25
1 Turbulent Turbulent Generation of Large Generation of Large Scale Magnetic Scale Magnetic Fields in Fields in Unmagnetized Plasma Unmagnetized Plasma Vladimir P.Pavlenko Vladimir P.Pavlenko Uppsala University, Uppsala University, Uppsala, Sweden Uppsala, Sweden

Turbulent Generation of Large Scale Magnetic Fields in Unmagnetized Plasma

Embed Size (px)

DESCRIPTION

Turbulent Generation of Large Scale Magnetic Fields in Unmagnetized Plasma. Vladimir P.Pavlenko Uppsala University, Uppsala, Sweden. Coworkers. Zhanna N.Andrushchenko Martin Jucker. Outline. Some notes from Fluid Mechanics Motivation Modeling Self-consistent description - PowerPoint PPT Presentation

Citation preview

11

Turbulent Generation of Turbulent Generation of Large Scale Magnetic Large Scale Magnetic

Fields in Unmagnetized Fields in Unmagnetized Plasma Plasma

Vladimir P.PavlenkoVladimir P.Pavlenko

Uppsala University, Uppsala University, Uppsala, SwedenUppsala, Sweden

2007, May 292007, May 29 Workshop ’Reconnection and Turbulence’ UppsalaWorkshop ’Reconnection and Turbulence’ Uppsala 22

CoworkersCoworkers

Zhanna N.AndrushchenkoZhanna N.AndrushchenkoMartin JuckerMartin Jucker

2007, May 292007, May 29 Workshop ’Reconnection and Turbulence’ UppsalaWorkshop ’Reconnection and Turbulence’ Uppsala 33

OutlineOutline

Some notes from Fluid MechanicsSome notes from Fluid Mechanics MotivationMotivationModelingModelingSelf-consistent descriptionSelf-consistent descriptionNon-linear dynamicsNon-linear dynamicsConclusionsConclusions

2007, May 292007, May 29 Workshop ’Reconnection and Turbulence’ UppsalaWorkshop ’Reconnection and Turbulence’ Uppsala 44

Description of flows in a turbulent mediaDescription of flows in a turbulent media

, 0i i i iv v v v

iik i k ik

k

vp v v

t x

ik

i i ik i k

k i k k k

v v vpv v v

t x x x x x

(turbulent) Reynolds stress

2007, May 292007, May 29 Workshop ’Reconnection and Turbulence’ UppsalaWorkshop ’Reconnection and Turbulence’ Uppsala 55

MotivationsMotivations

Strong magnetic fieldsStrong magnetic fields- Solar flares- Solar flares

Magnetic field diffusivityMagnetic field diffusivityReconnectionReconnection

- Laser produced plasma- Laser produced plasmaStrong fields produced in unmagnetized plasmaStrong fields produced in unmagnetized plasma

70’s: Laser fusion experiments: 70’s: Laser fusion experiments:

Strong magnetic field observed in unmagnetized plasmaStrong magnetic field observed in unmagnetized plasma

Magnetic electron drift modesMagnetic electron drift modes

2007, May 292007, May 29 Workshop ’Reconnection and Turbulence’ UppsalaWorkshop ’Reconnection and Turbulence’ Uppsala 66

Modeling: AssumptionsModeling: Assumptions

0n n

0 0,B 0 0 0 0ˆ ˆ , x xn n x T T x

pi pe unpolarized electron fluid and immobile ions

magnetic electron drift modes

1

pe

ck

n 0 01, ln , lnn TTn T

k k

,B x yB z 2e

Bmc

v z

perturbed magnetic field electron fluid velocity

2

04

cB

en v z

electron vorticity

unmagnetized inhomogeneous plasma

2007, May 292007, May 29 Workshop ’Reconnection and Turbulence’ UppsalaWorkshop ’Reconnection and Turbulence’ Uppsala 77

Modeling: Equations Modeling: Equations

4 Ampere's law pe c

B j v B

electron flow is directly related to the instantaneous magnetic field

2 2 4 20

0

, ,e B c

B B B n Tt mc t en

evolution equation is nonlilear in intrincically due to convective nonlinearity, B v v

baroclinic vector vorticity source

2

2 00

0

2, ,

3

eTT eB T n B

t mc mcn

2007, May 292007, May 29 Workshop ’Reconnection and Turbulence’ UppsalaWorkshop ’Reconnection and Turbulence’ Uppsala 88

Model equationsModel equations

triad interactions: LHS ; RHS , i i ie e e kr k r k r k k k

2 0 2

3 n T

eT

mc

nc

e

42 2 2

2

, ,

, ,

T eB B B B

t y m

B eT B T

t y m

pe

c

22 2 2E B B T dxdy const

2U BT B T dxdy const

double energy cascade

2007, May 292007, May 29 Workshop ’Reconnection and Turbulence’ UppsalaWorkshop ’Reconnection and Turbulence’ Uppsala 99

Linear approximationLinear approximation

- purely growing for - purely growing for - no linear instability for - no linear instability for

- largest increment for - largest increment for

2, i.e. 0

3T n

Dispersion relation

2 2 ; ,

1ki t

k yk B T ek

0yk

0xk

2007, May 292007, May 29 Workshop ’Reconnection and Turbulence’ UppsalaWorkshop ’Reconnection and Turbulence’ Uppsala 1010

Comparison to electrostatic drift Comparison to electrostatic drift wave turbulencewave turbulence

Two-field vs. One-field modelTwo-field vs. One-field model Electron skin depthElectron skin depth vsvs. . Ion Larmor radius with electronIon Larmor radius with electron temperaturetemperature

Direct andDirect and inverseinverse cascadecascade vs.vs. Inverse cascadeInverse cascade

42 2

2

,

MEDM:

,

T eB B B B

t y m

B eT B T

t y m

2

2 2 2 DWT: ,ss v

t y B

2007, May 292007, May 29 Workshop ’Reconnection and Turbulence’ UppsalaWorkshop ’Reconnection and Turbulence’ Uppsala 1111

Large scale structures: DefinitionsLarge scale structures: Definitions

Zonal Zonal

magnetic magnetic

fieldsfields

Magnetic Magnetic

streamersstreamers

2007, May 292007, May 29 Workshop ’Reconnection and Turbulence’ UppsalaWorkshop ’Reconnection and Turbulence’ Uppsala 1212

Large scale magnetic fields generationLarge scale magnetic fields generation

B B B

, , ,t Tx X

, , ,B B t T x X ,B B T X

2 2 4 2,e

B B BT Y mc

turbulent Reynolds stress

2 ,B e

BT Y mc

YX Y

vv v

T X

scale separation:

y xv vT y x

2007, May 292007, May 29 Workshop ’Reconnection and Turbulence’ UppsalaWorkshop ’Reconnection and Turbulence’ Uppsala 1313

Large scale structures:Large scale structures: scale separation:

, . . ; i ik q

Bt t e t e c c

T

kr qr

k

r q k

,00qq

2 2 2

2 21

0

qx y k k

q

B e qk k B B

t m q

T

t

k

zonal fields

turbulent Reynolds stress

2007, May 292007, May 29 Workshop ’Reconnection and Turbulence’ UppsalaWorkshop ’Reconnection and Turbulence’ Uppsala 1414

Self-consistent descriptionSelf-consistent description Define ”action-like invariant” or wave spectrumDefine ”action-like invariant” or wave spectrum

Wave kinetic equation (WKE)Wave kinetic equation (WKE)

Doppler shifted frequencyDoppler shifted frequency

22 24 1k kN k B

2NL NL

k k k k kk k k

N N NN St N

t

k r r kReNL

k k

2 2

2 2 2 2

1 2 1

1 1

q qB T

k

k k

k v k v

2

4B

eB

m

v z

2

4T

eT

m

v z

2007, May 292007, May 29 Workshop ’Reconnection and Turbulence’ UppsalaWorkshop ’Reconnection and Turbulence’ Uppsala 1515

Non-linear dynamicsNon-linear dynamics

Large scale Large scale Drift-type wave Drift-type wave

StructuresStructures turbulenceturbulence

2007, May 292007, May 29 Workshop ’Reconnection and Turbulence’ UppsalaWorkshop ’Reconnection and Turbulence’ Uppsala 1616

Large scale fields generation - RecipeLarge scale fields generation - Recipe

Model equationsModel equations

Wave spectrumWave spectrum Quasi-linear analysis, Quasi-linear analysis,

linearized linearized WKEWKE

Response functionResponse function Dispersion relationDispersion relation

2 2 22

2 21

0

qx y k

q

B e qk k B d

t m q

T

t

k

2 22 24 1k k kN k B

0k kN N N 0 ,k f

NN R p

k v

r k

1,

g

R pi

p v

2 2

2 2 202 2

,1

yq x

x

k Ni K q k R p d

k k

k2 2 2 2

22 2 216 1q

e qK

m q

2007, May 292007, May 29 Workshop ’Reconnection and Turbulence’ UppsalaWorkshop ’Reconnection and Turbulence’ Uppsala 1717

Large scale field generation – Large scale field generation – Hydrodynamic regimeHydrodynamic regime

Hydrodynamic regimeHydrodynamic regime

- Monochromatic wave packet - Monochromatic wave packet

- Instability criterion- Instability criterion

- Explicit frequency- Explicit frequency

2 2

2 2 202 2

,1

yq x

x

k Ni K q k R p d

k k

k

0 0 0kN N k k

0g

x

v

k

0 1 2 2 2 2 2

0 0 05 22 21 2

1

y

g q x y

kqv iK q N k k

k

2007, May 292007, May 29 Workshop ’Reconnection and Turbulence’ UppsalaWorkshop ’Reconnection and Turbulence’ Uppsala 1818

Large scale field generation – Large scale field generation – Kinetic regimeKinetic regime

Kinetic regimeKinetic regime

- Resonance (purely growing)- Resonance (purely growing)

- Instability criterion- Instability criterion

Contrary to Langmuir turbulenceContrary to Langmuir turbulence

2 2

2 2 202 2

,1

yq x

x

k Ni K q k R p d

k k

k

gpv 1,R p

1,

g

R pi

p v

00 0zfx

x

Nk

k

2007, May 292007, May 29 Workshop ’Reconnection and Turbulence’ UppsalaWorkshop ’Reconnection and Turbulence’ Uppsala 1919

Large scale field generation – Large scale field generation – Modulation instabilityModulation instability

Modulation instabilityModulation instability

- Restart from basic model equations- Restart from basic model equations

- - Pump wave and flowsPump wave and flows

- - Triad interactions sidebandsTriad interactions sidebands

- - Explicit frequencyExplicit frequency

- - Well known Lighthill criterionWell known Lighthill criterion

,k k , q

0 k k q

k k q k k k q

k k

10g g

k k

v v

k

222 2 2

, 2g g

g k q kk

v qvqv i K B q

2007, May 292007, May 29 Workshop ’Reconnection and Turbulence’ UppsalaWorkshop ’Reconnection and Turbulence’ Uppsala 2020

Large scale field generation - Large scale field generation - SummarySummary

Explicit incrementsExplicit increments

--Hydrodynamic regimeHydrodynamic regime

- Modulational instability- Modulational instability

- Note- Note

Instability criteriaInstability criteria

- Hydrodynamic, modulational- Hydrodynamic, modulational

- Kinetic regime- Kinetic regime

2 202 2 2 2 2 2

0 0 052 21 2

1

yhq x y

kK q N k k

k

2222 2 2

, 2gm

k q kk

v q vK B q

m h

0g

x

v

k

0 0xx

Nk

k

2007, May 292007, May 29 Workshop ’Reconnection and Turbulence’ UppsalaWorkshop ’Reconnection and Turbulence’ Uppsala 2121

Non-linearNon-linear dynamics dynamics

Large scaleLarge scale Drift-type wave Drift-type wave

Structures Structures turbulance turbulance

2007, May 292007, May 29 Workshop ’Reconnection and Turbulence’ UppsalaWorkshop ’Reconnection and Turbulence’ Uppsala 2222

ShearingShearing

Quasi-linear analysisQuasi-linear analysis

Wave kinetic equationWave kinetic equation

Diffusion in Diffusion in kk-space, i.e. shearing-space, i.e. shearing

Large Large kk Small scales Dissipation Small scales Dissipation

0kN N N

0NL NL

k k k k kN N N

t

k r r k

,

0 0

, ,

0x yk

x y x y

N ND

t k k

,

2 42 22 4

, , 2, 0

16x yk y x x y

eD k q B T R p

m

2007, May 292007, May 29 Workshop ’Reconnection and Turbulence’ UppsalaWorkshop ’Reconnection and Turbulence’ Uppsala 2323

Large scale pattern and predator-Large scale pattern and predator-prey phenomenaprey phenomena

Reduction of the basic equationsReduction of the basic equations

minimal dynamical model (zero-dimensional approach) with dynamical model (zero-dimensional approach) with two two principal components: principal components:

small-scale waves (small-scale waves (prey) + ”zonal” magnetic pattern () + ”zonal” magnetic pattern (predator) )

++

Lotka-Volterra system

2

kx B

,00qq

qy B

2dx rrx x axy

dt K

dyaexy dy

dt

2007, May 292007, May 29 Workshop ’Reconnection and Turbulence’ UppsalaWorkshop ’Reconnection and Turbulence’ Uppsala 2424

Predator-prey dynamics of the system composed of Predator-prey dynamics of the system composed of zonal magnetic pattern and wave turbulencezonal magnetic pattern and wave turbulence

Results of the numerical analysisResults of the numerical analysis

2007, May 292007, May 29 Workshop ’Reconnection and Turbulence’ UppsalaWorkshop ’Reconnection and Turbulence’ Uppsala 2525

ConclusionsConclusions

Magnetic electron drift mode turbulence – Magnetic electron drift mode turbulence – model equationsmodel equations

Separation of scales: waves + ”fields”Separation of scales: waves + ”fields” Self-consistent description – wave Self-consistent description – wave kinetic kinetic

equationequation Waves ”Fields”: GenerationWaves ”Fields”: Generation ” ”Fields” Waves: ShearingFields” Waves: Shearing Long term dynamics Predator-prey dynamicsLong term dynamics Predator-prey dynamics