Unit Operations Lecture 22 (continued) 1 16 Nov 2012

Embed Size (px)

Citation preview

  • Slide 1
  • Unit Operations Lecture 22 (continued) 1 16 Nov 2012
  • Slide 2
  • Trayed Columns (Diameter) 2 Chap 6 (10,p 314, Wankat) Fairs Procedure o Considers entrainment flooding (most freq.) o Downcomer flooding (sometimes) need different procedure o Downcomer flooding rare if (1- ) 10% Used in AspenPlus James R. Fair (1920 -2010)
  • Slide 3
  • Trayed Columns (Diameter) 3 Plate spacing (selected for maintenance, performance). Typ: o 12 16 for Dia < 5 o 24 larger columns Calc Dia & round up to nearest foot (USA) o 2.5 minimum dia. o If < 2.5 consider packed tower Figure 6.23
  • Slide 4
  • In-Class Exercise 4 Data: Let: Estimate the tower diameter in meters. Pause video and do exercise. When done, resume the video.
  • Slide 5
  • In-Class Exercise 5 Data: Let: Estimate the tower diameter in meters. G =7920kg/hr2.2kg/s L =2883kg/hr0.801kg/s roe V1.92kg/cum roe L986kg/cum Flv =0.016 Csb,f =0.39ft/s surf ten70dyne/cm u flood =11.34ft/s Ad/A =0.1 f =0.8 Dt =0.766m
  • Slide 6
  • 6 Tower Diameter
  • Slide 7
  • AspenPlus In-Class Exercise 7 Estimate the tower diameter in meters. (by hand and by AspenPlus) Benzene Toluene Separation F = 100 kmole/hr X BZ = 0.6 saturated liquid Use sieve trays
  • Slide 8
  • AspenPlus PFD 8
  • Slide 9
  • Column Internals 9 Base method: NRTL
  • Slide 10
  • Column Internals 10 Not optimized by DSTWU N feed = 15 P col = 1.013 bar (constant)
  • Slide 11
  • Column Internals 11
  • Slide 12
  • Column Internals 12
  • Slide 13
  • Column Internals 13
  • Slide 14
  • Column Internals 14
  • Slide 15
  • Column Internals 15
  • Slide 16
  • Column Internals 16
  • Slide 17
  • Column Internals 17
  • Slide 18
  • Column Internals 18
  • Slide 19
  • AspenPlus In-Class Exercise 19 Estimate the tower diameter in meters. (by hand and by AspenPlus) Benzene Toluene Separation F = 100 kmole/hr X BZ = 0.6 saturated liquid Use sieve trays G =30757.9kg/hr8.544kg/s L =34443.9kg/hr9.568kg/s roe V2.92kg/cum roe L780.68kg/cum Flv =0.06849 Csb,f =0.375ft/s surf ten18.18dyne/cm u flood =6.00448ft/s Ad/A =0.1 f =0.8 Dt =1.68m
  • Slide 20
  • Column Internals 20
  • Slide 21
  • Column Internals 21
  • Slide 22
  • Column Internals 22
  • Slide 23
  • Column Internals 23
  • Slide 24
  • 24
  • Slide 25
  • 25
  • Slide 26
  • 26
  • Slide 27
  • 27
  • Slide 28
  • 28
  • Slide 29
  • 29
  • Slide 30
  • Overview 30 Questions from last week?? Review rigorous methods / RADFRAC Multicomponent systems: o Residue curves o DSTWU / RADFRAC o Rules of thumb Complex (Enhanced) distillation Column internals Batch distillation
  • Slide 31
  • Batch (Rayleigh) Distillation 31 Seader & Henley (2006) Usually for small capacity systems 1 column handle multi- campaigns Produce sample new products Batch upstream processes Feed contains solids/foulants Material Balance: leads to Rayleigh Equation where:
  • Slide 32
  • Batch (Rayleigh) Distillation 32 a) P = constant; K = f(T) only b) Binary with = constant c) y = K x ; but K = f(T,x) Solve graphically or numerically
  • Slide 33
  • Multistage Batch Distillation 33 Modes of operation: Constant reflux rate or ratio x D varies with time easily implemented (flow sensors) Relatively simple and cost effective Constant distillate composition R or D varies with time Requires fast response composition sensors Sensors might not be available or only justified for larger batch systems Optimal control mode x D and R varied with time Designed to: Minimize operation time Maximize amount of distillate Maximize profit More complex control scheme Seader & Henley (2006)
  • Slide 34
  • Multistage Batch Distillation 34 Removing volatile impurities. Seader & Henley (2006) Flexible, multi-purpose system
  • Slide 35
  • Questions? 35