62
Introduction & motivation Example discussion Hands-on experience Unit conversion in LBM Timm Kr ¨ uger Department of Microstructure Physics and Metal Forming 40237 D ¨ usseldorf, Germany [email protected] LBM Workshop (Edmonton, Canada), August 22–26, 2011 Max-Planck-Institut f ¨ ur Eisenforschung, D¨ usseldorf, Germany Unit conversion in LBM 1 / 31

Unit conversion in LBMlbmworkshop.com/wp-content/uploads/2011/08/2011-08-22_Edmonton_scaling.pdf · Max-Planck-Institut f¨ur Eisenforschung, D usseldorf, Germany¨ Unit conversion

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Introduction & motivation Example discussion Hands-on experience

Unit conversion in LBM

Timm Kruger

Department of Microstructure Physics and Metal Forming40237 Dusseldorf, [email protected]

LBM Workshop (Edmonton, Canada), August 22–26, 2011

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 1 / 31

Introduction & motivation Example discussion Hands-on experience

Outline

1 Introduction & motivation

2 Example discussion

3 Hands-on experience

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 2 / 31

Introduction & motivation Example discussion Hands-on experience

Outline

1 Introduction & motivation

2 Example discussion

3 Hands-on experience

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 3 / 31

Introduction & motivation Example discussion Hands-on experience

Physical observables and units

physical observablesusually dimensional, i.e., a number plusa dimensionmeasuring means comparing with areference scale (e.g., measuring tape)

physical unitsfundamental units, e.g., meter, second,kilogram (SI)uniquely derived units, e.g., newton,joule, watt

bethlehem-news.de

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 4 / 31

Introduction & motivation Example discussion Hands-on experience

Computers and physical units

computers can only process binarynumbersnumbers are dimensionlessuser has to provide unit conversion(physical unit↔ number)

img.ehowcdn.com

proper unit conversions are required to1 set up a computer simulation2 interpret the results afterwards

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 5 / 31

Introduction & motivation Example discussion Hands-on experience

Computers and physical units

computers can only process binarynumbersnumbers are dimensionlessuser has to provide unit conversion(physical unit↔ number)

img.ehowcdn.com

proper unit conversions are required to1 set up a computer simulation2 interpret the results afterwards

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 5 / 31

Introduction & motivation Example discussion Hands-on experience

Hydrodynamics and the law of similarity (1)

dimensionless Navier-Stokes equations

ρ

(∂u∂t

+ (u · ∇)u)

= −∇p + ρν∇2u

∂u∂ t

+ (u · ∇)u = −∇p +1

Re∇2u

u = u/um, p = p/(ρu2m), t = tum/H, ∇ = ∇H, Re =

umHν

significance of Reynolds numberonly dimensionless number constructible from um, H, and νcharacterizes solutions of Navier-Stokes equationsflows with same Re are equivalent, even if um, H, and νare different

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 6 / 31

Introduction & motivation Example discussion Hands-on experience

Hydrodynamics and the law of similarity (1)

dimensionless Navier-Stokes equations

ρ

(∂u∂t

+ (u · ∇)u)

= −∇p + ρν∇2u

∂u∂ t

+ (u · ∇)u = −∇p +1

Re∇2u

u = u/um, p = p/(ρu2m), t = tum/H, ∇ = ∇H, Re =

umHν

significance of Reynolds numberonly dimensionless number constructible from um, H, and νcharacterizes solutions of Navier-Stokes equationsflows with same Re are equivalent, even if um, H, and νare different

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 6 / 31

Introduction & motivation Example discussion Hands-on experience

Hydrodynamics and the law of similarity (1)

dimensionless Navier-Stokes equations

ρ

(∂u∂t

+ (u · ∇)u)

= −∇p + ρν∇2u

∂u∂ t

+ (u · ∇)u = −∇p +1

Re∇2u

u = u/um, p = p/(ρu2m), t = tum/H, ∇ = ∇H, Re =

umHν

significance of Reynolds numberonly dimensionless number constructible from um, H, and νcharacterizes solutions of Navier-Stokes equationsflows with same Re are equivalent, even if um, H, and νare different

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 6 / 31

Introduction & motivation Example discussion Hands-on experience

Hydrodynamics and the law of similarity (2)

concept of characteristic dimensionless numbers can begeneralized to more complicated hydrodynamic problemsexample: presence of diffusive tracer with diffusivity Dadditional dimensionless number (Schmidt number):Sc = ν/Dflows with same Re and Sc are equivalent

general recommended approachalways find all independent dimensionless numbers for given

problem before anything else is done

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 7 / 31

Introduction & motivation Example discussion Hands-on experience

Hydrodynamics and the law of similarity (2)

concept of characteristic dimensionless numbers can begeneralized to more complicated hydrodynamic problemsexample: presence of diffusive tracer with diffusivity Dadditional dimensionless number (Schmidt number):Sc = ν/Dflows with same Re and Sc are equivalent

general recommended approachalways find all independent dimensionless numbers for given

problem before anything else is done

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 7 / 31

Introduction & motivation Example discussion Hands-on experience

Conversion principle (1)

for each physical quantity Q, one can write

Q = Q × CQ

Q [Q] physical value (incl. unit)Q [Q] = 1 dimensionless valueCQ [CQ] = [Q] conversion factor (incl. unit)

user’s task: find all required conversion factors CQ, but

relevant dimensionless parameters must be correctsimulation parameters must be valid

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 8 / 31

Introduction & motivation Example discussion Hands-on experience

Conversion principle (1)

for each physical quantity Q, one can write

Q = Q × CQ

Q [Q] physical value (incl. unit)Q [Q] = 1 dimensionless valueCQ [CQ] = [Q] conversion factor (incl. unit)

user’s task: find all required conversion factors CQ, but

relevant dimensionless parameters must be correctsimulation parameters must be valid

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 8 / 31

Introduction & motivation Example discussion Hands-on experience

Conversion principle (2)

example for velocity conversion

u = u × Cu

u = 10 ms , u = 0.1 =⇒ Cu = 100 m

s

conversion of dimensionless numbersdimensionless numbers should generally be invariant, e.g.,

Re = Re ⇐⇒ CRe!

= 1

possible exceptions: e.g., Mach number (next slide).

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 9 / 31

Introduction & motivation Example discussion Hands-on experience

Conversion principle (2)

example for velocity conversion

u = u × Cu

u = 10 ms , u = 0.1 =⇒ Cu = 100 m

s

conversion of dimensionless numbersdimensionless numbers should generally be invariant, e.g.,

Re = Re ⇐⇒ CRe!

= 1

possible exceptions: e.g., Mach number (next slide).

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 9 / 31

Introduction & motivation Example discussion Hands-on experience

LBM and the Mach number

usually, LBM Mach number is largerthan in realityotherwise, simulations would be tooexpensive (too many time steps)no problem since Ma is not important

Ma!� 1, e.g., Ma < 0.3

www.allmystery.de

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 10 / 31

Introduction & motivation Example discussion Hands-on experience

Approaching a hydrodynamic problem

1 identify relevant dimensionless numbers(e.g., Reynolds or Peclet number)

2 write down their definitions,e.g., Re = uH

ν

3 make use of their invariance during unit conversion,e.g., Re = Re and CRe = 1

4 from this, it is possible to construct a unique set of unitconversions

Explicit examples will be shown later!

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 11 / 31

Introduction & motivation Example discussion Hands-on experience

Approaching a hydrodynamic problem

1 identify relevant dimensionless numbers(e.g., Reynolds or Peclet number)

2 write down their definitions,e.g., Re = uH

ν

3 make use of their invariance during unit conversion,e.g., Re = Re and CRe = 1

4 from this, it is possible to construct a unique set of unitconversions

Explicit examples will be shown later!

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 11 / 31

Introduction & motivation Example discussion Hands-on experience

Primary conversion factors

for mechanical problems, all quantities have units mql sqt kgqm

quantity unit ql qt qmvelocity m

s 1 −1 0force kg m

s2 1 −2 1kinematic viscosity m2

s 2 −1 0

three independent primary conversion factors required, e.g., forlength, time, masslength, velocity, energylength, time, density

All other (secondary) conversion factors are uniquely derived.

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 12 / 31

Introduction & motivation Example discussion Hands-on experience

Primary conversion factors

for mechanical problems, all quantities have units mql sqt kgqm

quantity unit ql qt qmvelocity m

s 1 −1 0force kg m

s2 1 −2 1kinematic viscosity m2

s 2 −1 0

three independent primary conversion factors required, e.g., forlength, time, masslength, velocity, energylength, time, density

All other (secondary) conversion factors are uniquely derived.

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 12 / 31

Introduction & motivation Example discussion Hands-on experience

Primary conversion factors

for mechanical problems, all quantities have units mql sqt kgqm

quantity unit ql qt qmvelocity m

s 1 −1 0force kg m

s2 1 −2 1kinematic viscosity m2

s 2 −1 0

three independent primary conversion factors required, e.g., forlength, time, masslength, velocity, energylength, time, density

All other (secondary) conversion factors are uniquely derived.

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 12 / 31

Introduction & motivation Example discussion Hands-on experience

Finding secondary conversion factors

1 set primary conversion factors,e.g., for length, time, and density (Cl , Ct , Cρ)

2 express secondary units in terms of primary units,e.g., for the energy

[E ] =kg m2

s2 =kgm3

m5

s2 =[ρ][l]5

[t ]2=

[Cρ][Cl ]5

[Ct ]2

3 read off secondary conversion factor, e.g., for the energy

CE =CρC5

l

C2t

Only the unit of the secondary quantity has to be known!

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 13 / 31

Introduction & motivation Example discussion Hands-on experience

Finding secondary conversion factors

1 set primary conversion factors,e.g., for length, time, and density (Cl , Ct , Cρ)

2 express secondary units in terms of primary units,e.g., for the energy

[E ] =kg m2

s2 =kgm3

m5

s2 =[ρ][l]5

[t ]2=

[Cρ][Cl ]5

[Ct ]2

3 read off secondary conversion factor, e.g., for the energy

CE =CρC5

l

C2t

Only the unit of the secondary quantity has to be known!

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 13 / 31

Introduction & motivation Example discussion Hands-on experience

Outline

1 Introduction & motivation

2 Example discussion

3 Hands-on experience

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 14 / 31

Introduction & motivation Example discussion Hands-on experience

Gravity-driven planar Poiseuille flow

relevant input parameters

channel height (wall distance) Hviscosity νdensity ρgravity (force per volume) f = ρg

relevant output parametersmaximum velocity(Poiseuille law): Reynolds number:

um =fH2

8ρν Re :=umHν

=gH3

8ν2

H

ρ, ν

gum

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 15 / 31

Introduction & motivation Example discussion Hands-on experience

Physical parameters

example input parameters

channel height H 10−3 mviscosity ν 10−6 m2

sdensity ρ 103 kg

m3

gravity g 10 ms2

resulting output parameters

um = 1.25 ms , Re = 1250

These values are defined by the physical problem!

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 16 / 31

Introduction & motivation Example discussion Hands-on experience

Physical parameters

example input parameters

channel height H 10−3 mviscosity ν 10−6 m2

sdensity ρ 103 kg

m3

gravity g 10 ms2

resulting output parameters

um = 1.25 ms , Re = 1250

These values are defined by the physical problem!

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 16 / 31

Introduction & motivation Example discussion Hands-on experience

Choose simulation parameters

resolution

H = 20, H = 10−3 m =⇒ CH = 5× 10−5 m

density

ρ = 1, ρ = 103 kgm3 =⇒ Cρ = 103 kg

m3

relaxation time

τ = 0.6

The user may choose any other set of parameters!

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 17 / 31

Introduction & motivation Example discussion Hands-on experience

Choose simulation parameters

resolution

H = 20, H = 10−3 m =⇒ CH = 5× 10−5 m

density

ρ = 1, ρ = 103 kgm3 =⇒ Cρ = 103 kg

m3

relaxation time

τ = 0.6

The user may choose any other set of parameters!

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 17 / 31

Introduction & motivation Example discussion Hands-on experience

Choose simulation parameters

resolution

H = 20, H = 10−3 m =⇒ CH = 5× 10−5 m

density

ρ = 1, ρ = 103 kgm3 =⇒ Cρ = 103 kg

m3

relaxation time

τ = 0.6

The user may choose any other set of parameters!

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 17 / 31

Introduction & motivation Example discussion Hands-on experience

Make use of Reynolds number

Reynolds number in physical and dimensionless systems

Re =umHν

, Re =umHν

equality of Reynolds numbers

Re != Re =⇒ ν

ν=

um

um

HH

=⇒ Cν = CuCH

consistency check

[Cν ] = [Cu][CH ] =m2

sX

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 18 / 31

Introduction & motivation Example discussion Hands-on experience

Make use of Reynolds number

Reynolds number in physical and dimensionless systems

Re =umHν

, Re =umHν

equality of Reynolds numbers

Re != Re =⇒ ν

ν=

um

um

HH

=⇒ Cν = CuCH

consistency check

[Cν ] = [Cu][CH ] =m2

sX

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 18 / 31

Introduction & motivation Example discussion Hands-on experience

Make use of Reynolds number

Reynolds number in physical and dimensionless systems

Re =umHν

, Re =umHν

equality of Reynolds numbers

Re != Re =⇒ ν

ν=

um

um

HH

=⇒ Cν = CuCH

consistency check

[Cν ] = [Cu][CH ] =m2

sX

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 18 / 31

Introduction & motivation Example discussion Hands-on experience

Get time conversion factor

lattice spacing and time step

for convenience, choose ∆x = 1 and ∆t = 1

=⇒ ∆x = CH , ∆t = Ct

LBM viscosity

ν =

(τ − 1

2

)c2

s ∆t , c2s =

13

∆x2

∆t2 =⇒ ν =τ − 1

23︸ ︷︷ ︸ν

C2H

Ct

time conversion factor

Ct =τ − 1

23

C2Hν

= 8.3× 10−5 s

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 19 / 31

Introduction & motivation Example discussion Hands-on experience

Get time conversion factor

lattice spacing and time step

for convenience, choose ∆x = 1 and ∆t = 1

=⇒ ∆x = CH , ∆t = Ct

LBM viscosity

ν =

(τ − 1

2

)c2

s ∆t , c2s =

13

∆x2

∆t2 =⇒ ν =τ − 1

23︸ ︷︷ ︸ν

C2H

Ct

time conversion factor

Ct =τ − 1

23

C2Hν

= 8.3× 10−5 s

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 19 / 31

Introduction & motivation Example discussion Hands-on experience

Get time conversion factor

lattice spacing and time step

for convenience, choose ∆x = 1 and ∆t = 1

=⇒ ∆x = CH , ∆t = Ct

LBM viscosity

ν =

(τ − 1

2

)c2

s ∆t , c2s =

13

∆x2

∆t2 =⇒ ν =τ − 1

23︸ ︷︷ ︸ν

C2H

Ct

time conversion factor

Ct =τ − 1

23

C2Hν

= 8.3× 10−5 s

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 19 / 31

Introduction & motivation Example discussion Hands-on experience

Get velocity conversion factor

secondary conversion factor

[u] =[H]

[t ]=⇒ Cu =

CH

Ct=⇒ Cu = 0.6 m

s

compute maximum lattice velocity

um = um/Cu =⇒ um = 2.083

consistency of Reynolds number

Re =umHν

!=

umHν

= 1250 X

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 20 / 31

Introduction & motivation Example discussion Hands-on experience

Get velocity conversion factor

secondary conversion factor

[u] =[H]

[t ]=⇒ Cu =

CH

Ct=⇒ Cu = 0.6 m

s

compute maximum lattice velocity

um = um/Cu =⇒ um = 2.083

consistency of Reynolds number

Re =umHν

!=

umHν

= 1250 X

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 20 / 31

Introduction & motivation Example discussion Hands-on experience

Get velocity conversion factor

secondary conversion factor

[u] =[H]

[t ]=⇒ Cu =

CH

Ct=⇒ Cu = 0.6 m

s

compute maximum lattice velocity

um = um/Cu =⇒ um = 2.083

consistency of Reynolds number

Re =umHν

!=

umHν

= 1250 X

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 20 / 31

Introduction & motivation Example discussion Hands-on experience

Correct simulation parameters

problemSimulation parameters are consistent,

but not valid for LBM simulations (um � 0.3).

correction approach

Cu =CH

Ct=

3τ − 1

2

ν

CH

decrease CH =⇒ more expensivedecrease τ =⇒ LBM may become unstable

User has to find a consistent and valid set of parameters!

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 21 / 31

Introduction & motivation Example discussion Hands-on experience

Correct simulation parameters

problemSimulation parameters are consistent,

but not valid for LBM simulations (um � 0.3).

correction approach

Cu =CH

Ct=

3τ − 1

2

ν

CH

decrease CH =⇒ more expensivedecrease τ =⇒ LBM may become unstable

User has to find a consistent and valid set of parameters!

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 21 / 31

Introduction & motivation Example discussion Hands-on experience

Example correction

change resolution and relaxation parameter

CH = 5× 10−5 m→ C∗H = 1× 10−5 mτ = 0.6→ τ∗ = 0.55

corrected velocity conversion factor

C∗u =3

τ∗ − 12

ν

C∗H= 6 m

s =⇒ u∗m = 0.2083 X

consistency of Reynolds number

Re =umHν

!=

u∗mH∗

ν∗= 1250 X

The user has found a consistent and valid parameter set.

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 22 / 31

Introduction & motivation Example discussion Hands-on experience

Example correction

change resolution and relaxation parameter

CH = 5× 10−5 m→ C∗H = 1× 10−5 mτ = 0.6→ τ∗ = 0.55

corrected velocity conversion factor

C∗u =3

τ∗ − 12

ν

C∗H= 6 m

s =⇒ u∗m = 0.2083 X

consistency of Reynolds number

Re =umHν

!=

u∗mH∗

ν∗= 1250 X

The user has found a consistent and valid parameter set.

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 22 / 31

Introduction & motivation Example discussion Hands-on experience

Example correction

change resolution and relaxation parameter

CH = 5× 10−5 m→ C∗H = 1× 10−5 mτ = 0.6→ τ∗ = 0.55

corrected velocity conversion factor

C∗u =3

τ∗ − 12

ν

C∗H= 6 m

s =⇒ u∗m = 0.2083 X

consistency of Reynolds number

Re =umHν

!=

u∗mH∗

ν∗= 1250 X

The user has found a consistent and valid parameter set.

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 22 / 31

Introduction & motivation Example discussion Hands-on experience

Get force conversion factor

secondary conversion factor

[f ] =[ρ][H]

[t ]2=⇒ Cf =

CρCH

C2t

=⇒ Cf = 3.6× 109 Nm3

compute lattice force density

f = f/Cf =⇒ f = 2.7× 10−6

Everything for a successful simulation is prepared!

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 23 / 31

Introduction & motivation Example discussion Hands-on experience

Get force conversion factor

secondary conversion factor

[f ] =[ρ][H]

[t ]2=⇒ Cf =

CρCH

C2t

=⇒ Cf = 3.6× 109 Nm3

compute lattice force density

f = f/Cf =⇒ f = 2.7× 10−6

Everything for a successful simulation is prepared!

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 23 / 31

Introduction & motivation Example discussion Hands-on experience

Alternative routes

start with H and um

1 choose H and um =⇒ CH , Cu

2 find viscosity conversion factor Cν = C2H/Ct =⇒ ν

3 identify relaxation time τ from ν = (τ − 12 )/3

4 find remaining conversion factors & check validity

start with um and τ

1 choose um and τ =⇒ Cu , ν2 find viscosity conversion factor Cν from ν

3 find length conversion factor CH = Cν/Cu =⇒ H4 find remaining conversion factors & check validity

and so on. . .

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 24 / 31

Introduction & motivation Example discussion Hands-on experience

Alternative routes

start with H and um

1 choose H and um =⇒ CH , Cu

2 find viscosity conversion factor Cν = C2H/Ct =⇒ ν

3 identify relaxation time τ from ν = (τ − 12 )/3

4 find remaining conversion factors & check validity

start with um and τ

1 choose um and τ =⇒ Cu , ν2 find viscosity conversion factor Cν from ν

3 find length conversion factor CH = Cν/Cu =⇒ H4 find remaining conversion factors & check validity

and so on. . .

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 24 / 31

Introduction & motivation Example discussion Hands-on experience

Alternative routes

start with H and um

1 choose H and um =⇒ CH , Cu

2 find viscosity conversion factor Cν = C2H/Ct =⇒ ν

3 identify relaxation time τ from ν = (τ − 12 )/3

4 find remaining conversion factors & check validity

start with um and τ

1 choose um and τ =⇒ Cu , ν2 find viscosity conversion factor Cν from ν

3 find length conversion factor CH = Cν/Cu =⇒ H4 find remaining conversion factors & check validity

and so on. . .

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 24 / 31

Introduction & motivation Example discussion Hands-on experience

Outline

1 Introduction & motivation

2 Example discussion

3 Hands-on experience

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 25 / 31

Introduction & motivation Example discussion Hands-on experience

Gravity-driven Poiseuille flow with diffusive tracer

relevant input parameters

channel height (wall distance) Hviscosity νtracer diffusivity Ddensity ρgravity (force per volume) f = ρg

relevant dimensionless parameters

Reynolds number: Schmidt number:

Re :=umHν

=gH3

8ν2 Sc :=ν

D

H

ρ, ν, D

gum

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 26 / 31

Introduction & motivation Example discussion Hands-on experience

Formulary

dimensionless parameters

Re =umHν

=gH3

8ν2 , Sc =ν

D

dimensionless viscosity and diffusivity

ν =τν − 1

23

, D =τD − 1

23

gravity

f = ρg

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 27 / 31

Introduction & motivation Example discussion Hands-on experience

Physical parameters and numerical restrictions

physical parametersRe = 100, Sc = 3

numerical restrictionsrelaxation times τν and τD shall both be at least 0.55(stability)center velocity shall be um ≤ 0.05 (compressibility)system height shall be H ≤ 150 (efficiency)

taskFind a conclusive and valid set of simulation parameters!

ρ, τν , τD, H, um, f

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 28 / 31

Introduction & motivation Example discussion Hands-on experience

Physical parameters and numerical restrictions

physical parametersRe = 100, Sc = 3

numerical restrictionsrelaxation times τν and τD shall both be at least 0.55(stability)center velocity shall be um ≤ 0.05 (compressibility)system height shall be H ≤ 150 (efficiency)

taskFind a conclusive and valid set of simulation parameters!

ρ, τν , τD, H, um, f

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 28 / 31

Introduction & motivation Example discussion Hands-on experience

Physical parameters and numerical restrictions

physical parametersRe = 100, Sc = 3

numerical restrictionsrelaxation times τν and τD shall both be at least 0.55(stability)center velocity shall be um ≤ 0.05 (compressibility)system height shall be H ≤ 150 (efficiency)

taskFind a conclusive and valid set of simulation parameters!

ρ, τν , τD, H, um, f

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 28 / 31

Introduction & motivation Example discussion Hands-on experience

Example solution, part 1

identify minimum relaxation parameters

Sc =ν

D=⇒ Sc =

τν − 12

τD − 12

=⇒ τν = Sc(τD − 0.5) + 0.5

τD,min = 0.55, Sc = 3 =⇒ τν,min = 0.65

identify minimum resolution

Re =umHν

=⇒ H = Reτν − 0.5

3um

τν,min = 0.65, um,max = 0.05, Re = 100 =⇒ Hmin = 100

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 29 / 31

Introduction & motivation Example discussion Hands-on experience

Example solution, part 1

identify minimum relaxation parameters

Sc =ν

D=⇒ Sc =

τν − 12

τD − 12

=⇒ τν = Sc(τD − 0.5) + 0.5

τD,min = 0.55, Sc = 3 =⇒ τν,min = 0.65

identify minimum resolution

Re =umHν

=⇒ H = Reτν − 0.5

3um

τν,min = 0.65, um,max = 0.05, Re = 100 =⇒ Hmin = 100

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 29 / 31

Introduction & motivation Example discussion Hands-on experience

Example solution, part 2

chosen set of simulation parameters

τν = 0.65, τD = 0.55, H = 100, um = 0.05

validity and consistency already assured

Re =umHν

= 100, Sc =ν

D= 3 X

set densityρ = 1 (arbitrary)

set gravity

Re =gH3

8ν2 =⇒ f = ρg =8ρν2

H3Re = 2× 10−6

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 30 / 31

Introduction & motivation Example discussion Hands-on experience

Example solution, part 2

chosen set of simulation parameters

τν = 0.65, τD = 0.55, H = 100, um = 0.05

validity and consistency already assured

Re =umHν

= 100, Sc =ν

D= 3 X

set densityρ = 1 (arbitrary)

set gravity

Re =gH3

8ν2 =⇒ f = ρg =8ρν2

H3Re = 2× 10−6

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 30 / 31

Introduction & motivation Example discussion Hands-on experience

Example solution, part 2

chosen set of simulation parameters

τν = 0.65, τD = 0.55, H = 100, um = 0.05

validity and consistency already assured

Re =umHν

= 100, Sc =ν

D= 3 X

set densityρ = 1 (arbitrary)

set gravity

Re =gH3

8ν2 =⇒ f = ρg =8ρν2

H3Re = 2× 10−6

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 30 / 31

Introduction & motivation Example discussion Hands-on experience

Example solution, part 2

chosen set of simulation parameters

τν = 0.65, τD = 0.55, H = 100, um = 0.05

validity and consistency already assured

Re =umHν

= 100, Sc =ν

D= 3 X

set densityρ = 1 (arbitrary)

set gravity

Re =gH3

8ν2 =⇒ f = ρg =8ρν2

H3Re = 2× 10−6

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 30 / 31

Introduction & motivation Example discussion Hands-on experience

Further comments

systems with identical Re and Sc are equivalent=⇒ no explicit conversion factors required at this point!scale can be introduced afterwards, e.g.,

H = 10−3 m =⇒ CH = 10−5 m

all other conversion factors are then obtained as in theexample discussion

Max-Planck-Institut fur Eisenforschung, Dusseldorf, Germany Unit conversion in LBM 31 / 31