55
Non-linear mechanics types of non-linearities in structural mechanics, introduction to the theory of plasticity, solution methods for non-linear problems. 1

types of non-linearities in structural mechanics ...fast10.vsb.cz/brozovsky/data/pp2/p7en.pdf · Non-linear mechanics • types of non-linearities in structural mechanics, • introduction

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

  • Non-linear mechanics

    • types of non-linearities in structural mechanics,

    • introduction to the theory of plasticity,

    • solution methods for non-linear problems.

    1

  • Types of non-linearities

    • construction (model) non-linearities – supports and struc-

    tural elements that are working only in certain conditions

    (compression-only etc.),

    • physical (constitutive) non-linearities – material behaviour

    is not linear (differs from Hooke’s law) (non-linear elasticity,

    plasticity, fracture mechanics,. . . ),

    • geometric non-linearity – large deformations (displacements,

    rotations,. . . )

    2

  • Model non-linearity

    F

    F

    • supports that are working only under

    certain type of load,

    • often used for contact problems,

    • usually requires iterative solution.

    3

  • Support working only for certainload (1)

    4

  • Support working only for certainload (2)

    Model:

    podlozka

    uFEM 0.2.46

    Time: 1CS: CART

    23. 09. 2008

    x

    y

    z

    5

  • Support working only for certainload (3)

    Reactions (normal supports):

    podlozka

    uFEM 0.2.46

    Set: 1: 1.000Results

    23. 09. 2008

    -7.135765e+02

    -6.243795e+02

    -5.351824e+02

    -4.459853e+02

    -3.567883e+02

    -2.675912e+02

    -1.783941e+02

    -8.919706e+01

    0.000000e+00

    5.488281e+01

    1.097656e+02

    1.646484e+02

    2.195312e+02

    2.744141e+02

    3.292969e+02

    3.841797e+02

    4.390625e+02

    x

    y

    z

    6

  • Support working only for certainload (4)

    Deformed shape (normal supports):

    podlozka

    uFEM 0.2.46

    Set: 1: 1.000Result: s_1

    23. 09. 2008

    -7.135765e+02

    -6.243795e+02

    -5.351824e+02

    -4.459853e+02

    -3.567883e+02

    -2.675912e+02

    -1.783941e+02

    -8.919706e+01

    0.000000e+00

    5.488281e+01

    1.097656e+02

    1.646484e+02

    2.195312e+02

    2.744141e+02

    3.292969e+02

    3.841797e+02

    4.390625e+02

    x

    y

    z

    7

  • Support working only for certainload (5)

    Normal stress σx (normal supports):

    podlozka

    uFEM 0.2.46

    Set: 1: 1.000Result: s_x

    23. 09. 2008

    -7.164786e+02

    -6.269188e+02

    -5.373590e+02

    -4.477991e+02

    -3.582393e+02

    -2.686795e+02

    -1.791196e+02

    -8.955983e+01

    0.000000e+00

    5.410934e+01

    1.082187e+02

    1.623280e+02

    2.164374e+02

    2.705467e+02

    3.246560e+02

    3.787654e+02

    4.328747e+02

    x

    y

    z

    8

  • Support working only for certainload (6)

    Normal stress σy (normal supports):

    podlozka

    uFEM 0.2.46

    Set: 1: 1.000Result: s_y

    23. 09. 2008

    -1.534330e+03

    -1.342539e+03

    -1.150747e+03

    -9.589562e+02

    -7.671650e+02

    -5.753737e+02

    -3.835825e+02

    -1.917912e+02

    0.000000e+00

    3.712790e+00

    7.425580e+00

    1.113837e+01

    1.485116e+01

    1.856395e+01

    2.227674e+01

    2.598953e+01

    2.970232e+01

    x

    y

    z

    9

  • Support working only for certainload (7)

    Normal stress σ1 (normal supports):

    podlozka

    uFEM 0.2.46

    Set: 1: 1.000Result: s_1

    23. 09. 2008

    -7.135765e+02

    -6.243795e+02

    -5.351824e+02

    -4.459853e+02

    -3.567883e+02

    -2.675912e+02

    -1.783941e+02

    -8.919706e+01

    0.000000e+00

    5.488281e+01

    1.097656e+02

    1.646484e+02

    2.195312e+02

    2.744141e+02

    3.292969e+02

    3.841797e+02

    4.390625e+02

    x

    y

    z

    10

  • Support working only for certainload (8)

    Deformed shape (compression-only supports):

    podlozka

    uFEM 0.2.46

    Set: 1: 1.000CS: CART

    23. 09. 2008

    -8.029127e+02

    -7.025486e+02

    -6.021845e+02

    -5.018204e+02

    -4.014564e+02

    -3.010923e+02

    -2.007282e+02

    -1.003641e+02

    0.000000e+00

    4.536868e+01

    9.073735e+01

    1.361060e+02

    1.814747e+02

    2.268434e+02

    2.722121e+02

    3.175807e+02

    3.629494e+02

    x

    y

    z

    11

  • Support working only for certainload (9)

    Normal stress σx (compression-only supports):

    podlozka

    uFEM 0.2.46

    Set: 1: 1.000Result: s_x

    23. 09. 2008

    -8.084983e+02

    -7.074360e+02

    -6.063737e+02

    -5.053114e+02

    -4.042491e+02

    -3.031869e+02

    -2.021246e+02

    -1.010623e+02

    0.000000e+00

    3.922044e+01

    7.844088e+01

    1.176613e+02

    1.568818e+02

    1.961022e+02

    2.353226e+02

    2.745431e+02

    3.137635e+02

    x

    y

    z

    12

  • Support working only for certainload (10)

    Normal stress σy (compression-only supports):

    podlozka

    uFEM 0.2.46

    Set: 1: 1.000Result: s_y

    23. 09. 2008

    -1.535040e+03

    -1.343160e+03

    -1.151280e+03

    -9.594000e+02

    -7.675200e+02

    -5.756400e+02

    -3.837600e+02

    -1.918800e+02

    0.000000e+00

    6.736788e+00

    1.347358e+01

    2.021036e+01

    2.694715e+01

    3.368394e+01

    4.042073e+01

    4.715751e+01

    5.389430e+01

    x

    y

    z

    13

  • Support working only for certainload (11)

    Normal stress σ1 (compression-only supports):

    podlozka

    uFEM 0.2.46

    Set: 1: 1.000Result: s_1

    23. 09. 2008

    -8.029127e+02

    -7.025486e+02

    -6.021845e+02

    -5.018204e+02

    -4.014564e+02

    -3.010923e+02

    -2.007282e+02

    -1.003641e+02

    0.000000e+00

    4.536868e+01

    9.073735e+01

    1.361060e+02

    1.814747e+02

    2.268434e+02

    2.722121e+02

    3.175807e+02

    3.629494e+02

    x

    y

    z

    14

  • Physical (constitutive) non-linearity

    • Non-linear elasticity

    – Hooke’s law is not respected

    – No non-reversible deformations

    • Elasto-plastic behaviour

    – No-reversible (plastic) deformations

    • Viskoelasticity, viskoplasticity,. . .

    • Fragile materials

    – Fracture mechanics

    F

    u

    F

    u

    F

    u

    15

  • Elastoplastic behaviour (1)

    Load-displacement diagram for axially loaded member:

    F

    f

    elasticplastic

    u

    16

  • Elastoplastic behaviour (2)

    1. Ideally elasto–plastic

    2. Elasto–plastic with harden-

    ing

    3. Stiff–plastic

    F

    F

    u

    F

    u

    u

    F

    17

  • Plasticity condition

    F

    u

    f()f()

    σ2

    σ1

    18

  • Plasticity conditions (1)

    Maximal normal stresses theory (Rankine):

    −σmd ≤ σ1 ≤ σmt

    σ1 − σmt = 0

    σ2 − σmd = 0

    σ

    σ2

    1

    σσ

    σ

    σ

    mt

    mt

    md

    md

    19

  • Plasticity conditions (2)

    Maximal shear stresses theory (Tresca):

    τmax =σ1 − σ3

    2− τm = 0

    σ1 − σ3 − σmt = 0

    (τm =σmt

    2)

    σmd = σmt

    σ

    σ1

    2

    σσ

    σ

    mtmt

    mt

    σmt

    20

  • Plasticity conditions (3)

    Shape change energy condition (von Mises)

    (von Mises, Huber, Hencky):

    (σ1−σ2)2+(σ3−σ2)

    2+(σ1−σ3)2 = 2σ2mt

    σmd = σmt

    Note: ,,von Mises stress“:√

    (σ1 − σ2)2 + (σ3 − σ2)

    2 + (σ1 − σ3)2

    2

    σ

    σ1

    2

    σmtσ

    σ

    von Mises

    Tresca

    mt

    mt

    mtσ

    21

  • Plasticity conditions (4)

    Mohr – Coulomb condition (for geotechnics):

    σ1 −σmt

    σmdσ3 − σmt = 0

    σmd 6= σmt

    σ

    σ2

    1

    σσ

    σ

    σ

    mt

    mt

    md

    md

    22

  • Plasticity conditions (4)

    Chen – Chen condition (concrete):

    For compression–compression

    area (σ1 < 0 a σ2 < 0, σ3 < 0):

    J2 +Ayc

    3I1 − τ

    2yc = 0

    For other areas:

    J2 −1

    6I21 +

    Ayt

    3I1 − τ

    2yt = 0

    σ

    σ1

    2

    fyc

    fyt

    fyt

    fybc

    fybc ycf

    23

  • Hardening (1)

    F

    u

    σ1

    σ2

    24

  • Hardening (2)

    • Kinematic

    – subsequent plasticity conditions are

    moving

    – no change of shape and size

    • Isotropic

    – subsequent conditions are changing

    size proportionally

    – no moves

    • Combined

    – kinematic + isotropic

    σ

    σ1

    2

    σ

    σ1

    2

    25

  • Hardening (3)

    Combined hardening

    σ

    σ1

    2

    26

  • Plasticity and failure conditions

    1. Initial plasticity condition

    2. Subseqent plasticity condition

    3. Failure condition

    F

    u

    σ1

    σ2

    21

    3

    32

    1

    27

  • Variants of theory of plasticity (1)

    Theory of plastic deformations:

    • uses relations between total deforma-

    tions and stresses:

    σ = DEP ε

    • solution does not depend on loading

    path

    • (in most cases) hard derivation of rela-

    tions

    σ

    ε

    28

  • Variants of theory of plasticity (2)

    Plastic flow theory:

    • relation between changes (”speeds”) of

    deformations and stresses:

    σ̇ = Dep ε̇

    • solution depends on loading path

    • solution can bed divided to a set of lin-

    earised steps

    σ

    29

  • Plastic flow theory

    Unknowns – changes (”speeds”):

    • stresses: σ̇ = {σ̇x, σ̇y, σ̇z, τ̇yz, τ̇yz, τ̇xy}T

    • relative deformations: ε̇ = {ε̇x, ε̇y, ε̇z, γ̇yz, γ̇yz, γ̇xy}T

    • displacements (and rotations): u̇ = {u̇, v̇, ẇ}

    Assumptions:

    • initial stress σ and strain ε state must be known

    • solution have to respect boundary conditions

    30

  • Elasto–plastic material matrix (1)

    • Constitutive equations:

    σ̇ = Dep ε̇

    Dep . . . elasto–plastic material matrix (have to be found)

    • Division of change of deformations to elastic and plastic part:

    ε̇ = ε̇e + ε̇p

    • Plastic condition (used for description of change from elastic

    to plastic state):

    f(σ, k) = 0

    31

  • Elasto–plastic material matrix (2)

    • Consistence condition of plastic material:

    df =

    {

    ∂f

    ∂σ

    }T

    {dσ}+

    {

    ∂f

    ∂k

    }T

    {dk} = 0

    32

  • Elasto–plastic material matrix (3)

    • Speed of plastic deformation (plastic deformation law):

    ε̇p = dλ

    {

    ∂f

    ∂σ

    }

    • Stress changes:

    σ̇ = dσ = De (ε̇− ε̇p) = De

    (

    ε̇− dλ

    {

    ∂f

    ∂σ

    })

    • Equivalent plastic deformation:

    dεp =

    ε̇pT ε̇p = dλ

    {

    ∂f

    ∂σ

    }T {∂f

    ∂σ

    }

    33

  • Elasto–plastic material matrix (4)

    • From consistence condition:{

    ∂f

    ∂σ

    }T

    Dedε−dλ

    {

    ∂f

    ∂σ

    }T

    De

    {

    ∂f

    ∂σ

    }

    +dλ∂f

    ∂εp

    {

    ∂f

    ∂σ

    }T {∂f

    ∂σ

    }

    = 0

    34

  • Elasto–plastic material matrix (3)

    Computation of dλ parameter:

    dλ =

    {

    ∂f∂σ

    }TDeε̇

    {

    ∂f∂σ

    }TDe

    {

    ∂f∂σ

    }

    + ∂f∂εp

    {

    ∂f∂σ

    }T {∂f∂σ

    }

    If put to σ̇ = De(

    ε̇− dλ{

    ∂f∂σ

    })

    :

    σ̇ = De

    ε̇−

    {

    ∂f∂σ

    }TDeε̇

    {

    ∂f∂σ

    }TDe

    {

    ∂f∂σ

    }

    + ∂f∂εp

    {

    ∂f∂σ

    }T {∂f∂σ

    }

    {

    df

    }

    35

  • Elasto–plastic material matrix (4)

    The equation for σ̇ can be simplified:

    σ̇ = Dep ε̇ep,

    where elasto–plastic material matrix Dep is:

    Dep = De −De

    {

    ∂f∂σ

    } {

    ∂f∂σ

    }TDe

    {

    ∂f∂σ

    }TDe

    {

    ∂f∂σ

    }

    − ∂f∂εp

    {

    ∂f∂σ

    }T {∂f∂σ

    }

    36

  • Material models for concrete

    Mechanical properties of concrete

    • Near no linear elastic behaviour

    • Non-linear behaviour (non-reversible deformations, crack-

    ing,. . . )

    • Different behaviour for different types of loading

    F

    u

    37

  • Constitutive models for concrete

    • Discrete models:

    individual cracks are modelled (usually by finite element mesh

    changes)

    • Continuum models:

    model is assumed to remain continuous but with different ma-

    terial properties

    – Models based on non-linear fracture mechanics (smaered

    cracks, non-local continuum, microplane models)

    – Elasto–plastic models

    38

  • Chen plasticity condition (1)

    • Usual plasticity conditions don’t satisfy concrete

    behaviour (von Mises, Tresca)

    • Experiment research by plane stress concrete

    samples (Kupfer)

    • Several approximations of experimental data

    (Kupfer, Chen a Chen, Willam a Warnke,. . . )

    Chen and Chen:

    • Aproximation of Kupfer data by polynomic func-

    tions

    • The condition can be used both for plasticity and

    for failure

    σ2

    σσ

    σ

    mt

    mt

    σmt

    σ2

    39

  • Chen plasticity condition (2)

    For compression–compression zone

    (σ1 < 0 a σ2 < 0, σ3 < 0):

    J2 +Ayc

    3I1 − τ

    2yc = 0

    For all ther zones:

    J2 −1

    6I21 +

    Ayt

    3I1 − τ

    2yt = 0

    where:

    I1 = σ1 + σ2 + σ3

    J2 =1

    2

    (

    σ21 + σ22 + σ

    23

    )

    σ

    σ

    2

    fyc

    fyt

    fyt

    fybc

    fybc ycf

    40

  • Chen plasticity condition (3)

    Constants Ayx, τyx explanation:

    Ayc =f2ybc − f

    2yc

    2fybc − fyc

    τ2yc =fybcfyc(2fyc − fybc)

    3(2fybc − fyc)

    Ayt =fyc − fyt

    2

    τ2ut =fycfyt

    6

    σ

    σ1

    2

    fyc

    fyt

    fyt

    fybc

    fybc ycf

    41

  • Chen failure condition (4)

    Failure condition can be defined in the same manner:

    J2 +Auc

    3I1 − τ

    2uc = 0

    J2 −1

    6I21 +

    Aut

    3I1 − τ

    2ut = 0

    Auc =f2ubc − f

    2uc

    2fubc − fuc

    τ2yc =fubcfyc(2fuc − fubc)

    3(2fubc − fuc)

    Aut =fuc − fut

    2

    τ2ut =fucfut

    6

    42

  • Chen failure condition (5)

    Intermediate (subsequent) conditions:

    Ac = αcτ2c + βc

    At = αtτ2t + βt

    u

    y

    αc =Auc −Ayc

    τ2uc − τ2yc

    βc =Aycτ2uc −Aycτ

    2yc

    τ2uc − τ2yc

    αt =Aut −Ayt

    τ2ut − τ2yt

    βt =Aytτ

    2ut −Aytτ

    2yt

    τ2ut − τ2yt

    43

  • Related conditions

    Kupfer failure condition:

    • defined for 2D stress state

    • uses data from standardized tests (cyllindric strength of con-

    crete)

    Willam–Warnke condition:

    • defined for 3D

    • very similar to Chen one in term of input data and shape:

    f =1

    3z

    I1σc

    +

    2

    5+

    1

    r(θ)

    J2σc

    − 1 = 0

    44

  • Example – finite element model ofconcrete arch

    45

  • Example – plastic areas on arch

    46

  • Example – stress–strain curve

    0

    20

    40

    60

    80

    100

    120

    140

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

    Rel

    ativ

    e lo

    ad

    Relative displacement

    "arc18chen.rtrack" using 3:5"arc18smc.rtrack" using 3:5

    47

  • Smeared crack model (1)

    • Modelling of damaged area (cracks,. . . ) by reduction of ma-

    terial properties (E, ν)

    • Continuous model

    • Not very good for large discrete cracks

    R red.

    48

  • Smeared crack model (2)

    Orthotropic material:

    D =R2

    R2 − µ2 R1

    R1 µR1 0µR1 R2 0

    0 0 β GR2/(R2−µ2 R1)

    ,

    1

    2

    49

  • Smeared crack model (3)

    One-dimensional equivalent stress–strain relation:

    • 2D failute condition is used for determination

    of equivalen diagram parameters:

    – Chen–Chen

    – Kupfer

    • Crack band model can be used for limiting

    of result dependence of finite element mesh

    size (fracture energy is used)

    σ

    ε

    σ1

    σ2

    50

  • Smeared crack model (4)

    Bažant’s crack band model:

    Fracture energy:

    GF = AG L = const.,

    GF =∫ ∞

    0σn(w) dw,

    Total cracks widht: w = ε L

    Descending modulus form:

    Ez =Eo

    1− 2GFEoL σ2max

    .

    AG w

    σ

    L

    σ

    σ

    Eo

    Ez

    max

    ε

    51

  • Smeared crack model (5)

    Example – finite element model:

    1

    2

    162

    161

    160

    159

    158

    157

    156

    155

    154

    153

    152

    151

    150

    149

    148

    147

    146

    145

    144

    143

    142

    141

    140

    139

    138

    137

    136

    135

    134

    133

    132

    131

    130

    129

    128

    127

    126

    125

    124

    123

    122

    121

    120

    119

    118

    117

    116

    115

    114

    113

    112

    111

    110

    109

    108

    107

    106

    105

    104

    103

    102

    101

    100

    99

    98

    97

    96

    95

    94

    93

    92

    91

    90

    89

    88

    87

    86

    85

    84

    83

    82

    81

    80

    79

    78

    77

    76

    75

    74

    73

    72

    71

    70

    69

    68

    67

    66

    65

    64

    63

    62

    61

    60

    59

    58

    57

    56

    55

    54

    53

    52

    51

    50

    49

    48

    47

    46

    45

    44

    43

    42

    41

    40

    39

    38

    37

    36

    35

    34

    33

    32

    31

    30

    29

    28

    27

    26

    25

    24

    23

    22

    21

    20

    19

    18

    17

    16

    15

    14

    13

    12

    11

    10

    9

    8

    7

    6

    5

    4

    3

    20. 03. 2008

    CS: CARTTime: 1

    uFEM 0.2.30

    xz

    y

    52

  • Smeared crack model (6)

    Example – residual stiffness Rt:

    uFEM 0.2.30

    Time: 39.0000

    y

    x

    2.000000e+10

    1.750000e+10

    1.500000e+10

    1.250000e+10

    1.000000e+10

    7.500000e+09

    5.000000e+09

    2.500000e+09

    0.000000e+00

    0.000000e+00

    0.000000e+00

    0.000000e+00

    0.000000e+00

    0.000000e+00

    0.000000e+00

    0.000000e+00

    0.000000e+00

    20. 03. 2008

    Result: 28

    z

    53

  • Smeared crack model (7)

    Example – load–displacement curve:

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0 5e-05 0.0001 0.00015 0.0002 0.00025 0.0003

    rela

    tive

    load

    F [-

    ]

    vertical displacement w [m]

    8x416x818x9

    54

  • Recomended reading

    • BAŽANT, Z. P., PLANAS J. Fracture and Size Effect in Con-

    crete and Other Quasibrittle Materials, CRC Press, Boca Ra-

    ton, 1998

    • HAN, D. J., CHEN, W. H. Constitutive Modeling in Analysis of

    Concrete Structures, Journal of Engineering Mechanics. Vol.

    113, No. 4, April, ASCE, 1987

    • CHEN, A. C. T., CHEN, W. F. Constitutive Relations for Con-

    crete, Journal of the Engineering Mechanics Division ASCE,

    1975

    • OHTANI, Y., CHEN, W. F. Multiple Hardening Plasticity for

    Concrete Materials, Journal of the EDM ASCE, 198855