41
Unit 2 MOS Inverters

Unit 2 MOS Inverters - Dronacharya

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Unit 2 MOS Inverters - Dronacharya

Unit 2

MOS Inverters

Page 2: Unit 2 MOS Inverters - Dronacharya

DC Response

• DC Response: Vout vs. Vin for a gate

• Ex: Inverter – When Vin = 0 -> Vout = VDD

– When Vin = VDD -> Vout = 0

– In between, Vout depends on

transistor size and current

– By KCL, must settle such that

Idsn = |Idsp|

– We could solve equations

– But graphical solution gives more insight

Idsn

Idsp

Vout

VDD

Vin

Page 3: Unit 2 MOS Inverters - Dronacharya

Transistor Operation

• Current depends on region of transistor behavior

• For what Vin and Vout are nMOS and pMOS in

– Cutoff?

– Linear?

– Saturation?

Page 4: Unit 2 MOS Inverters - Dronacharya

I-V Characteristics

• Make pMOS is wider than nMOS such that bn = bp

Vgsn5

Vgsn4

Vgsn3

Vgsn2

Vgsn1

Vgsp5

Vgsp4

Vgsp3

Vgsp2

Vgsp1

VDD

-VDD

Vdsn

-Vdsp

-Idsp

Idsn

0

Page 5: Unit 2 MOS Inverters - Dronacharya

Current vs. Vout, Vin

Vin5

Vin4

Vin3

Vin2

Vin1

Vin0

Vin1

Vin2

Vin3

Vin4

Idsn

, |Idsp

|

Vout

VDD

Page 6: Unit 2 MOS Inverters - Dronacharya

Load Line Analysis

Vin5

Vin4

Vin3

Vin2

Vin1

Vin0

Vin1

Vin2

Vin3

Vin4

Idsn

, |Idsp

|

Vout

VDD

• For a given Vin: – Plot Idsn, Idsp vs. Vout

– Vout must be where |currents| are equal in

Idsn

Idsp

Vout

VDD

Vin

Page 7: Unit 2 MOS Inverters - Dronacharya

Load Line Analysis

Vin0

Vin0

Idsn

, |Idsp

|

Vout

VDD

• Vin = 0

Page 8: Unit 2 MOS Inverters - Dronacharya

Load Line Analysis

Vin1

Vin1I

dsn, |I

dsp|

Vout

VDD

• Vin = 0.2VDD

Page 9: Unit 2 MOS Inverters - Dronacharya

Load Line Analysis

Vin2

Vin2

Idsn

, |Idsp

|

Vout

VDD

• Vin = 0.4VDD

Page 10: Unit 2 MOS Inverters - Dronacharya

Load Line Analysis

Vin3

Vin3

Idsn

, |Idsp

|

Vout

VDD

• Vin = 0.6VDD

Page 11: Unit 2 MOS Inverters - Dronacharya

Load Line Analysis

Vin4

Vin4

Idsn

, |Idsp

|

Vout

VDD

• Vin = 0.8VDD

Page 12: Unit 2 MOS Inverters - Dronacharya

Load Line Analysis

Vin5

Vin0

Vin1

Vin2

Vin3

Vin4

Idsn

, |Idsp

|

Vout

VDD

• Vin = VDD

Page 13: Unit 2 MOS Inverters - Dronacharya

Load Line Summary

Vin5

Vin4

Vin3

Vin2

Vin1

Vin0

Vin1

Vin2

Vin3

Vin4

Idsn

, |Idsp

|

Vout

VDD

Page 14: Unit 2 MOS Inverters - Dronacharya

DC Transfer Curve

• Transcribe points onto Vin vs. Vout plot

Vin5

Vin4

Vin3

Vin2

Vin1

Vin0

Vin1

Vin2

Vin3

Vin4

Vout

VDD

CV

out

0

Vin

VDD

VDD

A B

DE

Vtn

VDD

/2 VDD

+Vtp

Page 15: Unit 2 MOS Inverters - Dronacharya

Operating Regions

• Revisit transistor operating regions

CV

out

0

Vin

VDD

VDD

A B

DE

Vtn

VDD

/2 VDD

+Vtp

Region nMOS pMOS

A Cutoff Linear

B Saturation Linear

C Saturation Saturation

D Linear Saturation

E Linear Cutoff

Page 16: Unit 2 MOS Inverters - Dronacharya

Beta Ratio

• If bp / bn 1, switching point will move from VDD/2

• Called skewed gate

• Other gates: collapse into equivalent inverter

Vout

0

Vin

VDD

VDD

0.5

12

10p

n

bb

0.1p

n

bb

Page 17: Unit 2 MOS Inverters - Dronacharya

Noise Margins

• How much noise can a gate input see before it does not

recognize the input?

IndeterminateRegion

NML

NMH

Input CharacteristicsOutput Characteristics

VOH

VDD

VOL

GND

VIH

VIL

Logical HighInput Range

Logical LowInput Range

Logical HighOutput Range

Logical LowOutput Range

Page 18: Unit 2 MOS Inverters - Dronacharya

Logic Levels

• To maximize noise margins, select logic levels at

– unity gain point of DC transfer characteristic

VDD

Vin

Vout

VOH

VDD

VOL

VIL

VIH

Vtn

Unity Gain PointsSlope = -1

VDD

-|V

tp|

bp/b

n > 1

Vin

Vout

0

Page 19: Unit 2 MOS Inverters - Dronacharya

Transient Response

• DC analysis tells us Vout if Vin is constant

• Transient analysis tells us Vout(t) if Vin(t) changes

– Requires solving differential equations

• Input is usually considered to be a step or ramp

– From 0 to VDD or vice versa

Page 20: Unit 2 MOS Inverters - Dronacharya

Inverter Step Response

• Ex: find step response of inverter driving load cap

0( )

(

)

)

(

o

i

ut

n

out

V t t

t

V

t

V

d

d

t

V

in(t)

Vout

(t)C

load

Idsn

(t)

Page 21: Unit 2 MOS Inverters - Dronacharya

Inverter Step Response

• Ex: find step response of inverter driving load cap

0

0

( )

( )

( )

( )

ou

DDin

t

out

u t t V

d

d

t

t t

V t

V

V

t

V

in(t)

Vout

(t)C

load

Idsn

(t)

Page 22: Unit 2 MOS Inverters - Dronacharya

Inverter Step Response

• Ex: find step response of inverter driving load cap

0

0(

( ))

(

(

)

)

DD

Do

i

D

o t

n

ut

u

V t

u t t V

V

d

d

t

t

V

V

t

t

Vin(t)

Vout

(t)C

load

Idsn

(t)

Page 23: Unit 2 MOS Inverters - Dronacharya

Inverter Step Response

• Ex: find step response of inverter driving load cap

0

0

( )

( )

( )

(

(

)

)

DD

DD

loa

d

ou

i

d

t

o

n

ut sn

V

V

u t t V

t t

V t

V

d

dt C

t

I t

0

( )DD tout

ou

ds

t DD t

nI t V V

VV V

V

t t

Vin(t)

Vout

(t)C

load

Idsn

(t)

Page 24: Unit 2 MOS Inverters - Dronacharya

Inverter Step Response

• Ex: find step response of inverter driving load cap

0

0

( )

( )

( )

(

(

)

)

DD

DD

loa

d

ou

i

d

t

o

n

ut sn

V

V

u t t V

t t

V t

V

d

dt C

t

I t

0

2

2

0

2)

)

(( )

(DD DD t

DD

out

outout out D t

n

t

ds

D

I V

t t

V V V V

V V V VV

t

V tV t

b

b

Vin(t)

Vout

(t)C

load

Idsn

(t)

Page 25: Unit 2 MOS Inverters - Dronacharya

Inverter Step Response

• Ex: find step response of inverter driving load cap

0

0

( )

( )

( )

(

(

)

)

DD

DD

loa

d

ou

i

d

t

o

n

ut sn

V

V

u t t V

t t

V t

V

d

dt C

t

I t

0

2

2

0

2)

)

(( )

(DD DD t

DD

out

outout out D t

n

t

ds

D

I V

t t

V V V V

V V V VV

t

V tV t

b

b

Vout

(t)

Vin(t)

t0

t

Vin(t)

Vout

(t)C

load

Idsn

(t)

Page 26: Unit 2 MOS Inverters - Dronacharya

Delay Definitions

• tpdr: rising propagation delay

– From input to rising output crossing VDD/2

• tpdf: falling propagation delay

– From input to falling output crossing VDD/2

• tpd: average propagation delay

– tpd = (tpdr + tpdf)/2

• tr: rise time

– From output crossing 0.2 VDD to 0.8 VDD

• tf: fall time

– From output crossing 0.8 VDD to 0.2 VDD

Page 27: Unit 2 MOS Inverters - Dronacharya

Delay Definitions

• tcdr: rising contamination delay

– From input to rising output crossing VDD/2

• tcdf: falling contamination delay

– From input to falling output crossing VDD/2

• tcd: average contamination delay

– tpd = (tcdr + tcdf)/2

Page 28: Unit 2 MOS Inverters - Dronacharya

Simulated Inverter Delay

• Solving differential equations by hand is too hard

• SPICE simulator solves the equations numerically

– Uses more accurate I-V models too!

• But simulations take time to write

(V)

0.0

0.5

1.0

1.5

2.0

t(s)0.0 200p 400p 600p 800p 1n

tpdf

= 66ps tpdr

= 83psVin

Vout

Page 29: Unit 2 MOS Inverters - Dronacharya

Delay Estimation

• We would like to be able to easily estimate delay

– Not as accurate as simulation

• The step response usually looks like a 1st order RC response

with a decaying exponential.

• Use RC delay models to estimate delay

– C = total capacitance on output node

– Use effective resistance R

– So that tpd = RC

• Characterize transistors by finding their effective R

– Depends on average current as gate switches

Page 30: Unit 2 MOS Inverters - Dronacharya

RC Delay Models

• Use equivalent circuits for MOS transistors

– Ideal switch + capacitance and ON resistance

– Unit nMOS has resistance R, capacitance C

– Unit pMOS has resistance 2R, capacitance C

• Capacitance proportional to width

• Resistance inversely proportional to width

kg

s

d

g

s

d

kCkC

kCR/k

kg

s

d

g

s

d

kC

kC

kC

2R/k

Page 31: Unit 2 MOS Inverters - Dronacharya

Example: 3-input NAND

• A 3-input NAND with transistor widths chosen to achieve

effective rise and fall resistances equal to a unit inverter (R).

3

3

222

3

Page 32: Unit 2 MOS Inverters - Dronacharya

Elmore Delay

• ON transistors look like resistors

• Pullup or pulldown network modeled as RC ladder

• Elmore delay of RC ladder

R1

R2

R3

RN

C1

C2

C3

CN

nodes

1 1 1 2 2 1 2... ...

pd i to source i

i

N N

t R C

R C R R C R R R C

Page 33: Unit 2 MOS Inverters - Dronacharya

Example: 2-input NAND

• Estimate worst-case rising and falling delay of 2-input NAND

driving h identical gates.

h copies

2

2

22

B

A

x

Y

Page 34: Unit 2 MOS Inverters - Dronacharya

Example: 2-input NAND

• Estimate rising and falling propagation delays of a 2-input

NAND driving h identical gates.

h copies

6C

2C2

2

22

4hC

B

A

x

Y

Page 35: Unit 2 MOS Inverters - Dronacharya

Example: 2-input NAND

• Estimate rising and falling propagation delays of a 2-input

NAND driving h identical gates.

h copies

6C

2C2

2

22

4hC

B

A

x

Y

R

(6+4h)CY

pdrt

Page 36: Unit 2 MOS Inverters - Dronacharya

Example: 2-input NAND

• Estimate rising and falling propagation delays of a 2-input

NAND driving h identical gates.

h copies

6C

2C2

2

22

4hC

B

A

x

Y

R

(6+4h)CY 6 4

pdrt h RC

Page 37: Unit 2 MOS Inverters - Dronacharya

Example: 2-input NAND

• Estimate rising and falling propagation delays of a 2-input

NAND driving h identical gates.

h copies6C

2C2

2

22

4hC

B

A

x

Y

Page 38: Unit 2 MOS Inverters - Dronacharya

Example: 2-input NAND

• Estimate rising and falling propagation delays of a 2-input

NAND driving h identical gates.

h copies6C

2C2

2

22

4hC

B

A

x

Y

pdft (6+4h)C2CR/2

R/2x Y

Page 39: Unit 2 MOS Inverters - Dronacharya

Example: 2-input NAND

• Estimate rising and falling propagation delays of a 2-input

NAND driving h identical gates.

h copies6C

2C2

2

22

4hC

B

A

x

Y

2 2 22 6 4

7 4

R R Rpdf

t C h C

h RC

(6+4h)C2CR/2

R/2x Y

Page 40: Unit 2 MOS Inverters - Dronacharya

Delay Components

• Delay has two parts

– Parasitic delay

• 6 or 7 RC

• Independent of load

– Effort delay

• 4h RC

• Proportional to load capacitance

Page 41: Unit 2 MOS Inverters - Dronacharya

Contamination Delay

• Best-case (contamination) delay can be substantially less than

propagation delay.

• Ex: If both inputs fall simultaneously

6C

2C2

2

22

4hC

B

A

x

Y

R

(6+4h)CYR

3 2cdr

t h RC