83
Continuous Time Monte Carlo methods for fermions Alexander Lichtenstein University of Hamburg In collaboration with A. Rubtsov (Moscow University) P. Werner (ETH Zurich)

University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

Continuous Time Monte Carlo methods for fermions

Alexander LichtensteinUniversity of Hamburg

In collaboration withA. Rubtsov (Moscow University)

P. Werner (ETH Zurich)

Page 2: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

Outline

• Calculation of Path Integral

• Problems with Hirsch-Fay QMC scheme

• New fermionic solver - CT-QMC- weak coupling: CT-INT- strong coupling: CT-HYB

• Magnetic nanosystems

• Progress in DMFT

• Conclusions

Page 3: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

Can we calculate a path integral?Interacting Fermions

Partition Function

Gaussian Integral

Page 4: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

QMC for Fermions: Sign Problem

“Приходится вычислять разность близких по величинечленов, а это требует очень аккуратного вычислениякаждого члена в отдельности”

“Метод интегрирования по траекториям ... фактическиникогда не был полезен при рассмотрении вырожденныхФерми-систем”

Р. Фейнман, А.ХиббсКвантовая механика и интегралы по

траекториям

1

2

Page 5: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

Path Integral for impurity problem

Partition function:

Bath Green-function

Hybridization

Local Interactions

d

εVk

Page 6: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

Dynamical Mean Field Theory

( )ττ ′−0G

( ) ( )∑Ω=

BZ

knn ikGiG

r

rωω ,ˆ1ˆ

( ) ( ) ( )nnn iiGi ωωω Σ+= −− ˆˆˆ 110GΣ Σ Σ

Σ Σ

Σ Σ Σ

ΣU

QMC ED

DMRG IPTFLEX

( )ττ ′−0G

( ) ( ) ( )nnnnew iGii ωωω 110

ˆˆˆ −− −=Σ G

Single Impurity Solver

W. Metzner and D. Vollhardt (1987)A. Georges and G. Kotliar (1992)

Page 7: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

Monte Carlo: basicM. Troyer (ETH)

N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, "Equation of State Calculations by Fast Computing Machines" J. Chem. Phys. 21, 1087 (1953)

Page 8: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

History of pre‐CT‐QMC

Page 9: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

Continuous Time: World Lines

Page 10: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

Quantum Monte Carlo

Page 11: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

Discrete QMC: Hirsch‐Fye algorithm

G

b

Page 12: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

Multi-band Hirsch-Fye QMC-scheme

)(exp21)](

21[exp

''1

'''''

mmmmS

mmmmmmmmnnSnnnnU

mm

−=+−∆− ∑±=

λτ

Discrete HS-transformation (Hirsch, 1983)

Number of Ising fields: ,),12( σmMMMN =−=

( ) ⎟⎠⎞

⎜⎝⎛ ∆= '' 2

1expcosh mmmm Uτλ

Green Functions:

'

1' '

( )

1 1' ' ' '

' ' ''

'

1( , ') ( , ', ) det

( , ', ) ( , ') ( )( ) ( )

1, '1, '

m m

m m m mS

m m m m m m m

m m m m m m mm

m m

G G S GZ

G S VV S

m mm m

τ

ττ

τ τ τ τ

τ τ τ τ τ δ δ

τ λ τ σ

σ

− −

= ×

= +

=

+ <⎧= ⎨− >⎩

∑G

' ''i

ij i j mm m mij mmH t c c U n nσ σσ

+= − +∑ ∑

U

´mm´

τ

m

τ

Page 13: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

Continuous Time Quantum Monte Carlo

Partition function:

Continuous Time Quantum Monte Carlo (CT-QMC)

E. Gull, A. Millis, A.L., A. Rubtsov, M. Troyer, Ph. Werner, Rev. Mod. Phys. 83, 349 (2011)

Page 14: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

CT‐QMC: configurations and weights

Page 15: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

Continuous time QMC

Page 16: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

Continuous Time QMC: CT-INT

Partition function and action for fermionic system with pair interactions Tr( )SZ Te−=

1 2 1 2

1 2 1 2

' ''' ' ' 1 1 2 2' ' 'r r r rr r

r r r r r rS t c c drdr w c c c c drdr dr dr+ + += +∫ ∫ ∫ ∫ ∫ ∫

, , r i sτ=0 i s

dr dβ

τ= ∑∑∫ ∫Splitting of the action into

Gaussian part and interaction 0S S W= +

( )( )2 1 2 2 1

2 1 2 2 1

' ' ' ''0 ' 2 2 '' 'r r r r rr r

r r r r r r rS t w w dr dr c c drdrα += + +∫ ∫ ∫ ∫

( )( )1 2 1 1 2 2

1 2 1 1 2 2

' '' ' ' ' 1 1 2 2' 'r r r r r r

r r r r r rW w c c c c drdr dr drα α+ += − −∫ ∫ ∫ ∫

'rrα - additional parameters - necessary to minimize a sign problem

A. Rubtsov and A.L., JETP Lett. (2004)

Page 17: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

CT-QMC formalism and Green function

Perturbation-series expansion1 1 2 2 1 1 2 2

0

' ... ' ( , ' ,..., , ' )k k k k kk

Z dr dr dr dr r r r r∞

=

= Ω∑∫ ∫ ∫ ∫

2 1 2 1 21 2

1 2 2 1 2 1 2

' ' ...' '1 1 2 2 0 ' ... '

( 1)( , ' ,..., , ' ) ...!

k k k

k k k

kr r r rr r

k k k r r r r r rr r r r Z w w Dk

−Ω =

( ) ( )1 2 2 21 1

1 2 1 1 2 2

...' ... ' ' ' ' '...k k k

k k k

r r r rr rr r r r r rD T c c c cα α+ += − −

Since S0 is Gaussian one can apply the Wick theorem

D can be presented as a determinant g0

( ) ( )( ) ( )

2 21 1

1 1 2 2

2 21 1

1 1 2 2

' ' ' ' ''

' ' ' '

...( )

...

k k

k k

k k

k k

r rr rrr r r r rr

r r rr rr r r r

Tc c c c c cg k

T c c c c

α α

α α

+ + +

+ +

− −=

− −The Green function can be

calculated as follows

ratio of determinantsIn practice efficient calculation

of a ratio is possible due to fast-update formulas

A. Rubtsov and A.L., JETP Lett. (2004)

Page 18: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

Weak coupling QMC: CT-INT

A. Rubtsov, 2004

Page 19: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

CT‐INT: detailsTrivial sign problem: P-H transformation

Possible updates:

A. Rubtsov, cond-mat 2003

Page 20: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

CT‐INT: multiorbital scheme

Page 21: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

CT-INT: random walks in the k space

Step k+1Step k-1

1

1

k

k

w Dk D

+

+

1k

k

k Dw D

Acceptance ratio

0 20 40 60

0

Dis

tribu

tion

k

decrease increase

Maximum at 2UNβ

k-1 k+1

Z=… Zk-1 + Zk + Zk+1+ ….

Page 22: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

Convergence with Temperature: CT-INT

Maximum: 2UNβ

Page 23: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

CT‐QMC Fast Update: k ‐> k+1

Similar to QR-algorithm

(K+1)2 operations

Page 24: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

Measurement of Green functions

Page 25: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

Advantages of the CT‐QMC method

Number of auxiliary spinsin the Hirsch scheme

Short-range interactions Long-range interactions

Local in time interactions Non-local in time interactions

• non-local in time interactions: dynamical Coulomb screening

• non-local in space interactions: multi-band systems, E-DMFT

Auxiliary field (Hirsch) algorithm is time-consuming since it’s necessary to introduce large number of auxiliary fields, while

CT-QMC scheme needs almost the same time as in local case

Page 26: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

Complexity of the algorithm

Page 27: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

Metal-insulator transition in the Hubbard model on Bethe lattice

( )( ) 12( ) 0.5 1G i iω µ ω ω

= + + +

1 20 ( ) ( )G i i t G iω ω µ ω− = + −

1 10( ) ( ) ( )i G i G iω ω ω− −Σ = −

Initial Green function corresponds to semicircular density of state

Equation of DMFT self-consistency

Self-energy

We solve the effective one-site problem by CTQMC method ( ') ( ) ( ')

effSG Tc cτ τ τ τ+− = −

Page 28: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

0.0 0.5 1.0 1.5 2.0 2.5 3.0-7

-6

-5

-4

-3

-2

-1

0

Σ(iω)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1.8

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

U=2

U=3

U=2

G(iω

)

U=3

-4 -2 0 2 40.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

DO

S

Energy

Density of states for β=64:U=2; U=2.2; U=2.4; U=3

DMFT on Bethe lattice. Parameters:U=2, U=2.2, U=2.4, U=2.6, U=2.8, U=3

β=64, band width W=2

Metal-insulator transition in the Hubbard model on Bethe lattice

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5-2

-1

0

1

2

3

4

coexistence of the metallic and insulating solutions: U=2.4, β=64, W=2

G(iω

)

CTQMC scheme with β=64

V. Savkin et al PRB 2005

Page 29: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

CT-QMC: Hybridization expansion (CT-HYB)

Hamiltonian:

Ph. Werner, et al PRL 97, 076405 (2006)

Bath-a

Loc-dHyb

Page 30: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

CT‐HYB: diagrammatics with Hubbard‐X

(0,0)

(1,0)

(0,1)

(1,1)

β0

Zk= exp-U* + * )*Δ*… Δ

Page 31: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

Strong-Coupling Expansion CT-HYB

P. Werner, 2006

Page 32: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

CT‐HYB

Page 33: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

CT‐HYB: determinant weight

Page 34: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

CT‐HYB: determinant weght

Page 35: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

Diagrams vs. Determinats QMCPh. Werner

Page 36: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

CT‐HYB: Monte Carlo sampling

Page 37: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

CT‐HYB: segment scheme

+

Page 38: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

CT‐HYB: multi‐orbital segment picture

∑=ij

jiij nnUH int

Page 39: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

CT‐QMC efficency

Page 40: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

CT‐HYB: General multliorbital Interaction

Page 41: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

CT‐HYB: matrix code

Page 42: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

Use of Symmetry: CT‐HYB

K. Haule PRB 75, 155113 (2007)

Page 43: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

CT‐HYB: Krylov code

Page 44: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

CT‐HYB: Krylov code

Page 45: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

CT‐HYB: Krylov – scaling

Page 46: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

CT‐QMC‐Krylov: performance

Page 47: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

ALPS‐project: CT‐QMC code

http://alps.comp-phys.org

CT-INT and CT-HYB

Page 48: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

Continuous Time Monte Carlo methods for fermions

Alexander LichtensteinUniversity of Hamburg

In collaboration withA. Rubtsov (Moscow University)P. Werner, B. Surer (ETH Zurich)

H. Hafermann (EPL Paris)T. Wehling (University of Bremen)A. Poteryaev (IMF Ekaterinburg)

Page 49: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

Impurity solver: miracle of CT-QMC

Interaction expansion CT-INT: A. Rubtsov et al, JETP Lett (2004)

Hybridization expansion CT-HYB: P. Werner et al, PRL (2006)

E. Gull, et al, RMP 83, 349 (2011)

Efficient Krylov scheme: A. Läuchli and P. Werner, PRB (2009)

Page 50: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

Comparisson of different CT‐QMC: U=W

E. Gull et al cond-mat/060943

Page 51: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

Comparison of different CT‐QMC

Σ Σ Σ

Σ

Σ

Σ

ΣΣ

U

U

G( ’)τ−τ

ττ’

CT-QMC review: E. Gull et al. RMP (2011)

Ch. Jung, unpublished

Page 52: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

Scaling of CT‐QMC

Temperature Interactions

Page 53: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

Benchmark for CT‐QMC

Page 54: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

CT‐HYB: 1‐band DMFT results

Bethe lattice with W=4t

Page 55: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

Kondo‐lattice model

Page 56: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

KLM: MIT on Bethe lattice

Page 57: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

CT‐HYB: 2 orbital model

Page 58: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

CT‐HYB for 2‐orbitals: OSMT

Page 59: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

Multiorbital impurity with general U

General Interaction:

Krylov-CT-QMC

A. Läuchli and Ph. Werner, et al PRB 80, 235117 (2009)

σσσσ

σσ

kljiijkl

ddddklr

ijU ''

'12

121 ++∑=

Page 60: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

Anderson Impurity Model

Hamiltonian of AIM:

Hybridization function:

Page 61: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

DFT+AIM using Projectors

• Projections of DFT basis on local orbitals

• Local Green function

• VASP‐PAW basis set

G. Trimarchi, et al JPCM (2008), B. Amadon, et al., PRB (2008)

Page 62: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

Hybridization function Co on/in Cu(111)

• Hybridization of Co in bulk twice stronger than on surface

• Hybridization in energy range of Cu‐d orbitals more anisotropic on surface

• Co‐d occupancy: n= 7‐8B. Surer, et al PRB 85, 085114 (2012)

Page 63: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

Constrain GW calculations of U

F. Aryasetiawanan et alPRB(2004)

Page 64: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

Wannier ‐ GW and effective U(ω)

T. Miyake and F. Aryasetiawan Phys. Rev. B 77, 085122 (2008)

C-GW

GW

Page 65: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

Strength of Coulomb interactions: Graphene

T. Wehling et al., PRL 106, 236805 (2011)

Z. Y. Meng et al., Nature 464, 847-851 (2010) C. Honerkamp, PRL 100, 146404 (2008)

Page 66: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

• Co in Cu: – QMC and GGA agree qualitatively– Quasiparticle peak twice narrower in QMC than in GGA

• Co on Cu– QMC shows, both, quasiparticle peak and Hubbard like bands at higher energies– Significantly reduced width of quasiparticle peak in QMC

Quasiparticle spectra: DFT vs. QMC

Page 67: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

Orbitally resolved Co DOS from QMC

Orbitally resolved DOS of the Co impurities in bulk Cu and on Co (111) obtained from QMC simulations at temperature T = 0.025 eV and chemical potential μ = 27 eV and μ = 28 eV, respectively.

All Co d‐orbitals contribute to LDOS peak near EF=0

Page 68: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

Self-energies: Local Fermi liquid

• Fermi liquid:

• Atomic limit:Signatures of low energy Fermi liquids in all orbitals !Signatures of low energy Fermi liquids in all orbitals !

Page 69: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

Quasiparticle weight and Kondo temperature

• Quasiparticle weight

– QMC (Matsubara)

– Kondo temperature Exp:

0.06

0.005

Page 70: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

Charge fluctuations: QMC results

Page 71: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

-4 -2 0 2 4

0.0

0.2

0.4

0.6

DO

S

Energy

U=2.4, J=-0.2 and J=0, β=64

-4 -2 0 2 40.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8five bands U=2, J=0.2, β=4

DO

S

Energy

0.0 0.5 1.0 1.5-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2 U=2.4, J=-0.2 and J=0, β=64

G(iω

)

three impurity atoms with Hubbard and exchange interactiontwo band rotationally invariant impurity model

Multi-orbital problems: general interaction' '

, , , ; , '

ˆijkl i j l k

i j k l

U U c c c cσ σ σ σσ σ

+ += ∑New formalism allows one to consider the most general case of multi-orbital interactions

-4 -2 0 2 4

0.0

0.1

0.2

0.3 two bands U=4, J=1, β=4

DO

S

Energy

Page 72: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

Σ Σ Σ

Σ Σ

Σ Σ

Σ

Σ

Σ

Σ Σ Σ Σ

Cluster DMFT

ΣU

( )ττ ′−0G

ΣU

V

M. Hettler et al, PRB 58, 7475 (1998)A. L. and M. Katsnelson, PRB 62, R9283 (2000)G. Kotliar, et al, PRL 87, 186401 (2001)

Page 73: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

Double‐Bethe Lattice: exact C‐DMFT

A. RuckensteinPRB (1999)

Page 74: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

Self‐consistent condition: C‐DMFT

AF-between plane AF-plane

Page 75: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

Finite temperature phase diagram

• order-disorder transition at tp / t=Sqrt(2) for large U• MIT for intermediate U

H. Hafermann, et al. EPL, 85, 37006 (2009)

Page 76: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

Density of States: large U

Page 77: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

Spin‐correlations: large U

Page 78: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

MIT in 2d: DMFT vs. C‐DMFT

n=1X=0.04

0.080.15

U=0U=5.2tU=6t

Uc=6.05tUc=9.35t

H. Park et al, PRL (2008)

Page 79: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

M. Marezio et al., (1972)

TMTM--Oxide VOOxide VO22: singlet formation: singlet formation

Metal

Tem

pera

ture

(K)

Insulator

Rutile structure Monoclinic distortion inthe insulating phase

j

i

Gω( )ij

U

U

tij

U/t

ε εi jb

a

LH

UH

Correlation vs. Bonding

Page 80: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

Cluster‐DMFT results for VO2

0

0.2

0.4

0.6

0.8

1.0

−2 0 2 4

U=4eV J=0.68eV

ρ(ω)

ω[eV]

LDA VO2

rutileDMFT

(dashed)(solid)

0

0.5

1.0

1.5

−4 −2 0 2 4

DOS VO2−M1

LDA

ω [eV]

cluster DMFT

(dashed)

(solid)

U = 4 eV, J=0.68 eV β = 20 eV-1Rutile

M1

New photoemission from Tjeng’s groupT. C. Koethe, et al. PRL (2006)

Sharp peak below the gap is NOT a Hubbard band !

S. Biermann, et al, PRL 94, 026404 (2005)

Page 81: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

Conclusions

• Electronic Structure of correlated nano‐systems can be described in CT‐QMC scheme

• CT‐QMC is perfect for supercomputer applications

Page 82: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

General Projection formalism for LDA+DMFT

DELOCALIZED S,P-STATES

CORRELATED D,F-STATES

G. Trimarchi et al. JPCM 20,135227 (2008)B. Amadon et al. PRB 77, 205112 (2008)

|L>

|G>

Page 83: University Hamburg collaboration withsadovski.iep.uran.ru/RUSSIAN/LTF/Kourovka_34/... · Tcc c c αα αα ++ + ++ −− = −− The Green function can be calculated as follows

CT‐HYB example