ULS Reinforced Concrete Design

Embed Size (px)

Citation preview

  • 8/2/2019 ULS Reinforced Concrete Design

    1/61

    MarcAntonio Liotta

    Design of

    Reinforced Concrete Structuresat the LIMIT STATE

    Design and check of srtuctural elements

  • 8/2/2019 ULS Reinforced Concrete Design

    2/61

    References

    website:

    dsg.uniroma1.it/liotta

    email:

    [email protected]

    MarcAntonio Liotta Il progetto agli Stati Limite 2/[email protected]

  • 8/2/2019 ULS Reinforced Concrete Design

    3/61

    [email protected] 3/248

    Contents

    Theoretical fundamentals

    Probabilistic base

    Design at Ultimate Limit State

    Simple Flexure

    Shear

    Design at Exercise Limit State

    MarcAntonio Liotta Il progetto agli Stati Limite

  • 8/2/2019 ULS Reinforced Concrete Design

    4/61

    [email protected] 4/248

    Design Objective

    Gather an adequate protection for two limit conditions:

    Ultimate Limit State A structural damage preluding collapse

    It is preferred that the structrure undergoes to inelastic deformations

    Exercise Limit State Damages occur to non structural emlements

    It is preferred that the structrure remains elastic

    MarcAntonio Liotta Il progetto agli Stati Limite

  • 8/2/2019 ULS Reinforced Concrete Design

    5/61

    [email protected] 5/248

    Instruments

    Use of linear or nonlinear analysis methods static or dynamic indesign

    Use of capacity design in the structure design and conception

    Use of the Ultimate Limit State Method in the structureverification.

    MarcAntonio Liotta Il progetto agli Stati Limite

  • 8/2/2019 ULS Reinforced Concrete Design

    6/61

    [email protected] 6/248

    The Limit State method

    The fundamental problem of structural reliability:The safety equation.

    Uncertainty of variables

    Semistochastic approach Characteristic and design values

    Th epartial (safety) factors.

    MarcAntonio Liotta Il progetto agli Stati Limite

  • 8/2/2019 ULS Reinforced Concrete Design

    7/61

    [email protected] 7/248

    The Limit State method

    Principal characteristics:

    It is based on uncertainty of variables (actions, strengths)

    Several aspects are considered (exercise, collapse) againstwhich the risk is differenciated.

  • 8/2/2019 ULS Reinforced Concrete Design

    8/61

    [email protected] 8/248

    The Semi Probabilistic Limit State method

    Definitions

    Limit State The structure or its part cant fulfil its design requirements

    Ultimate Limit State Collapse and human life losses can happen

    Exercise Limit State Functionality loss can happen

  • 8/2/2019 ULS Reinforced Concrete Design

    9/61

    [email protected] 9/248

    The fundamental problem

    The relation between tho variables is studied

    E: Effect of the action: Demand

    R : Resistance (strength): Capacity of the section(element structure)

    Force(Effect of loads)

    Resistance

    MarcAntonio Liotta Il progetto agli Stati Limite

  • 8/2/2019 ULS Reinforced Concrete Design

    10/61

    [email protected] 10/248

    The fundamental problem

    E.G.

    E(Effect of the Force F): bending momentME(F)

    R (corresponding Resisting capacity of the beam): resisting moment

    MRF

    RME (F)

    MR (F)MarcAntonio Liotta Il progetto agli Stati Limite

  • 8/2/2019 ULS Reinforced Concrete Design

    11/61

    [email protected] 11/248

    The fundamental problem

    E.G.

    E: tensions due toME(F)

    R : limit tensionf(of the material)

    F

    R

    MarcAntonio Liotta Il progetto agli Stati Limite

  • 8/2/2019 ULS Reinforced Concrete Design

    12/61

    [email protected] 12/248

    The fundamental problem

    It must be verified that

    R E

    We have safety if,

    R E

    We have collapse if

    R < E Graficamente

  • 8/2/2019 ULS Reinforced Concrete Design

    13/61

    [email protected] 13/248

    Il problema fondamentale

    S

    R

    R >SR < S

    F = 5

    R = 10

    F = 10

    R = 5

    safety

    collapse

    MarcAntonio Liotta Il progetto agli Stati Limite

  • 8/2/2019 ULS Reinforced Concrete Design

    14/61

    [email protected] 14/248

    Uncertainty: variable distribution exmple

    Frequency istograms of wheight and height ofstudents in the classroom (year 2006-2007)

  • 8/2/2019 ULS Reinforced Concrete Design

    15/61

    Uncertainty: variable distribution exmple

    Frequency istograms of wheight and height of students inthe classroom (present class)

    MarcAntonio Liotta Il progetto agli Stati Limite 15/[email protected]

  • 8/2/2019 ULS Reinforced Concrete Design

    16/61

    [email protected] 16/248

    Uncertainty of demand (actions)

    Eis a stochastic variable Characterized (if normal) by a probability density

    fE(E)

    Which is a function of two parameters:

    Mean (average) value:mE

    scattering:sE

    E

    fE(E)

    mE

    sE

  • 8/2/2019 ULS Reinforced Concrete Design

    17/61

    [email protected] 17/248

    Uncertainty of capacity (strengths)

    R is a stochastic variable Characterized (if normal) by a probability density

    fR(r)

    Which is a function of two parameters :

    Mean (average) value :mR

    scattering :sR

    r

    fR(r)

    mR

    sR

  • 8/2/2019 ULS Reinforced Concrete Design

    18/61

    [email protected] 18/248

    Stochastic variables

    The Mean Value

    The standard deviation o average discrepancy

    The Variation Coefficient

    1

    1 n

    i

    i

    xn

    m

    21

    n

    i

    i

    x

    x

    n

    m

    s

    CVs

    m

  • 8/2/2019 ULS Reinforced Concrete Design

    19/61

    [email protected] 19/248

    Aleatoriet: richiami di statistica - Deviazione standard

    The standard deviation or average discrepancy

    Is a discrepancy index It measures the variability of a population of variables

    It measures the data dispersion around the mean value(expected value)

    It has the same unit of the observed variables

  • 8/2/2019 ULS Reinforced Concrete Design

    20/61

    The equation describing a normal distribution is

    Equation of the Normal distribution curve

    MarcAntonio Liotta Il progetto agli Stati Limite 25/[email protected]

    s

    m

    21

    21

    ( ) 2

    x

    f x e

    m

    s

    s

    x

    f(x)

  • 8/2/2019 ULS Reinforced Concrete Design

    21/61

    [email protected] 26/248

    Uncertainty

    Derives from uncertainies due to:

    Intensity of actions and from the probability of their coesistency

    Geometry of the structure

    Resistences of materials

    Divergence from calculated effects and those really induced onto thestructure.

  • 8/2/2019 ULS Reinforced Concrete Design

    22/61

    [email protected] 27/248

    Collapse probability

    s

    rSafety Region

    Collapse region

    The events shownhave different

    probability to occur

    fR(r)fS(s) dr ds

    Which is thecollapseprobability?

    MarcAntonio Liotta Il progetto agli Stati Limite

  • 8/2/2019 ULS Reinforced Concrete Design

    23/61

    [email protected] 28/248

    Probabilit di collasso

    the collapse (failure)probability is given by:

    safety

    collapse

    0

    0Pr

    SR

    SR

    f

    dsdrsfrf

    SRp

    MarcAntonio progetto agli Stati Limite

  • 8/2/2019 ULS Reinforced Concrete Design

    24/61

    [email protected] 29/248

    Nel caso di v.a. normali

    The failure probabilitypfis simply calculated as:

    Si noti che:

    SesR esS diminuiscono,pf diminuisce

    Se (mRmS) aumenta,pf diminuisce

    ss

    mm

    220PrSR

    SRf SRp

    MarcAntonio Liotta Il progetto agli Stati Limite

  • 8/2/2019 ULS Reinforced Concrete Design

    25/61

    [email protected] 33/248

    A semi-probabilistic approach

    s

    rsafety

    collapse

    Searching for two

    values, Rdand Sdfor which if wehave:

    Rd> Sdthen:

    pf

  • 8/2/2019 ULS Reinforced Concrete Design

    26/61

    [email protected] 34/248

    A semi-probabilistic approach

    s

    rsafety

    collapse

    Searching for two

    values, Rdand Sdfor which if wehave:

    Rd> Sdthen:

    pf

  • 8/2/2019 ULS Reinforced Concrete Design

    27/61

    [email protected] 35/248

    The design values

    The design valuesRdandEdallow to transforma a stochasticproblem:

    Pr[R E] pf,ammin a deterministic problem:

    Rd

    Ed

    That is, if:RdSdpfpf,amm

  • 8/2/2019 ULS Reinforced Concrete Design

    28/61

    [email protected] 36/248

    The design values

    The design valuesRdandEdare expressed as a function of

    the characteristic valuesRkandEk

    The characteristic valuesRkandEkare percentages of 5%

    and 95% of the distributions ofR andE

    The ratios gR=Rk/Rd andgS=Ed/Ekare the partial safety factors

    MarcAntonio Liotta Il progetto agli Stati Limite

  • 8/2/2019 ULS Reinforced Concrete Design

    29/61

    [email protected] 37/248

    Ed,Ek and gE (in case ofoccurrencies)

    E

    fE(S)

    mE

    sE

    EkEd

    The characteristic value is :Ek= mE+ 1.64sE

    Pr[E

  • 8/2/2019 ULS Reinforced Concrete Design

    30/61

    [email protected] 38/248

    Rd,Rk and gR (in case ofoccurrencies) The characteristic value is:

    Rk= mR1.64sR

    Pr[R

  • 8/2/2019 ULS Reinforced Concrete Design

    31/61

    [email protected] 39/248

    The safety equation

    It is required that:

    Rk /gREk gE In a more general form we have that:

    R(fk /gm)E(Fk gE)

  • 8/2/2019 ULS Reinforced Concrete Design

    32/61

    [email protected] 46/248

    The Codes

    NORME TECNICHE PER LE COSTRUZIONI (DM 14/01/2008)

    CIRCOLARE ESPLICATIVA (2/02/2009)

    Vecchie normative ormai superate:

    D.M. LL.PP. del 09/01/1996 Norme tecniche per il calcolo, l'esecuzione ed il collaudo delle strutture in cemento armato, normale e

    precompresso e per le strutture metalliche

    Circolare M. LL.PP. del 15/10/96, n. 252 Istruzioni per l'applicazione delDM 09/01/1996

    D.M. LL.PP. del 16/01/1996 Norme tecniche relative ai Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e

    sovraccarichi

    Circolare M. LL.PP. del 04/07/96, n. 156 Istruzioni per l'applicazione delDM 16/01/1996

  • 8/2/2019 ULS Reinforced Concrete Design

    33/61

    [email protected] 47/248

    Design Actions

    The safety checks must be done for the Ultimate Limit Stateand the Exercise Limit State

    The actions Combinations are specified in the paragraph2.5.3.

    MarcAntonio Liotta Il progetto agli Stati Limite

  • 8/2/2019 ULS Reinforced Concrete Design

    34/61

    [email protected] 48/248

    Design Life Span

    2.4.1. Nominal Life Span

    MarcAntonio Liotta Il progetto agli Stati Limite

  • 8/2/2019 ULS Reinforced Concrete Design

    35/61

    [email protected] 49/248

    Limit States

    Ultimate Limit States (ULS [SLU])

    Corresponding to the reach of extreme conditions

    Exercise Limit States (ELS, [SLE])

    Corresponding to ordinary needs of usage and duration.

    MarcAntonio Liotta Il progetto agli Stati Limite

  • 8/2/2019 ULS Reinforced Concrete Design

    36/61

    [email protected] 50/248

    Ultimate Limit States

    Are reguarding:

    Safety of the people

    Safety of the structure

    Safety of the content (in some cases)

    The Limit States to check are:

    Equilibrium loss of (part of) the structure as a rigid body

    Collapse, excessive deformatione, tranformation inmechanism, stability loss

    Fatigue failure.

    MarcAntonio Liotta Il progetto agli Stati Limite

  • 8/2/2019 ULS Reinforced Concrete Design

    37/61

    [email protected] 51/248

    Exercise Limit States

    Are reguarding :

    Functionality of the structure

    Comfort of the people

    Appearence and urability (deformations, ctracking)

    The Limit States to check are :

    Excessive deformations

    Premature or excessive crackings Decay, corrosion

    Excessive vibrations.

    MarcAntonio Liotta Il progetto agli Stati Limite

  • 8/2/2019 ULS Reinforced Concrete Design

    38/61

    [email protected] 52/248

    Limit State design

    Based on the use of models Of hte structures

    Of loads

    No Limit state is overtaken when are used adequatevalues of: Actions

    Material properties

    Geometry

    MarcAntonio Liotta Il progetto agli Stati Limite

  • 8/2/2019 ULS Reinforced Concrete Design

    39/61

    [email protected] 53/248

    Fulfilment of Requirements

    The requrements are fulfilled by means of the use of the partialsafety factor g

    The method foresees The introduction ofcharacteristic values

    The transformation of characteristic bvalues in design values introducing th

    epartial factors gm or gf

    MarcAntonio Liotta Il progetto agli Stati Limite

  • 8/2/2019 ULS Reinforced Concrete Design

    40/61

    [email protected] 54/248

    The partial factors

    The design capacities of materials are obtained dividing thecharacteristic values of materials by cefficients gm (>1)

    The design actions are obtained multiplying the characteristicvalues of the actions by gf

    >1 or 1 depending from the fact that they increase or

    decrease safety

    MarcAntonio Liotta Il progetto agli Stati Limite

  • 8/2/2019 ULS Reinforced Concrete Design

    41/61

    [email protected] 55/248

    Basic variables

    Actions Classification

    Characteristic values

    Other representative values

    Material and products propreties

    Geometric data

    MarcAntonio Liotta Il progetto agli Stati Limite

  • 8/2/2019 ULS Reinforced Concrete Design

    42/61

    [email protected] 56/248

    Actions (F) and their Effects (E)

    Action F

    Each cause (dead loads, live loads, impressed deformations,chemical physical agents...) able to induce limit states onto

    the structure EffectE(internal force)

    Eache internal force (Normal force, bending moment, shearforce, etc.) thato is caused in the structure by the actions

    In general, E can also be a deformation or a crackopening, etc.

    MarcAntonio Liotta Il progetto agli Stati Limite

  • 8/2/2019 ULS Reinforced Concrete Design

    43/61

    Actions: NTC 2008

    [email protected] 57/248MarcAntonio Liotta Il progetto agli Stati Limite

  • 8/2/2019 ULS Reinforced Concrete Design

    44/61

    2.5.1 Action classification:based on the way to esplicitate (chap. 2.5.1.1)

    a. Directa. Concentrated Forced, fixed or mobile loads

    b. Indirecta. Imposed dispacements, temperature and humidity variations,

    shrinking, prestressing, restraints failure,

    c. Decaya. Due to the material: natural alteration of the material in time;

    b. Due to external factors: alteration delle caratteristiche dei materialicostituenti lopera strutturale, a seguito di agenti esterni.

    MarcAntonio Liotta Il progetto agli Stati Limite 58/[email protected]

  • 8/2/2019 ULS Reinforced Concrete Design

    45/61

    2.5.1 Action classification:based on the structural response (2.5.1.2)

    Actions:

    a. static: not producing significant accelerations of thestructure;

    b. pseudo static: dynamic actions producing significantaccelerations that may be translated as static equivalentones;

    c. dinamiche: dynamic actions producing significantaccelerations

    MarcAntonio Liotta Il progetto agli Stati Limite 59/[email protected]

  • 8/2/2019 ULS Reinforced Concrete Design

    46/61

    [email protected] 60/248

    2.5.1 Action classification:based on their variation in time (2.5.1.3)

    Based ontheir variation in time, actions are defined:

    Permanent (G)

    G1: structural loads

    G2: non structural (dead loads) Variable (Q)

    Loads on floors, wind, snow

    Exceptional (A)

    Hurricanes, vehicle crashes, explosions Seismic (E)

    Deriving by earthquakes

    MarcAntonio Liotta Il progetto agli Stati Limite

  • 8/2/2019 ULS Reinforced Concrete Design

    47/61

    2.5.2 Action classification(refferring to their distribution)

    MarcAntonio Liotta Il progetto agli Stati Limite 61/[email protected]

  • 8/2/2019 ULS Reinforced Concrete Design

    48/61

    [email protected] 62/248

    2.5.3 Action combination

    For the ULS:

    k303Q3k202Q2k1Q1P2G21G1

    QQQPGG gggggg

    where:G1, G2 are the permanent actions

    P is the prestressing acionQik are the characteristic values of the n independent live loadsgi = partial safety factors

    Y0i = contemporaneity factor.

    MarcAntonio Liotta Il progetto agli Stati Limite

  • 8/2/2019 ULS Reinforced Concrete Design

    49/61

    2.5.3 Action combination

    MarcAntonio Liotta Il progetto agli Stati Limite 63/[email protected]

  • 8/2/2019 ULS Reinforced Concrete Design

    50/61

    2.5.3 Action combination coefficients (tab. 2.5.I)

    [email protected] Liotta Il progetto agli Stati Limite

  • 8/2/2019 ULS Reinforced Concrete Design

    51/61

    2.6 Actions ULS check

    65/248

  • 8/2/2019 ULS Reinforced Concrete Design

    52/61

    2.6 Actions:Partial safety factors

    [email protected] 66/248

  • 8/2/2019 ULS Reinforced Concrete Design

    53/61

    3.1 live loads (1 of 2)(chap 3.1)

  • 8/2/2019 ULS Reinforced Concrete Design

    54/61

    [email protected] 68/248

    3.1 Live loads (2 of 2)(NTC2008, chap 3.1)

  • 8/2/2019 ULS Reinforced Concrete Design

    55/61

    3.1.3.1 Internal partitions

    MarcAntonio Liotta Il progetto agli Stati Limite 69/[email protected]

  • 8/2/2019 ULS Reinforced Concrete Design

    56/61

    3.1.3.1 Internal partitions

    MarcAntonio Liotta Il progetto agli Stati Limite 70/[email protected]

  • 8/2/2019 ULS Reinforced Concrete Design

    57/61

    [email protected] 71/248

    4. Design strength of materials

    In general, the design strength is given by:

    k

    dm

    f

    f g

    where:Xk characteristic value of the material or product

    h Scale or environmental factorgm partial safety factor

  • 8/2/2019 ULS Reinforced Concrete Design

    58/61

    ULS and ELS check

    ULS it must be checked that:

    73/[email protected]

    dd

    RE

    where:Ed design value of the effect of the action

    Rd the corresponding capacity design valueCd the limit value of the exercise criterion

    ELS it must be checked that:

    dd CE

  • 8/2/2019 ULS Reinforced Concrete Design

    59/61

    [email protected] 74/284

    Load analysis

    MarcAntonio Liotta Il progetto agli Stati Limite

  • 8/2/2019 ULS Reinforced Concrete Design

    60/61

    Basic elements

    [email protected] 75/284MarcAntonio Liotta Il progetto agli Stati Limite

  • 8/2/2019 ULS Reinforced Concrete Design

    61/61

    MarcAntonio Liotta Il progetto agli Stati Limite 328/200marcantonio liotta@uniroma1 it