31
StructuralAcoustics Tutorial Part 1 Fundamentals Dr. Stephen A. Hambric ASME IMECE 2009 Orlando, Florida

Tutorial Fundamentals Acoustics 1 Structural Part · Structural Vibrations – Modes in beams and plates – Mobility • Sound radiated by structural waves – Radiation efficiency

  • Upload
    others

  • View
    19

  • Download
    2

Embed Size (px)

Citation preview

  • Structural‐Acoustics Tutorial

    Part 1 ‐Fund

    amentals

    Dr. Step

    hen A. H

    ambric

    ASM

    E IM

    ECE 2009

    Orlando

    , Florida

  • Overview

    •Instructor

    •Structural Vibratio

    ns–Mod

    es in

     beams and plates

    –Mob

    ility

    •Soun

    d radiated

     by structural waves

    –Ra

    diation efficiency

    •Structural waves gen

    erated

     by im

    pinging soun

    d–Transm

    ission

     loss

    •Brief introdu

    ction to num

    erical m

    etho

    ds–FE, B

    E, SEA

  • Instructor

    •Dr. Step

    hen A. H

    ambric

    –App

    lied Re

    search Lab, Pen

    n State University

    –Also Professor in Pen

    n States’ G

    radu

    ate Program in

     Acoustics

    –Associate Dire

    ctor, Pen

    n State Ce

    nter fo

    r Acoustics 

    and Vibration (CAV

    )

    •Accom

    panying materials:

    –Structural Acoustics Tutorials, Parts 1 and

     2, from 

    Acoustics Toda

    y magazine

    –Dow

    nload at www.ham

    bricacou

    stics.com

    http://www.hambricacoustics.com/

  • Motivation

    •Structures can

     amplify

     (and

     atten

    uate) sou

    nd 

    sources substantially

    Soun

    d Source

    Transfer Fun

    ction

    Soun

    d at Receiver

    dBdB

    dB

  • Structural Acoustic

     Transfer F

    unctions

    •Define transfer fu

    nctio

    n:

    •How

     is it defined

    ?

    2rad

    P F

    2 22

    ρ=

    rad

    oo

    ao

    rd

    oPcAv

    F

    v Fc

    PA

    Soun

    d po

    wer 

    radiation 

    efficiency

    Soun

    d po

    wer

    App

    lied force2

    Surface 

    averaged

     mob

    ility

    Fluid 

    impe

    dance

  • Surface Averaged

     Mob

    ility

    •Averaged

     surface vibratio

    n am

    plitu

    des caused

     by know

    n forces (m

    obilitie

    s)

    2 2

    v F

    Peaks in th

    e mob

    ility 

    functio

    n are caused

     by 

    mod

    es of reson

    ance

  • Mod

    es of R

    eson

    ance

    •Supe

    rposition

     of forward and backward traveling waves

    •Exam

    ple for fle

    xure of sim

    ply supp

    orted be

    am:

    •For o

    ther bou

    ndary cond

    ition

    s, waven

    umbe

    rs change, 

    e.g., for free

     bou

    ndaries:

    22

    22π

    ωρ

    ρ=

    =m

    mEI

    mEI

    kA

    aA

    22

    2

    (21)

    ωρ

    −≅

    mm

    EIa

    A

  • Mod

    es of R

    eson

    ance

    •Can also be compu

    ted with

     Finite

     Element (FE) 

    mod

    els or m

    easured

    –Measured and simulated

     resonance freq

    uencies seldom

     match exactly

    Glass plates 

    with

     free

     bo

    undary 

    cond

    ition

    s

  • Mob

    ility as a Summation of M

    odes

    •A structure’s m

    obility fu

    nctio

    n is a sim

    ple 

    series sum

    mation of m

    odal re

    spon

    ses to a 

    driving force

    –Exam

    ple:  sim

    ply supp

    orted rectangular p

    late

    ()

    02

    11

    02

    ,sin

    sin

    4

    1sin

    sin

    ,(

    ωπ

    πω

    ρπ

    π∞

    ==

    ⎛⎞

    ⎡⎤

    ⎡⎤

    ×⎜

    ⎟⎢

    ⎥⎢

    ⎥⎛

    ⎞⎣

    ⎦⎣

    ⎦ ⎠⎝

    ⎜ ⎝−

    ⎟ ⎠

    ∑∑

    mo

    mo

    nn

    mx

    ny

    xy

    ab

    hab

    xy

    mx

    ni

    yv

    aF

    b

    Mod

    al m

    ass 

    (fraction of 

    static m

    ass)

    Differen

    ce 

    betw

    een drive 

    and resonance 

    freq

    uencies

    Mod

    e shape at 

    respon

    selocatio

    n

    Mod

    e shape at 

    drivelocatio

    n

  • Mod

    al Respo

    nse Peaks

    •Why isn’t m

    odal re

    spon

    se infin

    ite at 

    resonance freq

    uencies?

    •Be

    cause 

    ωmnis com

    plex, due

     to dam

    ping

    –For lightly dam

    ped system

    s:

    whe

    re η

    is th

    e loss fa

    ctor

    ()

    22

    1, ,

    ()

    ωω

    ∝−

    oo

    mn

    vxy

    Fxy

    12η

    ωω

    ⎛⎞

    ≅+

    ⎜⎟

    ⎝⎠

    mn

    mn

    i

  • Dam

    ping

     Mechanism

    s

    •Thin she

    ets of rub

    ber adhe

    red 

    to th

    e surface, or sand

    wiche

    d be

    tween structures

    •Adjoining

     structures

    –Co

    upling losses

    –Joint losses (friction)

    •Soun

    d radiation

  • Effects of Dam

    ping

     on

     Mod

    al Respo

    nse Peaks

    •Peak (and

     ‘anti‐p

    eak’) amplitu

    des de

    crease with

     increasing

     dam

    ping

    –Mob

    ility app

    roache

    s the mean levels of an infin

    ite plate

    How

     can

     mob

    ility 

    of an infin

    ite plate 

    be com

    puted?

  • Infin

    ite Structure M

    obilitie

    s•

    A structure is effectively infin

    ite whe

    n waves re

    flected

     from

     bou

    ndaries are 

    very weak with

     respect to the original 

    waves emanating from

     a sou

    rce

    •For plates:

    •Useful for:

    –scaling mob

    ilitie

    s

    –pe

    rforming en

    gine

    ering estim

    ates of 

    prop

    osed

     material changes

    –Ch

    ecking

     mob

    ility m

    easuremen

    t accuracy

    ()

    inf

    inf

    1/

    ==

    YvF

    Dh

  • Infin

    ite Structure M

    obility 

    Scaling Exam

    ple

    •Tw

    o pane

    ls with

     identical geo

    metries and

     different m

    aterials

    –Lexan (plastic) and

     Aluminum

  • Infin

    ite Structure M

    obility 

    Scaling Exam

    ple

    •Measured mob

    ilitie

    s of both pane

    ls

  • Infin

    ite Structure M

    obility 

    Scaling Exam

    ple

    •Aluminum

     panel m

    obility scaled to th

    at of Lexan / /ρ ρ

    ==

    AlAl

    AlAl

    Lexan

    Lexan

    Lexan

    Lexan

    Ef

    cf

    cE

  • Radiation Efficiency

    rad

    ooP cAv

    ff c

    1.0 σ (f)

    Critical Frequ

    ency, w

    here 

    bend

    ing and acou

    stic 

    wavespe

    edsmatch

    Structure radiates 

    poorly

    Peak ra

    diation

    σ = 1

  • Coincide

    nce

    Bend

    ing waves are 

    dispersive, slower th

    an 

    acou

    stic waves at low

     freq

    uencies (sub

    sonic), 

    and faster at h

    igh 

    freq

    uencies (sup

    ersonic)

  • Radiating Flat Baffle

    d Pane

    lBe

    low Coinciden

    ce

    Pressures

    Odd

    /Odd

     >Odd

    /Even >

    Even

    /Even

  • Radiating Flat Baffle

    d Pane

    l –Increasing

     Frequ

    ency

    Intensities

    (propo

    rtional 

    to squ

    are of 

    pressure)

  • Radiation Efficiency –Effects of 

    Coincide

    nce Freq

    uency Shifts

    ff c

    1.0 σ (f)

    f c

    Stiffer, lighter 

    structure with

     faster waves

    Highe

    r σ

  • f c

    Radiation Efficiency –Effects of 

    Coincide

    nce Freq

    uency Shifts

    ff c

    1.0 σ (f)

    Flim

    sier, heavier 

    structure with

     slow

    er waves

    Lower σ

  • Soun

    d Po

    wer Transfer Functio

    ns

    •Co

    mbining

     surface averaged mob

    ility with

     radiation efficiency tells us ho

    w well a 

    structure radiates sou

    nd whe

    n driven

     by a 

    know

    n force

  • (1,1) m

    ode ‐> 

    ‘loud

    speaker’ m

    ode

  • Acoustic

     Waves Im

    pinging on

     Structures

  • Soun

    d Transm

    ission

     Loss 

    of an Infin

    ite Panel [

    ](

    )(

    )

    ()(

    )

    20

    0

    4

    4

    2

    0

    0

    2

    00

    si

    2sin

    s

    2s

    n

    ni

    i

    n

    ρφ

    τω

    ρ

    ωρ

    η

    ω

    φ

    φ

    φ=

    ⎡⎤

    ++

    ⎣⎦

    ⎡⎤

    −⎣

    Dk

    h

    c

    Dk

    c

    Dam

    ping

     im

    portant a

    t coincide

    nce

    Mass im

    portant 

    below 

    coincide

    nce 

    (mass law)

    Stiffne

    ss 

    impo

    rtant a

    bove 

    coincide

    nce

    Dips occur whe

    n mass an

    d stiffne

    ss 

    term

    s cancel

    φ= 0

    φ= 90

  • Soun

    d Transm

    ission

     near C

    oinciden

    ce

  • Finite Element (FE) A

    nalysis

    •Used gene

    rally to

     mod

    el 

    structures

    –Plates, beams, and

     solids

    •Also sometim

    es used to 

    mod

    el acoustic

     region

    s, 

    usually inside

     an ob

    ject

    •Many commercial 

    software packages 

    available

  • Boun

    dary Element (BE

    ) Analysis

    •Used to m

    odel th

    e bo

    unda

    riesof acoustic

     region

    s–Inside

     or o

    utside

     a vibratin

    g surface

    •Once surface pressures and 

    velocitie

    s are know

    n, th

    e acou

    stic field anyw

    here m

    ay 

    be com

    puted

    •Some commercial softw

    are 

    packages are available (not 

    as m

    any as FE packages)

  • Coup

    led FE/BE Analyses

    •Im

    pedance matrices of structures (from FE) and

     acou

    stic re

    gion

    s (from BE) m

    ay be coup

    led

    –Enforce continuity of n

    ormal fluctuating velocity along

     bo

    undary

  • Statistical Ene

    rgy Analysis (SEA

    )

    •SEA m

    odels the en

    ergy exchange be

    tween large 

    grou

    ps of reson

    ances in intercon

    nected

     structures and

     acoustic

     region

    s–Usually used at high freq

    uencies, whe

    re m

    ode coun

    ts 

    are very high

    –Exchange of e

    nergy is m

    odeled

     statistically

    •Get calculatio

    ns averaged over large region

    s, and

     over w

    ide 

    freq

    uency (usually one

    ‐third octave) bands

    –Fast com

    putatio

    ns, ind

    epen

    dent of increasing 

    freq

    uency

    –Va

    ‐One

     softw

    are

    Structural-Acoustics Tutorial�Part 1 - FundamentalsOverviewInstructorMotivationStructural Acoustic Transfer FunctionsSurface Averaged MobilityModes of ResonanceModes of ResonanceMobility as a Summation of ModesModal Response PeaksDamping MechanismsEffects of Damping �on Modal Response PeaksInfinite Structure MobilitiesInfinite Structure Mobility �Scaling ExampleInfinite Structure Mobility �Scaling ExampleInfinite Structure Mobility �Scaling ExampleRadiation EfficiencyCoincidenceRadiating Flat Baffled Panel�Below CoincidenceRadiating Flat Baffled Panel – Increasing FrequencyRadiation Efficiency – Effects of Coincidence Frequency ShiftsRadiation Efficiency – Effects of Coincidence Frequency ShiftsSound Power Transfer FunctionsSlide Number 24Acoustic Waves Impinging on StructuresSound Transmission Loss �of an Infinite PanelSound Transmission near CoincidenceFinite Element (FE) AnalysisBoundary Element (BE) AnalysisCoupled FE/BE AnalysesStatistical Energy Analysis (SEA)

    /ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 300 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict > /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False

    /CreateJDFFile false /Description > /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ > /FormElements false /GenerateStructure false /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles false /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /DocumentCMYK /PreserveEditing true /UntaggedCMYKHandling /LeaveUntagged /UntaggedRGBHandling /UseDocumentProfile /UseDocumentBleed false >> ]>> setdistillerparams> setpagedevice