34
www.helsinki.fi/ yliopisto Ultrasound Microscopy and High Frequency Coded Signals Antti Meriläinen, Edward Hæggström

Ultrasound Microscopy and High Frequency Coded Signals

  • Upload
    makya

  • View
    56

  • Download
    0

Embed Size (px)

DESCRIPTION

Ultrasound Microscopy and High Frequency Coded Signals. Antti Meriläinen, Edward Hæggström. Ultrasound Microscopy What it is?. Using high frequency acoustic waves for mm-/µm-scale imaging Method is non-destructive It “Sees” inside the sample - PowerPoint PPT Presentation

Citation preview

Page 1: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

Ultrasound Microscopy and High Frequency Coded Signals

Antti Meriläinen, Edward Hæggström

Page 2: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

• Using high frequency acoustic waves for mm-/µm-scale imaging

• Method is non-destructive• It “Sees” inside the sample• Ultrasound images differences of

acoustic impedances

Ultrasound MicroscopyWhat it is?

Page 3: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

Ultrasound Imaging

TOF image

Amplitude image

Page 4: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

Ultrasound MicroscopyBasic techniques

Phase Arrays Single transducer pulse-echo

http://en.wikipedia.org/wiki/Ultrasonic_testinghttp://www.nde.com/phased_array_technology.htm

Page 5: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

Focused Ultrasound Transducer

[Yu, Scanning acoustic microscopy and its applications to material characterization, 1995]

Page 6: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

• TX• Pulser, delta spike excitation• Gated sinus wave

‒ For high frequencies ~1 GHz

• RX• Protection circuit & Pre-amplifier• (Envelope detector / pulse shaper)• Oscilloscope

Tx/Rx for USM

Camacho, J., Fritsch, C.: ‘Protection circuits for ultrasound applications’ Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions, 2008, 55, (5), pp.1160-1164

Page 7: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

• Delta spike excitation• Stress for transducer and sample• Energy/amplitude variation with high PRF

• Gated sinus• Stress for transducer and sample• Uncertainty of Time-of-Fly (TOF)

‒ Depth resolution

Challenges with current techniques

Page 8: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

Coded USM

•Coded signals

•Electronics• Signal generation• Switch and timing• Preamplifier

•Signal Synthesis

•Ultrasound measurements

•RF-design• Components• PCB layout

Page 9: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

• Tx signal is wave packed• Frequency can be programmed• Phase can be programmed• Envelope (amplitude over time)

can be programmed

• Example linear frequency modulation (LFM)/chirp

Coded Signals

Page 10: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

Cross Correlation

dt descript depth resolutiondt depends on bandwidth

dt

Page 11: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

Coded Signal and SNR

SNR =10SNR =1

Page 12: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

• Arbitrary waveform generators• Digital to Analog converter (DAC) • Bandwidth up to 120 MHz (2 GS/s)• If you have money: 5.6 GHz (24 GS/s)

• High frequency signal generators• Output: continuous sine wave• Frequency range up to 4+ GHz• Narrow modulation bandwidth (less than 1

kHz)

Signal generationNumerical vector to Electric signal

Page 13: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

• Modulation = change carrier wave by signal• Amplitude modulation (AM)

‒ Quadrature amplitude modulation (QAM)

• Frequency modulation (FM)• Phase Modulation (PM)• Many other ….

Modulation techniques

Modulation

Page 14: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

• AM:

• QAM: •

QAM / IQ-modulation

Page 15: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

TRF370417 Modulator

• Arbitrary/modulation bandwidth is 2*120 MHz

‒ dt = 4.2ns

• Center output frequency is set by Local oscillator

• Output Bandwidth is NOT maximum output frequency

Page 16: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

Modulator outputs

1 cm

LoQ I

RF Out

Page 17: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

Carrier Feedthrough and Sideband Suppression

Page 18: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

Preamplifier

Page 19: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

• Amplification• Cascade design

• Voltage range• Max/Min signal input strenght

• Impedance maching• Input impedance• Output impedance

• DC-blocks• Capacitors and inductos for high frequencies• Same component can be tunet for different band

Preamplifier Design

Modulator -> Attenuator(-60 dB) -> Preamplifier(+55 dB)

Page 20: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

• Receiving during transmission is impossible

• Transducer delay line gives time limit for coded signal• Typically 0.3 – 5 µs• Signal generator limits coded

length 8 µs

• Maximize signal time and minimize switching time

Switch and Timing

Page 21: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

Switch Circuit

Page 22: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

• Power handling• Bandwidth • Attenuation

• Insertion loss (Smaller is better)• Isolation (Higher is better)

• Switching time• Glitch• AC/DC coupling • Control voltages

Switch designing

Page 23: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

• Circuit based on AVR µController• Programmable• Predictable• Timing resolution is

62.5 ns

• AVR trigs AWG and oscilloscope and controls the switches

Timing

Page 24: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

Timing Circuit

Page 25: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

Coded USM

•Coded signals

•Electronics• Signal generation• Switch and timing• Preamplifier

•Signal Synthesis

•Ultrasound measurements

•RF-design• Components• PCB layout

Page 26: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

• I and Q are numerical signals that can be generated by Matlab

Signal generationHow to generate I and Q

RF LO sin

LO cos

X X

Q I

LPLP

Matlab

RF

LO sin

LO cos

X X

Q I

+

Modulator

AWG

I & Q

Page 27: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

Results with 100 – 300 MHz

27/15

Transmitted signal

Received A-line

B-scan image

Page 28: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

• Signal-to-noise ratios (SNR) of surface echoes were estimated to compare coded excitation and delta spike excitation

• Preliminary results showed that coded chirp signal excitation increased mean SNR (16±3) dB for 75 MHz transducer

Results from 2010: 30 – 70 MHz Coded signal

Pulse-echo measurement using a coded 5 Vpp chirp signal excitation at 30-70 MHz (left) and a 33 Vpp delta spike excitation (right). The coded excitation increased mean SNR (16±3) dB.

Page 29: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

Higher frequency and coded signals• Higher frequency gives resolution

• Modulator shift arbitrary band (Not increase bandwidth)

• Coded signals may improve SNR/CNR• Cross correlation is sensitive for noise which has same

band than signal• Bad modulator can generated ”noise” (Feedthrough)

• Effective bandwidth can be tuned by arbitrary code• Transducer bandwidth• Attenuation in immersion liquid

• Arbitrary codes able multitone transmission

Page 30: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

RF design

• Impedance matching• Single-end vs. Differential signals• Available IC components:

• Amplifiers• Attenuators• Switches• Modulators / Demodulators• Power detector• Clock generator (PLL/VCO)All components are SMD

Page 31: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

Single-End vs. Differential signals

• Differential signals:• Single supply• No ground loops• Longer signal path• Reduces common-mode noise (noise

from ground)• Paired signal is required

• Single• Simpler design• (Dual supply)

There is amplifiers for conversion

Page 32: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

Available IC components Amplifiers

• Low noise (Pre. Amp.)• Noise figure <1dB• Gain ~20dB

• Gain blocks• 50 Ω line driver

• Power amplifier (Linear amplifier)• Differential amplifier• Variable gain amplifier (VGA)

Page 33: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

Available IC components Modulators

Page 34: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

Available IC components Modulators