113
UNIVERSIDADE ESTADUAL DE SANTA CRUZ PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO Programa de Pós-Graduação em Ciência, Inovação e Modelagem em Materiais PROCIMM Milena Araújo Ferreira e Santos CATALISADORES HETEROGÊNEOS ÁCIDOS DO TIPO ZrO 2 -SiO 2 PARA A PRODUÇÃO DE BIODIESEL Ilhéus - BA 2013

UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

  • Upload
    dominh

  • View
    214

  • Download
    0

Embed Size (px)

Citation preview

Page 1: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

UNIVERSIDADE ESTADUAL DE SANTA CRUZ

PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO

Programa de Pós-Graduação em Ciência, Inovação e Modelagem em Materiais

PROCIMM

Milena Araújo Ferreira e Santos

CATALISADORES HETEROGÊNEOS ÁCIDOS DO TIPO ZrO2-SiO2 PARA A

PRODUÇÃO DE BIODIESEL

Ilhéus - BA

2013

Page 2: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

II

Milena Araújo Ferreira e Santos

CATALISADORES HETEROGÊNEOS ÁCIDOS DO TIPO ZrO2-SiO2 PARA A

PRODUÇÃO DE BIODIESEL

Ilhéus - BA

2013

Dissertação apresentada para obtenção do título de Mestre em Ciências dos Materiais à Universidade Estadual de Santa Cruz.

Área de concentração: Síntese e Caracterização de Materiais

Orientadora: Profª. Dra. Rosenira Serpa da Cruz

Page 3: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

III

Milena Araújo Ferreira e Santos

CATALISADORES HETEROGÊNEOS ÁCIDOS DO TIPO ZrO2-SiO2 PARA A

PRODUÇÃO DE BIODIESEL

Ilhéus, 28/ 02/ 2013

Ilhéus - BA

2013

Page 4: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

IV

FICHA CATALOGRÁFICA

S237 Santos, Milena Araújo Ferreira e

Catalisadores heterogêneos ácidos do tipo ZrO2/SiO2 para produção de biodiesel/ Milena Araújo Ferreira e Santos – Ilhéus-BA: UESC, 2013 XVII, 95f.: il. Orientadora: Rosenira Serpa da Cruz Dissertação (Mestrado) – UESC. Programa de Pós-Graduação em Ciências, Inovação e Modelagem em Materiais. Inclui bibliografia Inclui apêndice

1. Catalisadores heterogêneos 2. Esterificação 3. Biodiesel 4.

Biocombustíveis. I. Título

CDD 660.2995

Page 5: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

V

Aos meus pais, ao meu irmão, a meu

noivo Atos, aos familiares e amigos pela

paciência, apoio incondicional, amor e

carinho.

Page 6: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

VI

AGRADECIMENTOS

À Prof.ª Dra. Rosenira Serpa, pela orientação, oportunidade de aprendizado,

paciência e compreensão;

Ao Prof. Dr. Ivon Lôbo pelo apoio nas horas de total sufoco e pela ajuda;

Aos colegas do grupo BIOMA e a Prof.ª Dra. Miriam Sanae, pelo

companheirismo e momentos de descontração;

As colegas Bruna, Karen, Tharcilla e Mariana pelo auxílio na parte experimental

desse trabalho e amizade;

Ao Prof. Dr. Celso V. Santilli, pela disponibilização do Laboratório do Grupo de

Físico-química de Materiais da UNESP- Araraquara e ao técnico Ricardo

Giagio pelas análise de BET e DRX;

Ao Prof. Dr. Paulo Neilson, pela disponibilização do Laboratório de Pesquisa e

Inovação em Materiais Avançados da UESC pela análise de TGA/DTA;

À Prof. Dra. Heloysa Martins Andrade, pela disponibilização do Laboratório de

Catálise e Materiais LabCat da UFBA e às alunas Camila Carriço e Fernanda

Teixeira, pela análise de TPD-NH3;

Ao Prof. Dr. Victor Marcelo Deflon, pela disponibilização do Laboratório do

Grupo de Química Inorgânica Estrutural e Biológica GQIEB da USP. E ao

doutorando Henrique Koch pela análise de FTIR;

Aos funcionários que direta ou indiretamente contribuíram para a execução

deste trabalho;

A CAPES pela bolsa de estudo.

Page 7: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

VII

Trabalhos em eventos

1. Avaliação catalítica do SnO2-SiO2 frente à reação de esterificação do ácido

oléico. Souza, T. de S.; Milena Araújo Ferreira e Santos; Cruz, R. S.; Lôbo, I.

P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia

de Biodiesel, 8° Congresso Brasileiro de Plantas Oleaginosas, Óleos,

Gorduras e Biodiesel, Salvador – BA, (2012)

2. Avaliação da atividade catalítica do óxido misto de zircônio em sílica na

reação de esterificação do ácido oléico. Souza, T. de S.; Milena Araújo

Ferreira e Santos; Costa, B. E. B.; Lôbo, I. P.; Cruz, R. S. Resumo do XXII

Congresso Iberoamericano de Catálisis – CICAT, em Santa Fé, na Argentina

(2012).

Page 8: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

VIII

RESUMO

Foram realizados diferentes óxidos mistos preparados por sol-gel (SnO2-SiO2 e

ZrO2-SiO2) e por co-precipitação (ZrO2-Al2O3 e ZrO2-SnO2), utilizados como pré-

seleção para o andamento deste trabalho, foram avaliados frente à reação de

esterificação e ao teste de lixiviação. Dispondo de todos os resultados, o catalisador

ZrO2-SiO2 foi o sólido que apresentou o resultado mais satisfatório. Sendo assim,

catalisadores heterogêneos ácidos (ZrO2-SiO2; ZrO2-SiO2 – Fo; ZrO2-SiO2 – Ox;

ZrO2-SiO2-Me; ZrO2-SiO2-imp e ZrO2-SiO2-is) foram preparados por diferentes rotas

de síntese usando o método sol-gel. Estes óxidos foram caracterizados por DRX,

adsorção - dessorção de nitrogênio, BET, FTIR, TGA TPD-NH3 e teste de acidez. Os

materiais obtidos são amorfos ao raios X, são constituídos de uma mistura de micro

e mesoporos. Eles apresentam acidez maior que os óxidos separados, indicando

que o ZrO2 está altamente disperso na matriz da sílica. Os catalisadores foram

avaliados frente à reação de esterificação com metanol para produção de biodiesel,

tendo o ácido oléico como molécula modelo em condições reacionais brandas,

apresentando, assim, conversões satisfatórias. O bom desempenho catalítico dos

materiais ZrO2-SiO2-Me e ZrO2-SiO2-SO42--is foi atribuído à modificação da

hidrofilicidade, por substituição de 50% de TEOS por MeTEOS e aumento da força

ácida por sulfatação, respectivamente. Ambos se apresentaram estáveis frente à

lixiviação, assim como, à alta capacidade de reuso sem perda significativa na

atividade catalítica.

Palavras-chave: catálise heterogênea, esterificação, sulfatação e lixiviação.

Page 9: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

IX

ABSTRACT

Were performed different mixed oxides prepared by sol-gel (SnO2-SiO2 and ZrO2-

SiO2) and co-precipitation (ZrO2-Al2O3 and ZrO2-SnO2), used as a pre-selection for

the progress of this work were evaluated against the reaction esterification and the

leaching test. Featuring all the results, the ZrO2-SiO2 catalyst was the solid that had

the most satisfactory result. Thus, heterogeneous acid catalysts (ZrO2-SiO2, ZrO2-

SiO2 - Fo; ZrO2-SiO2 - Ox, ZrO2-SiO2-Me; ZrO2-SiO2-SO42-- is and ZrO2-SiO2,-SO4

2--

imp) were prepared by different synthesis routes using the sol-gel method. The

oxides were characterized by XRD, adsorption - desorption of nitrogen, BET, FTIR,

TGA, and by the NH3-TPD acidity test. The obtained materials are amorphous to X-

rays, consist of a mixture of micro- and mesopores, and have higher acidity than the

separate oxides, indicating that the ZrO2 is highly dispersed in the silica matrix. The

catalysts were evaluated against the esterification reaction for biodiesel production

with methanol, using the oleic acid molecule as a model molecule for mild conditions

and satisfactory conversions. The good catalytic performance of the materials ZrO2-

SiO2- Me and ZrO2-SiO2,-SO42--is was attributed to the modification of hydrophility by

substitution of 50% of the TEOS by MeTEOS, and the increase of the acid strength,

respectively. Both showed resistance to leaching, as well as high capacity of reuse,

without loss of catalytic activity.

Key Words: esterification, methylation, sulfation and leaching.

Page 10: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

X

LISTA DE FIGURAS

Figura 1 - Reação de transesterificação a) por etapas b) geral..................................... 7

Figura 2 - Reação global da esterificação...................................................................... 9

Figura 3 - Fluxograma representativo da classificação dos catalisadores..................... 11

Figura 4 - Mecanismo de reação a partir de um catalisador homogêneo básico, onde G constitui com o átomo de oxigênio o grupo abandonador.........................

16

Figura 5 - a) reação de saponificação; b) neutralização dos ácidos graxos livres......... 17

Figura 6 - Mecanismo de reação de catálise homogênea ácida, onde G constitui com o átomo de oxigênio o grupo abandonador...................................................

18

Figura 7 - Representação do mecanismo de reação..................................................... 19

Figura 8 - Mecanismo reacional de um catalisador heterogêneo ácido sendo: catalisador com sítios ácidos de Lewis, onde, G constitui com o átomo de oxigênio o grupo abandonador......................................................................

21

Figura 9 - Mecanismo de reação a partir de um catalisador heterogêneo sendo a) catalisadores com sítios ácidos de Brönsted e b) catalisadores com sítios ácidos de Lewis.............................................................................................

22

Figura 10 - Fluxograma com a classificação dos catalisadores heterogêneos usados na produção de biodiesel..............................................................................

23

Figura 11 - Fluxograma representativo da síntese do catalisador ZrO2-SnO2................ 32

Figura 12 - Fluxograma representativo da síntese do catalisador ZrO2- Al2O3............... 33

Figura 13 - Fluxograma representativo da síntese do catalisador SnO2- SiO2................ 35

Figura 14 - Fluxograma metodológico da rota de síntese 1............................................. 35

Figura 15 – Representação da formação do formato de zircônia..................................... 38

Figura 16 - Fluxograma da metodologia da rota de síntese 2......................................... 39

Figura 17 - Representação da formação do oxalato de zircônia..................................... 40

Figura 18 - Fluxograma representativo da rota de síntese 3........................................... 40

Figura 19 - Fluxograma da síntese da modificação da superfície do catalisador ZrO2-SiO2.......................................................................................................

41

Figura 20 - Fluxograma da sulfatação por impregnação................................................ 42

Figura 21 - Fluxograma da metodologia de sulfatação in situ......................................... 43

Page 11: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

XI

Figura 22 - Teste de lixiviação com o catalisador SnO2/SiO2. Condições reacionais: razão metanol/ácido oléico 6:1, 3%m/m de SnO2-SiO2, 3h , 120 °C...............

53

Figura 23 - Teste de lixiviação com o catalisador ZrO2/SiO2. Condições reacionais: razão metanol/ácido oléico 6:1, 3%m/m de ZrO2-SiO2, 3h , 120 °C................

53

Figura 24 - Esquema da modificação da superfície da sílica.......................................... 56

Figura 25 - Representação esquemática do catalisador ZrO2/SiO2 sulfatado................ 57

Figura 26 - Difratogramas de raios-X das amostras ZrO2-SiO2, ZrO2-SiO2-Me, ZrO2-SiO2- SO4

2-- is, ZrO2-SiO2 – Fo, ZrO2-SiO2 - Ox,............................................ 59

Figura 27 - Isotermas de adsorção-dessorção de N2 dos catalisadores ZrO2-SiO2, ZrO2-SiO2-Me, ZrO2SiO2- SO4

2-- is, ZrO2-SiO2-Fo, ZrO2-SiO2-Ox.................

61

Figura 28 - Curvas de distribuição de diâmetro de poro para os catalisadores ZrO2-SiO2, ZrO2-SiO2-Me, ZrO2SiO2-SO4

2- is, ZrO2-SiO2-Fo, ZrO2-SiO2-Ox..........

62

Figura 29 - Espectros na região do infravermelho para as amostras ZrO2-SiO2, ZrO2-SiO2-Me, , ZrO2-SiO2- Fo, ZrO2-SiO2-Ox, ZrO2-SiO2- SO4

2-is e ZrO2-SiO2- SO4

2-imp......................................................................................................... 64

Figura 30 - TGA das amostras ZrO2-SiO2, ZrO2-SiO2-Me, ZrO2-SiO2-SO42-- is, ZrO2-

SiO2-Ox, ZrO2-SiO2- Fo................................................................................. 67

Figura 31 - Curva de dessorção termoprogramada de amônia para os catalisadores: a) ZrO2-SiO2; b) ZrO2-SiO2-SO4

2—is............................................................. 69

Figura 32 – Proposta de modelo dos sítios ácidos existentes ao sulfatar o material ZrO2-SiO2......................................................................................................

70

Figura 33 - Esquema da formação dos óxidos mistos ZrO2/SiO2. Y representa a fonte do metal ZrOCl2.8H2O e X representa o metal Zr.......................................

73

Figura 34 - Teste de reutilização dos materiais: a) ZrO2-SiO2-SO42—is

b) ZrO2-SiO2-Me.......................................................................................... 75

Page 12: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

XII

LISTA DE TABELAS

Tabela 1 - Classificação de catalisadores................................................... 2

12

Tabela 2 - Variedade de aplicação e métodos de síntese do catalisador ZrO2 – SiO2. ............................................................................

325

Tabela 3 - Variáveis importantes envolvidas no PSG.................................. 3

27

Tabela 4 - Seleção dos catalisadores..........................................................

431

Tabela 5 - Conversões em ésteres e teste de lixiviação usando os catalisadores sintetizados e comercial. ......................................

549

Tabela 6 - Propriedades atômicas dos elementos, Si, Sn e Zr.................... 5

52

Tabela 7 - Área específica, diâmetro e volume médio de poros e volume

total de poros dos materiais sintetizados.................................

660

Tabela 8 - Resumo das avaliações catalíticas e da estabilidade dos catalisadores sintetizados...........................................................

871

Tabela 9 – Avaliação catalítica e da estabilidade frente à lixiviação dos catalisadores sintetizados...........................................................

872

Page 13: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

XIII

LISTA DE ABREVIAÇÕES

AGL’s – Ácidos Graxos Livres

PSG – Processo Sol-Gel

TEOS – Tetraetoxisilano

MeTEOS – Metiltrietoxisilano

DRX – Difração de raios – X

BET – Brunauer Emmet Teller

BJH - Barret Joyner Halenda

TGA – Análise Termogramétrica

DTA – Análise Térmica Diferencial

FTIR – Espectroscopia na região do infravermelho com transformada de Fourier

TPD NH3 Dessorção Termoprogramada de amônia

IUPAC – International Union of Pure and Applied Chemistry

ANP – Agência Nacional de Petróleo, Gás natural e Biocombustíveis

Page 14: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

XIV

LISTA DE APÊNDICE

Apêndice A- Resumo de alguns catalisadores heterogêneos encontrados na

literatura aplicados para produção de biodiesel.........................................................91

Page 15: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

XV

SUMÁRIO

1. INTRODUÇÃO.................................................................................................1

2. OBJETIVO.......................................................................................................4

2.1 Objetivo Geral .............................................................................................4

2.2 Objetivos Específicos...................................................................................4

3. REVISÃO BIBLIOGRÁFICA...........................................................................5

3.1 Biodiesel .....................................................................................................5

3.1.1 Aspecto Geral...........................................................................................5

3.2 Reação de Transesterificação.....................................................................6

3.3 Reação de Esterificação..............................................................................9

3.4 Catálise na produção de Biodiesel............................................................10

3.4.1 Catálise Enzimática................................................................................14

3.4.2 Catálise Homogênea..............................................................................15

3.4.2.1 Catálise homogênea na transesterificação.........................................15

3.4.2.1Catálise homogênea na esterificação..................................................18

3.4.3 Catálise Heterogênea.............................................................................19

3.4.3.1 Catálise heterogênea na transesterificação........................................19

3.4.3.2 Catálise heterogênea na esterificação................................................22

Page 16: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

XVI

3.5 Óxido misto (ZrO2-SiO2)............................................................................24

3.5.1 Aspecto Geral.........................................................................................24

3.5.2 ZrO2-SiO2 na produção de biodiesel......................................................27

4. METODOLOGIA...........................................................................................31

4.1 Seleção de catalisadores..........................................................................31

4.1.2 Reagentes..............................................................................................31

4.1.2.1 Síntese de ZrO2-SnO2.........................................................................32

4.1.2.2 Síntese de ZrO2-Al2O3........................................................................33

4.1.2.3 Síntese de SnO2-SiO2.........................................................................34

4.2 Síntese dos catalisadores ZrO2-SiO2........................................................36

4.2.1 Reagentes..............................................................................................36

4.2.2 Processo de síntese do óxido misto ZrO2-SiO2......................................36

4.2.2.1 Rota de síntese 1 - Método sol-gel usando pré-hidrólise do

TEOS..................................................................................................37

4.2.2.2 Rota de síntese 2 - Método sol-gel com modificação química do

precursor de zircônia com ácido fórmico........................................... 38

4.2.2.3 Rota de síntese 3- Método sol-gel com modificação química do

precursor de zircônia com ácido oxálico.............................................39

4.2.3 Modificação da superfície do catalisador ZrO2-SiO2 com

MeTEOS.............................................................................................40

4.2.4 Sulfatação do catalisador ZrO2-SiO2......................................................41

4.2.4.1 Método de impregnação......................................................................41

4.2.4.2 Sulfatação in situ ................................................................................42

Page 17: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

XVII

4.3 Caracterização dos catalisadores ............................................................43

4.3.1 Difração de raios X................................................................................43

4.3.2 Adsorção-dessorção de N2 - 196°C.......................................................43

4.3.3 Espectrometria na região do Infravermelho com Transformada de

Fourier .................................................................................................44

4.3.4 Análise térmica.......................................................................................44

4.3.5 Dessorção Termoprogramada de Amônia.............................................45

4.3.6 Teste de acidez......................................................................................45

4.4 Avaliação catalítica....................................................................................46

4.4.1 Reagentes..............................................................................................46

4.4.2 Esterificação do ácido oléico com metanol,...........................................46

4.4.3 Avaliação da estabilidade do catalisador frente à lixiviação das espécies

ativa......................................................................................................47

4.4.4 Teste de Reutilização.............................................................................48

5. RESULTADOS E DISCUSSÃO....................................................................49

5.1 Seleção de catalisadores..........................................................................49

5.2 Síntese dos sólidos ZrO2-SiO2..................................................................54

5.3 Modificação da superfície do catalisador ZrO2-SiO2.................................56

5.4 Influência da força ácida do catalisador ZrO2-SiO2...................................56

5.5 Caracterização das propriedades texturais e estruturais dos

catalisadores..........................................................................................58

5.5.1 Difração de raio X..................................................................................58

5.5.2 Adssorção-dessorção de N2 - 196°C.....................................................59

Page 18: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

XVIII

5.5.3 Espectrometria na região do Infravermelho com Transformada de

Fourier.................................................................................................64

5.5.4 Análise térmica......................................................................................66

5.5.5 Dessorção Termoprogramada de amônia.............................................69

5.5.6 Teste de acidez.....................................................................................70

5.6 Atividade Catalítica..................................................................................71

5.7 Teste de reutilização................................................................................75

6. CONCLUSÃO......................................................................................................76

7. TRABALHOS FUTUROS....................................................................................77

8. REFERÊNCIAS BIBLIOGRÁFICAS....................................................................78

Page 19: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

1. INTRODUÇÃO

Nos tempos atuais, a preocupação com a conservação dos recursos naturais,

a degradação da biosfera pelo homem e a diminuição das reservas de petróleo vêm

estimulando iniciativas que buscam alternativas energéticas renováveis. Com isso,

os biocombustíveis, em especial o biodiesel, recebem grande atenção por serem de

origem renovável, biodegradável e contribuírem para minimização da emissão do

CO2, SOx, de materiais particulados, hidrocarbonetos policíclicos aromáticos

(BORGES e DÍAZ, 2012; WANG et al. 2012; ATADASHI et al. 2013).

Comercialmente, o biodiesel é produzido por rota metílica, mediante catálise

homogênea básica (hidróxidos ou alcóxidos de metais alcalinos). Este processo,

contudo, apresenta a desvantagem de exigir matérias-primas com baixo teor de

impurezas tais como ácidos graxos livres (AGL’s) e umidade, representando cerca

de 60 - 90% do custo total de produção do biodiesel. (LEUNG, D., WU e LEUNG, M.,

2010; ATADASHI et al. 2013; TALEBIAN-KIAKALAIEH, AMIN e MAZAHERI, 2013).

Além disso, o biodiesel produzido através desse processo necessita de etapas de

lavagem, com o objetivo de atender às especificações de qualidade e, deste modo,

conduzir a geração de efluentes que exigem tratamento adequado, contribuindo

também para o aumento do custo de produção.

Com a finalidade de superar os gargalos relacionados à catálise homogênea,

vários trabalhos propondo o uso de catalisadores heterogêneos vêm sendo

apresentados como uma opção tecnológica interessante e promissora. Os

catalisadores heterogêneos simplificam a separação e purificação do biodiesel, uma

vez que são facilmente separados e possibilitam a sua reciclagem e reutilização em

novas etapas reacionais. Consequentemente, os catalisadores heterogêneos

minimizam a geração de efluentes, além de facilitar consideravelmente a separação

do co-produto glicerina (CORDEIRO et al. 2011).

Neste contexto, catalisadores ácidos heterogêneos apresentam-se como uma

alternativa interessante, eles permitem o processamento de matérias-primas com

alto teor de AGL’s e água, favorecendo assim a redução dos custos de produção.

Page 20: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

2

Além das vantagens citadas acima, os sólidos ácidos apresentam a possibilidade de

aplicação tanto na esterificação de ácidos graxos livres, quanto na transesterificação

de triacilgliceróis. Estes apresentam ainda a vantagem de ser muito menos

corrosivos que o ácido sulfúrico, comumente empregado como catalisador na

esterificação homogênea dos AGL’s (ENDALEW, KIROS e ZANZI, 2011; BORGES e

DÍAZ, 2012).

Dentre os diferentes métodos de preparação de catalisadores heterogêneos,

com características adequadas para produção de biodiesel, o processo sol-gel

(PSG) tem recebido destaque devido a sua grande versatilidade no desenvolvimento

de materiais. Característica atribuída à facilidade e flexibilidade do processo de

síntese, que possibilita a preparação de produtos com alta pureza, alta

homogeneidade e com porosidade controlada (LIVAGE et al. 2006). Esta

metodologia viabiliza a síntese de estruturas com diferentes porosidades, materiais

nanocristalinos, nanocompósitos, filmes e membranas. Adicionalmente, trata-se de

um processo ecologicamente amigável em relação às tradicionais rotas para

obtenção de cerâmicas e vidros (BACCILE et al. 2009).

O PSG é um método de preparação que envolve uma transição do sistema

sol para o sistema gel. Esse processo tem a finalidade de obter materiais de mono- a

multicomponentes, cujas propriedades irão depender das condições de síntese, tais

como: a natureza do precursor, a temperatura da reação, o pH do meio, o tipo de

catálise, o solvente e o modo de secagem. (BRINKER e SCHERER 1990; COLPINI,

2005; THUY et al. 2009).

Na área da catálise, o processo sol-gel possui uma gama de aplicações

(KURAJICA et al. 2011; SANCHEZ et al. 2011) e esta vem crescendo

consideravelmente em virtude das vantagens mencionadas que contribuem para o

design de catalisadores, tornando-se um método de síntese mais vantajoso. Uma

das áreas onde as aplicações do processo sol-gel vem cresendo nos últimos anos é

na preparação de catalisadores heterogêneos para a produção de biodiesel (LI e

HUANG, 2009; SARAVANAN, TYAGI e BAJAJ, 2012). Vale ressaltar que a catálise

desponta como uma ciência crucial na sociedade tecnológica (SANCHEZ et al.

2011).

Page 21: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

3

Diante do exposto, este trabalho teve como objetivo a síntese de diferentes

óxidos mistos pelos métodos sol-gel e coprecipitação, com propriedades ácidas,

para aplicação como catalisador na produção de biodiesel.

Page 22: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

4

2. OBJETIVOS

2.1 Objetivo Geral

Sintetizar e caracterizar sólidos ácidos e avaliá-los como catalisadores

em reações de esterificação do ácido oléico com metanol, visando à produção

de biodiesel.

2.2 Objetivos Específicos

Preparar sólidos do tipo MO2 – Ox (M = Sn e Zr e Ox = SiO2, Al2O3 ou SnO2),

através dos métodos de co-precipitação e/ou sol-gel e selecioná-los, por meio

da atividade catalítica, frente à reação de esterificação do ácido oléico e à

estabilidade relativa à lixiviação das espécies ativas;

Caracterizar textural e estruturalmente os sólidos selecionados por DRX,

adsorção-dessorção de N2, FTIR, TGA/DTA, TPD-NH3 e teste de acidez.

Avaliar a influência dos seguintes parâmetros sobre a atividade catalítica, a

partir da reação de esterificação e estabilidade frente à lixiviação do sólido

selecionado:

i. modificação no método de síntese com adição de oxalato e

ácido fórmico;

ii. sulfatação por diferentes métodos;

iii. modificação da hidrofilicidade da superfície, através da troca dos

grupos silanóis por grupos metila;

iv. aumento da força ácida por sulfatação através do método de

impregnação e sol-gel in situ.

Page 23: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

5

3. REVISÃO LITERATURA

3.1 Biodiesel

3.1.1. Aspecto Geral

A busca por novas fontes de energia renováveis visa suprir a crescente

demanda energética, além de encontrar uma solução que substitua os combustíveis

não renováveis – como o carvão mineral, o gás natural e, principalmente, os

derivados do petróleo. A queima de combustíveis de origem fóssil é responsável

pelo lançamento de poluentes na atmosfera, como os gases de efeito estufa como

dióxido de carbono - CO2, dos gases SOx e NOx; dos hidrocarbonetos policíclicos

aromáticos (HPA`s) e de materiais particulados. Com isso, muitos estudos vêm

sendo realizados buscando fontes alternativas de energia, dentre elas o uso da

energia eólica, a energia geotérmica, energia das marés, energia solar, produção de

hidrogênio e gases combustíveis – a partir de biomassa – e a produção de biodiesel

– através da transesterificação de óleos vegetais, ou gordura animal (NGAOSUWAN

et al. 2009; HELWANI et al. 2009; LAM, LEE e MOHAMED, 2010).

O biodiesel é um combustível ambientalmente correto por possuir

características como: biodegradável; produção a partir de matérias-primas

renováveis; emissão reduzida de particulados, de monóxido de carbono (CO),

enxofre, hidrocarbonetos e, principalmente, do dióxido de carbono (CO2). Por esses

fatores, e por apresentar características físico-químicas semelhantes ao diesel fóssil,

o biodiesel atraiu a atenção de vários pesquisadores (ROMULO, 2009; SALVI e

PANWAR, 2012; WANG et al. 2012).

O uso do biodiesel já é uma realidade em todo o mundo e pode ser utilizado

puro ou como misturas binárias de óleo diesel e biodiesel cuja representação é BX,

onde B representa o nome biodiesel e X representa a porcentagem de biodiesel na

mistura. No Brasil, encontra-se em vigência – segundo a resolução CNPE, nº

6/2009, iniciada em primeiro de janeiro de 2010 – a adição de 5% de biodiesel no

diesel, representada por B5, e esta porcentagem irá atingir a 40% de biodiesel até

2035. Além de todas as vantagens ambientais, técnicas e econômicas, vale ressaltar

Page 24: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

6

que, a utilização de biodiesel irá proporcionar a participação do Brasil no mercado de

certificados de carbono, que consiste em títulos financeiros dados aos países que se

preocupam em criar alternativas para minimizar a liberação de CO2 na atmosfera,

gás considerado como um dos principais causadores do efeito estufa. (FURIGO,

2009; DEMIRBAS, BALAT, M.; BALAT, H, 2009; ANP; Biodiesel Br).

Comercialmente, a transesterificação é o método de produção de biodiesel

mais utilizado. No entanto, a obtenção de biodiesel por meio da esterificação dos

AGL’s vem sendo amplamente estudada, devido a sua importância econômica e

ambiental. Neste caso, o foco é a redução de custo de produção pela utilização de

óleos vegetais e gorduras de baixo valor comercial, que comumente se apresentam

com alto teor de acidez e elevada umidade. Por outro lado, o aproveitamento destes

materiais favorece uma destinação ambientalmente mais adequada, evitando o seu

lançamento no meio ambiente.

3.2 Reação de transesterificação

Biodiesel é um éster monoalquílico, produzido através da reação de

transesterificação (Figura 1a) entre triacilglicerol e um álcool de cadeia curta

(metanol e etanol sendo os mais usados), obtendo glicerina como coproduto

(LOTERO et al. 2005; GARCIA, 2008; ABBADASHI et al. 2012). A reação consiste

em três etapas reversíveis e consecutivas (Figura 1b), onde são produzidas as

espécies intermediárias di- e monoacilglicerol. Ao final das três etapas, são obtidos 3

mols de alquil éster (biodiesel) e 1 mol de glicerina.

O mecanismo geral da reação de transesterificação consiste em uma relação

estequiométrica de 3 mols de álcool com 1 mol de triacilglicerol, tendo como

intermediários di e monoacilglicerol para a produção de 1 mol de glicerol e 3 mols de

biodiesel (ésteres monoalquílicos), como representado na Figura 1b.

Page 25: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

7

a)

+ OHR4 +

Álcool Mistura de alquil ésteres (biodiesel)

Triacilglicerol

Cat.

Glicerina

3

R4 O O

R1

R4OO

R2

O

R4

O

R3

O

OR

1

O

O

OR

3

O

R2

OH

OH

OH

b)

O

O

O

R1

R2

R3

O

O

O

+ OHR4

O

O

R2

R3

OH

O

OR4

O

O

R1

+

O

O

R2

R3

OH

O

O

+ OHR4

OR3

OH

OH

O R4

O

R2

O+

OR3

OH

OH

O

+ OHR4

OH

OH

OH

R4

O

OR3

+

Álcool

Diacilglicerol Alquil éster (biodiesel)

Triacilglicerol

Alquil éster (biodiesel)

Alquil éster (biodiesel)Glicerina

MonoacilglicerolDiacilglicerol

Álcool

Álcool

Cat.

Cat.

Cat.

Monoacilglicerol

Figura 1 - Reação de transesterificação a) geral b) por etapas. Lotero, et al. 2005 com modificações.

Page 26: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

8

Comercialmente o biodiesel é, em grande parte, produzido por reações de

transesterificação através de catálise homogênea alcalina. Entretanto, este tipo de

catálise exige o emprego de matéria-prima com baixo teor de ácidos graxos livres

(AGL) e água, cujas presenças favorecem a formação de sabão o que torna o

processo de produção não competitivo economicamente (CHAI et al. 2007; BRUM et

al. 2011). Além dos inconvenientes citados anteriormente, a catálise alcalina

homogênea apresenta desvantagens, por limitar-se a reações em bateladas, gerar

problemas na etapa de remoção e separação do catalisador dos produtos da reação,

e não possibilitar a reutilização do catalisador (ZHANG et al. 2009; ENDALEW,

KIROS e ZANZI, 2011).

Com o objetivo de superar as desvantagens do processo de produção com

catálise homogênea, vários grupos de pesquisas, tanto na academia quanto na

indústria, estão trabalhando de forma a tornar o uso de catalisadores heterogêneos

uma realidade para o processo de produção de biodiesel, como mostrado no

apêndice A.

Como a busca por um catalisador heterogêneo que trabalhe em condições

brandas ainda é um desafio1, a reação de esterificação é utilizada como etapa

preliminar à reação de transesterificação, quando a matéria-prima apresenta teores

de AGL maiores que 1% (PENG et al. 2008; OZBAY, OKTAR e TAPAN, 2008;

JASEN e MARCHETTI, 2012).

1 O Instituto Francês de Petróleo – utiliza o óxido misto Al2O3/ZnO como catalisador heterogêneo para a

produção de biodiesel em reações a 250°C a altas pressões. http://www.ifpenergiesnouvelles.fr. Acessado dia

22/05/2012 às 22:19.

Page 27: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

9

3.3 Reação de esterificação

A reação de esterificação consiste na reação entre um ácido graxo livre e um

álcool, normalmente na presença de um catalisador ácido, gerando um éster

monoalquílico (biodiesel) e água, como representado na Figura 2. Este tipo de

reação, ao contrário da transesterificação, permite à utilização de matérias-primas

com alto teor de AGL’s, por exemplo, os óleos e as gorduras residuais e o sebo

bovino, que não tem a necessidade de uma etapa de neutralização. Dessa forma, o

custo de produção do biodiesel pode ser minimizado, visto que, a utilização de óleos

refinados é um dos fatores responsáveis pelo alto custo do processo de produção do

biodiesel (MARCHETTI, MIGUEL e ERRAZU, 2007; CHEN, JU e MOU., 2007;

MARCHETTI e ERRAZU, 2010; TALEBIAN-KIAKALAIEH, AMIN e MAZAHERI,

2013).

R

O

OH

+ OH CH3

CH3

R

O

O

+ OH2

H+

Ácido graxo Éster metílicoMetanol

Figura 2 - Reação global da esterificação (RAMOS et al. 2011).

A esterificação deve ocorrer na presença de catalisadores ácidos, como o

ácido sulfúrico (H2SO4), o mais utilizado; ácido p-toluenossulfônico; ácido clorídrico

(HCl); ácido fosfórico (H3PO4); e ácido fluorídrico (HF). No entanto, o uso destes

catalisadores apresenta desvantagens, por serem corrosivos e precisarem de uma

etapa de neutralização após a reação de esterificação, além de apresentarem baixa

seletividade em monoacilglicerol (SANTOS et al. 2012; BORGES e DÍAZ, 2012).

Diante de todos os inconvenientes técnicos, ambientais e econômicos da

produção de biodiesel, apresentados anteriormente, reações de esterificação de

AGL’s e transesterificação dos triacilglicérois têm se tornado o foco das pesquisas

envolvendo catalisadores heterogêneos ácidos para a produção de biodiesel. Uma

vez que este tipo de reação possibilta o uso de matéria-prima com baixo valor

Page 28: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

10

agregado e facilita o processo de purificação, o processamento produtivo torna-se

mais competitivo (NGAOSUWANK et al. 2009; SUWANNAKARN et al. 2009;

ABBASZAADEH et al. 2012).

A reação de esterificação pode ser empregada como uma pré-etapa da

reação de transesterificação, como mencionado acima, o que pode aumentar o

rendimento em ésteres metílicos (LÓPEZ et al. 2008). Esta pode ainda ocorrer

simultaneamente com a transesterificação (MARCHETTI et al. 2008), ou ainda, após

a hidrólise de triacilglicerol (CORDEIRO et al. 2010). Portanto, a avaliação de

catalisadores heterogêneos ativos e estáveis na reação de esterificação é um tema

que merece ainda atenção, devido à sua importância na indústria de produção de

biodiesel.

3.4 Catálise na produção de biodiesel

É importante salientar que, a ciência da catálise encontra-se em ascensão

desde o século XIX, época na qual surgiu a primeira patente tendo a platina como

catalisador na reação de oxidação do enxofre a dióxido de enxofre. Atualmente, esta

ciência é responsável por cerca de 90% dos processos da indústria mundial, sendo a

petroquímica a de maior relevância. Em âmbito nacional, destaca-se ainda a

indústria do refino do petróleo e álcool (CIOLA, 1981; SILVA, 2008; ROTHENBERG,

2009; ARMOR, 2011).

Cabe ressaltar que, esta é uma ciência a qual há uma propensão mundial em

investimento, tanto no aperfeiçoamento dos processos catalíticos já existentes

quanto no desenvolvimento de novos processos, visando, assim, à economia – no

que diz respeito à utilização de matérias-primas mais baratas, que gerem maior

rendimento – e ao meio ambiente – através da redução de resíduos, despoluição do

gás atmosférico e de rejeitos líquidos (SCHMAL, 2011; ARMOR, 2011; MARUYAMA,

2010).

Um catalisador para fins comerciais deve ser ativo (medida da capacidade de

trasformar reagentes em produtos), seletivo (medida da capacidade em conduzir o

Page 29: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

11

produto da reação entre vários termodinamicamente possíveis), estavél (relaciona a

capacidade em manter a atividade e seletividade inalteradas por longos tempos

durante a reação), econômicos, além de facilmente regenerados (CIOLA, 1981;

HAGEN, 2006).

Os catalisadores utilizados na produção de biodiesel para fins de pesquisas

podem ser classificados em dois tipos: heterogêneos e homogêneos. Sendo o último

subdividido em outras três categorias, ácidos, básicos ou enzimáticos. O fluxograma

mostrado na Figura 3 representa a classificação dos catalisadores.

Figura 3 - Fluxograma representativo da classificação dos catalisadores.

Na catálise homogênea, o catalisador e os reagentes estão presentes na

reação em única fase, líquida ou gasosa, sendo que cada átomo individual possui

atividade catalítica. Todavia, na catálise heterogênea, o catalisador e os reagentes

encontram-se em fases distintas, o que facilita a separação do catalisador das

demais substâncias do meio reacional. A catálise enzimática ocorre na presença de

enzimas e alguns casos fazem o uso de substratos (MARUYAMA, 2010;

ABBASZAADEH et al. 2012). A Tabela 1 ressalta as vantagens e desvantagens entre

os três tipos de catalisadores.

Page 30: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

12

Tabela 1- Classificação de catalisadores (MARCINIUK,2007; PENG et al. 2008; DOMINGOS, 2009; FURIGO, 2009; HELWANI et al. 2009; PANWAR et al. 2012; ATADASHI, et al. 2013). ....................................................................................................(continua)

Catalisadores

Homogêneos

Vantagens Desvantagens Exemplos*

Ácidos

Baixa suscetibilidade à presença de AGL’s;

Favorece reações esterificação e transesterificação simultânea.

Catalisador tipicamente corrosivo;

Grande dificuldade de separação do catalisador ao término da reação.

H2SO4a

HCla

H3PO4a

Básicos

Catalisadores mais baratos;

Alto poder de conversão em biodiesel (ter mais do que 99%) em um curto intervalo de tempo;

Processo ocorre por meio de condições reacionais moderas: baixa temperatura, pressão, razão molar álcool/óleo e quantidade de catalisador.

Sensível ao conteúdo ácido graxo livre;

Possibilidade de formação de sabão;

Problemas na purificação de produto;

Velocidade de reação lenta;

Necessidade de elevado grau de pureza das matérias-primas e de separação do catalisador da reação e tais requisitos, tendem a elevar o custo final do biodiesel.

NaOHa;

KOHa;

CH3ONaa;

CH3OKa

Enzimáticos

Baixo gasto energético;

Elimina a necessidade de neutralização e lavagem do biodiesel;

Facilidade na recuperação da glicerina.

Possibilidade de inativação;

Longos períodos requeridos para reações;

Possibilidade de competição entre água e substrato.

Candida cylindracea

b;

Rhizopus oryzaeb;

Thermomyces lanuginose us

b;

Penicillium expansum lipase

c.

*Referências - aATABANI et al. 2012;

bGOG et al. 2013;

cLAI et al. 2012;

dATADASHI et al. 2013;

eHAMA E KONDO, 2012;

fKO et al. 2012;

gLI et al. 2012.

Page 31: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

13

Tabela 1 - Classificação de catalisadores (MARCINIUK,2007; PENG et al. 2008; DOMINGOS, 2009; FURIGO, 2009; HELWANI et al. 2009; PANWAR et al. 2012; ATADASHI, et al. 2013)......................................... (conclusão)

Catalisadores Heterogêneos

Vantagens Desvantagens Exemplos*

Ácidos

Sua ação independente do teor de ácidos graxos livres presentes no meio reacional;

Preferencialmente utilizado para catálise de óleos residuais ácidos;

As reações de esterificação e transesterificação podem ocorrer simultaneamente;

O catalisador pode ser facilmente separado ao término da reação;

Apresentam menor grau de corrosão que catalisadores homogêneos ácidos;

Os processos de síntese geralmente apresentam elevados custos;

Geralmente exigem o emprego de elevadas temperaturas e razões molares álcool/óleo, bem como longos tempos de reação;

A lixiviação de sítios ativos do catalisador podem resultar na contaminação do produto;

SO42-

/ZrO2d;

WO3/ZrO2d;

CaO/Al2O3d;

Al2O3/KId;

Básicos

Fácil separação do catalisador;

Alta possibilidade de reutilizar e regeneração do catalisador;

Catalisador pode ser facilmente separado da mistura reacional ao término da reação;

Possibilidade de envenenamento do catalisador quando exposto ao ar;

Sensibilidade à presença de ácidos graxos livres devido à sua basicidade;

Lixiviação de sítios ativos do catalisador podem resultar na contaminação do produto.

KOH/NaYd;

CaOd;

MgOd;

ZnOd

Enzimáticos

Alta especificidade;

Alto poder de reutilização sem perder a atividade;

Menor tempo de reação;

Baixo gasto energético;

Baixo impacto ambiental;

Possibilidade de reação em fluxocontínuo.

Elevados custos;

Possibilidade de diminuição da eficiência do catalisador através da inibição da enzima por meio do glicerol formado

Rhizopus oryzae lipase e Candida rugosa lipase

e;

Novozym-435 (Candida antarctica lípase B imobilizada em resina macroporosa

f;

CaO/NaA com Candida sp.

g;

*Referências - aATABANI et al. 2012;

bGOG et al. 2013;

cLAI et al.2012;

dATADASHI et al. 2013;

eHAMA E KONDO, 2012;

fKO et al. 2012;

gLI et al. 2012.

Page 32: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

14

É importante ressaltar que, outro tipo de categorização para catalisadores

empregados na produção de biodiesel são os catalisadores heterogêneos com

características ácido-base, por exemplo, o ZnO-La2O3. Ele demonstra ser bastante

promissor, pois, pode catalisar simultaneamente esterificação e transesterificação.

Possibilitando a utilização de matéria-prima menos onerosa, como o AGL’s e a

gordura animal, além de gerar alta conversão em éster (96%) dentro de um curto

intervalo de tempo (3h) (ATADASHI et al. 2013 apud LEE e SAKA 2010).

Diante de todas as premissas abordadas para importância do uso de

catalisadores na produção mundial e especificamente na produção do biodiesel,

cabe voltarmos à atenção para a influência que esta ciência apresenta ao processo

de obtenção do biodiesel, tanto na reação de transesterificação quanto na reação de

esterificação, atentando-se para suas vantagens, desvantagens e ao mecanismo de

reação.

3.4.1 Catálise Enzimática.

A utilização da catálise enzimática na produção de biodiesel permite a

recuperação do glicerol, a transesterificação de matérias-primas com alto conteúdo

de ácidos graxos, o uso de condições brandas no processo, com rendimentos de no

mínimo 90%, tornando-se uma alternativa comercialmente rentável. Ela faz com que

não ocorram reações colaterais de formações de subprodutos (como o sabão),

amenizando os gastos com posterior purificação. Algumas enzimas necessitam de

cofatores, como íons metálicos ou compostos orgânicos (coenzimas) para

realizarem suas tarefas. A sua utilização faz com que a reação ocorra lentamente,

tornando necessária a utilização de grande quantidade de catalisador e,

consequentemente, encarecendo o processo de produção (SALVADOR et al. 2009;

FURIGO, 2009; RAMOS et al. 2011).

A fim de obter biodiesel a partir da catálise enzimática alguns fatores como: (i)

origem e quantidade da enzima; (ii) uso de solvente orgânico; (iii) temperatura da

reação; (iv) reuso da enzima devem ser levados em consideração para evitar

inativação do catalisador. A principal enzima utilizada para esse processo é a lípase,

Page 33: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

15

por serem materiais mais baratos e possuírem a capacidade de catalisar a hidrólise

e a transesterificação de triglicerídeos em condições reacionais brandas. (HELWANI

et al. 2009; SEMWAL et al. 2011; ABBASZAADEH et al. 2012).

3.4.2 Catálise Homogênea.

3.4.2.1 Catálise homogênea na transesterificação.

A rota tecnológica mais utilizada industrialmente para produção de biodiesel

ocorre na presença da catálise homogênea alcalina, por se tratar de processo

simples. Os catalisadores mais usados neste processo são alcóxidos de metais

alcalinos, sendo os principais: os hidróxidos de sódio, ou de potássio, e metóxido de

sódio (MARCINIUK 2007; ATADASHI et al. 2013). Os catalisadores homogêneos

são comumente subdivididos em catalisadores básicos e ácidos, como representado

na Tabela 1.

O mecanismo de reação representado na Figura 4 ilustra a síntese do

biodiesel a partir de um catalisador homogêneo básico.

Page 34: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

16

O CH3

C

O

OG

R3

O CH3

C

O

OG

R3

O CH3

- DiacilglicerolC

R3

O CH3

O

..

Éster metílico

C

O

O

R3

G

O

OR

1

O

O

OR3

O

R2

..

..

..

CH3OH + NaOH CH

3O- + Na+ + H

2O

G

-.... ..

....

....

....

....

.... ..

O CH3

H

..

.... ..

..

......

.. ..

....

....

....

....

.. ..

Figura 4 - Mecanismo de reação a partir de um catalisador homogêneo básico, onde G

constitui com o átomo de oxigênio o grupo abandonador (MARCINIUK, 2007).

Na produção de biodiesel, através da reação de transesterificação alcalina em

meio homogêneo, o catalisador alcóxido pode ser gerado in situ pela reação do

álcool com o hidróxido (NaOH ou KOH). Em seguida, ocorre o ataque nucleofílico do

alcóxido que foi gerado na primeira etapa ao grupo carboxílico presente no

triacilglicerol, o qual gera uma espécie intermediária tetraédrica, seguido da

formação do diacilglicerol e o éster monoalquílico. Tal processo reinicia-se com os

intermediários diacilglicerol e monoacilglicerol, até que estes sejam convertidos em

ésteres monoalquílicos (biodiesel) e glicerol (MARCINIUK,2007; ALVES, 2011;

RAMOS et al. 2011).

É importante ressaltar que, na reação de transesterificação com catalisador

homogêneo em meio básico pode ocorrer reações secundárias. A reação de

saponificação de éster e a neutralização dos ácidos graxos livres são alguns

Page 35: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

17

exemplos deste processo, como representado nas reações da Figura 5. Estas

reações são indesejáveis, pois dificultam a separação do glicerol e consumo de

parte do catalisador (MARCINIUK,2007; ABBASZAADEH et al. 2012).

Figura 5 - a) reação de saponificação; b) neutralização dos ácidos graxos livres (adaptado

por MARCINIUK,2007; ABBASZAADEH et al. 2012).

Como dito, a reação pode também ser promovida por catalisadores

homogêneos ácidos de Brönsted-Lowry como H2SO4, HCl. Os catalisadores

homogêneos ácidos são uma alternativa para evitar a formação de sabão e outros

inconvenientes da catálise homogênea básica (Tabela 1). Este tipo de catalisador

promove alta conversão em éster, no entanto, apresenta uma atividade catalítica

muito mais baixa quando comparado à catálise básica. O mecanismo de reação com

catálise ácida esta representado na Figura 6 (RAMOS et al. 2011; ATABANI et al.

2012).

Page 36: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

18

H+

OH CH3

C

O

OG

H

R3

O

H

CH3

C

O

OG

H

R3

O CH3

H+

+

C

R3

O CH3

O

..

Éster metílicoH

C

O

O

R3

G+

O

OR

1

O

O

OR3

O

R2

O

OR

1

O

O

R3

O

R2

OH

+

- H+

..

..

..

G

- Diacilglicerol

....

....

....

....

....

....

....

.. ..

..

..

.. ..

..

..

..

.. ..

..

.. ..

....

......

....

....

....

Figura 6 - Mecanismo de reação de catálise homogênea ácida, onde G constitui com o

átomo de oxigênio o grupo abandonador (RAMOS et al. 2011).

Neste mecanismo, inicialmente, o oxigênio da dupla ligação da carboxila é

protonado através da interação com o catalisador ácido de Brönsted-Lowry. O

carbocátion formado sofre ataque nucleofílico do álcool, resultando em um

intermediário tetraédrico. Subsequentemente, ocorre um rearranjo intermolecular

através da transferência de próton, propiciando a eliminação de diacilglicerol e uma

molécula de éster monoalquílico. O ciclo catalítico é repetido pelo catalisador que é

regenerado pela desprotonação da carboxila, até que os intermediários dos

triacilglicerois se formem em ésteres monoalquílicos (biodiesel) e glicerol (ALVES,

2011; RAMOS et al. 2011).

Page 37: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

19

3.4.2.2 Catálise homogênea na esterificação

Os catalisadores homogêneos mais utilizados na reação de esterificação são

o ácido sulfúrico, ou o ácido clorídrico. Nesta reação, ácidos graxos livres podem ser

convertidos em ésteres (biodiesel), como está esquematizado na Figura 7 abaixo.

H

C

O

O

R

H

H

C

O

O

R

H

+

+ OH CH3

C

O

OH

H

R

O

H

CH3

C

O

OH

H

R

O CH3

H+

+

- H2O C

R

O CH3

O

..

Éster metílico

- H+

..

..

.. ..

..

....

....

..

.. ..

..

....

....

....

Figura 7 - Representação do mecanismo da reação de esterificação de ácidos graxos na

presença de um catalisador ácido homogêneo. (Ramos et al. 2011).

O mecanismo da reação de esterificação consiste na protonação do oxigênio

insaturado da carboxila (-COOH), o qual leva a formação de um carbocátion, ficando

assim suscetível ao ataque nucleofílico do álcool, formando um intermediário

tetraédrico. Tal intermediário sofre um rearranjo, para, então, ocasionar a eliminação

da água e a formação do éster (RAMOS et al. 2011; ALVES, 2011).

3.4.3 Catálise heterogênea.

3.4.3.1 Catálise heterogênea na transesterificação.

O uso de catalisadores heterogêneos ácidos e básicos (Tabela 1) é reportado

na literatura (CHEN, JU e MOU, 2007; PARK et al. 2010; RAMOS et al. 2011; ISLAM

Page 38: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

20

et al. 2013), como alternativa para os inconvenientes apresentados na utilização de

catalisadores homogêneos.

Os catalisadores heterogêneos básicos mais estudados são os óxidos

básicos, os óxidos de metais alcalino-terrosos e os hidrotalcitas, sendo eles,

normalmente, mais ativos que os ácidos. Além disso, eles são ativos na

transesterificação em temperaturas semelhantes aos catalisadores homogêneos

básicos.

Catalisadores heterogêneos ácidos são sólidos que, apesar da menor

atividade quando comparado com os alcalinos, têm sido utilizados em muitos

processos industriais, por apresentarem uma variedade de sítios ativos com

diferentes forças ácidas. Tais forças são atribuídas aos sítios ácidos de Brönsted -

Lowry que são capazes de doar ou transferir, pelo menos parcialmente, um próton

ou de Lewis que são capazes de aceitar um par de elétrons. A utilização destes

catalisadores pode solucionar o problema com a corrosão dos equipamentos

industriais (ENDALEW, KIROS e ZANZI, 2011; ABBASZAADEH et al. 2012;

ATADASHI et al. 2013; SANTACESARIA et al. 2012).

O mecanismo de reação com catalisadores heterogêneos ácidos é

demonstrado na Figura 8.

Page 39: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

21

OH CH3

C

O

OG

R3

O

H

CH3

C

O

OG

R3

O CH3

H+

+

C

R3

O CH3

O

..

Éster metílico

C

O

O

R3

G+

O

OR

1

O

O

OR3

O

R2

O

OR

1

O

O

R3

O

R2

+

- H+

..

..

..

G

- Diacilglicerol

....

..

....

....

....

....

....

O....

M+

M+

M+

M+

M+

.. ..

..

..

.. ..

..

..

..

..

.. ..

....

....

.. ..

....

.. ..

Figura 8 - Mecanismo reacional de um catalisador heterogêneo ácido sendo: a) catalisador

com sítios ácidos de Lewis, onde, G constitui com o átomo de oxigênio o grupo

abandonador. (KULKARNI et al. 2006; DI SERIO et al. 2010; ENDALEW, KIROS

e ZANZI, 2011).

Inicialmente, ocorre a dessorção das moléculas de acilgliceróis na superfície

do catalisador resultando na interação dos oxigênios insaturados da carboxila com

os sítios ácidos de Lewis (M+). Em seguida, o carbono eletrofílico é atacado pelo

álcool que dá origem a um intermediário tetraédrico. Por fim, ocorre a quebra do

intermediário gerando o éster monoalquílico e o diacilglicerol, seguindo a dessorção

dessas espécies do catalisador. O ácido de Lewis, apesar de ser mais forte, não

favorece a dessorção facilmente do produto o que torna a reação lenta (ENDALEW,

KIROS e ZANZI, 2011).

Page 40: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

22

3.4.3.2 Catálise heterogênea na esterificação

Como já destacado, a reação de esterificação concomitantemente ao uso de

catalisadores heterogêneos traz vantagens econômicas e ambientais para a síntese

de biodiesel. Para um melhor entendimento de como esse processo ocorre, a Figura

9 representa o mecanismo de reação.

H

C

O

O

RH

H

C

O

O

RH

+

+

OH CH3

C

O

OH

H

R

O

H

CH3

C

O

OH

H

R

O CH3

H+

+

- H2O

..

M+

Si

O

M+

Si

O

M+

Si

O

M+

Si

O

.. ..

....

..

..

..

.... ....

....

....

....

.. ..

..

........

M

C

O

O

R

H

M

C

O

O

R

H

+

+

C

O

OH

M

R

O

H

CH3

C

O

OH

M

R

O CH3

H+

+

- H2O C

R

O CH3

O

..

Éster metílico

..

..

..

..

..

....

....

.. ....

..

.. ..

....

.. ..

OH CH3....

a)

b)

C

R

O CH3

O

Éster metílico

....

.. ..

Figura 9 - Mecanismo de reação a partir de um catalisador heterogêneo sendo a)

catalisadores com sítios ácidos de Brönsted e b) catalisadores com sítios ácidos

de Lewis CORDEIRO et al. 2011.

Neste mecanismo, inicialmente ocorre a adsorção das moléculas dos ácidos

graxos livres na superfície do catalisador. Caso a molécula do ácido graxo encontre

na superfície do catalisador sítios ácidos de Brönsted, a primeira etapa após a

adsorção do ácido se dará com a protonação do oxigênio insaturado da carbonila

(Figura 9a). Se o sítio ativo na superfície for um ácido de Lewis, a primeira etapa

Page 41: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

23

será a interação entre o sítio (metal) e os pares não compartilhados do oxigênio

insaturado da carbonila (Figura 9b). Essas etapas promovem um aumento da

densidade de carga positiva no carbono carbonílico, favorecendo o ataque

nucleofílico da hidroxila alcoólica gerando um intermediário tetraédrico. Esse

intermediário elimina uma molécula de água e um éster monoalquílico, que é

subsequentemente dessorvido da superfície do catalisador (CORDEIRO et al. 2011).

Além das vantagens apresentadas, catalisadores heterogêneos ácidos ideais

devem possuir como características: grande tamanho de poros, concentração de

média a alta de sítios ácidos e superfície hidrofóbica (LAM, LEE e MOHAMED,

2010). Entretanto, este tipo de catalisador apresenta limitações por apresentar baixo

rendimento em ésteres e possíveis reações secundárias indesejáveis (CHOUHAN e

SHARMA, SINGH e KORSTAD, 2011). A Figura 10 mostra uma classificação dos

catalisadores mais avaliados no processo de produção do biodiesel, com ênfase

para os sólidos heterogêneos ácidos.

Figura 10 - Fluxograma com a classificação dos catalisadores heterogêneos usados na

produção de biodiesel (SHARMA, SINGH e KORSTAD, 2011 com

modificações).

Os estudos com catalisadores mássicos de óxidos mistos continuam a

crescer a um ritmo acelerado, refletindo a gama de reações químicas em que podem

ser aplicados tais como, Fischer- Tropsch (HAN et al. 2012), Oxidação de amônia

Page 42: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

24

(WANG et al. 2012), Hidrogenação de alcenos (BOUDJAHEM, BOUDERBALA e

BETTAHAR, 2011), Síntese de alcoóis (KANTAM et al., 2012), entre outras que

podem ser melhoradas através da utilização deste tipo de catalisador. Tal avanço

tem como aliado a evolução das técnicas de caracterização, cujas aplicações

auxiliam a diversos estudiosos na compreensão dos processos que ocorrem na

superfície e no “bulk” do catalisador (HARGREAVES, 2009).

Dentre os diversos sólidos aplicados para produção de biodiesel, os óxidos

mistos preparados pelo método sol-gel apresentam grande destaque, pois

demonstram a capacidade de associar as propriedades, químicas e mecânicas dos

óxidos que os constituem (SANCHEZ et al. 2011). Além disso, segundo o modelo de

Tanabe, os óxidos mistos quando formados apresentam sítios ácidos devido ao

excesso de carga negativa, ou positiva, ou ainda aos defeitos na rede (TANABE et

al. 1974), característica necessária para reações de produção de biodiesel.

Neste trabalho óxidos mistos ZrO2-SiO2 foram preparados pelo PSG e

avaliados na produção de biodiesel.

3.5 Óxido misto - ZrO2-SiO2

3.5.1 Aspecto geral

O óxido de zircônio (ZrO2) é um sólido que possui uma acidez superficial forte,

boa estabilidade térmica e é muito utilizado na catálise. Embora, este óxido

apresente pouca área superficial, característica inadequada á reações para

produção de biodiesel (LAM et al., 2010; CHOUHAN e SARMA, 2011). Como

esperado, estes óxidos quando isolados são pouco ativos em reações usualmente

catalisadas por sólidos ácidos. Este comportamento é semelhante com a sílica

(SiO2) que possui grande área superficial, elevado tamanho de poros e alta

estabilidade térmica. O comportamento destes óxidos isolados pode ser devido à

Page 43: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

25

distribuição inadequada dos sítios ácidos na superfície e/ou bulk do catalisador.

(LAM, LEE e MOHAMED, 2010; XIE, WANG e LI, 2012).

Ao incorporar ZrO2 na matriz SiO2 espera-se que estes apresentem boas

propriedades catalíticas, tais como: alta atividade, maior caráter ácido e resistência à

desativação que os óxidos isolados (ARATA et al., 1996; AVENDANÕ R.G.R. et al.,

2009). O aparecimento de sítios ácidos nestes óxidos mistos é devido diferença de

eletronegatividade entre os dois cátions que formam a ligação M-O-Si, onde a maior

acidez só pode surgir a partir de uma inserção direta de Zr4+ para a rede de sílica

(ZHANG et al., 2011)

O óxido misto (ZrO2 – SiO2) sintetizado por sol-gel apresenta muita

diversidade de aplicação, como está representado na Tabela 2 (FENG et al. 1995;

ZHANG et al. 2011, ZHANG et al. 2010; TYAGI et al. 2010).

Tabela 2 - Variedade de aplicação e métodos de síntese do catalisado ZrO2 – SiO2.

.....................................................................................................................(continua)

Catalisadores Método

Precursores Aplicação Referências

ZrO2–SiO2 Sol-gel TEOS; Ácido Fórmico; Oxicloreto de zircônia

octahidratado ------------------

Saha S.K. e Pramanik, P.,

1993

ZrO2–SiO2 Sol-gel TEOS; Isopropóxido de zircônio; Tri-secbutóxido

de alumínio

Para a síntese de isobutano e

isobuteno a partir de

hidrogenação de CO.

Feng et al. 1995.

ZrO2–SiO2 Sol-gel TEOS; Propóxido de

Zircônia Dehidratação do

álcool. Zhuang e Miller,

2001

ZrO2–SiO2 Sol-gel

3(Trimetóxisilano)propIlmetacrIlato

(TMSPM), Ácido metacrilato (MA) e n

propóxido de zircônia.

Filmes para serem

incorporados em sondas espaciais.

Bullen, 2004

Page 44: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

26

Tabela 2 - Variedade de aplicação e métodos de síntese do catalisado ZrO2 – SiO2.

...................................................................................................................(conclusão)

CATALISADOR MÉTODO PRECURSORES APLICAÇÃO REFERÊNCIAS

ZrO2–SiO2 Sol-gel

TEOS; Ácido Oxálico;

Oxicloreto de zircônia

octahidratado

------------------ Chandradass

Han e Bae,2008

ZrO2–SiO2 Sol-gel TEOS; Nitrato de

Zircônia; Síntese

hidrotérmica Avendanõ et al.

2009

ZrO2–SiO2 Sol gel TEOS; Nitrato de

zircônia Polimerização de tetrahidrofurano

Zhang, Y. et al. 2010

ZrO2 - SiO2 Sol gel TEOS; n-

propóxido de zircônia

Conversão do ciclohexanol

Tyagi, B. et al. 2010

ZrO2–SiO2 Sol gel TEOS; n-

propóxido de zircônia

Estudo da refletividade dos

filmes

Guo, Y.J.et al. 2011

ZrO2 – SiO2

Sol-gel

TEOS; n-propóxido de

zircônio; Brometohexadecil

trimetilamônio

Desidratação de fase gasosa do

glicerol

García-Sancho, C. et al., 2012

O método sol-gel apresenta-se mais eficiente para a síntese do ZrO2-SiO2,

pois irá proporcionar maior homogeneidade entre este sólido, tendo em vista a

possibilidade de controle das variáveis em todo o seu processo, como demonstra a

Tabela 3.

Page 45: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

27

Tabela 3 - Variáveis importantes envolvidas no PSG (CRUZ, 2001).

Etapas Objetivos Variáveis importantes

Hidrólise/ Condensação Formar o gel

Tipo de precursor, tipo de solvente, teor de água,

concentração de precursor, temperatura, agitação.

Envelhecimento

Permitir que o gel sofra mudança nas propriedade.

Tempo, temperatura, composição dos líquidos

nos poros, ambiente .

Secagem Remover o solvente do gel

Método de secagem (evaporação), condições

supercríticas, esfriamento, temperatura e taxa de aquecimento, pressão,

tempo

Calcinação/sinterização

Mudar as propriedades físicas/químicas do sólido, resultando frequentemente

em cristalização e densificação

Temperatura e taxa de aquecimento, tempo, tipo de ambiente gasoso (gás inerte

ou reativo)

Diante da grande área de aplicação deste sólido, uma situação merece

destaque, é o emprego deste catalisador na produção de biodiesel, graças à

característica ácida que ele apresenta.

3.5.2 ZrO2 – SiO2 na produção de biodiesel

Faria et al. (2009) relataram a síntese e a avaliação catalítica do sólido ZrO2-

SiO2 como catalisador frente a reação de transesterificação do óleo de soja com

metanol. O catalisador, preparado pelo método sol-gel, contendo 20% de Zr, exibiu

conversão de 96,2 ± 1,4 % após 3 horas de reação com as seguintes condições de

reação: razão óleo/álcool 6:1, 50 °C e com diferentes quantidades (0,1; 0,3; 0,5; e

0,7g) de catalisador em relação à massa de óleo de soja. Esse catalisador foi

avaliado frente ao teste de reutilização, sendo recuperado por seis vezes e

mantendo uma eficiência catalítica de 84,1% de conversão em éster.

Page 46: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

28

Estudos relatam tanto o uso dos óxidos de zircônio sulfatados quanto do

óxido misto ZrO2-SiO2 sulfatado, no intuito de aumentar acidez para utilização em

reações de esterificação, transesterificação ou transesterificação-esterificação

simultâneas. Garcia et al. (2008) realizaram estudos com SO42-/ZrO2 em reação de

transesterificação a partir do óleo de soja e concluíram que o catalisador apresentou

uma boa conversão (98,6% em éster), quando submetido as seguintes condições:

120°C, 1h de reação e 5% de catalisador. No entanto, este apresentou decréscimo

na conversão em éster à medida que era recuperado e reutilizado na reação de

transesterificação. A lixiviação é atribuída pelos autores ao envenenamento do

catalisador por meio da forte interação dos íons sulfatos com compostos polares,

especialmente a água. Essa lixiviação das espécies sulfatadas na água foi

comprovada através de teste com BaCl2 e análise FTIR, que evidenciou brandas

características de íons sulfato.

Kansedo, Lee e Bhatias (2012) sintetizaram SO42-/ZrO2 e avaliaram na reação

de transesterificação do óleo sea mango (Condições reacionais: razão óleo de sea

mango/álcool 12:1, com 0,08 (g.g-1) de catalisador, a 150°C por 3h). O material

apresentou 94,1% de conversão em éster. Assim como Garcia et al., 2008, estes

pesquisadores notaram a lixiviação das espécies ativas (íons sulfatos) para o meio

reacional.

Vale ressaltar que, estes trabalhos mostram que a lixiviação e o consequente

decréscimo na conversão em biodiesel, constatada durante o teste de reutilização

do catalisador, podem ser atribuídos ao envenenamento do catalisador por meio da

forte interação dos íons sulfatos com compostos polares e ao acúmulo desses

compostos polares sobre os sítios ativos.

Rattanaphra et al. (2011) sintetizaram o catalisador SO42-/ZrO2, avaliaram sua

atividade catalítica em reação de esterificação tendo o ácido mirístico como molécula

modelo e reutilizaram o catalisador por 5 corridas consecutivas. Para tanto, usaram

as seguintes condições reacionais: razão molar álcool/ ácido mirístico de 20:1, a

170°C, com 3% de catalisador, por 3h. Os resultados mostraram que a zircônia

sulfatada apresentou uma pequena perda de atividade ao comparar a primeira com

a segunda corrida, e, posteriormente, uma perda não significativa nas corridas

subsequentes. Os autores atribuíram este comportamento e sugeriram que os

Page 47: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

29

grupos sulfatos eram lixiviados a partir do catalisador “fresco”, devido à interação

com a água. Por outro lado, para os catalisadores usados, não houve lixiviação

significativa de íons sulfatos, devido à formação de uma “cobertura” na superfície do

catalisador com componentes hidrofóbicos orgânicos, tais como o triacilglicérois,

intermediário glicerínicos, AGL’s e ésteres, os quais podem proteger sítios ácidos do

catalisador da lixiviação.

Juan et al. (2007) sintetizaram o catalisador SO42−/ZrO2–SiO2 por

impregnação para utilização em reações de esterificação a partir do ácido oléico e

do álcool butílico, com as seguintes condições reacionais: razão ácido/álcool 1:1.4

(sendo 100 mmol de ácido oleico e 120 mmol de butanol), com 5% (m/m) de

catalisador, a 120°C, durante 4h, apresentando 95,28% de conversão em éster.

Estes também realizaram teste de reutilização com este catalisador, o qual

apresentou praticamente a mesma atividade catalítica após quatro reutilizações. Os

autores atribuem que este excelente resultado ocorreu devido uma ótima dispersão

da zircônia sulfatada em sílica, e também ao aumento da acidez.

Recentemente, Jimenez-Morales et al. (2012) sintetizaram o catalisador

SO42−/ZrO2–MCM 41 (sílica mesoporosa), reação obtida por impregnação, para

utilização em reações de esterificação do ácido oléico com metanol a partir das

seguintes condições reacionais: razão molar ácido/álcool 20:1, 18,7% (m/m) de

catalisador, a 75°C durante 5h. Após estudos com diferentes temperaturas de

calcinação (700°C e 750°C) do catalisador, seguida da avaliação catalítica na reação

de esterificação, eles concluíram que os catalisadores quando calcinados a 750°C

são mais estáveis, ou seja, não apresentam lixiviação de Zr para o meio reacional.

Os pesquisadores chegaram a esta conclusão após a realização do teste de

reutilização, onde o catalisador foi separado por meio de filtração e reutilizado numa

nova reação sem qualquer tratamento, tal como a lavagem ou a calcinação durante

três ciclos (reações). O decaimento de 24% na conversão em éster, do primeiro para

o segundo ciclo reacional, foi atribuído pelos autores ao bloqueio dos sítios ácidos

por intermediários adsorvidos, ou espécies de produtos, mais polar do que o

reagente original no catalisador e/ou a deposição de carbono no mesmo. Porém,

como eles não realizaram teste de metal (Zr), antes e depois da reação, não

podemos descartar a existência de lixiviação como relatado.

Page 48: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

30

Sendo assim, estudos literários e pesquisas práticas por meio da utilização da

catálise homogênea apresentaram desvantagens como: a necessidade de matéria-

prima de alto valor agregado, que apresentam baixos teores de ácidos graxos livres

e água; e a difícil recuperação e reutilização dos catalisadores e geração de

efluentes, o que acaba onerando o processo produtivo. Por isso, pesquisas tem se

voltado para o desenvolvimento de catalisadores heterogêneos, no intuito de

eliminar o que é visto como grandes desvantagens da catálise alcalina. Aliado a esta

inovação tecnológica, persiste a busca por um catalisador heterogêneo ácido e

estável para reação de esterificação metanólica do ácido oleico.

Page 49: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

31

4. METODOLOGIA

4.1 Seleção de catalisadores.

Foram sintetizados óxidos mistos, base de óxidos de zircônio, estanho, silício

e alumínio pelos métodos de co-precipitação e sol-gel (Tabela 4), com vistas a

selecionar catalisadores ácidos e estáveis para reação de esterificação a fim de

obter biodiesel.

A Tabela 4 mostra os catalisadores e os métodos de sínteses que foram

previamente estudados. Todos os catalisadores foram avaliados frente à reação de

esterificação e lixiviação, tendo o ácido oleico como molécula modelo com o objetivo

de selecionar os materiais mais ativos e estáveis.

Tabela 4 - Seleção dos catalisadores.

Catalisadores Método de síntese

SnO2-SiO2 Sol-gel

ZrO2-SiO2 Sol-gel

ZrO2-SnO2 Co-precipitação

ZrO2-Al2O3 Co-precipitação

4.1.2 Reagentes

Oxicloreto de zircônia octahidratado (ZrOCl2 . 8H2O) - Sigma Adrich –

99,8%

Cloreto de estanho pentahidratado (SnCl4 . 5H2O) – Merck – 95%

Hidróxido de amônio (NH4OH) Sigma Adrich – 99%

Cloreto de alumínio hexahidratado (AlCl3 . 6H2O) – Sigma Aldrich – 99%

Álcool etílico (CH3CH2OH) - Vetec 99,8%

Nitrato de prata (AgNO3) - Vetec – 99,9%

Todos os reagentes são de grau analítico e foram utilizados como

comercializados.

Page 50: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

32

4.1.2.1 Síntese de ZrO2-SnO2

Este catalisador foi sintetizado seguindo a metodologia de Kemntiz et al.

(2003), tendo como precursores metálicos o oxicloreto de zircônio octahidratado

(ZrOCl2 . 8H2O) e o cloreto de estanho (SnCl4 . 5H2O) e como agente precipitante o

hidróxido de amônio. O óxido misto foi preparado numa razão molar 95:05, relação

Zr/Sn. Inicialmente, preparou-se uma solução (1000 mL) 12,5% de hidróxido de

amônio a qual, foi adicionada gota a gota a solução com 95% de ZrOCl2 . 8H2O e

5% de SnCl4 sob agitação até atingir o pH 8 e a formação do precipitado. Cabe

ressaltar, que as soluções dos precursores metálicos ZrOCl2 . 8H2O (15,30g em 500

mL) e SnCl4 . 5H2O (0,87g em 500 mL), nas devidas proporções, foram preparadas

separadamente. O material precipitado seguido de filtração foi lavado com água para

remoção dos cloretos. Em seguida, foi seco em estufa por 3h, a 80 °C.

Subsequentemente, o material foi calcinado a 500°C por 3h. E, então, lavado em

soxhlet para remoção de possíveis espécies fracamente ligadas no material, seguido

de secagem a 80°C por duas horas, procedimento representado na Figura 11.

Figura 11 - Fluxograma representativo da síntese do catalisador ZrO2-SnO2.

Page 51: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

33

4.1.2.2 Síntese de ZrO2-Al2O3

A síntese do catalisador ZrO2-Al2O3 foi realizada pelo método de co-

precipitação, segundo metodologia descrita por Kemnitz et al. (2003), tendo como

precursores o oxicloreto de zircônio octahidratado (ZrOCl2 . 8H2O) e o cloreto de

alumínio hexahidratado (AlCl3 . 6H2O) e hidróxido de amônio, como agente

precipitante. O óxido misto foi preparado numa razão molar de 95:05, relação Al/Zr.

Inicialmente, preparou-se uma solução (1000 mL) 12,5% de hidróxido de amônio, a

qual foi adicionada gota a gota a solução com 95% de ZrOCl2 . 8H2O e 5% de AlCl3

. 6H2O, sob agitação e aquecimento a 60°C, até atingir o pH 8 e a formação do

precipitado. É importante ressaltar que, as soluções dos precursores metálicos AlCl3

. 6H2O (11,46g em 500 mL) e ZrOCl2 . 8H2O (0,80g em 500 mL), nas devidas

proporções, foram preparadas separadamente. O precipitado foi filtrado e em

seguida foi lavado com água para remoção dos cloretos. Logo após, este foi seco

em estufa por 3h a 80 °C. Subsequentemente, o material foi calcinado a 500°C por

3h. E, então, foi lavado em soxhlet para remoção de possíveis espécies fracamente

ligadas ao material, seguido de secagem a 80°C, por 2h, procedimento representado

na Figura 12.

Figura 12 - Fluxograma representativo da síntese do catalisador ZrO2- Al2O3.

Page 52: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

34

Os catalisadores SnO2-SiO2 e ZrO2-SiO2 foram sintetizados pelo método sol-

gel, conforme metodologia apresentada por Cardoso et al. (2004), com modificações

como representado nas Figuras 13 e 14, respectivamente.

4.1.2.3 Síntese de SnO2-SiO2

O catalisador SnO2-SiO2 foi preparado pelo método sol-gel, segundo Cardoso

et al., 2004), com modificações, mantendo a razão molar de 95:5, Si/M. O TEOS

(74,3 mL) foi colocado em um béquer de polipropileno sob agitação em um banho de

óleo e misturado com álcool etílico (74,3 mL), água (6,8 mL) e ácido nítrico (0,45

mL), mantendo-se a temperatura média de 80°C durante 3 h. Subsequentemente, foi

adicionada em solução com álcool (200 mL) à fonte de metal (SnCl4 – 3,5 mL), a

qual foi misturada lentamente a solução acima e manteve a agitação por 2h, em

temperatura ambiente. Uma nova carga de água (1,8 mL) e ácido (3,3 mL) foram

adicionadas, gota a gota, à solução anterior, que permaneceu sob agitação por mais

2h, em temperatura ambiente.

O processo de gelatinização ocorreu entre quatro e cinco dias em uma capela

de exaustão após evaporação lenta do solvente. O material devidamente gelificado

foi colocado numa placa de petri e o processo de tratamento térmico seguiu por meio

do aquecimento em uma estufa (com temperatura controlada) de 27°C a 80°C, a

uma taxa de 2°C min-1, sendo que a temperatura final foi mantida por 6 h. O material,

depois de resfriado em um dessecador, foi moído em um almofariz de ágata e

peneirado (100 mesh). Em seguida, foi lavado com água destilada até teste negativo

de cloreto com adição de nitrato de prata. O material, então, foi seco em estufa a

120°C por 2h. Logo depois, foi lavado com etanol através de um extrator soxhlet por

2 h, no intuito de remover as possíveis espécies fracamente ligadas à superfície da

sílica. Subsequentemente, foi realizada a calcinação do material por 3h, a 500°C.

Page 53: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

35

Figura 13 - Fluxograma representativo da síntese do catalisador SnO2- SiO2.

O material ZrO2-SiO2 será descrito no tópico 4.2.2.1. Embora, siga abaixo o

fluxograma desta síntese:

Figura 14 - Fluxograma metodológico da rota de síntese 1.

Page 54: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

36

A síntese, a caracterização e a atividade catalítica do material selecionado

serão descritas em detalhes nas próximas seções.

4.2 Síntese dos catalisadores (ZrO2-SiO2)

4.2.1 Reagentes

Tetraetoxissilano (TEOS) - Sigma Adrich – 98%

Oxicloreto de zircônia octahidratado (ZrOCl2 . 8H2O) - Sigma Adrich –

99,8%

Álcool etílico (CH3CH2OH) - Vetec 99,8%

Ácido nítrico (HNO3) - Sigma Adrich – > 90%

Metiltrietoxisilano (MeTEOS) - Sigma Adrich – 98%

Ácido sulfúrico (H2SO4) - Merck – 95-97%

Ácido oxálico dihidratado (C2H4O4 . 2H2O) - Vetec

Ácido fórmico (CH2O2) - Vetec

Hidróxido de amônio (NH4OH) Sigma Adrich – 99%

Nitrato de prata (AgNO3) - Vetec – 99,9%

Todos os reagentes são de grau analítico e foram utilizados como

comercializados.

4.2.2 Processo de síntese do óxido misto ZrO2-SiO2

O material selecionado foi o ZrO2-SiO2 preparado pelo método sol-gel. Com

o objetivo de verificar a influência do método de síntese nas propriedades do

material, foram realizados três métodos de síntese que serão descritos a seguir.

Page 55: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

37

4.2.2.1 Rota de síntese 1 - Método sol-gel usando a pré-hidrólise do TEOS

O catalisador foi preparado pelo método sol-gel, segundo Cardoso et al.

(2004), com modificações (na fonte metálica, na etapa de lavagem do xerogel – em

pó – e no tratamento do óxido), mantendo a razão molar Si/M = 95:5.. O TEOS (106

mL) foi colocado em um béquer de polipropileno sob agitação em um banho de óleo

e misturado com álcool etílico (106 mL), água (9,7 mL) e ácido nítrico (0,65 mL),

mantendo-se a temperatura média de 80°C, durante 3h. Subsequentemente,

adicionou-se uma solução contendo ZrOCl2 . 8H2O – 3,95g, da fonte de metal e

álcool (200 mL). Esta solução foi adicionada lentamente ao béquer contendo o

TEOS pré- hidrolisado e mantida sob agitação, por 2 h, à temperatura ambiente.

Uma nova carga de água (0,95 mL) e ácido nítrico (8,20 mL) foram adicionadas sob

agitação, gota a gota, e mantida à temperatura ambiente por mais duas horas. A

solução resultante foi posta em uma capela de exaustão também à temperatura

ambiente, para evaporação lenta do solvente. O processo de gelatinização ocorreu

em quatro dias.

O material devidamente gelificado foi colocado numa placa de petri e o

processo de tratamento térmico seguiu por meio do aquecimento em uma estufa,

com temperatura controlada de 27°C a 80°C, a uma taxa de 2°C min-1,

permanecendo nesta temperatura por 6 horas. O material, depois de resfriado em

um dessecador, foi moído em um almofariz de ágata e peneirado (100 mesh). Em

seguida, o material foi lavado com água destilada até teste negativo de cloreto com

adição de nitrato de prata. O material, então, foi seco em estufa a 120°C, por 2h. Em

seguida, o material foi lavado com etanol através de um extrator soxhlet por 2 horas,

no intuito de remover as possíveis espécies fracamentes ligadas à superfície da

sílica. Subsequentemente, foi realizada a calcinação do material por 3h a 500°C

(taxa de 2°C min-1). Este catalisador será representado por ZrO2-SiO2 e a Figura 14

resume as etapas descritas acima.

Page 56: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

38

4.2.2.2 Rota de síntese 2 - Método sol-gel com modificação química do precursor

de zircônio com ácido fórmico.

O material foi preparado pelo método sol-gel, usando o ácido fórmico para

modificação química do precursor de zircônio, segundo Saha e Pramanik, (1993)

com modificação, mantendo-se a mesma razão Si/Zr usada no método descrito em

4.2.2.1. Inicialmente, preparou-se uma solução de oxicloreto de zircônia

octahidratado (ZrOCl2 . 8H2O – 9,5g em 100mL de água destilada), a qual foi

adicionada uma solução de hidróxido de amônio (aproximadamente 6 mL de

NH4OH), gota a gota, sob agitação, até alcançar pH 10, no qual ocorre a formação

do precipitado de hidróxido de zircônia (Zr(OH)2). Em seguida, esta solução foi

separada por filtração a vácuo. Logo após, o material foi lavado com água destilada

até teste negativo de cloreto com adição de nitrato de prata. O precipitado foi

dissolvido em solução aquosa de ácido fórmico (20 mL) em banho-maria a 100°C,

para obtenção de uma solução clara de formiato de zircônio. Esta solução foi então,

colocada em um banho-maria até a formação de um pó branco (formiato de

zircônia), como mostrado na Figura 15. Ao pó resultante (formiato de zircônia –

5,4898g) foi adicionada a solução aquosa de ácido fórmico (102,8 mL) e TEOS

(102,8 mL), permanecendo sob agitação vigorosa durante 30 minutos, até obtenção

de uma solução homogênea.

Figura 15 – Representação da formação do formiato de zircônia (CHANDRADASS,

HAN e BAE 2008) com modificações.

A formação do gel ocorreu após evaporação do solvente anterior em banho-

maria, a 50°C por 24 horas. O material gelificado foi seco em estufa a 120°C,

durante 2h, e, em seguida, foi macerado em um almofariz de ágata e peneirado (100

mesh). Este foi então, calcinado a 500°C durante 3 horas, em uma taxa de 2°C.min-

1. Este catalisador será representado por ZrO2-SiO2 - Fo e a Figura 16 resume as

etapas descritas acima.

Page 57: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

39

Figura 16 - Fluxograma da metodologia da rota de síntese 2.

4.2.2.3 Rota de síntese 3 - Método sol-gel com modificação química do precursor

de zircônio com ácido oxálico.

O material foi preparado pelo método sol-gel usando o ácido oxálico para

modificação química do precursor de zircônio, segundo Chandradass; Han e Bae

(2008), com modificação, mantendo-se a mesma razão Si/Zr, usada no método

descrito em 4.2.2.1. Inicialmente, foram preparadas uma solução 1M de oxicloreto de

zircônia octahidratado (ZrOCl2 . 8H2O – 9,5g em 30mL de água destilada) e uma 1M

de ácido oxálico dihidratado (C2H4O4 . 2H2O – 3,72g em 30 mL de água destilada),

em seguida, as duas soluções foram preparadas misturadas em béquer sob agitação

até a obtenção do oxalato de zircônia hidratado (material bastante viscoso e branco),

como na equação mostrada na Figura 17 Logo depois, adicionou-se TEOS (100,5

mL), ácido nítrico (0,6 mL) e água destilada (500 mL) e permaneceu assim por 30

min sob vigorosa agitação.

Page 58: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

40

Figura 17 - Representação da formação do oxalato de zircônia CHANDRADASS, HAN e

BAE, 2008).

Para obtenção do gel foi seguido o mesmo procedimento descrito no tópico

4.2.2.2. O material seco foi peneirado e lavado até teste negativo de cloreto com

nitrato de prata e, em seguida, foi seco em estufa por 2 horas, a 120°C. Por

conseguinte, o material foi colocado em um dessecador até atingir resfriamento em

temperatura ambiente. Para então, ser calcinado a 500°C, por 3 horas (taxa de 2°C

min-1). Este catalisador será representado por ZrO2-SiO2 - Ox e a Figura 18 resume

as etapas descritas acima.

Figura 18 - Fluxograma representativo da rota de síntese 3.

4.2.3 Modificação da superfície do catalisador ZrO2-SiO2 com MeTEOS

Como o objetivo de substituir parte dos grupos silanóis por grupos metila, na

superfície do catalisador ZrO2-SiO2, e avaliar a influência da modificação da

hidrofilicidade da superfície do mesmo, foi realizada uma síntese onde 50%

Page 59: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

41

(cinquenta por cento) do TEOS (53 mL) foi substituída por MeTEOS (53 mL),

seguindo assim o mesmo procedimento para rota de síntese 1 (tópico 4.2.2.1). Este

catalisador foi representado por ZrO2-SiO2 – Me e a Figura 19 resume as etapas

descritas acima.

Figura 19 - Fluxograma da síntese da modificação da superfície do catalisador

ZrO2-SiO2.

4.2.4 Sulfatação do catalisador ZrO2-SiO2.

A modificação da acidez do material através da sulfatação tem a finalidade de

gerar um maior número de sítios mais ácidos ao material e, consequentemente,

resultar em uma melhora significativa na atividade catalítica. No entanto, como

mostrado na seção 3.5.2, diversos relatos na literatura reportam a lixiviação dos

grupos sulfatos para o meio reacional. Diante disso, foram realizadas duas

metodologias para sulfatação do catalisador ZrO2-SiO2, de forma a aumentar a sua

força ácida e manter a estabilidade frente à lixiviação.

4.2.4.1 Método de impregnação.

Este catalisador foi sintetizado seguindo a metodologia de Salas et al. 1997. A

10g de ZrO2-SiO2 foi adicionado 40 mL de ácido sulfúrico (1mol.L-1), gota a gota,

sob agitação, a temperatura ambiente por 3 h. Em seguida, a solução foi filtrada e

Page 60: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

42

colocada para secar na estufa a 110°C, por 24h, logo depois este foi aquecido a

350°C, por 3h, a uma taxa de 2°C. min-1. Este catalisador será representado por

ZrO2-SiO2/ SO42- - imp. A Figura 20 descreve o procedimento acima.

Figura 20 - Fluxograma da sulfatação por impregnação.

4.2.4.2 Sulfatação in situ

A sulfatação in situ ocorreu no procedimento descrito no tópico 4.2.2.1,

onde na etapa da hidrólise e condensação adicionou-se certa quantidade de ácido

sulfúrico (4,1 mL), no lugar do ácido nítrico. Este catalisador foi representado por

ZrO2-SiO2/ SO42- - is. A Figura 21 resume as etapas desta metodologia.

Page 61: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

43

Figura 21 - Fluxograma da metodologia de sulfatação in situ.

4.3 Caracterização dos catalisadores

4.3.1 Difração de raios X – DRX

A difração de raio X (DRX) é o principal método usado para caracterização da

estrutura e composição química das fases do volume, pela difração de um feixe de

raio X em função do ângulo do raio incidente (SCHMAL, 2011).

O difratograma de raio X foi obtido em um difratômetro, marca Siemens,

modelo D5000, utilizando como fonte de radiação o CuKα. A região analisada foi de

2θ = 5 a 80°, em uma velocidade de 4°. s-1.

4.3.2. Adsorção-dessorção de N2 .

A análise de área superficial e porosidade, pela técnica BET, baseia-se nas

propriedades de adsorção física do gás nitrogênio sob a superfície de diversos tipos

de materiais. O estudo da área superficial é importante, pois determina a

acessibilidade dos sítios ativos e está frequentemente relacionada com a atividade

Page 62: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

44

catalítica e a porosidade, por permitir o controle dos fenômenos de transporte e

determinação da seletividade nas reações catalíticas.

As isotermas de adsorção-dessorção de nitrogênio foram obtidas a -196 °C,

usando um aparelho Micromeritics ASAP 2010. A amostra foi previamente tratada a

250 °C, sob fluxo de nitrogênio, por 17h. O diâmetro médio de poro bem como a

distribuição de tamanho de poros foram calculados a partir da isoterma de adsorção

de nitrogênio usando o método BJH (Barret Joyner Halenda) para sólidos

microporosos. A área específica foi calculada usando a equação BET na região de

baixa pressão (p/po = 0,200) e o volume de microporo usou o método t-plot.

4.3.3 Espectrometria na região do infravermelho por Transformada de Fourier –

FTIR.

A utilização da técnica de espectrometria na região infravermelho,

transformada de Fourrieir (FTIR), pode ser usada para identificar um composto ou

investigar a composição de uma amostra.

Os espectros foram obtidos com um espectrofotômetro, marca Shimadzu, com

faixa de 4000 a 400 cm-1 e uma resolução de 4 cm-1. As amostras foram preparadas

na forma de pastilha de KBr com uma proporção de 1% dos sólidos.

4.3.4 Análise Termogravimétrica – TG/DTA.

A análise termogravimétrica (TGA) é um método analítico, onde a variação de

massa da amostra é medida em relação ao tempo e/ou temperatura a partir de uma

atmosfera controlada. A realização desta análise propicia dados quantitativos

referentes à estabilidade térmica da amostra, dos compostos intermediários e

composição dos resíduos. Com os devidos dados, é possível obter informações

para caracterizar processo de decomposição, oxidação e redução dos componentes

da amostra (processos que induzem a perda ou ganho de massa em função da

temperatura) (IONASHIRO, 2004)

Page 63: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

45

As análises de TG-DTA foram conduzidas em equipamento da Schimadzu

DTG - 60/60H. As amostras dos sólidos foram aquecidas à taxa de 40°C.min-1 da

temperatura ambiente, até 700 - 900°C, em fluxo de nitrogênio a 50 mL min-1,

empregando panelinha de alumina.

4.3.5 Dessorção Termoprogramada de Amônia – TPD-NH3.

Esta técnica mede a velocidade de dessorção de moléculas adsorvidas em

função da temperatura e permite o estudo de vários estados de adsorção, energia

de ligação, concentrações superficiais e cinética de dessorção (SCHMAL, 2011).

Os perfis de dessorção termoprogramada de amônia (TPD-NH3) foram obtidos

através do equipamento Micromeritics Chemsorb 2720. As amostras foram pré-

tratadas a 300°C, por 1 hora, sob vazão de hélio a 25 mL.min-1 e em seguida

resfriadas até a temperatura ambiente, com o objetivo de remover qualquer espécie

fisissorvida na superfície da amostra. Após o pré-tratamento, foi feita a etapa de

quimissorção passando pela amostra uma vazão de 25 mL.min-1 de amônia em hélio

(9,9%, mol/mol), à temperatura ambiente, por 30 minutos. Após a quimissorção, o

sistema foi purgado com hélio à temperatura ambiente, por 30 min. A fim de eliminar

as moléculas de amônia fisissorvidas, o material sofreu um tratamento a 150°C, por

30 minutos, sob vazão de hélio (25 mL.min-1) e depois foi resfriado até a temperatura

ambiente. Após esta etapa, deu-se início a análise de dessorção termoprogramada,

na qual a amostra foi aquecida da temperatura ambiente até 1000 °C, numa taxa de

10°C.min-1, sob vazão de hélio (25 mL.min-1). A quantidade de amônia dessorvida foi

monitorada por um detector de condutividade térmica.

4.3.6 Teste de acidez.

O teste de acidez do catalisador foi conduzido segundo BRUM et. al (2011).

Este método consiste na determinação por titulação do número de sítios ácidos de

Brönsted. Em resumo, 100 mg do material foram deixados em contato com 20 mL de

Page 64: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

46

NaOH 0,1 mol L-1, por 3 h, sob leve agitação. Após esse período, foram retiradas

alíquotas da solução básica que foram tituladas com HCl 0,1 mol L-1, para se

verificar a quantidade de NaOH, que reagiu com o material. A acidez foi determinada

em mmol de H+, por cada grama de material.

4.4 Avaliação catalítica

4.4.1 Reagentes

Ácido oléico (C18H34O2) Sigma Aldrich – 99%

Álcool metílico (CH3OH) Vetec 99,8%

Hidróxido de potássio (KOH) Vetec 99 %

Álcool isopropílico (C3H7OH) Vetec 99 %

Tolueno (C6H5CH3) Sigma Aldrich > 99%

Todos os reagentes são de grau analítico e foram utilizados como

comercializados.

4.4.2 Esterificação do ácido oléico com metanol.

A atividade catalítica dos materiais foi avaliada frente à reação de

esterificação do ácido oléico (molécula modelo) com metanol, em um reator Parr de

300 mL, tendo como condições reacionais a razão molar ácido/álcool, com a

proporção 6:1, utilizando 3% do catalisador em relação à massa de ácido oléico,

temperatura de 120°C durante 3h. Antes de iniciar a reação o catalisador foi seco a

110°C por 3h.

O monitoramento da reação foi feito através da determinação da acidez

segundo o método ABNT NBR 14448 (titulação potenciométrica), em um titulador

automático (Titrino 798 MPT). As alíquotas retiradas em determinados tempos de

reação foram filtradas para retirada do catalisador, lavadas e secas. Em seguida,

Page 65: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

47

pesou-se 2,5 g da amostra em um erlenmeyer (125 mL), depois foi adicionado 250

mL do solvente (álcool isopropílico/ tolueno na propoção 1:1), o que titulou com a

solução de KOH (0,1 mol. L-1). As titulações foram feitas em triplicata. Para

comparação, realizou-se a titulação do branco sem a massa da amostra, dando

sequência ao procedimento acima descrito. O cálculo do número de acidez baseou-

se na Equação 3.

(Eq 3)

Onde:

A é o volume (mL), de solução alcoólica de KOH

B é o volume (mL) de KOH correspondente a A para a titulação do branco.

M é a concentração (mol. L-1) da solução alcoólica de KOH.

W é a massa da amostra (g).

A conversão em éster foi calculada com base na redução da acidez

determinada, demonstrada na equação 4. Como controle, foi realizado um branco da

reação de esterificação sem catalisador.

O cálculo da conversão do ácido oléico baseou-se na Equação 4:

(Eq4)

4.4.3. Avaliação da estabilidade do catalisador frente a lixiviação das espécies

ativas.

Para verificar a ocorrência ou não de lixiviação do metal para o meio

reacional, adotou-se uma metodologia segundo Cruz (2001), assim, foi preparada

uma reação padrão nas mesmas condições reacionais citadas no tópico 4.2.2. Após

30 min, filtrou-se à quente, para a retirada do catalisador e à porção filtrada foi

adicionada uma nova porção de ácido/álcool. Em seguida, foi colocado sob

Page 66: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

48

condições reacionais já citadas por mais 2,5h e a cada 30 min foram retiradas

alíquotas para análise da acidez.

Em paralelo foi feita uma reação padrão, com retirada de alíquotas para

comparação com a lixiviação e composição da curva cinética dos materiais.

4.4.4 Teste de Reutilização.

As reações seguiram as condições descritas no item 4.4.2, e após um ciclo

reacional de 3h, foi efetuada a filtração do catalisador seguida de lavagem com

metanol. O catalisador foi, então, seco em estufa a 120°C, por 1h, pesado e

reutilizado em nova reação, mantendo-se sempre as mesmas condições reacionais

descritas na seção 4.4.2. Tal procedimento repetiu-se até completar cinco ciclos

reacionais.

Page 67: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

49

5 RESULTADOS E DISCUSSÃO

5.1. Seleção de catalisadores.

A seleção dos catalisadores sintetizados neste trabalho baseou-se em

resultados preliminares, onde foram conduzidas reações de esterificação do ácido

oléico em rota metílica com diferentes óxidos mistos, usando as mesmas condições

expostas no tópico 4.4.2.. Inicialmente, os óxidos mistos SnO2-SiO2 e ZrO2-SiO2

foram escolhidos com base na avaliação da conversão em éster e do teste de

lixiviação das espécies ativas para o meio reacional (tópico 4.4.3), mostrados na

Tabela 5.

Tabela 5 - Conversões em ésteres e teste de lixiviação usando os catalisadores sintetizados e comercial.

Catalisador Conversãoa

(± 3,7%)

Intervalo de Confiança dos

resultados analíticos (±)b

Método de síntese

Teste de lixiviaçãoc

SnO2 14,7 - Comercial - ZrO2 16,0 - Comercial -

SnO2-SiO2 d 33,0 3,60 Sol-gel Negativo

ZrO2-SiO2d 43,4 2,16 Sol-gel Negativo

ZrO2-SnO2d 35,7 2,03 Co-precipitação Positivo

ZrO2-Al2O3d 38,0 3,16 Co-precipitação Positivo

SnO2-SiO2 e 30,0 3,60 Sol-gel Negativo

ZrO2-SiO2e 40,8 2,16 Sol-gel Negativo

ZrO2-SnO2e 18,7 2,03 Co-precipitação Negativo

ZrO2-Al2O3e 19,0 3,16 Co-precipitação Negativo

aCondições reacionais: Razão metanol:ácido oléico (6:1), 3% de catalisador, 120°C por 3h.

bIntervalo

de confiança analítico para análise de acidez. cApós 30 minutos de reação o catalisador é filtrado a

quente. dCatalisadores sem etapa de pré-lixiviação.

eCatalisadores com etapa de pré-lixiviação.

Os resultados da conversão de ácido oléico em ésteres metílicos, expostos na

Tabela 5, foram determinados através dos valores de acidez obtidos por titulação,

em triplicata. É importante salientar, que devido à esterificação ser uma reação

autocatalisada, uma vez que os ácidos graxos são ácidos de Brönsted - Lowry

Page 68: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

50

fracos, a reação sem catalisador (branco) foi conduzida e os resultados

apresentados levaram em conta as conversões apresentadas nesta reação.

Cabe ressaltar que, o material em negrito foi escolhido devido ao melhor

resultado alcançado em conversão em éster, assim como na estabilidade.

A eficiência da pré-lixiviação foi comprovada em nosso grupo de pesquisa

segundo trabalhos de Cruz (2001), que sintetizou o Cr2O3-SiO2 pelo método sol-gel,

com catálise ácida e aplicou na reação de oxidação do cicloexano. Deste modo,

chegando à conclusão de que o sólido não apresentou contribuição da catálise

homogênea, mesmo sendo realizada a pré-lixiviação do material em soxhlet com

acetonitrila e posterior aplicação na reação de oxidação do cicloexano.

O trabalho de Costa et al. (2012) descreveu a síntese do catalisador ZrO2-

SnO2 pelo método de coprecipitação, com razão de metal 90:10 e avaliação da

atividade catalítica na reação de esterificação. Os autores concluíram que o material

sem etapa de pré-lixiviação apresentava contribuição da catálise homogênea. Ao

realizar a pré-lixiviação do catalisador observaram que este não mais lixiviava,

embora, apresentasse um decréscimo bastante significativo na conversão em

ésteres metílicos. Esse comportamento foi similar aos materiais preparados por

coprecipitação sintetizado neste trabalho, como mostrado na Tabela 5.

A reação com o catalisador SnO2-SiO2 foi realizada em triplicata para estimar

a incerteza devido as variáveis: velocidade de agitação, temperatura de reação,

razão molar ácido oléico/metanol e quantidade de catalisadores. Estas sofrem

flutuações dentro de limites em acordo com os instrumentos empregados e, por sua

vez, afetam igualmente os experimentos de avaliação catalítica. Este teste de

reprodutibilidade resultou em um intervalo de confiança de 3,7%, ao nível de

confiança de 95%, para a conversão em éster.

A estabilidade frente à lixiviação das espécies ativas para o meio reacional é

um dos principais desafios na área da catálise heterogênea, principalmente em fase

líquida. Considerando-se que possa ocorrer a contribuição da catálise homogênea, a

possibilidade de contaminação por impurezas no meio reacional e à rápida

desativação do catalisador são fatos importantes, que muitas vezes não são levados

Page 69: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

51

em consideração nas publicações sobre o tema (SHELDON et al. 1998; DI SERIO et

al. 2010).

Diante do exposto, o principal critério para seleção dos catalisadores (Tabela

5) foi o comportamento frente à lixiviação, uma vez que as conversões em éster para

todos os materiais testados apresentam-se na faixa de 33,0 a 40,8%, valores

considerados relativamente baixos para aplicações industriais.

Esta premissa conduziu a escolha dos materiais sintetizados pelo método sol-

gel (SnO2-SiO2 e ZrO2-SiO2). Este método conta com a vantagem de produzir

materiais mais homogêneos e a possibilidade de controle das variáveis em todas as

suas etapas de produção. Por outro lado, catalisadores sintetizados pelo método de

coprecipitação produzem uma distribuição composicional não homogênea, devido às

diferenças na solubilidade dos íons metálicos, o que pode propiciar a lixiviação de

espécies ativas (JONG, 2009).

Diante desta premissa, os óxidos mistos SnO2-SiO2 e ZrO2-SiO2, preparados

pelo método sol-gel, foram selecionados para a continuidade dos trabalhos. Convém

ressaltar que, estes resultados de estabilidade frente à lixiviação das espécies ativas

– quando comparados aos métodos usados na preparação dos materiais sol-gel e

coprecipitação – comprovam a melhor interação entre as espécies durante as fases

de hidrólise e condensação experimentadas no processo.

Dentre os catalisadores selecionados, SnO2-SiO2 e ZrO2-SiO2, as diferenças

nas conversões em ésteres, apresentadas na Tabela 5, podem ser atribuídas à

natureza dos óxidos de estanho e zircônio bem como à natureza dos precursores e

das condições usadas na síntese sol-gel, o que influencia significamente nas

propriedades estruturais, texturais e propriedades ácido-base dos catalisadores

(SARAVANAN, TYAGI e BAJAJ, 2012).

Ao comparar os tamanhos dos raios iônicos dos metais mostrados na Tabela

6 podemos concluir que não há possibilidade de uma substituição isomórfica efetiva

dos metais (Sn e Zr) na rede da sílica para os sistemas estudados. Pode-se ainda

inferir que os íons zircônio, por apresentarem um raio iônico maior, ao tentar

substituir os íons silício, na rede, acabem provocando possivelmente uma maior

deformação na estrutura, causando consequentemente um maior número de

Page 70: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

52

defeitos. Esta reação contribui para que os íons zircônio fiquem mais expostos ao

meio reacional, tornando mais efetiva as interações entre os sítios ácidos do

catalisador com o oxigênio da carbonila do ácido oléico (BORGES e DÍAZ, 2012;

SARAVANAN, TYAGI e BAJAJ, 2012). Convém ressaltar que, apesar desta

diferença entre os raios iônicos dos metais e do silício, os resultados de lixiviação

mostraram que estes óxidos estão intimamente dispersos na matriz da sílica,

sugerindo que houve efetivamente a formação das ligações do tipo M-O-Si (onde M

= Zr e Sn).

Tabela 6 - Propriedades atômicas dos elementos, Si, Sn e Zr (GREENWOOD e EARNSHAW, 1995).

Propriedades Si Sn Zr

Número atômico 14 50 40

Configuração eletrônica

[Ne] 3s2 3p2 [Kr] 4d10 5s2 5p2 [Kr] 4d2 5s2

Raio iônico (IV) 40 69 72

Eletronegatividade de Pauling

1,90 1,96 1,33

Adicionalmente, a maior diferença de eletronegatividade de Pauling do íon

zircônio em relação ao íon silício, quando comparado com o íon estanho, também

favorece uma distribuição de carga parcial maior para o íon zircônio. Aumentando,

assim, suas propriedades ácidas, como pode ser evidenciado pelas baixas

conversões dos óxidos puros mostrados na Tabela 5.

Os resultados dos experimentos realizados para avaliar a estabilidade frente à

lixiviação, utilizando os catalisadores SnO2/SiO2 e ZrO2/SiO2, estão representados

nas Figuras 22 e 23 respectivamente, e demonstram que após a retirada do

catalisador a reação cessa, sugerindo que não houve migração da fase ativa para o

meio reacional. Tal comportamento pode ser atribuído ao método de síntese

utilizado, que favorece a formação de óxidos mistos estáveis e com distribuição

homogênea dos metais na rede da sílica (CARDOSO et al. 2004; SHISHIDO,

TANAKA e HATTORI, 1997).

Page 71: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

53

Tempo (min)

0 20 40 60 80 100 120 140 160 180 200

Convers

ão e

m é

ste

r m

etílic

o (

%)

0

10

20

30

40

50

60

Reação Padrão com catalisador

Reação com retirada do catalisador após 30min

Branco

Figura 22 - Teste de lixiviação com o catalisador SnO2/SiO2. Condições reacionais: razão

metanol/ácido oléico 6:1, 3%m/m de SnO2-SiO2, 3h , 120 °C.

Tempo (min.)

0 20 40 60 80 100 120 140 160 180 200

Co

nvers

ão

em

éste

r m

etílic

o (

%)

0

20

40

60

80

Reação Padrão com catalisador

Reação com retirada do catalisador após 30 min.

Branco

Figura 23 - Teste de lixiviação com o catalisador ZrO2/SiO2. Condições reacionais: razão

metanol/ácido oléico 6:1, 3%m/m de ZrO2-SiO2, 3h , 120 °C.

Vale ressaltar que, a extração soxhlet realizada durante a preparação dos

catalisadores favorece a pré-lixiviação de possíveis espécies ativas, que

provavelmente estão mais fracamente ligadas à rede da sílica, aumentando assim a

estabilidade do catalisador com relação à lixiviação dessas espécies. Esta etapa foi

introduzida no método de síntese após a avaliação dos resultados preliminares,

Page 72: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

54

mostrados na Tabela 5, e da realização do teste de reutilização do catalisador,

conforme o procedimento descrito na seção 4.4.4, onde o material sem extração em

soxhlet com etanol apresentou uma queda de aproximadamente 15% na conversão

entre o 1º e o 2º ciclos de reação. O pré-lixiviado obteve queda na mesma

magnitude do erro experimental.

Como o catalisador ZrO2-SiO2 apresentou uma maior conversão em ésteres

comparando-o ao SnO2-SiO2 os estudos prosseguiram apenas com este sólido.

5.2 Síntese dos sólidos ZrO2/SiO2.

Os sólidos foram sintetizados pelo PSG, visto que este é um método

relativamente simples para síntese de óxidos mistos (MxOy/SiO2), pois possibilita

uma alta homogeneidade do metal na superfície da matriz, maior controle no

tamanho das partículas e maior pureza (HARGREAVES e JACKSON, 2009).

Considerando-se a rota de síntese 1, o TEOS foi escolhido como precursor

por apresentar baixa taxa de hidrólise (Kh = 5 x 10-9 M-1s-1), o que proporciona alta

homogeneidade para óxidos mistos (CRUZ, 2001). O solvente utilizado foi o álcool

etílico. Ele evita a separação das fases líquido-líquido durante a etapa inicial da

hidrólise, para manter as concentrações de água e silicatos, influenciam na

velocidade de reação, na etapa de gelatinização. Além disso, a utilização do etanol

auxilia no processo de secagem por apresentar alta pressão de vapor. O processo

de secagem por evaporação lenta do etanol bem como o tratamento térmico usando

baixas taxas de aquecimento levou a formação de um xerogel (CARDOSO, 2005;

CANEVARI, 2008).

A rota de síntese 1 foi catalisada por um ácido nítrico (HNO3) tendo como

razão molar (HNO3:TEOS – 1,2 x 10-4) a fim de alcançar um sistema polimérico

pouco ramificado e linear. A hidrólise ácida se processou inicialmente como a etapa

de pré – hidrólise do precursor menos hidrolisável para garantir um controle

adequado do número de sítios hidrolisados de TEOS, favorecendo, assim, a

Page 73: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

55

condensação em cadeias poliméricas lineares e a alta homogeneidade dos óxidos

de ZrO2/SiO2. Visto que os alcóxidos de silício apresentam reatividades menores

que a dos precursores de metal de transições. (CARDOSO, 2005).

Os reagentes ácido fórmico e ácido oxálico utilizados nas rotas de síntese 2 e

3, respectivamente, foram utilizados a fim de realizar uma modificação química do

oxicloreto de zircônia, dando origem a novas espécies moleculares de diferentes

reatividade, estrutura e funcionalidade (Eq 1 e 2). Isto possibilita um maior controle

químico das reações de hidrólise e condensação com o TEOS, resultando de forma

equivalente a pré-hidrólise do TEOS, em uma maior homogeneidade em nível

molecular dos óxidos mistos. Isto se deve ao caráter nucleofílico do ligante ácido

carboxílico (SCHMIDT, 1988; LIVAGE e SANCHEZ, 1992).

Nas rotas de síntese 2 e 3, água foi usada como solvente em substituição ao

etanol, como evidenciado pela razão H2O/TEOS = 63,3. Modo este diferente do

apresentado na rota de síntese 1, em que a água aproxima-se da razão

estequiométrica. Esta razão leva a uma diluição do meio e, portanto, a um aumento

do tempo de processamento. Para evitar isto, nestas rotas a gelatinização foi

conduzida a 50ºC sob agitação constante levando a um menor tempo de

gelatinização (24h), quando comparado à rota de síntese 1 (96h).

A evaporação do etanol e da água, em condições ambientais na etapa de

hidrólise/condensação para os materiais sintetizados pela rota 1, favoreceu um

maior tamanho de diâmetro médio de poro. Em contraponto, o aquecimento (50°C)

sob agitação para os materiais sintetizados, pela rota 2 e 3, resultou em materiais

com menor diâmetro médio de poro, devido ao stress gerado com a maior

velocidade de expulsão de solventes dos poros. Estes dados estão mostrados na

Tabela 7 e serão discutidos com mais detalhes na seção 5.5.2., por meio da

caracterização de adsorção-dessorção de N2.

Page 74: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

56

5.3 Modificação da superfície do ZrO2/SiO2 .

Ao modificar a superfície do catalisador, substituído 50% do TEOS por

MeTEOS durante o PSG (seção 4.1.4), foi produzido um material com menor caráter

hidrofílico a partir da troca dos grupos silanóis (Si-OH) por grupos metila (-CH3),

como representado na Figura 24.

Figura 24 - Esquema da modificação da superfície da sílica.

Catalisadores heterogêneos com caráter ácido e hidrofóbicos são desejáveis

para as reações de esterificação, pois apresentam uma redução na interação com a

água, um dos produtos da reação de esterificação, devido à redução da polaridade

nos poros, uma vez que a água possui uma constante dielétrica (80 a 20ºC) maior

que a do metanol (33 a 20ºC) e do ácido oléico (2,5 a 20ºC), portanto terá mais

afinidade pelos sítios ativos, contribuindo assim com a desativação do catalisador.

5.4 Influência da força ácida do catalisador ZrO2/SiO2 na atividade catalítica.

A sulfatação do material ZrO2/SiO2 foi realizada com o objetivo de aumentar a

força ácida, com vistas à obter um material com acidez mais adequada para a

Page 75: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

57

reação de interesse. Esta foi realizada através do estudo comparativo entre dois

métodos utilizando o ácido sulfúrico como fonte de sulfato (ARATA et al. 1996).

No primeiro método, descrito na seção 4.2.4.1., ao impregnar o catalisador

ZrO2/SiO2 com ácido sulfúrico ele foi transformado em um, sólido onde o grupo

sulfato localiza-se, predominantemente, na superfície do material (Figura 25).

Figura 25 - Representação esquemática do catalisador ZrO2/SiO2 sulfatado

(LI et al. 2010).

No segundo método, descrito na seção 4.2.4.2, estudou-se a sulfatação in situ

do material no PSG, onde o ácido sulfúrico foi adicionado na etapa sol. Com isso,

espera-se a formação de grupos sulfatos mais fortemente ligados na rede

comparada ao método de impregnação. Isso pode ser explicado pelo fato do

zircônio, em condições ácidas, existir predominantemente na forma catiônica Zr4+ do

que aos correspondentes poli-oxo. No entanto, como íons sulfatos possuem elevada

capacidade de complexação e formação de rede estes se combinam com o zircônio

(Zr4+) formando espécies do tipo [Zr(OH)2(SO42-)x (H2O)y]n

n(2-2x) , os quais podem

interagir fortemente com o silicato em solução, que são negativamente carregados

sob a condição de síntese utilizadas. Conclui-se, então, que, diferentemente do

exposto na Figura 28, o método de sulfatação in situ possibilitará uma melhor

distribuição da zircônia sulfatada, entre a superfície e a rede do material (CHEN; JU

e MOU, 2007).

Page 76: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

58

Para confirmar as hipóteses levantadas nesta seção, serão discutidas as

técnicas de caracterização com o objetivo de verificar as diferentes condições de

síntese escolhidas. Averiguando a possibilidade delas, realmente, favorecerem a

formação dos óxidos mistos com grande homogeneidade de zircônio na matriz de

sílica, além de estreita distribuição de poros.

5.5. Caracterização das propriedades texturais e estruturais dos

catalisadores.

5.5.1 Difração de raios X.

A Figura 26 mostra os difratogramas de raios X dos materiais ZrO2-SiO2,

ZrO2-SiO2-Me, ZrO2-SiO2- SO42-,ZrO2-SiO2-Ox, ZrO2-SiO2- Fo, preparados pelo

método sol-gel.

Ao analisar os difratogramas, observa-se que todos os catalisadores

mostraram apenas picos largos que variam de 15° a 30°, os quais são atribuídos a

SiO2 no estado amorfo. Isto indicou que os métodos de sínteses utilizados

favoreceram a uma alta dispersão do ZrO2 na matriz da sílica amorfa baseado em

estudos na literatura (ZHANG et al. 2011; ZHANG et al. 2010 e TYAGI et al. 2010 ),

sugerindo uma alta homogeneidade dos óxidos mistos.

Page 77: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

59

Figura 26 – Difratogramas de raios-X das amostras ZrO2-SiO2, ZrO2-SiO2-Me,

ZrO2-SiO2- SO42--is, ZrO2-SiO2 – Fo; ZrO2-SiO2 - Ox.

Andrianainarivelo et al. (1996) e Zhang et al. (2011) prepararam uma série de

óxidos mistos ZrO2-SiO2, com diferentes proporções dos óxidos e temperaturas de

calcinação, e verificaram por investigação do difratogramas de raios X que a

cristalização do dióxido de zircônio, nestes óxidos mistos, é retardada para maiores

temperaturas. A explicação para tanto é que a baixa expansividade da matriz de

sílica dificulta o crescimento das partículas do ZrO2. Estes autores atribuem o

retardo na cristalização, bem como na transformação de fases do ZrO2, à grande

homogeneidade em escala molecular desses óxidos mistos.

Cabe ressaltar que, o material modificado quimicamente com ácido oxálico

apresentou pequenos picos a 50° e 60°C, característico de ZrO2 na fase tetragonal,

como descrevem Chandradass, Han e Bae, 2008.

5.5.2. Adsorção-dessorção de N2.

A caracterização textural dos sólidos foi avaliada a partir das isotermas de

adsorção-dessorção de N2 a -196,15ºC e revelou texturas diferentes entre sólidos.

Page 78: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

60

As Figuras 27 e 28 mostram, respectivamente, as isotermas de adsorção-dessorção

de N2 e as curvas de distribuição de volumes de poros para materiais sintetizados. A

Tabela 7 resume os valores de área específica, diâmetro médio de poro, volume

microporo e volume total de poros obtidos a partir das isotermas.

Tabela 7 - Área específica, diâmetro e volume médio e volume total de poros dos

materiais sintetizados.

Material

Área específica BET (m2g-1)

Diâmetro médio de poro

BJH (nm)

Volume de microporo t-plot

(cm3g-1)

Volume total de poros (cm3g-1)

ZrO2-SiO2 1742 3,3 0,77 1,40 ZrO2-SiO2-Me 1181 3,7 0,39 0,96 ZrO2SiO2-SO4

2--is 1639 3,5 0,84 1,46 ZrO2-SiO2-Ox 1196 2,6 0,63 0,77 ZrO2-SiO2- Fo 877 2,0 0,45 0,46

Os materiais ZrO2-SiO2, ZrO2-SiO2-Me, ZrO2SiO2-SO42-- is e ZrO2-SiO2-Ox

apresentaram isotermas tipo IV com a combinação das histereses tipo (H2 e H3),

indicando a presença tanto de microporos quanto de mesoporos. Já o material ZrO2-

SiO2-Fo apresenta uma isoterma do tipo 1, típica de materiais microporosos com

uma pequena histerese provavelmente atribuída a forma cilíndrica e estreita dos

poros (AVENDANÕ et al. 2009; LI et al. 2009). O volume total de poros e o volume

de microporos calculados pelo método t-plot confirmam estas observações. Nota-se

que os materiais onde a hidrólise-condensação e gelificação foram conduzidas a

50ºC sob agitação apresentaram maior quantidade de microporos (82 - 100%),

provavelmente devido a mais rápida expulsão do solvente.

Os valores de área específica apresentados pelos materiais sintetizados

neste trabalho são muito grandes, em comparação com outros trabalhos da literatura

que preparam óxidos mistos ZrO2-SiO2 pelo método sol-gel (AVENDANÕ et al.

2009; TYAGI et al. 2010).

Page 79: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

61

Figura 27 – Isotermas de adsorção-dessorção de N2 dos catalisadores ZrO2-SiO2,

ZrO2-SiO2 Me, ZrO2-SiO2- SO42--is, ZrO2-SiO2-Fo, ZrO2-SiO2-Ox,.

Page 80: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

62

Figura 28 – Curvas de distribuição de diâmetro de poro para os catalisadores ZrO2-SiO2,

ZrO2-SiO2-Me, ZrO2SiO2-SO42- is, ZrO2-SiO2-Ox, ZrO2-SiO2-Fo.

Page 81: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

63

As curvas de distribuição de diâmetro de poros, apresentadas na Figura 28

bem como os dados da Tabela 7, mostram que todos os materiais sintetizados

exibiram uma curva monomodal estreita, com diâmetros médios de poros na faixa de

2,0 – 3,7 nm, característicos de sólidos mesoporosos. (LEOFANTI et al. 1998;

AVENDAÑO et al. 2009).

O catalisador, ZrO2-SiO2- Fo apresenta características claras de um material

microporoso, embora, este material de acordo com a IUPAC é típico de material

mesoporoso por apresentar o diâmetro médio de poros de 2,0 nm. No entanto,

devido a equivalência nos valores do volume total de poros e volume de microporos

(0,46 e 0,45 cm3.g-1 respectivamente) mostrados na Tabela 7 além do fato

apresentar uma isoterma Tipo I este material pode ser considerado

predominantemente microporoso.

A substituição parcial de grupos hidroxila -OH por metila -CH3, no material

ZrO2-SiO2, favoreceu um aumento no diâmetro de poro, isto pode ser atribuido à

diminuição da interação das ligações de hidrogênio entre a água e os grupos -OH

nas paredes internas dos poros do material, favorecendo, assim, uma redução das

tensões internas durante o processo de secagem (SCHMIDT, 1988).

A inserção de grupos sulfatos para os materiais ZrO2SiO2-SO42--is resultou em

uma diminuição na área específica, além do aumento do diâmetro médio de poro

(Tabela 7). A presença dos íons sulfatos dentro dos microporos bloqueia

parcialmente os poros, tornando-os inacessíveis para as moléculas de N2 com

consequente influência na medida da área O e aumento do diâmetro de poro. Este

processo pode estar relacionado com a presença de íons sulfato nas paredes dos

microporos, acredita-se que a confirmação de tal possibilidade resultaria, ainda, em

tensão e ruptura, com aumento do volume de microporos e do diâmetro de poros

(TYAGI et al. 2010).

Os valores de área específica apresentados pelos materiais sintetizados

neste trabalho são muito grandes em comparação com outros trabalhos da literatura,

que preparam óxidos mistos ZrO2-SiO2 pelo método sol-gel (AVENDAÑO et al.

2009; TYAGI et al. 2010).

Page 82: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

64

5.5.3. Espectroscopia na região do infravermelho.

A Figura 29 mostra os espectros na região do infravermelho obtidos para as

amostras ZrO2-SiO2, ZrO2-SiO2-Me, ZrO2-SiO2- SO42-- is, ZrO2-SiO2-Ox, ZrO2-SiO2-

Fo e ZrO2-SiO2- SO42-imp.

Figura 29 – Espectros na região do infravermelho para as amostras ZrO2-SiO2, ZrO2-SiO2-Me, ZrO2-SiO2- SO4

2-is, ZrO2-SiO2-Ox, ZrO2-SiO2- Fo e ZrO2-SiO2- SO42-imp.

De acordo com os espectros na região do infravermelho, mostrados na Figura

29, podemos inferir as seguintes observações:

Características comuns a todos os catalisadores:

i. A banda em 1630 cm-1 corresponde à deformação angular da ligação de

H-O-H da água fississorvida (CHANDRADASS, HAN e BAE, 2008; TYAGI

et al. 2010; JIMENÉZ-MORALES et al. 2012);

Page 83: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

65

ii. A banda 1100 cm-1 com um ombro a ~ 1220 cm-1 está relacionada ao

estiramento assimétrico Si-O-Si e vibrações de estiramento da ligação Si-

O, para sílica pura, respectivamente. Em todos os materiais sintetizados

neste trabalho esta banda foi deslocada para menores números de onda.

Este deslocamento para número de ondas menores, tem sido atribuído à

introdução de óxidos metálicos, tal como ZrO2, na matriz sílica devido a

formação de ligações do tipo Si-O-M (CHANDRADASS, HAN e BAE,

2008);

iii. A banda a 960 cm-1 é atribuída ao estiramento Si-OH de grupos silanóis

terminais na sílica pura. Quando deslocadas para números de onda

menores, (946 cm-1) como apresentado para estes materiais, geralmente, é

usado como indicativo da formação de ligações do tipo Si-O-Si e Si-O-M

(CHEN, JU e MOU, 2007; ZHANG et al. 2011);

iv. O deslocamento da banda a 800 cm-1 confirma que o zircônio foi

incorporado na rede, característica da ligação Si-O-M, através da formação

da ligação Zr-O-Si;

v. A banda a 460 cm-1 é atribuída ao estiramento da ligação Si-O-Si (SAHA e

PRAMANIK, 2003);

vi. Por se tratar de um material amorfo, como ficou demonstrado através do

DRX, não foi encontrado as bandas a 574 e 732 cm-1atribuídas à fase

monoclínica da zircônia. Assim como a banda a 480 cm-1, característica da

zircônia tetragonal (SAHA e PRAMANIK, 2003);

Para o catalisador ZrO2-SiO2-Me:

i. Esperava-se uma banda característica da ligação Si-C em 1276 cm-1 para

o catalisador ZrO2-SiO2-Me, no entanto, esta não foi verificada. A não

aparição do material esperado, provavelmente, deve-se a pouca

quantidade de MeTEOS, utilizado no processo de síntese. Este fato pode

Page 84: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

66

ser confirmado ao comparar com os espectros obtidos por Cruz (2001),

que utilizou uma proporção 4:1 de MeTEOS/TEOS.

Para os catalisadores ZrO2-SiO2-Ox e ZrO2-SiO2-Fo:

i. A inexistência das bandas 760 e 650 cm-1 característica de formato e

oxalato de zircônia, nestes catalisadores, confirmam a eficiência da

calcinação do material (SAHA e PRAMANIK,2003; CHANDRADASS, HAN

e BAE, 2008).

Para os catalisadores ZrO2-SiO2/SO42--is e ZrO2-SiO2/SO4

2--imp

respectivamente:

i. Neste trabalho, a não visualização das bandas a 1132 cm-1 e 1225 cm-1, que

são típicos de íons sulfatos coordenados a cátion de zircônio (GARCIA,

2008), pode ser atribuída à sobreposição dessas bandas com as bandas

características de sílica.

Os resultados até o momento confirmam que os materiais sintetizados

apresentam uma alta homogeneidade.

5.5.4. Análise Termogravimétrica.

Na Figura 30, são mostrados os resultados da análise termogravimétrica

(TGA) dos materiais obtidos.

Page 85: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

67

Figura 30 - TGA das amostras ZrO2-SiO2, ZrO2-SiO2-Me, ZrO2-SiO2-SO42-- is, ZrO2-SiO2-Ox,

ZrO2-SiO2- Fo.

Page 86: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

68

A análise das curvas termogravimétricas dos materiais mostra perda de

massa na faixa de 100 a 200 °C, atribuída à eliminação de água e impurezas

presente no catalisador. Contudo, os catalisadores ZrO2-SiO2-Ox e ZrO2-SiO2- Fo

apresentam outra perda de massa na faixa de 200-400 °C, que ocorre devido à

decomposição do oxalato e do formato, confirmando mais uma vez que a calcinação

desses materiais foi efetiva. Observa-se uma queda quase constante em todas as

curvas térmicas, que pode ser atribuída à eliminação de impurezas, alcóxidos e

solventes que não reagiram. Acima de 700°C a perda de massa está relacionada à

desidroxilação da superfície (CHANDRADASS, HAN e BAE, 2008).

Podemos notar claramente que a perda de água atribuída ao catalisador

metilado (ZrO2-SiO2-Me) é menor quando comparada com os outros materiais,

comportamento que está de acordo com o caráter menos hidrofílico esperado para

esta amostra.

Os resultados de TGA foram confirmados pelas curvas de DTA representadas

na Figura 30.

Os catalisadores apresentam picos endotérmicos de 100 a 200°C, que

correspondem à perda de água, devido a solventes retidos nos sólidos. A amostra

metilada apresenta um pico exotérmico largo centrado em 596 a 793 °C, o qual deve

ser resultante das contribuições dos alcóxidos não reagidos e das quebras de

ligações de Si-C. Foi através dessa informação que a temperatura de calcinação

desses materiais foi definida, pois, acima de 500°C ocorreria a decomposição dos

grupos metilados, não sendo interessante para reação (CRUZ, 2001).

De acordo com Brum et al. 2011, materiais sulfatados tendem a decompor as

espécies SO4 a SO3 a partir de 531 até 1100°C. A teoria comprova mais uma vez

que a temperatura de calcinação utilizada, nesses materiais, foi satisfatória.

Page 87: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

69

5.5.5 Dessorção Termoprogramada de amônia – TPD-NH3

Para os catalisadores ZrO2-SiO2 e ZrO2-SiO2-SO42--is, a análise de dessorção

termoprogramada de amônia (TPD-NH3), representada na Figura 31, caracterizou a

força e distribuição de sítios ácidos com a temperatura de dessorção da amônia.

Figura 31 – Curva de dessorção termoprogramada de amônia para os catalisadores:

a) ZrO2-SiO2; b) ZrO2-SiO2-SO42--is.

Para os materiais sem sulfatação, são observados três picos definidos. Eles

são indicados em 132; 328 e 506°C, além do que, estão relacionados com sítios

ácidos fracos, intermediários e fortes, respectivamente. A presença destes sitios

pode ser atribuída aos defeitos na superfície, gerados devido à inserção do zircônio

na matriz da sílica, formando ligações do tipo Si-O-Zr-O-Zr (Figura 32) (LI et al.

2009)

Para os materiais sulfatados a presença dos picos de dessorção em 310°C,

com ombro em 182 ºC e a 618°C, sugerem, respectivamente, a existência de sítios

ácidos fracos/intermediários e fortes/superácidos. Por serem os sítios ácidos de

Page 88: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

70

Lewis mais fortes do que os de Brönsted, o fato do óxido misto sulfatado apresentar

maior quantidade de sítios ácidos fortes sugere que o aumento dos sítios ácidos de

Lewis está associado à formação de ligações do tipo Zr-O-S, que ocorrem logo após

a sulfatação, como mostrado na Figura 32.

Figura 32 – Proposta de modelo dos sítios ácidos existentes ao sulfatar o material ZrO2-

SiO2 (LI et al. 2009).

5.5.6. Teste de acidez.

A acidez dos materiais obtidas através da titulação com NaOH, que identifica

apenas sítios ácidos de Brönsted, corrobora com os resultados do TPD-NH3 (Figura

32). Onde a sulfatação favoreceu sítios ácidos de Lewis e houve o decréscimo dos

sítios ácidos de Brönsted, como mostrado na Tabela 8.

Page 89: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

71

Tabela 8 - Acidez por titulação dos materiais.

Catalisadores Concentração de H+ (mmol/g)

ZrO2* 1,5

ZrO2-SiO2 476

ZrO2-SiO2-Me 184

ZrO2-SiO2-SO42--is 380

ZrO2-SiO2-Fo 520

ZrO2-SiO2-Ox 422

*Dado obtido por BRUM et al. 2011.

Em relação aos outros materiais observa-se que, ZrO2-SiO2-Fo e ZrO2SiO2-

Ox apresentam acidez de Brönsted compatível com o ZrO2-SiO2. Ao modificar por

metilação o óxido misto ZrO2-SiO2, observa-se uma queda pronunciada da acidez de

Brönsted, o que de deve, provavelmente, à substituição de grupos silanóis, por

grupo metila na superfície.

5.6. Avaliação catalítica.

Os catalisadores foram avaliados nas reações de esterificação, tendo o ácido

oléico, como molécula modelo, e o metanol, como agente esterificante.

Page 90: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

72

Tabela 9 – Avaliação catalítica e da estabilidade frente à lixiviação dos catalisadores sintetizados.

Catalisador Conversão

*

(± 3,7%) Método de

síntese Teste de

lixiviação**

ZrO2 14,7 Comercial -

ZrO2-SiO2 40,8 Rota 1 Negativo

ZrO2-SiO2 – Fo 25,7

Rota 2 -

ZrO2-SiO2 – Ox 29,6 Rota 3 -

ZrO2-SiO2 - Me 49,8 Rota 1+ MeTEOS Negativo

ZrO2-SiO2-SO42-

- is 49,4 Rota 1+H2SO4 Negativo

ZrO2-SiO2-SO42-

- imp 97,0 Rota 1+H2SO4 Positivo

*Condições reacionais: Razão metanol:ácido oléico (6:1), 3% de catalisador, 120°C por 3h.

**Após 30

minutos de reação o catalisador é filtrado a quente.

A partir dos resultados da conversão do ácido oléico em ésteres metílicos e

da estabilidade das espécies ativas frente ao teste de lixiviação, expostos na Tabela

8, aliado aos resultados das caracterizações físico-químicas, é possível inferir as

seguintes observações sobre o comportamento da atividade catalítica dos

catalisadores:

Os óxidos ZrO2 quando isolados são pouco ativos em reações usualmente

catalisadas por sólidos ácidos, por isso, esses foram incorporados em SiO2,

resultando em sólidos ácidos que apresentam propriedades catalíticas melhoradas,

tais como a alta atividade e a resistência à desativação (ARATA et al. 1996). Este é

apenas um dos muitos exemplos, onde os componentes isolados são pouco ativos,

porém suas misturas mostram uma atividade considerável (efeito sinergético). O

aparecimento de sítios ácidos, nestes óxidos mistos, é devido à diferença de

eletronegatividade entre os dois cátions que formam a ligação M-O-Si, em que a

maior acidez só pode surgir a partir de uma inserção direta de Zr4+ para a rede de

sílica. A quantidade de sítios ácidos na superfície do material deve ser proporcional

ao número de ligações com átomos diferentes em Zr-O-Si. A geração de

quantidades significativas de sítios ácidos de Lewis e Brönsted-Lowry nos óxidos

mistos evidencia que esses foram altamente homogêneos em escala atômica

(Zhang et al. 2011).

Page 91: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

73

Uma representação da conformação dos óxidos mistos de ZrO2-SiO2, produto

da reação entre TEOS e a fonte de metal ZrOCl2.8H2O, está esquematicamente

mostrado na Figura 33.

Figura 33 - Esquema da formação dos óxidos mistos ZrO2/SiO2. Y representa a fonte do

metal ZrOCl2.8H2O e X representa o metal Zr (FARIA, et al. 2009).

Os materiais sintetizados na rota 2 e 3, respectivamente, apresentaram uma

baixa conversão em éster. Isso pode ser atribuído aos menores diâmetros médio de

poros nos materiais e ao maior volume de microporos (Tabela 7) presente nos

mesmos, o que pode resultar em limitações difusionais. Analisando os resultados da

Tabela 8, não foi possível fazer uma correlação direta entre a acidez de Brönsted e a

atividade catalítica. O teste de lixiviação não foi realizado para esses materiais

devido à baixa conversão em éster.

O material metilado ZrO2-SiO2-Me apresentou a melhor atividade catalítica.

Analisando-se os valores do diâmetro de poro (3,7 nm) e volume de microporo (0,39

cm3.g-1), para este material, observa-se que ele apresentou as condições difusionais

mais favoráveis, quando comparado aos demais materiais. Adicionalmente, este

material apresenta uma superfície hidrofóbica e isto minimiza o bloqueio do sítio

ativo do material pela ancoragem da molécula de água, proveniente da reação de

esterificação (LAM, LEE e MOHAMED, 2010 ; JIMÉNEZ-MORALES et al. 2012).

Ademais, este material apresentou o menor valor de sítios ácidos de Brönsted,

sugerindo que a reação em estudo é catalisada predominantemente por sítios ácidos

de Lewis, uma vez que, os catalisadores mais ativos foram os que apresentaram os

Page 92: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

74

menores teores de sítios de Brönsted, conforme pode ser verificado na Tabela 9. O

provável mecanismo de reação para este material está mostrado na seção 3.4.3.2,

Figura 9b.

Em relação à estabilidade das espécies ativas para o meio reacional,

observa-se que o processo de metilação não alterou o comportamento do sólido.

Diante destes resultados e das caracterizações físico-químicas (DRX e FTIR) esses

materiais são altamente homogêneos.

Os experimentos com o catalisador sulfatado por impregnação ZrO2-

SiO2SO42--imp apresentou uma excelente conversão em ésteres (97,0%), fato que

pode ser explicado por meio da inserção de grupos sulfato (SO42-), os quais

apresentam-se bem dispersos na superfície do catalisador (CHEN; JU e MOU, 2007;

LAM, LEE e MOHAMED, 2010). Porém, ao realizar o teste de lixiviação observa-se

que houve grande contribuição da catálise homogênea, provavelmente, devido à

lixiviação das espécies sulfato para o meio reacional, como sugerido pela maioria

dos trabalhos encontrados na literatura (SHELDON et al. 1998; GARCIA et. al. 2008;

DI SERIO et. al. 2010).

No entanto, trabalho recente na literatura, mostrou resultado onde a zircônia

sulfatada suportada em MCM-41 (1,3 e 4% de enxofre) (JIMÉNEZ-MORALES et al.

2012) mantém suas atividades para a transesterificação do óleos contendo 6,4% de

AGL e esterificação do ácido oléico com metanol, mesmo após 3 e 6 ciclos

respectivamente. Estes resultados sugerem que modificações no método de

impregnação, principalmente, a temperatura de calcinação, influenciam de maneira

significativa na estabilidade da zircônia sulfatada. Diante disso, neste trabalho,

optou-se por dois métodos de sulfatação.

O catalisador, descrito na seção 4.2.4.2. com sulfatação in situ do material no

PSG o qual, quando testado em reação de esterificação, apresentou uma conversão

maior do que o ZrO2-SiO2 e menor do que o ZrO2-SiO2-SO42—imp, obtido pelo

método de impregnação e resultando, desta forma, em uma conversão de 49,4%.

Este catalisador quando submetido ao teste de lixiviação apresentou resultados

bastante satisfatórios, visto que as espécies ativas (SO42-) não lixiviaram devido à

incorporação do sulfato, como comprovado pelo TPD-NH3.

Page 93: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

75

Diante de todos os resultados apresentados neste trabalho, o catalisador

sulfatado in situ e o metilado apresentaram os melhores resultados. Sendo assim,

realizou-se o teste de reutilização destes materiais a fim de verificar a capacidade de

reuso sem perda drástica da atividade catalítica.

5.7. Teste de Reutilização.

O teste de reutilização, descrito na seção 4.3 e representado na Figura 34, é

realizado para avaliar a capacidade de utilização do catalisador sem perda da sua

atividade catalítica na reação.

Figura 34 - Teste de reutilização dos materiais: a) ZrO2-SiO2-SO42—is b) ZrO2-SiO2-Me.

O catalisador sulfatado in situ apresenta diminuição no rendimento em éster

depois do quarto ciclo, e quanto ao material metilado, observa-se que este não

exibiu redução na atividade catalítica. Estes resultados confirmam que os materiais

são estáveis, demonstrando coerência com o resultado da lixiviação, e que podem

ser reutilizados por mais de cinco ciclos sem perda significativa na atividade

catalítica.

Page 94: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

76

6. CONCLUSÃO

Foram obtidos, pelo método sol-gel, óxidos mistos, amorfos aos raio X, com

misturas de meso a microporos.

Quanto à natureza das espécies presentes podemos afirmar que o zircônio

está altamente disperso na matriz sílica, hipótese comprovada pelas técnicas DRX e

FTIR.

Para o óxido misto ZrO2SiO2 – Me, a técnica de TGA/DTA evidenciou a

modificação da polaridade da superfície, por substituição de grupos silanol na

superfície por grupos metila.

Quanto à atividade catalítica dos materiais na reação de esterificação, tendo o

ácido oléico como molécula modelo, supõe-se que a sulfatação in situ do material

conferiu a este uma maior estabilidade frente à lixiviação dos íons sulfatos, assim

como uma boa capacidade de reuso a partir do teste de reutilização, além de

favorecer o aumento dos sítios ácidos de Lewis.

A metilação do material por meio das trocas dos grupos silanol por grupos

metila, por formar um material com propriedades texturais (diâmetro médio de poro e

volume de microporos), favoreceu uma melhor conversão em éster. Pois, não

possibilitou o bloqueio dos poros por espécies polares (água e metanol), no meio

reacional.

Page 95: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

77

7. TRABALHOS FUTUROS

1. Sintetizar um catalisador com o intuito de agregar maior hidrofobicidade,

minimizando, assim, a adsorção de produtos polares e uma consequente

desativação do catalisador e força ácida, a fim de aumentar a acidez, e dar

consequente maior conversão em éster para o catalisador ZrO2-SiO2;

2. Avaliar a influência do teor de Zr nas propriedades texturais /estruturais, a

atividade catalítica e a estabilidade dos materiais;

3. Otimização multivariada das condições de reação de esterificação com

metanol (Fatores: razão molar ácido/álcool, temperatura, tempo e quantidade

de catalisador – planejamento fracionário 24-1);

Page 96: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

78

8 . REFERÊNCIAS BIBLIOGRÁFICAS

ABBASZAADEH, A. et al. Current biodiesel production technologies: A comparative review. Energy Conversion and Management, v.63, p.138–148, 2012.

AKBAR, E. et al. Preparation of Na doped SiO2 solid catalysts by the sol-gel method for the production of biodiesel from jatropha oil. Green Chemical v.11, p.1862–1866, 2009.

ALMEIDA, R. M. et al. Transesterification reaction of vegetable oils, using superacid sulfated TiO2 base catalysts. Applied Catalysis A: General, v. 347, p. 100-105, 2008.

ALVES, M.B. Desenvolvimento de sistemas catalíticos para a produção de biodiesel a partir de matérias-primas com elevados teores de ácidos-graxos.Tese, Universidade de Brasilia, 2011.

ANDRIANAINARIVELO, M. et al. Mixed oxides Si02-Zr02 and Si02-Ti02 by a non-hydrolytic sol-gel route Journal Material. Chernistry, v.1996, p.1665-1671, 2009.

ARATA, K., Preparation of superacids by metal oxides for reactions of butanes and pentanes. Journal Molecular Catalysts A: General, v. 146, p. 3-32, 1996.

ARMOR, J. N. A history of industrial catalysis. Catalysis Today, v.163, p. 03-09, 2011.

ATABANI, A.E. et al. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renewable and Sustainable Energy Reviews, v.16, p.2070–2093, 2012.

ATADASHI, I.M. et al. The effects of catalysts in biodiesel production: A review. Journal of Industrial and Engineering Chemistry, v. 19, p. 14-26, 2013.

Page 97: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

79

BACCILE, N. et al. Introducing eco-design in silica sol–gel materials. Journal of Materials Chemistry, v.19, p. 8537–8559, 2009.

www. Biodiesel Br.com.br acessado 04/01/2013

BORGES, M.E.; DÍAZ, L. Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review. Renewable and Sustainable Energy Reviews v.16, p. 2839– 2849, 2012.

BOUDJAHEM, ABDEL-GHANI; BOUDERBALA, W.; BETTAHAR, M. Benzene hydrogenation over Ni–Cu/SiO2 catalysts prepared by aqueous hydrazine reduction. Fuel Processing Technology, v. 92, p. 500–506, 2011.

BRINKER, C.J.; SCHERER, G.W., Sol Gel Science: the Physics and Chemistry of Sol-Gel Processing, Academic Press, San Diego, 1990.

BRITO, A.; BORGES, M. E.; OTERO, N. Zeolite Y as a Heterogeneous Catalyst in Biodiesel Fuel Production from Used Vegetable Oil. Energy & Fuels, v. 21, p. 3280–3283, 2007.

BRUM, S. S. et al. Esterificação de ácidos graxos utilizando zircônia sulfatada e compósitos carvão ativado/ zircônia sulfatada como catalisadores. Química Nova,

v. 34, n. 9, p. 1511-1516, 2011.

BULLEN, C. et AL Incorporation of a highly luminescent semiconductor quantum dot in ZrO2–SiO2 hybrid sol–gel glass film. Journal of Materials Chemistry , v. 14, p. 1112-1116, 2004.

CANEVARI, T. C. Ftalocianina de cobalto preparado in situ sobre o óxido misto SnO2/SiO2 obtidos pelo processo sol-gel. Aplicação na oxidação eletrocatalítica do ácido oxálico e do nitrito. Dissertação, Universidade

Page 98: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

80

Estadual de Campinas, Instituto de Química, Laboratório de Química de Superfície, Campinas, 2008

CARDOSO, W. S., Óxidos mistos de SiO2/SnO2, SiO2/SnO2/ Fosfatos: propriedades e aplicações., Tese, Universidade Estadual de Campinas, Campinas, 2005.

CARDOSO, W.S., et.al., Synthesis and acidic properties of the SiO2-SnO2 mixed oxide. Solid State Ionics., v.167, p. 165-173, 2004.

CHAI, F. et al. Transesterification of Vegetable Oil to Biodiesel using a Heteropolyacid Solid Catalyst. Advanced Synth Catalysts, v. 349, p. 1057 – 1065, 2007.

CHANDRADASS, J.; HAN, KYONG-SOP; BAE, DONG-SIK. Synthesis and characterization of zirconia- and silica-doped zirconia nanopowders by oxalate processing. Journal of Materials Processing Technology, v. 206, 315–321, 2008.

CHEN, X. R.; JU, Y.H. and MOU C.Y. Direct Synthesis of Mesoporous Sulfated Silica-Zirconia Catalysts with High Catalytic Activity for Biodiesel via Esterification. Journal Physic Chemical, v.111, p. 18731-18737, 2007.

CHOUHAN, A.P. S.; A.K. SARMA Modern heterogeneous catalysts for biodiesel production: A comprehensive review. Renewable and Sustainable Energy Reviews, v.15, p. 4378– 4399, 2011.

CIOLA, R. Fundamentos da Catálise. Editora Moderna, São Paulo, 1981.

COLPINI, L. M. S. Estudo e aplicações dos óxidos SiO2, TiO2 e Al2O3 e dos óxidos mistos V2O5/ SiO2, V2O5/ TiO2 e V2O5/Al2O3 obtidos pelo método sol-gel. Dissertação Centro de Ciências Exatas Departamento de Química Pós-Graduação em Química, Universidade Estadual de Maringá, Maringá, 2005.

CORDEIRO, C.S. et al. A new zinc hydroxide nitrate heterogeneous catalyst for

Page 99: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

81

the esterification of free fatty acids and the transesterification of vegetable oils. Catalysis Communications, v. 9, p. 2140-2143, 2008.

CORDEIRO, C.S. et al.Catalisadores heterogêneos para a produção de monoésteres graxos (biodiesel), Química Nova, v. 34, n. 3, p. 477-486, 2011.

COSTA, B. E. B.; RAMOS, K. E . M.; LOBO, I. P.; CRUZ, R. S. Avaliação catalítica da zircônia modificada com óxido de estanho na reação de esterificação do ácido oleico. In: 5° Congresso da Rede Brasileira de Tecnologia de Biodiesel e 8° Congresso Brasileiro de Plantas Oleaginosas, óleos, Gorduras e Biodiesel: Inovação e desenvolvimento regional. 2012, Salvador – BA, Anais. Salvador: 2012, Livro 22,p. 959-960.

CRUZ, R. S. Óxidos mistos e microporosos preparados pelo método sol-gel como catalisadores para a oxidação de hidrocarbonetos em fase líquida, Tese, Universidade Estadual de Campinas, 2001.

DEMIRBAS, A. Green Energy and Technology, Springer-Verlag London Limited, 2009.

DEMIRBAS, M.F.; BALAT, M.; BALAT, H. Potencial contribuition of biomass to the sustainable energy development. Energy Conversion and Management, v.50, p. 1746-1760, 2009.

DI SERIO, M. et al., Heterogeneous Catalysis in Biodiesel Production: the influence of the leaching. Topics Catalysts, v 53, p. 811-819, 2010. DOMINGOS, A. K. Produção de biodiesel via catálise heterogênea. Tese, Universidade Federal do Rio de Janeiro- UFRJ, 2009.

ENDALEW, K.; KIROS, Y.; ZANZI, R., Inorganic heterogeneous catalysts for biodiesel production from vegetable oils. Biomass Bioenergy, v. 35, p. 3787, 2011.

FARIA, E. A. et al. Nanosized and Reusable SiO2/ZrO2 Catalyst for Highly Efficient Biodiesel Production by Soybean Transesterification. Journal Brazilian Chemical Society, v. 20, n. 9, p. 1732-1737, 2009.

Page 100: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

82

FENG, Z. et al. Characterization of Zirconia-Based Catalysts Prepared by Precipitation, Calcination, and Modified Sol-Gel Methods. Ind. Eng. Chem. Res, v.34, p.78-82, 1995.

FURIGO, A. Biodiesel: aspectos gerais e produção enzimática. Tese, Universidade Federal de Santa Catarina, 2009.

FURUTA, S.; MATSUHASHI, H.; ARATA, K. Biodiesel fuel production with solid superacid catalysis in fixed bed reactor under atmospheric pressure. Catalysis Communications, v. 5, p. 721–723, 2004 a.

FURUTA, S.; MATSUHASHI, H.; ARATA, K. Catalytic action of sulfated tin oxide for etherification and esterification in comparison with sulfated zirconia. Applied Catalysis A: General, v. 269, p. 187–191, 2004 b.

GARCIA, C. M. et al. Transesterification of soybean oil catalyzed by sulfated zirconia. Bioresource Technology, v. 99, p. 6608–6613, 2008.

GARCÍA-SANCHO, C.Zirconium doped mesoporous silica catalysts for dehydration of glycerol to high added-value products Applied Catalysis A: General, v. 433–434, p. 179–187, 2012.

GOG, A. Biodiesel production using enzymatic transesterification e Current state and Perspectives. Renewable Energy. v 39, p. 10 -16, 2012.

GREENWOOD, N. N.; EARNSHAW, A. Chemistry of the elements, Heineman Ltda, Inglaterra, 1995.

GUO, Y.J. et al. Preparation of sol–gel ZrO2–SiO2 highly reflective multilayer films and laser-induced damage threshold characteristic. Optik, v.122, p. 1140–1142, 2011.

HAGEN, J. Industrial Catalysis A Practical Approach. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2006.

Page 101: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

83

HAMA, S. E KONDO, A. Enzymatic biodiesel production: An overview of potential feedstocks and process development. Bioresource Technology. Article in press 2012.

HAN, L. et al. Synthesis of C2-oxygenates from syngas over Rh-based catalyst supported on SiO2,TiO2 and SiO2–TiO2 mixed oxide. Catalysis Communications, v. 23, p. 20–24, 2012.

HARGREAVES, J. S. J. and JACKSON, D. Metal oxide catalysis, Editora Wiley-VDH Verlag Gmbh, Weinheim, Germany, 2009

HELWANI, M.R. et al. Technologies for production of biodiesel focusing on green catalytic techniques: A review. Fuel Processing Technology, v.90, p. 1502–1514, 2009.

IONASHIRO, M. Princípios Básicos da Termogravimetria e Análise Térmica Diferencial/ Calorimetria Exploratória Diferencial, Ed Giz, Araraquara, São Paulo, 2004.

ISLAM, A. Studies on design of heterogeneous catalysts for biodiesel production. Process Safety and Environmental Protection, v. 91, p. 131-144, 2013.

JIMÉNEZ-MORALES, I. et al. Preparation of stable sulfated zirconia by thermal activation from a zirconium doped mesoporous MCM-41 silica: Application to the esterification of oleic acid with methanol. Fuel Processing Technology, v. 97, p. 65–70, 2012.

JONG, K.P. Synthesis of Solid Catalysts, Editora Wiley-VDH Verlag Gmbh, Weinheim, Germany, 2009.

JUAN, J. C. Supported zirconium sulfate on carbon nanotubes as water-tolerant solid acid catalyst. Materials Research Bulletin, v. 42, p. 1278–1285, 2007.

Page 102: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

84

KANSEDO, J.; LEE, K.T.; BHATIA S. Cerbera odollam (sea mango) oil as a promising non-edible feedstock for biodiesel production Fuel, v. 88, p. 1148–1150, 2009.

KANTAM, M. L. et al. Ruthenium/magnesium–lanthanum mixed oxide: An efficient reusable catalyst for oxidation of alcohols by using molecular oxygen. Journal of Molecular Catalysis A: Chemical, v. 359, p. 1– 7, 2012.

KEMNITZ, E.et al. Synthesis, characterization, and catalytic activity of SO4/Zr1−x

SnxO2 Applied Catalysis A: General 253 (2003) 237–247

KO, CHUN-HAN. Impact of methanol addition strategy on enzymatic transesterification of jatropha oil for biodiesel processing. Energy. v. 48, p. 375-379, 2012. KULKARNI, M.G. et al. Solid acid catalyzed biodiesel production by simultaneous esterification and transesterification. Green Chem, v.8, p.1056–1062, 2006.

KURAJICA, S. et al. Mullite crystallization kinetics of lanthanum doped sol–gel derived precursors. Journal of the European Ceramic Society, v. 31, p. 377–383, 2011.

LAI, Jing-Qi. Enzymatic production of microalgal biodiesel in ionic liquid [BMIm][PF6] Fuel. v.95, p. 329–333, 2012.

LAM, M. K.; LEE, K. T.; MOHAMED, A. R. Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review. Biotechnology Advances, v. 28. p. 500–518, 2010.

LEOFANTI,G. et al. Surface area and pore texture of catalysts. Catalysis Today, v. 41, p. 207-219,1998.

LEUNG, D.Y.C.; WU, X.; LEUNG, M.K.H. A review on biodiesel production

Page 103: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

85

using catalyzed transesterification. Applied Energy, v. 87, p. 1083–1095, 2010. LI, R. et al. One-pot synthesis of superacid catalytic material SO4

2/ZrO2–SiO2 with thermostable well-ordered mesoporous structure. Journal of Solid State Chemistry, v.182, p.991–994, 2009.

LI, X. et al. A novel solid superbase of Eu2O3/Al2O3 and its catalytic performance for the transesterification of soybean oil to biodiesel. Catalysis Communications, v. 8, p. 1969–1972, 2007.

LI, X.; HUANG, W.Synthesis of Biodiesel from Rap Oil over Sulfated Titania-based Solid Superacid Catalysts. Energy Sources, v.31, p.1666–1672, 2009.

LÓPEZ, D. E. et al. Esterification and transesterification on tungstated zirconia: Effect of calcination temperature. Journal of Catalysis, v. 247, p. 43–50, 2007.

LÓPEZ, D. E. et al. Esterification and transesterification using modified-zirconia catalysts. Applied Catalysis A: General, v. 339, p. 76–83, 2008.

LOTERO, E. et al. Synthesis of Biodiesel via Acid Catalysis. Ind. Eng. Chem. Res, v.44, p.5353-5363, 2005.

MARCHETTI , J.M.; MIGUEL, V.U.; ERRAZU, A.F. Heterogeneous esterification of oil with high amount of free fatty acids. Fuel, v. 86 p. 906–910, 2007.

MARCHETTI, J.M. The effect of economic variables over a biodiesel production plant. Energy Conversion and Management, v.52, p.3227–3233, 2011.

MARCHETTI, J.M.; ERRAZU, A.F. Biodiesel production from acid oils and ethanol using a solid basic resin as catalyst. Biomass and bioenergy, v.34, p.272–277, 2010.

Page 104: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

86

MARCHETTI, J.M.; ERRAZU, A.F. Esterification of free fatty acids using sulfuric acid as catalyst in the presence of triglycerides. Biomass and Bioenergy, v. 32, p. 892 – 895, 2008.

MARCINIUK, L.L. Catalisadores heterogêneos ácidos inéditos para a produção de ésteres metílicos e etílicos de óleos vegetais. Dissertação, Universidade Estadual de Campinas, 2007. MARUYAMA, S. A. Benzoatos lamelares como catalisadores heterogêneos para a produção de benzoato de metila. Dissertação. Universidade Federal do Paraná, Curitiba, 2010.

MONGKOLBOVORNKIJ, P.et al. Esterification of industrial-grade palm fatty acid distillate over modified ZrO2 (with WO3, SO4 and TiO2): Effects of co-solvent adding and water removal. Fuel Processing Technology, v. 91, p. 1510-1516, 2010.

NGAOSUWAN, K. et. al. Hydrolysis of Triglycerides Using Solid Acid Catalysts, Industrial Engineering Chemical Research, v.48, p. 4757–4767, 2009.

OZBAY, N.; OKTAR N.; TAPAN, N. A. Esterification of free fatty acids in waste cooking oils (WCO): Role of ion-exchange resins. Fuel, v. 87, p.1789–1798, 2008.

PARK, Y. M. et al. Tungsten oxide zirconia as solid superacid catalyst for esterification of waste acid oil (dark oil). Bioresource Technology, v. 101, p. 6589–6593, 2010.

PENG, B. X., et al.. Biodiesel production from waste oil feedstocks by solid acid catalysis. Process Safety and Environment Protection, v. 86, p. 441–447, 2008.

Page 105: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

87

PETCHMALA, A. et al. Transesterification of palm oil and esterification of palm fatty acid in near- and super-critical methanol with SO4–ZrO2 catalysts. Fuel, v. 89, p. 2387–2392, 2010.

RAMOS, L. P. et al. Tecnologias de Produção de Biodiesel. Revista Virtual Química, v. 3, n. 5, p. 385-405, 2011.

RATTANAPHRA, D. et al. Simultaneous transesterification and esterification for biodiesel production with and without a sulphated zirconia catalyst. Fuel, v.97, p. 467–475, 2012.

ROTHENBERG, G. Catalysis: concepts and green applications. Wiley-VCH, Verlag GmbH & Co. KGaA, Weinheim, Germany, 2008.

SAHA S.K. and PRAMANIK P. Aqueous sol-gel synthesis of powders in the ZrO2-SiO 2 system using zirconium formate and tetraethoxysilane. Journal of Non-Crystalline Solids, v.159, p. 31-37, 1993.

SALVI, B.L.; PANWAR, N.L. Biodiesel resources and production technologies –A review. Renewable and Sustainable Energy Reviews, v.16, p.3680–3689, 2012.

SANCHEZ, C . et al.. Applications of advanced hybrid organic-inorganic nanomaterials: from laboratory to market. Chemical Society Review, v. 40, p. 696-753, 2011.

SANTACESARIA, E. et al. Main technologies in biodiesel production: State of the art and future challenges. Catalysis Today, Article in Press, 2012. SANTOS dos, N. B. L.; Rezende, M. J. C. Produção de Monoacilgliceróis: Rotas e Catalisadores. Revista. Virtual Química. v.4, n° 2, p. 118-129, 2012.

SARAVANAN, K.; TYAGI, B.; BAJAJ, H. C. Esterification of caprylic acid with alcohol over nano-crystalline sulfated zirconia, Journal Sol-Gel Science Technology, v. 62, p. 13-17, 2012.

Page 106: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

88

SCHMAL, M. Catálise Heterogênea. Editora Synergia, Rio de Janeiro, 2011.

SCHMIDT, H. Chemistry of material preparation by the sol-gel process Journal of Non-Crystalline Solids, v.100, p. 51-64, 1988.

SEMWAL, S. et al. Biodiesel production using heterogeneous catalysts. Bioresource Technology, v.102, p.2151–2161, 2011.

SHARMA Y. C.; SINGH, B.; KORSTAD, J. Latest developments on application of heterogenous basic catalysts for an efficient and eco friendly synthesis of biodiesel: A review. Fuel, v. 90, p. 1309–1324, 2011.

SHELDON, R. A. et al. Heterogeneous Catalysts for Liquid-Phase Oxidations: Philosophers’ Stones or Trojan Horses? Accounts of Chemical Research, v.31, p., 485-493, 1998.

SHISHIDO, T.; TANAKA T.; HATTORI, H. State of Platinum in Zirconium Oxide Promoted by Platinum and Sulfate Ions. Journal of Catalysis, v. 172, p. 24–33, 1997.

SILVA, J. B. Caracterização de materiais catalíticos. Qualificação de Doutorado. Instituto Nacional de Pesquisas Espaciais – INPE, São José dos Campos, 2008.

SUN H., et al. Biodiesel Production from Transesterification of Rapeseed Oil Using KF/Eu2O3 as a Catalyst. Energy & Fuels, v. 22, p. 2756–2760, 2008.

SUWANNAKARN, K. et al. Stability of sulfated zirconia and the nature of the catalytically active species in the transesterification of triglycerides. Journal of Catalysis, v. 255, p. 279–286, 2008.

Page 107: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

89

TALEBIAN-KIAKALAIEH, A.; AMIN, N.A.S.; MAZAHERI, H. A review on novel processes of biodiesel production from waste cooking oil. Applied Energy, v. 104, p.683–710, 2013.

TANABE, K. et al. A new hypothesis regarding the surface acidity of binary metal oxides. Bulletin oh the Chemical Society Japan, v. 47, n.5, p.1064-1066, 1974.

TAUFIQ-YAP, Y.H. et al. Calcium-based mixed oxide catalysts for methanolysis of Jatropha curcas oil to biodiesel. Biomass and Bioenergy, v. 35, p. 827-834, 2011.

THUY, T.T. et al. Sol–gel chemistry of an aqueous precursor solution for YBCO thin films. Journal Sol-Gel Science Technology, v. 52, p. 124–13, 2009.

TYAGI, B. et al. Effect of Zr/Si molar ratio and sulfation on structural and catalytic properties of ZrO2–SiO2 mixed oxides. J Porous Mater, v.17, p.699–709, 2010.

UMDU, E. S.; TUNCER, M.; SEKER, E. Transesterification of Nannochloropsis oculata microalga’s lipid to biodiesel on Al2O3 supported CaO and MgO catalysts. Bioresource Technology, v.100, p. 2828–2831, 2009.

WANG, Y. et al. Solid superacid catalyzed glycerol esterification of free fatty acids in waste cooking oil for biodiesel production. European Journal Lipid Science Technology v. 114, p. 315–324, 2012.

WANG, Z. et al. Selective catalytic oxidation of ammonia to nitrogen over ceria–zirconia mixed oxides. Applied Catalysis A: General, v. 411– 412, p.131– 138, 2012.

WENG, Z. et al. Biodiesel production from waste cooking oil catalyzed by TiO2–MgO mixed oxides. Bioresource Technology, v. 101, p. 9570–9576, 2010.

Page 108: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

90

XIE, W.; WANG, H. and LI, H. Silica-Supported Tin Oxides as Heterogeneous Acid Catalysts for Transesterification of Soybean Oil with Methanol, Industrial. Engineering Chemical Research, v. 51, p. 225–231, 2012.

YAN, S. et al. Simultaneous transesterification and esterification of unrefined or waste oils over ZnO-La2O3 catalysts. Applied Catalysis A: General, v. 353, p. 203–212, 2009.

ZHANG, X. et al. Heteropolyacid Nanoreactor with Double Acid Sites as a Highly Efficient and Reusable Catalyst for the Transesterification of Waste Cooking Oil. Energy Fuels, v. 23, p. 4640–4646, 2009.

ZHANG, Y. et al. Preparation of ZrO2–SiO2 mixed oxide by combination of sol–gel and alcohol-aqueous heating method and its application in tetrahydrofuran polymerization. J Sol-Gel Sci Technol, v.56, p.27–32, 2010. ZHANG, Y. et al. Synthesis of ZrO2–SiO2 mixed oxide by alcohol-aqueous heating method. J Sol-Gel Sci Technol, v.58, p.572–579, 2011. ZHUANG, Q.; MILLER, J.M. ZrO2/SiO2 mixed oxides as catalysts for alcohol dehydration. Applied Catalysis A: General, v.209, 2001.

Page 109: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

91

APÊNDICE A

Page 110: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

92

Tabela A1- Resumo de alguns catalisadores heterogêneos encontrados na literatura aplicados para produção de biodiesel.

...................................(continua) Catalisadores Comentários Referências

SO4/ZrO2

Reação de transesterificação com as seguintes condições reacionais: razão molar álcool/óleo 12:1; temperatura 120°C por 2h.

Com a utilização de diferentes alcoóis (metanol, etanol,butanol) obtiveram as seguintes conversões 84%, ~ 42% e ~ 37%.

Suwannakarn, et al., 2008

SO4/ZrO2

A atividade catalítica do catalisador foi avaliada através da reação de transesterificação com diferente alcoóis com as seguintes condições reacionais: razão molar metanol e etanol/óleo de soja – 20:1 a 120°C durante 1h. A conversão em éster com rota etílica foi de 92% e com rota metílica foi de 98,6%

Garcia et al., 2008

SO4/ZrO2

O catalisador foi sintetizado por sol-gel e sua atividade catalítica foi avaliada em reações de esterificação com as seguintes condições reacionais: razão molar metanol/ácido caprílico 10:1 a 60°C durante 7h. A conversão em éster variou entre 96-98%.

Saravanan, Tyagi e Bajaj,, 2012

ZrO2/SO4

O catalisador foi preparado por impregnação e sua atividade catalítica foi avaliada através da reação de transesterificação (T) e esterificação (E) com as seguintes condições reacionais: (T )razão molar a partir de metanol super crítico 25:1 a 250°C e (E) razão molar a partir de metanol super crítico 6:1 a 250°C. A conversão em éster para ambas as reações variou entre 75-90%

Petchmala et al., 2010

SiO2-SO4/ZrO2

A atividade catalítica foi avaliada através da reação de esterificação com as seguintes condições reacionais: razão molar catalisador/ácido palmítico/metanol – 2/10/100 a 68°C por 6h.

CHEN, JU e MOU, 2007

SO4/SnO2

O catalisador foi sintetizado por precipitação e sua atividade catalítica foi avaliada em reações de transesterificação com as seguintes condições reacionais: razão molar metanol/óleo de gordura residual – 15:1 a 150°C durante 3h. O rendimento em éster foi de 92,3%.

Mohamed et al., 2009

SnO2/SiO2

A atividade catalítica do catalisador foi avaliada através da reação de transesterificação com as seguintes condições reacionais: razão álcool/óleo 25:1 a 180°C durante 5h. A conversão em éster foi de 81,7%.

Xie, Wang, e Li, 2012

SO4/ZrO2 (pellets); SO4/SnO2

Os catalisadores foram preparados por co-precipitação e foram utilizados em reações de esterificação com as seguintes condições reacionais: razão molar álcool/ácido 4.5:1 durante 20 h a uma temperatura de 330-473°C com rendimentos de 100%.

aFuruta, Matsuhashi e Arata, 2004 a

Page 111: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

93

Tabela A1- Resumo de alguns catalisadores heterogêneos encontrados na literatura aplicados para produção de biodiesel

...............(continua) Catalisadores Comentários Referências

WO3/ZrO2 TiO2/ZrO2 SO4/ZrO2

Foram realizadas reações de esterificação(E), transesterificação(T) e esterificação - transesterificação simultaneamente(ET) através das seguintes condições reacionais respectivamente: E razão molar etanol/ácido caprílico - 6,9/3,5 a 75°C por 4h. T razão molar etanol/tricapylin – 7,1/1,2 a 75°C por 8h. ET razão molar tricapylin + ácido oléico/etanol – 0,76+0,093/9,1 a 75-120°C por aproximadamente 24h.

Furuta, Matsuhashi e Arata, 2004b

SO4/ZrO2 WO3/ZrO2 TiO2/ZrO2

Os catalisadores SO4/ZrO2 WO3/ZrO2 fora sintetizados através do método impregnação por via úmida e o catalisador TiO2/ZrO2 foi sintetizado por co-precipitação. A atividade catalítica dos catalisadores foram avaliadas através da reação de esterificação com as seguintes condições reacionais: razão molar metanol/ácido graxo livre obtido a partir da destilação do óleo de palma (dendê) -6:1 a 80°C por 2h.

Mongkolbovornkij et al., 2010

SO4/ZrO2 WO3/ZrO2 Amberlyst-15 Nafion NR-50 H3PO4suportado Hβ zeólita H2SO4

Reação de transesterificação com as seguintes condições reacionais: razão molar álcool/óleo 6:1 ; temperatura 60°C por 8h. A utilização dos catalisadores na reação baseou-se nas seguintes proporções (0,25% H2SO4 + 2% do sólido). Obtiveram a seguinte ordem de conversão: Hβ zeólita (~2%)< H3PO4 suportado (~7%) <WO3/ZrO2 (~10%)< Nafion NR-50 (30%) <SO4/ZrO2 (57%)< Amberlyst-15 (79%) < H2SO4 (99%)

Lotero et al., 2005

WO3/ZrO2

A atividade catalítica foi avaliada através das reações de esterificação com ácido acético e metanol a 60°C e reação de transesterificação com triacetim e metanol a 60 °C

López. et al., 2007

TiO2/SO4

O catalisador foi sintetizado através do método sol-gel e a atividade catalítica foi avaliada a partir da reação de transesterificação por meio de duas matérias –primas com as seguintes condições reacionais: Razão molar óleo de soja e mamona/metanol/catalisador – 120/20/1 a 120°C durante 1h. A conversão em éster com óleo de mamona foi de 25% e com óleo de soja foi de 40%.

Almeida et al.,2008

TiO2-MgO

O catalisador foi sintetizado por sol-gel com diferentes concentrações de Ti/Mg. A sua atividade catalítica foi avaliada em reação de transesterificação com as seguintes condições reacionais: razão molar metanol/óleo residual de cozinha – 50:1, a 160°C por 6h com 92,3% de rendimento.

WenG et al., 2010

Page 112: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

94

Tabela A1- Resumo de alguns catalisadores heterogêneos encontrados na literatura aplicados para produção de biodiesel.

....................... (continua) Catalisadores Comentários Referências

ZnO-Al2O3

O catalisador foi preparado por co-precipitação e sua atividade catalítica foi avaliada através da reação de transesterificação-esterificação com as seguintes condições reacionais: óleo de soja com 5% de ácido oléico a 200°C por 3h. A reação apresentou 96% de conversão.

Yan et al., 2009

CaO/Al2O3 MgO/Al2O3

Os catalisadores foram preparados por sol-gel e a atividade catalítica foi avaliada através da reação de transesterificação com as seguintes condições reacionais: razão molar metanol/óleo(algas) - 6:1 a 50 °C. O catalisador CaO/Al2O3 apresentou um maior rendimento sendo ele de 97,5%.

Umdu et al., 2009

Zn5(OH)8(NO3

)2.2H2O

O catalisador foi obtido pelo método de precipitação.

A reação de esterificação foi realizada pela rota etílica e metílica a partir das seguintes condições reacionais: razão molar álcool/ácido láurico-6:1 a 140°C por 2h e obteveram as seguintes conversões 77,2% e 96,5%.

A transesterificação foi realizada com as seguintes condições reacionais: razão molar álcool/óleo de palma- 48:1 a 150°C por 2h e obteve a seguinte conversão 93%.

Cordeiro et al.,2008

CaMgO; CaZnO

Os catalisadores foram preparados por co-precipitação e sua atividade catalítica foi avaliada em reação de transesterificação com as seguintes condições reacionais: razãomolar metanol/óleo de pinhão-manso – 15:1, a 65°C durante 4h. A conversão em éster para o catalisador CaMgO foi de 83% e para o catalisador CaZnO foi de 81%.

Taufiq-Yap et al.,2010

KF/Eu2O3

O catalisador foi sintetizado por impregnação e a sua atividade catalítica foi avaliada através da reação de transesterificação com as seguintes condições reacionais: razão metanol/óleo de gordura residual – 12:1 a 65°C por 1h. A conversão em éster foi de 92,5%.

Sun et al., 2008

Eu2O3/Al2O3

A atividade catalítica do catalisador foi avaliada através da reação de transesterificação com as seguintes condições reacionais: razão metaol/óleo de soja – 10:1 a 70°C por 8h e obteve uma conversão de 63,2% em éster.

Li et al., 2007

Na dopado em SiO2

O catalisador foi sintetizado por sol-gel e a sua atividade catalítica foi avaliada através da reação de transesterificação com as seguintes condições reacionais: razão molar metanol/óleo – 15:1 a 65°C durante 45 min e obteve uma conversão de 99% em éster.

Akbar et al., 2009

Page 113: UNIVERSIDADE ESTADUAL DE SANTA CRUZ Programa de … · P.; Tokumoto, M. S. Anais do 5°Congresso da Rede Brasileira de Tecnologia de Biodiesel, ... Dispondo de todos os resultados,

95

Tabela A1 - Resumo de alguns catalisadores heterogêneos encontrados na literatura aplicados para produção de biodiesel

.................................................(conclusão) Catalisadores Comentários Referências

Zeólita Y

O catalisador foi sintetiza com diferentes quantidades de Al2O3 e Na2O3 e a atividade catalítica foi avaliada através da reação de transesterificação com as seguintes condições reacionais: razão metanol/óleo – 6:1 a 450°C por 1h30min. A melhor conversão em éster foi para o catalisador Y756 (com 2%Al2O3 e 0,10% de Na2O3) que apresentou 26,6%.

Brito; Borges e Otero, 2007

ZrHPW = Zr 0,7

H 0,2 PW 12 O 40 nanotubos

A atividade catalítica foi avaliada através da reação de transesterificação com as seguintes condições reacionais: razão molar óleo de gordura residual/metanol/catalisador – 1/20/0,002 a 65°C por 14h. A conversão em éster foi de 98,5%.

Zhang et al., 2009