33
Ultra high energy cosmic ray and LHCf data Nobuyuki Sakurai 2013/11/14 1

Ultra high energy cosmic ray and LHCf data2013/11/13  · Ultra High Energy Cosmic Ray 2013/11/14 4 Ultra high energy cosmic ray 108 1020 102 10-28 Energy (eV) (m 2 sr s GeV)-1 E J

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Ultra high energy cosmic ray and LHCf data2013/11/13  · Ultra High Energy Cosmic Ray 2013/11/14 4 Ultra high energy cosmic ray 108 1020 102 10-28 Energy (eV) (m 2 sr s GeV)-1 E J

Ultra high energy cosmic ray and LHCf data

Nobuyuki Sakurai

2013/11/14 1

Page 2: Ultra high energy cosmic ray and LHCf data2013/11/13  · Ultra High Energy Cosmic Ray 2013/11/14 4 Ultra high energy cosmic ray 108 1020 102 10-28 Energy (eV) (m 2 sr s GeV)-1 E J

Outline

• Ultra high energy cosmic ray (UHECR)

• Observation of UHECRs

• Hadronic interaction and UHECR observation

• Collider experiment dedicated UHECR study

~ LHCf ~

• Summary

2013/11/14 2

Page 3: Ultra high energy cosmic ray and LHCf data2013/11/13  · Ultra High Energy Cosmic Ray 2013/11/14 4 Ultra high energy cosmic ray 108 1020 102 10-28 Energy (eV) (m 2 sr s GeV)-1 E J

Ultra high energy cosmic ray (UHECR)

2013/11/14 3

Page 4: Ultra high energy cosmic ray and LHCf data2013/11/13  · Ultra High Energy Cosmic Ray 2013/11/14 4 Ultra high energy cosmic ray 108 1020 102 10-28 Energy (eV) (m 2 sr s GeV)-1 E J

Ultra High Energy Cosmic Ray

2013/11/14 4

Ultra high energy cosmic ray

1020108

102

10-28

Energy (eV)

Flu

x (m

2sr

s G

eV

)-1

JE3

Ankle

Knee

1 particle per 1 km2

per 100 years

Beam energy per proton of LHC

1020

Page 5: Ultra high energy cosmic ray and LHCf data2013/11/13  · Ultra High Energy Cosmic Ray 2013/11/14 4 Ultra high energy cosmic ray 108 1020 102 10-28 Energy (eV) (m 2 sr s GeV)-1 E J

CR source candidates of UHECRs

• Top-down model• Decay or annihilation of

super heavy particle

• Z burst

• Topological defect

• Bottom up model• Neutron star

• Active galactic nuclei

• Gamma ray burst

• Galactic cluster

• Radio galaxy

2013/11/14 5

Hillas plot

Page 6: Ultra high energy cosmic ray and LHCf data2013/11/13  · Ultra High Energy Cosmic Ray 2013/11/14 4 Ultra high energy cosmic ray 108 1020 102 10-28 Energy (eV) (m 2 sr s GeV)-1 E J

Greisen, Zatsepin and Kuzmin (GZK) Cutoff

Interaction mechanism between CMB and UHE proton.Mean free path ~ 50 Mpc

Flux suppression above 5x1019 eV is expected.AGASA beyond

HiRes, Auger suppression

Large systematic errorAGASA 18%, HiRes 17%, Auger 22%

2013/11/14 6

Page 7: Ultra high energy cosmic ray and LHCf data2013/11/13  · Ultra High Energy Cosmic Ray 2013/11/14 4 Ultra high energy cosmic ray 108 1020 102 10-28 Energy (eV) (m 2 sr s GeV)-1 E J

Models of spectrum structure

2013/11/14 7

Suppression = GZK cutoff “ankle”

= “dip” by pair-creation

Transition of the primary composition before “ankle”

Suppression = Accerelation limit

“ankle” = Different CR source “ankle” is not “dip”

Key is “composition measurement”

D. Allard et al. (2007) R. Aloisio et al. (2011)

eepp CMBR

Page 8: Ultra high energy cosmic ray and LHCf data2013/11/13  · Ultra High Energy Cosmic Ray 2013/11/14 4 Ultra high energy cosmic ray 108 1020 102 10-28 Energy (eV) (m 2 sr s GeV)-1 E J

Observation of UHECRs

2013/11/14 8

Page 9: Ultra high energy cosmic ray and LHCf data2013/11/13  · Ultra High Energy Cosmic Ray 2013/11/14 4 Ultra high energy cosmic ray 108 1020 102 10-28 Energy (eV) (m 2 sr s GeV)-1 E J

Air shower phenomena

2013/11/14 9Made by A. Oshima (Chubu U.)

Xmax

Longitudinal development

Lateral distribution

Page 10: Ultra high energy cosmic ray and LHCf data2013/11/13  · Ultra High Energy Cosmic Ray 2013/11/14 4 Ultra high energy cosmic ray 108 1020 102 10-28 Energy (eV) (m 2 sr s GeV)-1 E J

Surface detector array (SD)

2013/11/14 10

Detect secondary particles by counter array on the ground.

Strong point

100% duty

Relatively cheap

Lateral distributions of particle density and timing.

Weak point

Energy reconstruction depends upon the hadron interaction largely.

Page 11: Ultra high energy cosmic ray and LHCf data2013/11/13  · Ultra High Energy Cosmic Ray 2013/11/14 4 Ultra high energy cosmic ray 108 1020 102 10-28 Energy (eV) (m 2 sr s GeV)-1 E J

Detect air fluorescence light by telescope.

Strong point Longitudinal development of

air shower = Primary composition

Energy can be measured calorimetrically.

Weak point Duty is less than 10% Depends on the atmospheric

conditions.

Fluorescence Detector (FD)

2013/11/14 11

Page 12: Ultra high energy cosmic ray and LHCf data2013/11/13  · Ultra High Energy Cosmic Ray 2013/11/14 4 Ultra high energy cosmic ray 108 1020 102 10-28 Energy (eV) (m 2 sr s GeV)-1 E J

SDFD

Telescope Array experiment(TA)Western desert of Utah, USA

Detection area ~ 700 km2

Largest detector in northern hemisphere

Opereation : 2008 Mar.~

2013/11/14 12

35 km

Fluorescence detector(FD) Station (BRM&LR)

Middle Drum (MD) 507 Surface detectors (SD)

Black Rock Mesa (BRM)Long Ridge (LR)

Page 13: Ultra high energy cosmic ray and LHCf data2013/11/13  · Ultra High Energy Cosmic Ray 2013/11/14 4 Ultra high energy cosmic ray 108 1020 102 10-28 Energy (eV) (m 2 sr s GeV)-1 E J

Energy spectrum of UHECRs

2013/11/14 13

5.7x10^19eV

5.0x10^18eV No suppression : 68.1

Observed : 26

Significance= 5.7s

Page 14: Ultra high energy cosmic ray and LHCf data2013/11/13  · Ultra High Energy Cosmic Ray 2013/11/14 4 Ultra high energy cosmic ray 108 1020 102 10-28 Energy (eV) (m 2 sr s GeV)-1 E J

Energy spectrum of UHECRs

2013/11/14 14

p+ (2.7K) Dp+pp+ (2.7K)

p+e++e-

Page 15: Ultra high energy cosmic ray and LHCf data2013/11/13  · Ultra High Energy Cosmic Ray 2013/11/14 4 Ultra high energy cosmic ray 108 1020 102 10-28 Energy (eV) (m 2 sr s GeV)-1 E J

Xmax : Primary composition

2013/11/14 15

Longitudinal development

ProtonIron

For same energy…Proton iron

Averaged Xmax

Primary particle can be estimated by long. development information.

Xmax depends on primary energy.

Xmax difference between proton and iron is about 100 g/cm2.

Proton

Iron

Page 16: Ultra high energy cosmic ray and LHCf data2013/11/13  · Ultra High Energy Cosmic Ray 2013/11/14 4 Ultra high energy cosmic ray 108 1020 102 10-28 Energy (eV) (m 2 sr s GeV)-1 E J

Primary composition of UHECRs

2013/11/14 16

TA Stereo

ICRC2013 preliminary

Page 17: Ultra high energy cosmic ray and LHCf data2013/11/13  · Ultra High Energy Cosmic Ray 2013/11/14 4 Ultra high energy cosmic ray 108 1020 102 10-28 Energy (eV) (m 2 sr s GeV)-1 E J

Correlation with AGN

2013/11/14 17

• 472 AGN from 2006 Veron catalog with z<0.018

• E>57EeV, zenith angle<45deg, N=42(5yr)

• Separation angle < 3.1deg

Page 18: Ultra high energy cosmic ray and LHCf data2013/11/13  · Ultra High Energy Cosmic Ray 2013/11/14 4 Ultra high energy cosmic ray 108 1020 102 10-28 Energy (eV) (m 2 sr s GeV)-1 E J

Correlation with AGN

• 17 events correlate out of 42 p=0.014

2013/11/14 18

Page 19: Ultra high energy cosmic ray and LHCf data2013/11/13  · Ultra High Energy Cosmic Ray 2013/11/14 4 Ultra high energy cosmic ray 108 1020 102 10-28 Energy (eV) (m 2 sr s GeV)-1 E J

Summary of TA latest results

• Results of 5 years TA operation was presented.

• Energy spectrum• Significance of the suppression is 5.7s above

5.4x10^19eV.

• Composition• Consistent with proton above 1.6x10^18eV.

• Arrival direction• Some hints?

2013/11/14 19

Page 20: Ultra high energy cosmic ray and LHCf data2013/11/13  · Ultra High Energy Cosmic Ray 2013/11/14 4 Ultra high energy cosmic ray 108 1020 102 10-28 Energy (eV) (m 2 sr s GeV)-1 E J

Hadronic interaction & UHECR observation

2013/11/14 20

Page 21: Ultra high energy cosmic ray and LHCf data2013/11/13  · Ultra High Energy Cosmic Ray 2013/11/14 4 Ultra high energy cosmic ray 108 1020 102 10-28 Energy (eV) (m 2 sr s GeV)-1 E J

Summary of composition studies

2013/11/14 21

Telescope Array (TA)

Stereo Fly’s Eye HiRes/MIA and HiRes(High Resolution Fly’s Eye)

Around 1018 eV, composition is changing. (Stereo Fly’s Eye, HiRes/MIA)

Above 1018.5 eV, Proton (TA & HiRes) Light nuclei (Auger)

Pierre Auger Observatory (Auger)

1018 eV

1018 eV1018 eV

1018 eV

1019 eV

1019 eV1019 eV

1019 eV

Proton

Iron

Proton

Iron

Proton

Iron

Proton

Iron

Page 22: Ultra high energy cosmic ray and LHCf data2013/11/13  · Ultra High Energy Cosmic Ray 2013/11/14 4 Ultra high energy cosmic ray 108 1020 102 10-28 Energy (eV) (m 2 sr s GeV)-1 E J

Known anomalies of air shower observables(1)• # of muons on the ground is too much.

2013/11/14 22

Page 23: Ultra high energy cosmic ray and LHCf data2013/11/13  · Ultra High Energy Cosmic Ray 2013/11/14 4 Ultra high energy cosmic ray 108 1020 102 10-28 Energy (eV) (m 2 sr s GeV)-1 E J

2013/11/14 23

• E.M component of secondary particle on the ground is also too mach.

Known anomalies of air shower observables(2)

TAAuger

E(FD) = 1.27xE(SD)

E(FD) = E(SD)

Page 24: Ultra high energy cosmic ray and LHCf data2013/11/13  · Ultra High Energy Cosmic Ray 2013/11/14 4 Ultra high energy cosmic ray 108 1020 102 10-28 Energy (eV) (m 2 sr s GeV)-1 E J

Collider experiment dedicated UHECR study(LHCf)

2013/11/14 24

Page 25: Ultra high energy cosmic ray and LHCf data2013/11/13  · Ultra High Energy Cosmic Ray 2013/11/14 4 Ultra high energy cosmic ray 108 1020 102 10-28 Energy (eV) (m 2 sr s GeV)-1 E J

2013/11/14Forward Physics with the LHCf experiment 25

Air Shower study using collder

④ secondary

interactions

nucleon, p

① Inelastic cross section

If large s: rapid development

If small s: deep penetrating

② Forward energy spectrum

If softer shallow development

If harder deep penetrating

If large k (p0s carry more energy)

rapid development

If small k (baryons carry more energy)

deep penetrating

Page 26: Ultra high energy cosmic ray and LHCf data2013/11/13  · Ultra High Energy Cosmic Ray 2013/11/14 4 Ultra high energy cosmic ray 108 1020 102 10-28 Energy (eV) (m 2 sr s GeV)-1 E J

26

Multiplicity Energy flux

All particles

neutral

Most of the particles produced into central,Most of the energy flows into forward

Where to be measured at colliders

2013/11/14

Page 27: Ultra high energy cosmic ray and LHCf data2013/11/13  · Ultra High Energy Cosmic Ray 2013/11/14 4 Ultra high energy cosmic ray 108 1020 102 10-28 Energy (eV) (m 2 sr s GeV)-1 E J

The LHC forward experiment

27

ATLAS

140m

LHCf Arm#1

LHCf Arm#2

Two independent detectors at either side of IP1 (Arm#1, Arm#2 )

Charged particles (+)Beam

Charged particles (-)

Neutral particles

Beam pipe

96mm

• All charged particles are swept by dipole magnet• Neutral particles (photons and neutrons) arrive at LHCf• 0 degree is covered2013/11/14

Page 28: Ultra high energy cosmic ray and LHCf data2013/11/13  · Ultra High Energy Cosmic Ray 2013/11/14 4 Ultra high energy cosmic ray 108 1020 102 10-28 Energy (eV) (m 2 sr s GeV)-1 E J

LHCf Detectors

28

Arm#1 Detector20mmx20mm+40mmx40mm4 XY SciFi+MAPMT

Arm#2 Detector25mmx25mm+32mmx32mm4 XY Silicon strip detectors

Imaging sampling shower calorimeters Two calorimeter towers in each of Arm1 and Arm2 Each tower has 44 r.l. of Tungsten,16 sampling scintillator and 4

position sensitive layers

2013/11/14

Page 29: Ultra high energy cosmic ray and LHCf data2013/11/13  · Ultra High Energy Cosmic Ray 2013/11/14 4 Ultra high energy cosmic ray 108 1020 102 10-28 Energy (eV) (m 2 sr s GeV)-1 E J

2013/11/14Forward Physics with the LHCf experiment 29

11

[GeV/c]T

p0 0.1 0.2 0.3 0.4 0.5 0.6

]3

c-2

[G

eV

3/d

ps

3 E

din

el

s1

/

-410

-310

-210

-110

1

Data 2010

DPMJET 3.04

QGSJET II-03

SIBYLL 2.1

EPOS 1.99

PYTHIA 8.145

-1 Ldt=2.53+1.90nbò

0p=7TeV sLHCf 8.9 < y < 9.0

[GeV/c]T

p0 0.1 0.2 0.3 0.4 0.5 0.6

]3

c-2

[G

eV

3/d

ps

3 E

din

el

s1

/

-410

-310

-210

-110

1

-1 Ldt=2.53+1.90nbò

0p=7TeV sLHCf 9.0 < y < 9.2

[GeV/c]T

p0 0.1 0.2 0.3 0.4 0.5 0.6

]3

c-2

[G

eV

3/d

ps

3 E

din

el

s1

/

-410

-310

-210

-110

1

-1 Ldt=2.53+1.90nbò

0p=7TeV sLHCf 9.2 < y < 9.4

[GeV/c]T

p0 0.1 0.2 0.3 0.4 0.5 0.6

]3

c-2

[G

eV

3/d

ps

3 E

din

el

s1/

-410

-310

-210

-110

1

-1 Ldt=2.53+1.90nbò

0p=7TeV sLHCf 9.4 < y < 9.6

[GeV/c]T

p0 0.1 0.2 0.3 0.4 0.5 0.6

]3

c-2

[G

eV

3/d

ps

3 E

din

el

s1/

-410

-310

-210

-110

1

-1 Ldt=2.53+1.90nbò

0p=7TeV sLHCf 9.6 < y < 10.0

[GeV/c]T

p0 0.1 0.2 0.3 0.4 0.5 0.6

]3

c-2

[G

eV

3/d

ps

3 E

din

el

s1/

-410

-310

-210

-110

1

-1 Ldt=2.53+1.90nbò

0p=7TeV sLHCf 10.0 < y < 11.0

F IG . 7: (color online) . Combined pT spectra of the A rm1 and A rm2 detectors (black dots) and the total uncertainties (shadedtriangles) compared with the predicted spectra by hadronic interaction models.

The values of pT obtained in Table I I and Table I I Iare in reasonable agreement. W hen a specific value ofpT is needed the values of pT for this paper are de-fined as pT in Table I I , obtained by fi tting of the expo-nential function. The systematic uncertainty related to apossible bias of the pT extraction methods is estimatedby the difference of pT derived from two different ap-proaches: fi tting an exponential function and numericalintegration. The estimated systematic uncertainty is 5 % .

Rapidity χ 2 (dof) T pT Total uncertainty[M eV ] [M eV/c] [M eV/c]

[8.9, 9.0] 0.7 (7) 84.5 201.4 8.8[9.0, 9.2] 17.8 (7) 75.5 184.1 3.5[9.2, 9.4] 71.1 (8) 65.0 164.0 1.9[9.4, 9.6] 138.0 (6) 53.8 142.4 1.4[9.6, 10.0] 20.0 (5) 44.2 123.5 1.7[10.0, 11.0] 14.8 (2) 21.9 77.7 1.7

TABLE I I : Best-fi t results of the fi tting an exponential func-tion to the LHCf data and average transverse momentum ofπ0 for the rapidity range 8.9< y< 11.0. Total uncertainty in-dicates the statistical and systematic uncertainty on pT de-rived from the exponential fi t.

The values of pT that have been obtained in this anal-ysis are compared in F ig. 10 with the results from UA7 at

Rapidity pu p p erT pT Total uncertainty[GeV/c] [M eV/c] [M eV/c]

[9.2, 9.4] 0.6 167.1 4.3[9.4, 9.6] 0.4 146.1 1.7[9.6, 10.0] 0.4 117.1 1.6[10.0, 11.0] 0.2 76.0 1.9

TABLE I I I : A verage transverse momentum of π0 derived bynumerical integration of the pT spectra for the rapidity range9.2< y< 11.0. Total uncertainty indicates the statistical andsystematic uncertainty on pT .

Spp̄S (√s = 630GeV) [5] and the predictions of several

hadronic interaction models. I n F ig. 10 pT is presentedas a function of yl ab ≡ yb eam − y, where beam rapidityyb eam is 8.92 for

√s = 7 TeV and 6.50 for

√s = 630GeV.

The black dots and the red diamonds indicate the LHCfdata and the UA7 results, respectively. A lthough theLHCf and UA7 data in Fig. 10 have lim ited overlap andthe systematic errors of the UA7 data are relatively large,the pT spectra for LHCf and UA7 in Fig. 10 mostly ap-pear to lie along a common curve and there is no evidenceof a center of mass energy dependence.

The pT predicted by hadronic interaction models areshown by open circle (siby l l 2.1), open box (q g sj et I I -03) and open triangle (epo s 1.99). siby l l 2.1 typically

• EPOS1.99 show the best agreement with data in the models.• DPMJET and PYTHIA have harder spectra than data (“popcorn model”)• QGSJET has softer spectrum than data (only one quark exchange is allowed)

Page 30: Ultra high energy cosmic ray and LHCf data2013/11/13  · Ultra High Energy Cosmic Ray 2013/11/14 4 Ultra high energy cosmic ray 108 1020 102 10-28 Energy (eV) (m 2 sr s GeV)-1 E J

2013/11/14Forward Physics with the LHCf experiment 30

`

Small tower7 TeV pp

Large tower7 TeV pp

No rapidity selectionNo efficiency correctionOnly statistical error

Courtesy of K. Kawade (Nagoya U, STE lab.)

Page 31: Ultra high energy cosmic ray and LHCf data2013/11/13  · Ultra High Energy Cosmic Ray 2013/11/14 4 Ultra high energy cosmic ray 108 1020 102 10-28 Energy (eV) (m 2 sr s GeV)-1 E J

Example of model modification(1)

31

π0 spectrum

photon spectrum

DPMJET3+filter

2.5x1016 eV proton

~30g/cm2

2013/11/14

Page 32: Ultra high energy cosmic ray and LHCf data2013/11/13  · Ultra High Energy Cosmic Ray 2013/11/14 4 Ultra high energy cosmic ray 108 1020 102 10-28 Energy (eV) (m 2 sr s GeV)-1 E J

Example of model modification(2) • Toy model study of nucleon contribution

• High rapidity & high energy pions are changed to nucleon (Blue case).

• All nucleons are changed to pions (Red case).

2013/11/14 32

Long. development# of muons

Long. development# of EM component

More realistic modification studies are going on now.

Page 33: Ultra high energy cosmic ray and LHCf data2013/11/13  · Ultra High Energy Cosmic Ray 2013/11/14 4 Ultra high energy cosmic ray 108 1020 102 10-28 Energy (eV) (m 2 sr s GeV)-1 E J

Summary • Latest results of TA shows

• Spectrum shape & Xmax study are consistent with proton primary case.

• There is some hint of source in arrival direction distribution.

• Hadronic interaction study is very important for interpretations of UHECR observation.• Uncertainty of composition study.

• Anomalies of air shower observables.

• Hadrons in very forward region affects the air shower development.• LHCf data will improve the UHECR observation.

2013/11/14 33