∫ b

a

(u(x))(q−1)(1−λ)

(u′(x))q−1gq(x)dx

} 1q

;

(4.16)∫ b

a

u′(y)

(u(y))1−λ

[∫ b

a

f(x)

(u(x) + u(y))λdx

]p

dy

<

[B

p,λ

q

)]p ∫ b

a

(u(x))(p−1)(1−λ)

(u′(x))p−1fp(x)dx.

Page 24: University of Adelaideemis.maths.adelaide.edu.au › journals › JIPAM › images › ... · volume 6, issue 4, article 112, 2005. Received 14 November, 2004; accepted 25 August,

A Relation to Hardy-Hilbert’sIntegral Inequality andMulholland’s Inequality

Bicheng Yang

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 24 of 28

J. Ineq. Pure and Appl. Math. 6(4) Art. 112, 2005

http://jipam.vu.edu.au

In particular, by (4.15),

(a) settingu(x) = xα(α > 0; x ∈ (0,∞)), one has

(4.17)∫ ∞

0

∫ ∞

0

f(x)g(y)

(xα + yα)λdxdy

<1

αB

p,λ

q

) {∫ ∞

0

x(p−1)(1−αλ)fp(x)dx

} 1p

×{∫ ∞

0

x(q−1)(1−αλ)gq(x)dx

} 1q

;

(b) settingu(x) = ln x, x ∈ (1,∞), one has

(4.18)∫ ∞

1

∫ ∞

1

f(x)g(y)

(ln xy)λdxdy

< B

p,λ

q

) {∫ ∞

1

xp−1(ln x)(p−1)(1−λ)fp(x)dx

} 1p

×{∫ ∞

1

xq−1(ln x)(q−1)(1−λ)gq(x)dx

} 1q

;

(c) settingu(x) = ex, x ∈ (−∞,∞), one has

(4.19)∫ ∞

−∞

∫ ∞

−∞

f(x)g(y)

(ex + ey)λdxdy

Page 25: University of Adelaideemis.maths.adelaide.edu.au › journals › JIPAM › images › ... · volume 6, issue 4, article 112, 2005. Received 14 November, 2004; accepted 25 August,

A Relation to Hardy-Hilbert’sIntegral Inequality andMulholland’s Inequality

Bicheng Yang

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 25 of 28

J. Ineq. Pure and Appl. Math. 6(4) Art. 112, 2005

http://jipam.vu.edu.au

< B

p,λ

q

) {∫ ∞

−∞e(1−p)λxfp(x)dx

} 1p{∫ ∞

−∞e(1−q)λxgq(x)dx

} 1q

;

(d) settingu(x) = tan x, x ∈ (0, π2), one has

(4.20)∫ π

2

0

∫ π2

0

f(x)g(y)

(tan x + tan y)λdxdy

< B

p,λ

q

) {∫ π2

0

tan(p−1)(1−λ) x

sec2(p−1) xfp(x)dx

} 1p

×

{∫ π2

0

tan(q−1)(1−λ) x

sec2(q−1) xgq(x)dx

} 1q

;

(e) settingu(x) = sec x− 1, x ∈ (0, π2), one has

(4.21)∫ π

2

0

∫ π2

0

f(x)g(y)

(sec x + sec y − 2)λdxdy

< B

p,λ

q

) {∫ π2

0

(sec x− 1)(p−1)(1−λ)

(sec x tan x)p−1fp(x)dx

} 1p

×

{∫ π2

0

(sec x− 1)(q−1)(1−λ)

(sec x tan x)q−1gq(x)dx

} 1q

.

Page 26: University of Adelaideemis.maths.adelaide.edu.au › journals › JIPAM › images › ... · volume 6, issue 4, article 112, 2005. Received 14 November, 2004; accepted 25 August,

A Relation to Hardy-Hilbert’sIntegral Inequality andMulholland’s Inequality

Bicheng Yang

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 26 of 28

J. Ineq. Pure and Appl. Math. 6(4) Art. 112, 2005

http://jipam.vu.edu.au

Remark 1. For α = 1, (4.3) reduces to (1.5). For λ = 1, inequalities (4.3),(4.10) and (4.17) reduce to (1.7), and inequalities (4.4), (4.11) and (4.18) reduceto (1.4). It follows that inequality (3.5) is a relation between (1.4) and (1.7)(ro(1.1)) with a parameterλ. Still for λ = 1, (4.5), (4.12) and (4.19) reduce to

(4.22)∫ ∞

−∞

∫ ∞

−∞

f(x)g(y)

ex + eydxdy

sin(

πp

) {∫ ∞

−∞e(1−p)xfp(x)dx

} 1p{∫ ∞

−∞e(1−q)xgq(x)dx

} 1q

,

(4.6), (4.13) and (4.20) reduce to

(4.23)∫ π

2

0

∫ π2

0

f(x)g(y)

tan x + tan ydxdy

sin(

πp

) {∫ π2

0

cos2(p−1) xfp(x)dx

} 1p{∫ π

2

0

cos2(q−1) xgq(x)dx

} 1q

,

and (4.7), (4.14) and (4.21) reduce to

(4.24)∫ π

2

0

∫ π2

0

f(x)g(y)

sec x + sec y − 2dxdy

sin(

πp

) {∫ π2

0

(cos2 x

sin x

)p−1

fp(x)dx

} 1p{∫ π

2

0

(cos2 x

sin x

)q−1

gq(x)dx

} 1q

.

Page 27: University of Adelaideemis.maths.adelaide.edu.au › journals › JIPAM › images › ... · volume 6, issue 4, article 112, 2005. Received 14 November, 2004; accepted 25 August,

A Relation to Hardy-Hilbert’sIntegral Inequality andMulholland’s Inequality

Bicheng Yang

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 27 of 28

J. Ineq. Pure and Appl. Math. 6(4) Art. 112, 2005

http://jipam.vu.edu.au

References[1] G. H. HARDY, J.E. LITTLEWOODAND G. POLYA, Inequalities, Cam-

bridge University Press, Cambridge, 1952.

[2] D.S. MITRINOVIC, J.E. PECARIC AND A.M. FINK, Inequalities Involv-ing Functions and Their Integrals and Derivatives, Kluwer Academic Pub-lishers, Boston, 1991.

[3] H.P. MULHOLLAND, Some theorems on Dirichlet series with positivecoefficients and related integrals,Proc. London Math. Soc., 29(2) (1929),281–292.

[4] JICHANG KUANG, Applied Inequalities, Shangdong Science and Tech-nology Press, Jinan, 2004.

[5] JICHANG KUANG, On a new extension of Hilbert’s integral inequality,J. Math. Anal. Appl., 235(1999), 608–614.

[6] W.T. SULAIMAN, On Hardy-Hilbert’s integral inequality,J. Inequal. inPure and Appl. Math., 5(2) (2004), Art. 25. [ONLINE:http://jipam.vu.edu.au/article.php?sid=385 ]

[7] ZHUXI WANG AND DUNRIN GUO, An Introduction to Special Func-tions, Science Press, Beijing, 1979.

[8] BICHENG YANG, On a general Hardy-Hilbert’s inequality with a bestvalue,Chinese Annals of Math., 21A(4) (2000), 401–408.

[9] BICHENG YANG, On an extension of Hardy-Hilbert’s inequality,Chi-nese Annals of Math., 23A(2) (2002), 247–254.

Page 28: University of Adelaideemis.maths.adelaide.edu.au › journals › JIPAM › images › ... · volume 6, issue 4, article 112, 2005. Received 14 November, 2004; accepted 25 August,

A Relation to Hardy-Hilbert’sIntegral Inequality andMulholland’s Inequality

Bicheng Yang

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 28 of 28

J. Ineq. Pure and Appl. Math. 6(4) Art. 112, 2005

http://jipam.vu.edu.au

[10] BICHENG YANG, On Hardy-Hilbert’s integral inequality,J. Math. Anal.Appl., 261(2001), 295–306.

[11] BICHENG YANG, On Hilbert’s integral inequality,J. Math. Anal. Appl.,220(1998), 778–785.

[12] BICHENG YANG, On new inequality similar to Hardy-Hilbert’s inequal-ity, Math. Ineq. and Appl., 6(1) (2003), 37–44.

[13] BICHENG YANG AND Th.M. RASSIAS, On the way of weight coeffi-cient and research for the Hilbert-type inequalities,Math. Ineq. Appl., 6(4)(2003), 625–658.

[14] HONG YONG, A extension and improvement of Hardy-Hilbert’s doubleseries inequality,Math. Practice and Theory, 32(5) (2002), 850–854.