32
TUTORIAL 5 FLEXURAL MEMBERS Lateral Torsion Buckling Lateral Torsion Buckling 1X March 2012

Tutorial 5- Flexural Members - Lateral Torsional Buckling

Embed Size (px)

DESCRIPTION

Design of steel lateral torsional

Citation preview

  • TUTORIAL 5

    FLEXURAL MEMBERS

    Lateral Torsion Buckling Lateral Torsion Buckling

    1X March 2012

  • Summary of design process

    The design process for a beam can be summarised as follows

    (a) Determination of all forces and moments on critical section

    (b) Selection of UB or UC

    (c) Classification of section

    (d) Check shear strength; if unsatisfactory return to (b)

    (e) Check bending capacity; if unsatisfactory return to (b) (e) Check bending capacity; if unsatisfactory return to (b)

    (f) Check deflection; if unsatisfactory return to (b)

    (g) Check web bearing and buckling at supports or concentrated load; if unsatisfactory provide web stiffener

    (h) Check lateral torsional buckling; if unsatisfactory return to (b) or provide lateral restraints

    (i) Summarise results

  • Problem 1:

    Prepare a design in Grade S355 Steel for a beam the above beam. Prepare a design in Grade S355 Steel for a beam the above beam.

    Note:

    All the loads are characteristics loads,

    Lateral torsional restraints exists at A, B, C and D.

    SOLUTION:

    STEP 1: Factored Loads at ULS

    At B: 1.35 x 40 + 1.5 x 70 = 159 kN

    At C: 1.35 x 20 + 1.5 x 30 = 72 kN

  • STEP 2: Bending Moment and Shear Force Diagrams:

    STEP 3: Section Selection:

    The critical section for the design is BC as the moment gradient is the least The critical section for the design is BC as the moment gradient is the least

    Try a 406 x 178 UB 74

    Section properties: h = 412.8 ; b = 179.5 ; tw = 9.5 ; tf = 16.0 ; r = 10.2 ; d = 360.4 ; Iel,y = 27300 ; Iel,z = 1550 ; ry = 17 ; rz = 4.04 ; Wel,y = 1320 ;Wel,z = 172 ; Wpl,y = 1500 ; Wpl,z = 267

    Moment Resistance:

    Section is Safe; Mpl,Rd = 533 kNm > MEd =390 kNm

    kNmM

    yfyplWRdplM 533

    6100.1

    35515000000

    ,,

    ===

  • STEP 3: Section Classification:

    Compression Flange:

    c/tf = 74.8/ 16 = 4.68 < 9 = 9*0.814=7.32 Flange is CLASS 1

    Web:

    c/t = d/tw = 37.9 < 72 = 72*0.814= 58.6 Web CLASS 1

    SECTION is CLASS 1 (PLASTIC)

    mmw

    trbc 8.74]5.92.1025.179[5.0]2[5.0 ===

    SECTION is CLASS 1 (PLASTIC)

    STEP 4: Shear Check

    Moment capacity is not reduced.

    kNMf

    AV yvRdpl 873100.1

    35542603

    103

    1 6,

    ===

    5.015.0873130

    ,

    ==Rdpl

    Ed

    VV

  • STEP 5: Calculation of Mcr:

    E = 210Gpa; G = 81GPa, Iw = 0.608 dm6 ; It = 62.8 cm

    4

    System(BC) Length = 3.0m

    28

    6

    03923.010155010608.0

    mII

    z

    w=

    =

    kNLEI

    z 35700.3

    101550102102

    862

    2

    2

    =

    =

    pipi

    Mcr = 826kNm

    L 0.3

    2862

    862

    2

    2

    0143.010155010210108.6210810.3

    mEIGIL

    z

    t=

    =

    pipi

    [ ] kNmmmkNEIGIL

    II

    LEIM

    z

    t

    z

    wz

    cr8260143.003923.03570 2/122

    2/1

    2

    2

    2

    2

    =+=

    +=

    pi

    pi

  • STEP 6: Determination of C1 value :

    Moment ratio:

    Mcr to used in the calculation of normalised slenderness ratio is is C1Mcr

    STEP 7: Determination of

    777.0390303

    ,

    ,

    ===

    BEd

    CEd

    MM

    106.1777.052.0777.04.188.152.04.188.1 221 =+=+= C

    LT

    STEP 8: Determination of Mb,Rd( lateral torsional buckling resistance):

    Note: There are 2 methods to determine the strength reduction factors due to

    the lateral torsional buckling:

    LT

    763.010826106.1

    35515000006 =

    ==

    cr

    yyLT

    MfW

  • Method 1: General Case( EN 1993-1-1 cl 6.3.2.2)

    1. Ratio h/b = 412.8/179.5=2.3 >2, Table 6.4, LT = 0.34( curve b, Table 6.3)

    2. Determine LT:

    3. Determine LT(eq. 6.56):

    ( ) ( )[ ]22.015.0 LTLTLTLT ++=( ) ( )[ ] 887.0763.02.0763.034.015.0 2 =++=LT

    [ ] [ ] 747.011

    ===

    4. LTB Resistance(EN 1993-1-1 cl 6.3.2.2 , eq. 6.55):

    Mb,Rd = 398kNm is greater than MEd,B = 390 kNm

    ( )[ ] [ ] 747.0763.0887.0887.011

    2/1222/122=

    +=

    +=

    LTLTLT

    LT

    kNmMf

    WM yyplLTRdb 398100.13551500000747.0

    16

    ,,===

  • Method 2: Rolled Sections( EN 1993-1-1 cl 6.3.2.3)

    1. Ratio h/b = 412.8/179.5=2.3 >2, Table 6.5, LT = 0.49( curve c, Table 6.3)

    2. Determine LT:

    =0.75(minimum value) and = 0.4(minimum value)

    3. Determine (eq. 6.56):

    ( )[ ]LTLTLTLTLT 20,15.0 ++=( )[ ] 807.0763.075.04.0763.049.015.0 2 =++=LT

    0,LT

    3. Determine LT(eq. 6.56):

    4. LTB Resistance(ignoring the correction factor, f):

    [ ] [ ] 787.0763.075.0807.0807.011

    2/1222/122=

    +=

    +=

    LTLTLT

    LT

    kNmMf

    WM yyplLTRdb 419100.13551500000787.0

    16

    ,,===

  • Taking into account the correction factor, f:

    Determine kc( Table 6.6):

    777.0390303

    ,

    ,

    ===

    BEd

    CEd

    MM

    931.0777.033.033.1

    133.033.1

    1=

    =

    = ck

    ( ) ( )[ ] 0.18.00.2115.01 2 = LTckf

    3. LTB Resistance(now with f) becomes:

    ( ) ( )[ ] 965.08.0763.00.21931.015.01 2 ==f

    kNmkNmM Rdb 434965.0419

    ,==

  • Problem 2:The 7.5m long 610x229UB125 of S275 steel as shown bellow is simply supported at both ends

    where lateral deflections are effectively prevented and twist rotations are partially restrained.

    Check the adequacy of the beam for a central concentrated at the top flange load caused by an

    unfactored dead load 60kN(which includes an allowance for self weight) and an unfactored

    imposed load of 100kN.

    Section Properties: h = 612.2 ; bf = 229.0 ; tw = 11.9 ; tf = 19.6 ; r = 12.7 ; Iz = 3932 ; Wpl,y = 3676 ; It = 154 ; Iw = 3.45

    SOLUTION:

    STEP 1: Design Bending Moment:

    MEd = {(1.35 x 60 + 1.5 x 100)x7.5/4 = 433 kNm

  • Bending Moment Diagram:

    STEP 2: Plastic Resistance Moment:

    Section is Safe; Mpl,Rd = 1011 kNm > MEd =433 kNm

    kNmM

    yf

    yplWRdplM 1011610

    0.12753676000

    0,,

    ===

  • STEP 3: Calculation of Mcr:

    The critical length of system, to allow the partial torsional end restrain is as given:

    Thus Lcr = kcr x L = 1.04 x 7500mm = 7806mm

    2/1

    2

    2

    2

    2

    += tcrwzcr EI

    GILII

    LEIM

    pi

    pi

    2/6.192.612

    0.22919.112.19

    750066.192.61212/

    61

    33

    +

    +=

    +=

    f

    f

    w

    ffcr d

    bt

    t

    Ld

    k

    04.1=cr

    k

    22

    +=zzcr

    cr EIILM

    pi

    2/1

    42

    42

    4

    12

    2

    42

    10393221000010154810007806

    1039321045.3

    7806103932210000

    +

    =

    pi

    picr

    M

    kNmMcr

    6.568=

  • STEP 4: Determination of C1 value :

    Moment ratio:

    C1 =1.365 ( Table 6.12)

    Mcr to used in the calculation of normalised slenderness ratio is is C1Mcr

    STEP 5: Determination of

    777.0390303

    ,

    ,

    ===

    BEd

    CEd

    MM

    LT

    STEP 6: Determination of Mb,Rd( lateral torsional buckling resistance)

    General Case( EN 1993-1-1 cl 6.3.2.2)

    1. Ratio h/b = 612.2/229.0=2.67 >2, Table 6.4, LT = 0.34( curve b, Table 6.3)

    14.1106.568365.1

    27536760006 =

    ==

    cr

    yyLT

    MfW

  • 2. Determine LT:

    3. Determine LT(eq. 6.56):

    ( ) ( )[ ]22.015.0 LTLTLTLT ++=( ) ( )[ ] 31.114.12.014.134.015.0 2 =++=LT

    ( )[ ] [ ] 511.014.131.131.111

    2/1222/122=

    +=

    +=

    LTLTLT

    LT

    4. LTB Resistance(EN 1993-1-1 cl 6.3.2.2 , eq. 6.55):

    Mb,Rd = 517kNm is greater than MEd,B = 433 kNm

    ( )[ ] [ ]14.131.131.1 ++ LTLTLT

    kNmMf

    WM yyplLTRdb 6.516100.12753676000511.0

    16

    ,,===

  • Problem 3:The 9.0m long 254x146UB37 of S275 steel as shown bellow, has a central concentrated

    design load of 70kN(which includes an allowance for self weight) and a design end

    moment of 70kNm. Lateral deflections and twist rotations are effectively prevented at

    both ends and by a brace at mid-span. Check the adequacy of the braced beam.

    SOLUTION:

    STEP 1: Design Bending Moment:

    R3={( 70 x 4.5) 70 }/9 = 27.22kN;

    Med,2 = 27.22 x 4.5 = 122.5 kNm

  • Bending Moment Diagram:

    STEP 2: Section Resistance: STEP 2: Section Resistance:

    tf = 10.9 mm ; fy = 275 N/mm2 ; = (235/275)1/2 = 0.924

    cf /(tf ) = (146.4/2-6.3/2-7.6)/(10.9x0.924)=6.20 < 9 ----Flange CLASS 1

    cw /(tw ) = (256-2x10.9-2x7.6)/(6.3x0.924)= 37.6 < 72 ----Web CLASS 1

    Section is CLASS 1Plastic

    kNmM

    yf

    yplWRdplM 133610

    0.1275483000

    0,,

    ===

  • STEP 3: Calculation of Mcr(considering the section 2-3):

    Length of system L = 4.5 m

    2/1

    2

    2

    2

    2

    +=

    z

    tcr

    z

    w

    cr

    z

    cr EIGIL

    II

    LEIM

    pi

    pi

    2/1

    42

    42

    4

    12

    2

    42

    10571210000103.15810004500

    10571100857.0

    450010571210000

    +

    =

    pi

    picr

    M

    STEP 4: Determination of C1 value :

    Moment ratio:

    C1 =1.88 ( Table 6.11)

    kNmMcr

    21.111=

    0.05.122

    02,

    3,===

    Ed

    Ed

    MM

  • STEP 5: Determination of

    STEP 6: Determination of Mb,Rd( lateral torsional buckling resistance):General Case( EN 1993-1-1 cl 6.3.2.2)

    1.Ratio h/b = 256/146.4 = 1.75 < 2, Table 6.4, LT = 0.21( curve a, Table 6.3)2.Determine LT:

    LT

    797.01021.11188.1

    2754830006 =

    ==

    cr

    yyLT

    MfW

    2.Determine LT:

    3.Determine LT(eq. 6.56):

    ( ) ( )[ ]22.015.0 LTLTLTLT ++=( ) ( )[ ] 88.0797.02.0797.021.015.0 2 =++=LT

    ( )[ ] [ ] OKLTLTLTLT _1798.0797.088.088.011

    2/1222/122=

    +=

    +=

  • 4. LTB Resistance(EN 1993-1-1 cl 6.3.2.2 , eq. 6.55):

    Mb,Rd = 106 kNm is less than MEd,B = 122.5 kNm ----

    SECTION is INADEQUATE

    kNmMf

    WM yyplLTRdb 106100.1275483000798.0

    16

    ,,===

  • Method 2: Rolled Sections( EN 1993-1-1 cl 6.3.2.3)

    1. Ratio h/b = 256/146.4 = 1.75 < 2, Table 6.5, LT = 0.34( curve b, Table 6.3)

    2. Determine LT:

    =0.75(minimum value) and = 0.4(minimum value)

    3. Determine (eq. 6.56):

    ( )[ ]LTLTLTLTLT 20,15.0 ++=( )[ ] 806.0797.075.04.0797.034.015.0 2 =++=LT

    0,LT

    3. Determine LT(eq. 6.56):

    4. LTB Resistance(ignoring the correction factor, f):

    [ ] [ ] 818.0797.075.0806.0806.011

    2/1222/122=

    +=

    +=

    LTLTLT

    LT

    kNmMf

    WM yyplLTRdb 109100.1275483000818.0

    16

    ,,===

  • Taking into account the correction factor, f:

    Determine kc( Table 6.6):

    3. LTB Resistance(now with f) becomes:

    82.0=c

    k

    ( ) ( )[ ] 0.18.00.2115.01 2 = LTckf ( ) ( )[ ] 91.08.0797.00.2182.015.01 2 ==f

    3. LTB Resistance(now with f) becomes:

    SECTION is STILL INADEQUATE

    kNmkNmM Rdb 12091.0109

    ,==

  • Problem 4:The 8.0m long 475x191UB82 of S275 steel as shown bellow. The cantilever has lateral,

    torsional, and warping restraints at the support, is free at the tip, and has a factored

    upwards design uniformly distributed load of 12kN.m(which includes an allowance for

    self weight) acting on top flange. Check the adequacy of the cantilever.

    SOLUTION:

    STEP 1: Design Bending Moment:

    MEd = 12x82/2 = 384kNm

  • Bending Moment Diagram:

    STEP 2: Section Resistance:

    tf = 16.0 mm ; fy = 275 N/mm2 ; = (235/275)1/2 = 0.924

    c /(t ) = (191.3/2 - 9.9/2 10.2)/(16 x0.924)=5.44 < 9 ---Flange CLASS 1cf /(tf ) = (191.3/2 - 9.9/2 10.2)/(16 x0.924)=5.44 < 9 ---Flange CLASS 1

    cw /(tw ) = (460.2 - 2x16.0-2x10.2)/(9.9x0.924)= 44.6 < 72 ---Web CLASS 1

    Section is CLASS 1Plastic

    Section is Safe; Mpl,Rd = 503.3 kNm > MEd =384 kNm

    kNmM

    yf

    yplWRdplM 3.503610

    0.12751830000

    0,,

    ===

  • STEP 3: Calculation of Mcr(considering the section):

    Length of system Lcr = 8.0m

    2/1

    2

    2

    2

    2

    +=

    z

    tcr

    z

    w

    cr

    z

    cr EIGIL

    II

    LEIM

    pi

    pi

    2/1

    42

    42

    4

    12

    2

    42

    101870210000102.698100016000

    10187010922.0

    16000101870210000

    +

    =

    pi

    picrM

    STEP 4: Determination of C1 value :

    C1 =1.132 ( Table 6.11)

    kNmM cr 1.06.98=

  • STEP 5: Determination of

    STEP 6: Determination of Mb,Rd( lateral torsional buckling resistance):General Case( EN 1993-1-1 cl 6.3.2.2)

    1.Ratio h/b = 460.0/191.3 = 2.40 >2, Table 6.4, LT = 0.34( curve a, Table 6.3)2.Determine LT:

    LT

    0673.01006.98132.1

    27518306 =

    ==

    cr

    yyLT

    MfW

    2.Determine LT:

    3.Determine LT(eq. 6.56):

    Take

    ( ) ( )[ ]22.015.0 LTLTLTLT ++=( ) ( )[ ] 48.00673.02.00673.034.015.0 2 =++=LT

    ( )[ ] [ ] OKNotLTLTLTLT __105.10673.048.048.011

    2/1222/122=

    +=

    +=

    00.1=LT

  • 4. LTB Resistance(EN 1993-1-1 cl 6.3.2.2 , eq. 6.55):

    Mb,Rd = 503.25 kNm is less than MEd,B = 348 kNm ----

    SECTION is ADEQUATE

    kNmMf

    WM yyplLTRdb 25.503100.1275183000000.1

    16

    ,,===

  • Problem 5:Determine a suitable UB of S275 for simply supported beam, if twist rotations are effectively

    prevented at the ends and is a brace is added which effectively prevents lateral deflections and

    twist rotation at mid Span.

    SOLUTION:STEP 1: Design Bending Moment:

    MEd = {(1.35 x 60 + 1.5 x 100)x7.5/4 = 433 kNm

    STEP 2: Selecting a Trial Section, for fy = 275N/mm2

    36

    ,1750

    2759.010433

    9.0cmf

    MWy

    Edypl =

    =

  • Try a 457x191 UB 82 with Wpl,y = 1830 cm3 > 1750 cm3

    STEP 3: Section Resistance:

    Section is Safe; Mpl,Rd = 503.3 kNm > MEd =433 kNm

    STEP 4: Elastic Buckling Moment

    kNmM

    yf

    yplWRdplM 3.503610

    0.12751830000

    0,,

    ===

    2/122 GILIEIpiLength of system Lcr = 3750mm 22

    2

    2

    +=

    z

    tcr

    z

    w

    cr

    z

    cr EIGIL

    II

    LEIM

    pi

    pi

    2/1

    42

    42

    4

    12

    2

    42

    101870210000102.69810003750

    10187010922.0

    3750101870210000

    +

    =

    pi

    picr

    M

    kNmMcr

    3.727=

  • STEP 5: Determination of C1 value :C1 =1.879 ( Table 6.11)

    STEP 6: Determination of LT606.0

    103.727879.12751830000

    61

    =

    ==

    cr

    yyLT

    MCfW

    STEP 7: Determination of Mb,Rd( lateral torsional buckling resistance):General Case( EN 1993-1-1 cl 6.3.2.2)

    1.Ratio h/b = 460.0/191.3 = 2.40 >2, Table 6.4, LT = 0.34( curve a, Table 6.3)

    2.Determine LT:

    ( ) ( )[ ]22.015.0 LTLTLTLT ++=( ) ( )[ ] 753.0606.02.0606.034.015.0 2 =++=LT

  • 3. Determine LT(eq. 6.56):

    4. LTB Resistance(EN 1993-1-1 cl 6.3.2.2 , eq. 6.55):

    ( )[ ] [ ] OKLTLTLTLT _1833.0606.0753.0753.011

    2/1222/122=

    +=

    +=

    kNmMf

    WM yyplLTRdb 2.419100.12751830000833.0

    16

    ,,===

    Mb,Rd = 419.2 < 433 kNm= MEd LTB Resistance INADEQUATE

    M 0.11

  • Less Conservative Method: Rolled Sections( EN 1993-1-1 cl 6.3.2.3)

    1. Ratio h/b = 460.0/191.3 = 2.40 >2, Table 6.5, LT = 0.49( curve c, Table 6.3)

    2. Determine LT: =0.75 and = 0.4

    3. Determine LT(eq. 6.56):

    ( )[ ]LTLTLTLTLT 20,15.0 ++=( )[ ] 688.0606.075.04.0606.049.015.0 2 =++=LT

    0,LT

    4. LTB Resistance(ignoring the correction factor, f):

    Mb,Rd = 444.4 > 433 kNm= MEd LTB Resistance is ADEQUATE

    [ ] [ ] 883.0606.075.0688.0688.011

    2/1222/122=

    +=

    +=

    LTLTLT

    LT

    kNmMf

    WM yyplLTRdb 4.444100.12751830000883.0

    16

    ,,===