36
IHEIGHT LIMIT 523&4 (feet) IBASIC STRUCTURAL SYSTEM2 LA TERAL-FORCE-RESISTING SYSTEM R .0.0 1 Bearing wall system 5.5 4.5 2.6 2.6 ffi ffi 4.5 4.5 2.8 2.8 2.8 2.2 16) 16) EX) I 2.2 2.2 2.2 2.8 100 e; 4.4 2.8 2.8 I 7.0 2. Building frame system 240 6.5 5.0 2.8 2.8 EX) EX) 5.5 5.5 2.8 2.8 240 16) 5.6 5.6 5.6 2.2 2.2 2.2 100 ffi 6.4 2.2 2.8 2.8 2.8 2.8 240 3. Moment-resisting frame system 8.5 8.5 6.5 5.5 NoLo NoLo 100 ,,~,r l ",,: {f I 2.8 2.8 2.8 2.8 2.8 2.8 i 2.8 I 28I! 28 28 100I 2~ 4 Dual system 8.5 4.2 6.5 5.5 42 4.2 6.0 N.L. 100 100 100 100 100 28 2.8 2.8 2.8 2.8 2.8 8.5 4.2 N.L 100 6.5 4.2 6.5 4.2 N.L. 100 7.5 4.2 2.2 2.8I 2.8I 2.0 NoL. 100 ~7 1. Ught-framed walls with shear panels a. Wood structural panel walls for structures three stories or less b. All other light-framed walls 2. Shear walls a. Concrete b. Masonry 3. Ught steel-framed bearing walls with tension-{)nly bracing 4. Braced frames where bracing carries gravity load a. Steel b. ConcreteJ c. Hea timber 1. Steel eccentrically braced frame (EBF) 2. Ught-framed walls with shear panels a. Wood structural panel walls for structures three stories or less b. All other light-framed walls 3. Shear walls a. Concrete j b. Masonry 4. Ordinary braced frames a. Steel b. ConcreteJ c. Heavy timber , 5. Special concentrically braced frames ""~:;. a. Steel 1. Special moment-resisting frame (SMRF) a. Steel b. Concrete~ 2. Masonry moment-resisting wall frame (MMRWF) 3. Concrete intermediate moment-resisting frame (IMRF)s 4. Ordinary moment-resisting frame (OMRF) a. Steel" b. ConcreteS i ~. ~!:::~al.~~~ moment frames of steel (STMF) i 1. Shear walls a. Concrete with SMRF b. Concrete with steel OMRF c. Concrete with concrete IMRFS d. Masonry with SMRF ' I e. Masonry with steel OMRF f. Masonry with concrete IMRFJ I g. Masonry with masonry MMRWF 2. Steel EBF a. With steel SMRF b. With steel OMRF 3. Ordinary braced frames a. Steel with steel SMRF b. Steel with steel OMRF c. Concrete with concrete SMRFJ d. Concrete with concrete IMRFJ 4. Special concentrically braced frames a. Steel with steel SMRF b. Steel with steel OMRF 1. Cantilevered column elements 5. Cantilevered column 6. Shearwail-frame 5.5 2.8 16) 1. Concrete" Undefined system See Sections 1~.6.7 and 1629.9.2 - 25

UBC 97 Summary

Embed Size (px)

Citation preview

Page 1: UBC 97 Summary

IHEIGHT LIMIT523&4

(feet)

IBASIC

STRUCTURALSYSTEM2 LA TERAL-FORCE-RESISTING SYSTEM R .0.0

1 Bearing wall system

5.54.5

2.62.6

ffiffi

4.54.52.8

2.82.82.2

16)16)EX)

I 2.2

2.2

2.22.8

100

e;

4.42.82.8

I 7.02. Building frame system 240

6.55.0

2.82.8

EX)

EX)

5.55.5

2.82.8

24016)

5.65.65.6

2.22.22.2

100

ffi

6.4 2.2

2.82.82.82.8

2403. Moment-resisting frame

system 8.58.56.55.5

NoLo

NoLo

100

,,~,rl",,:{f I 2.8

2.82.8

2.82.82.8

i 2.8I 28I!

28

28

100I

2~

4 Dual system

8.54.26.55.5424.26.0

N.L.100100100100

100

282.8

2.82.82.82.8

8.54.2

N.L100

6.54.26.54.2

N.L.100

7.54.22.2

2.8I 2.8I 2.0

NoL.100~7

1. Ught-framed walls with shear panelsa. Wood structural panel walls for structures three stories or lessb. All other light-framed walls

2. Shear wallsa. Concreteb. Masonry

3. Ught steel-framed bearing walls with tension-{)nly bracing4. Braced frames where bracing carries gravity load

a. Steelb. ConcreteJc. Hea timber

1. Steel eccentrically braced frame (EBF)2. Ught-framed walls with shear panels

a. Wood structural panel walls for structures three stories or lessb. All other light-framed walls

3. Shear wallsa. Concrete jb. Masonry

4. Ordinary braced framesa. Steelb. ConcreteJc. Heavy timber ,

5. Special concentrically braced frames ""~:;.a. Steel

1. Special moment-resisting frame (SMRF)a. Steelb. Concrete~

2. Masonry moment-resisting wall frame (MMRWF)3. Concrete intermediate moment-resisting frame (IMRF)s4. Ordinary moment-resisting frame (OMRF)

a. Steel"b. ConcreteS

i ~. ~!:::~al.~~~ moment frames of steel (STMF)i 1. Shear walls

a. Concrete with SMRFb. Concrete with steel OMRFc. Concrete with concrete IMRFSd. Masonry with SMRF'

I e. Masonry with steel OMRFf. Masonry with concrete IMRFJ

I g. Masonry with masonry MMRWF2. Steel EBF

a. With steel SMRFb. With steel OMRF

3. Ordinary braced framesa. Steel with steel SMRFb. Steel with steel OMRFc. Concrete with concrete SMRFJd. Concrete with concrete IMRFJ

4. Special concentrically braced framesa. Steel with steel SMRFb. Steel with steel OMRF

1. Cantilevered column elements5. Cantilevered column

6. Shearwail-frame 5.5 2.8 16)1. Concrete"

Undefined system See Sections 1~.6.7 and 1629.9.2 -

25

Page 2: UBC 97 Summary

i,

.;.,U~2,~~~:~~~.Ji,~~~~~,=

FOOTNOTES FOR TABLE 16-N

N.L.-no limit

See Section 1630.4 for combination of structural systems.

2 Basic structural systems are defined in Section 1629.6

3 Prohibited in Seismic Zones 3 and 4

4

Section1634.2.

1

requirements of Section 2211.6 may use a R value of 8.

7

8 Prohibited in Seismic Zones 2A, 28, 3 and 4. See Sec;tion 1633.2.7.

26

Page 3: UBC 97 Summary
Page 4: UBC 97 Summary

J1""

-

I'

,.

j

'I

\ ~I\ I\ I

\\

Elements,

\\ .1\ 1

\ I\.1\ ' I

\ I

\;-~\. j

Late ral \ 1F \ Iorces \ 1

\-.;.-.,.!.I

Shearwalls or

Braced Frames\ I\-..;\ II I

\0lio-]I II I\~III I\1

l"""""""""""""""""".-""",""""""""""""""""""""",""""""""""""""""""""",

Sec 1629.6.3

Page 5: UBC 97 Summary

jl;tJ~

l"oaiJ;~i"" ..--,;"" -

-

Gravity Loads---l--- r r ---r--t_-j--_t ---+- -_t

\~!

~--~\ r\ I

~>~:,;~

~~b~~-~..~~

~~~"~~~~~.."t~i~

t

~~I,;;~~~~~~Jj-to

" ~I

\ I\ II I~Lateral

Forces i l\ I\ I\~\~ I\ I\ I

\--i\ I\ I

===J [~=~===

~=~~=:J [~~~==

~~=~=: ] [~===

~~:=~=~J [~=:~=:=

~:=~~~~~~ ] [~~~==

~~::=~~:~ ] [~~~==

~=~~~~~J [==:=~=:=:J [=~=~=

~\ J ~==~J [==~=~\ I ~~==~==) I\ I I\1 """"""""""""""""" """"""""""

"""""""""""""""""""""""""""~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Sec 1629.6.4

provides resistance for lateral forces

29

Page 6: UBC 97 Summary

~

-

Gravity Loads

l---£--l--- ,__j___i., t_-~

\ "'1

\\~1\ r\ t

\--~

~iLateralForces \~

Sec 1629.6.5

for gravity loads. Moment frame and shear walls

(or braced frames) provide resistance to lateral forces"

Moment frame alone must be able to resist 25 percent

30

Page 7: UBC 97 Summary

-

Sec 1629.6.6

.Cantilevered-columns resist lateral forces. ..fixed at base

with zero moment restraint at top

base member

2.2-

31

Page 8: UBC 97 Summary

-

ii;ilit

~

~

p;=--

I

Lateral ~IForces \\ i

\-""!

SWR = 4.5

6.

.Combination of shearwalls and moment frames to resist

.Prohibited in Seismic Zones 2,3 & 4. ..intended for zones

of low-seismicity. ..Seismic Zones 0 & 1

= 5.5

32

Page 9: UBC 97 Summary

~r~i:~~:;,~~~~~~~~~~r~~,~f~~~~.,~,,-"""'~~;.~

E~~£.-~~E~~

~f~~E:EEE.~f2, f

"rt,

--

"/,, /"/,,/,, /fXIXIXlXIXIXIXlXI'\/,,/ ,,/~/~/

\/'-

/'-/\ A /rXIX!X!XIXIXIXIX"'/\/,- /'-/'-;

'\

/'" /"'/'\ /'" /1XlXrxIXfX1XIXIXI'\ / '" / "'/"'/"'/

TRUSS GIRDER

,\. /\. /'\ /'\ /'\ /lXIXIXIXIXIXIXIXI"- / '\ / '\/ '\/'\/1I ~ I ~

I

SPECIAL SEGMENT ~

, , , .

,.- Inelastic Deformability :'~,~,~.

Energy Dissipation

-,-~., , ,'.'.' ,

4 41

/

//

3. /

5.

.Special ductile trusses. ..as part of moment frames

.Response factor. ..R = 6.5

.Height limitation in Seismic Zones 3 & 4 = 240 ft

33

Page 10: UBC 97 Summary

-r--

I

"':"":k:::I-:-: ;-:~:r\K1 D ;-:a", .,Q. r:::1 ,+:trn;:A: I ",aXI STC~'A S "' R

~~

6.5..

~.~-~:

,6.0

\

~Columns (Piers)

/ ~M M

Page 11: UBC 97 Summary

~

.~.::::.fu::.:.::I~:'

j~I:::i:::1

".

if[:!;:

:111\\. w<~

.~:'§jv1"Y

RT""c """,,":' " "

'R"" -

.::;::::::!'::[;~[c'

¥*:~Ii~~I~I

!i;~;1~j

;~~:j'i;;;::;.#;;!:~~:::::;:;t~~

1~\;:i~:~

:v

:i!i!~1:~~~:ji1~~::(~;::Ilif~!I~IfIll]

X/" f 'C T c"' "c,or c"' >c cc ", c'c. c

!iill~~'

62

Page 12: UBC 97 Summary
Page 13: UBC 97 Summary

1ii'

~z0

~a:UJ-JUJ0()~-J~a:t-OUJa..(/)

Ca

To Ts

PERIOD (SECONDS)

FIGURE 16..3-DESIGN RESPONSE SPECTRA

64

Page 14: UBC 97 Summary
Page 15: UBC 97 Summary
Page 16: UBC 97 Summary

~'.'.;:,'

",.,:

!.~:~r c" Acc

:-;H

!:j::;~:;:i::::;::

:", ;.,:'f,:,':

~,~j;;~f~~~~Il,J

i*li~~~

':::::

t~[q~~i~

C

Uc

:~~w~~fJi1,f~;

ili~fk~'

1:~':::~~~:j;::;ilf;~;

and more recent data

t

-7 SF

;:*,':::

Page 17: UBC 97 Summary

AVERAGE SOIL PROPERTIES FOR TOP 100 FEET(30 480 rom) OF SOIL PROFILE

SOILPROFILE

TYPE

SOIL PROFILENAME/GENERICDESCRIPTION Shear Wave

Velocity in ftfsec

(m/sec)

Standard PenetrationI

Test, N [or NCHforcohesionless soil

ii layers] (blows/foot)

Undrained ShearI

Strength pst(kPa)

SA Hard Rock > 5,000

(1,500)

Sa Rock 2,500 to 5,000(760 to 1,500)

:_.cr::::::J

.,6

.~

.~..~

.~~a~~~.~~.~I~I~I~

~~'~~

Sc Very Dense Soil andI Soft Rock

1,200 to 2,500(360 to 760)

> 50 > 2,000

(100)

So Stiff Soil Profile 600 to 1 ,200(180 to 360)

15 to 50 1,000 to 2,000(50 to 100)

SE1 Soft Soil Profile < 600( 1 80)

< 15 < 1,000

(50)

SF~~",.

Soil Requiring Site-specific Evaluation. See Section 1629.3.1.

!~;.; ,t!~ .! ;;;,.e::st,.~:-:,._.~-

69

Page 18: UBC 97 Summary

.

0

,"','~~1

;1

1 Site-specific geotechnical investigation and dynamic site response analysis shall be

performed to determine seismic coefficients for Soil Profile Type SF-

!:::!: ~ ll~~[1l~ \l~1 ~ ~ ~ ~ ~ l~ ~~ ~ ~ j ~ ~iii~ji1 ~ ~~ ~ 1:

;::::

..'.

T¥PE::j\::I[...

~;~:~ ,~(~j

i(!~1.~~~~\~ri\:iojQ&:i:::i:[:~::\~:r\![:i:11i

~~

::::::::,

lifff11;fj1i!i~f~1ii1jpii1\~:

1 Site-specific geotechnical investigation and dynamic site response analysis shall be

performed to determine seismic coefficients for Soil Profile Type SF-

Page 19: UBC 97 Summary

-6~

~]92

Page 20: UBC 97 Summary

T~ METHOD A

~~

vMETHOD B

I~"-

t'""""'

.~

I:

~~..1~~~I~I~-,-~~

(~- 'jif

~

I~-~~I ~

-,~~-':::1~1-""Cl-!j-~~--

~I :...~~~'

I~I '~'/ ",-~~.~c.'/

I " Ji;~"!~

Page 21: UBC 97 Summary

Fx = (V -Ft )~~..~ ~

Lwh

T :::; 0.7 sec. ...Ft = 0

T > 0.7 sec. ...Ft = 0.07 T V ~ 0.25V

Ft = O.O7TV Fnn r"=:J[~~~~~~~ J[=~~= ~-

~==~~~~=] [=~=~~= I

\ r\ I\ /.I ~I.I

\ I\ ~,\ I\ I\ I

\

hn

i I ~~==~~~J [==~~~=\ F x ! I ~~~;~=J [=~=~=r \~X \ ~ =~~==J [~=~~~=J [~~~~~~~:=

\ f ==~~~~~~J [=~=~~J [~=~~=

h x \ "1 ==~~~~~J [=~~~~=J [~~~=~=\~

U =~~~~~~~J [~~=~~~=] I

\ ! ., , , "'===~~~~~ J[==~~~~~ J ,,[==~~= = , , , ,'""""""""""""""""""""""""""""""" """"""""""""""""""",,"":-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:

v

Fthn

109

Page 22: UBC 97 Summary

.

force-resisting system

in proportion

to their

Distribute

story shear

to elements

of lateral

Horizontal

of

Sec

"Story" 1630.6

Distribution

Shear

~

rigidities. ..considering

diaphragm

rigidity

Page 23: UBC 97 Summary

Ev+

-It=:> +

E -

motion. .."vertical acceleration effect"

-p

,t\

124

Page 24: UBC 97 Summary

~ ;,c ;;~.f

-,.=~E

t~~~,~~~

~~~~~

~b~~~~

~i;~l~~~L_.~~

~~[~I~I~I~~I~I~I~~I~~I ~M~

~~,?' ;t~1- :~ r..",,"1"), "

'/" E \I

v~;

0.90 ::t:

Page 25: UBC 97 Summary
Page 26: UBC 97 Summary

(30 -3)rmax ~AB

1.5~ <

128

Page 27: UBC 97 Summary

II P II &

rmax

rmax

.:':';'..,~:.;;:

...;:f.:-.-"'.;:

~~

129

Page 28: UBC 97 Summary

V!/2 Vt4V!/2 V!/4

:'.~~

Vt2 Vt2 Vt/2p(min) = 1.0

V!/2

Page 29: UBC 97 Summary

rmax

rmax

131

Page 30: UBC 97 Summary

"P" &

Assume rmax = rmaxi

Perimeter frames (SMRF) located

along both orthogonal axes of building.

6 bays @ 25' each direction

Assume center of mass & center

of rigidity located at geometric center.

For illustrative purposes, ignore

accidental torsion.

rmax = 0.5

1 .73 *

1.4 *p =

rmax = (0.70)(Vs/8 + Vs/8)/Vs

rmax = 0.175

1.24p =

Page 31: UBC 97 Summary

rmax

,)

~

~~.2'",ir,

133

Page 32: UBC 97 Summary

"P "

Perimeter braced frames located

along both orthogonal axes of building.

6 bays @ 25' each direction

Assume center of mass & center

of rigidity located at geometric center.

For illustrative purposes, ignore

accidental torsion.

All braced frames identical in configuation

1 braced frame each side

rmax = 0.25

rmax = 0.125

--~17\:\~~/7\\~-Vs/4 Vsl8Vs/8 1.0pmin =

Page 33: UBC 97 Summary

elements. ..

shearwalls

frames

>

i'

ii :I CI 'I '

135

Page 34: UBC 97 Summary

r 90' 1

60'

-

Page 35: UBC 97 Summary

1.40u =

u =

u =

u =

u =

** See Appendix. .."Design of Reinforced Concrete Buildings under the 1997 VBG"

by S.K. Ghosh, May-June issue of Building Standards magazine

140

Page 36: UBC 97 Summary

u = 1 .40 + 1. 7L

u =

= 0.90flexure.. .0

shear. ..0 = 0.85