57
TSTE19 Power Electronics Lecture 1 Tomas Jonsson ICS/ISY

TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Page 1: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

TSTE19 Power Electronics

Lecture 1

Tomas Jonsson

ICS/ISY

Page 2: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

Tomas Jonsson• Education

– M. Sc. degree in Electrical Engineering from the Lund Institute ofTechnology, 1987

• Work Experience– Master thesis work at ABB HVDC Ludvika– ABB AB, Sweden since 1988.– HVDC control system design, Ludvika (1988 – 1992)– HVDC commissioning engineer, New Zealand HVDC project (1992-1993)– HVDC system development engineer, Ludvika (1993 – 1996)– HVDC system development manager, Ludvika (1997 – 1998)– Brazil-Argentina HVDC interconnection project (1998)– ABB Corporate Research HVDC & FACTS development projects, Västerås

(1999-2009)– ABB Grid Systems, R&D project manager, including mentoring of R&D

group in Chennai India– Since 2013, Senior Principal Engineer in the area of high power converters

for power transmission at ABB Grid Systems.

2004

-05-

05

Page 3: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

HVDC Transmission TechnologiesHVDC Classic, line commutated converters

HVDC Light® , forced commutated converters (VSC)

n Power controln Terminals demand reactive powern Reactive power balance by shunt bank

switchingn Minimum system short circuit capacity of

twice rated power

n Real and Reactive Power controln Dynamic voltage regulationn Modular and expandablen Black start capabilityn No short circuit restriction

Capacitor Commutated Conveters (CCC)n Power controln Weak systems, long cablesn Reactive power from series capacitorn Minimum system short circuit capacity of

rated power

Page 4: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

© ABB Group

Example of HVDC control task:Fault ride through

P1=f(Udc1)Q1

uDC1 uDC2

P2, Q2

Control of:Ud, Q1

Control of:U2, f2

Control of:U1, f1

Pch

DC chopper:Udmax

With DC chopper

P2

P1

UDC

Pch

On-shore Off-shore

• DC-chopper decouples windpark from on-shore grid• Minimum impact on wind production during on-shore grid

faults

Page 5: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

DC hybrid link, New Zealand, 1240 MW

Page 6: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

Course staffLectures

• Tomas Jonsson

• 013 28 17 21

[email protected]

• Office 3D:513(2nd floor, between entrance 25 & 27)

Lab’s

• Martin Nielsen Lönn

2015-11-03 6TSTE19/Tomas Jonsson

N

Page 7: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

Course Contents• Course web page

http://www.isy.liu.se/edu/kurs/TSTE19/

• 16 Lectures (incl exercises)

– Introduce and explain material

– Problem solving

– Lab preparation

• 3 labs

– Lab 1 & 2: Multisim simulation of power circuits

– Lab 3: Control & measurements on power circuit

– Lab notes will be available on course web page

2015-11-03 7TSTE19/Tomas Jonsson

Page 8: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

Literature• Power Electronics:

Converters, Applications, and Design,3rd Edition

• N. Mohan, T. M. Undeland, W. P. Robbins

• ISBN: 978-0-471-22693-2

• Wiley & sons., Inc. 2003

• Will sometimes indicatecorresponding Swedish term in {}

2015-11-03 8TSTE19/Tomas Jonsson

Page 9: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

Lecture plan part 1

2015-11-03 9TSTE19/Tomas Jonsson

Date Room Number ContentTue 3/11

13-15

R34 1 Course introduction

“Energy conversion through power electronics” an overview of applications.

Power electronic systems [1], Circuit theory [3-2]Wed 4/11

10-12

R35 2 Diode rectifier, part 1:

Diode semiconductor theory [19,20], operation [5.2], harmonicsTue 10/11

13-15

R26 3 Diode rectifier, part 2:

Commutation [5.3], reactive power [3.2], circuit simulation [4]Wed 11/11

10-12

R42 4 Phase controlled converter:

Thyristor semiconductor theory [23], thyristor converter operation [6.2 – 6.4]Mon 16/11

8-10

R18 5 Power semiconductor devices and rating:

Semiconductor switches (MOSFET, IGBT, GTO) [21-22, 24-26], data sheet, rating,cooling [29]

Wed 18/11

10-12

R35 6 DC/DC converter, part 1:

Switch-mode power supply [10], step-down [7.3], step-up [7.4]Tue 24/11

13-15

R35 7 DC/AC inverter, part 1:

Half-bridge [8.3], commutation, PWM [8.2]Wed 25/11

10-12

R34 8 DC/AC inverter, part 2:

Full-bridge [8.3], harmonics

Page 10: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

Lecture plan part 2

2015-11-03 10TSTE19/Tomas Jonsson

Date Room Number ContentTue 1/12

13-15

R36 9 DC/AC inverter, part 3:

Blanking time [8.5], gate control [28]Wed 2/12

10-12

R37 10 Design review of full-bridge circuit for Lab3:

Principles, component selection, controlTue 8/12

13-15

R18 11 Control & protection:

Current control modes [8-6], snubbers [27], short circuitWed 9/12

10-12

R23 12 DC/AC – AC/DC:

Rectifier vs. inverter operation [8.7], 3-phase converter [8.4]Tue 15/12

13-15

R19 13 Switch-mode DC/DC converter, part 2:

Buck-boost, converters with isolation [10-4], resonant convertersWed 16/12

10-12

R22 14 Utility applications [17]:

HVDC, TCR, TSC, STATCOMMon 21/12

8-12

P30 15 Motor drive applications [12-13]:

Induction motors [14]Tue 22/12

13-15

P18 16 Preparation for exam

Page 11: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

Lab schedule

2015-11-03 11TSTE19/Tomas Jonsson

Date Room Number Content

Thu 19/1117-21 Freja 1 Computer lab on diode bridge rectifier, phase controlled converter

Thu 3/1217-21 Freja 2 Computer lab on VSC full-bridge Inverter, dc/dc buck

Thu 10/1217-21 Transistorn 3 Measurement lab on VSC full-bridge inverter

Tue 15/1217-21 Transistorn 1-3 Spare. Opportunity to complete any of Labs 1-3

Page 12: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

Lab3: Full-bridge PWM inverter

2015-11-03 12TSTE19/Tomas Jonsson

Page 13: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

Examination• 3 Lab tasks completed and presented (during the lab)

– Simulation and measurement tasks

• Written exam

2015-11-03 13TSTE19/Tomas Jonsson

Page 14: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

Lecture 1Power electronic systems from nW to GWPower electronic systems [Ch 1]Circuit theory [Ch 3-2]Exercises [1-1 – 1-5, 3-3 – 3-5]

Page 15: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

Power Electronic Systems• Transfer electric power from source into load, controlling

voltage/current applied to the load

2015-11-03 15TSTE19/Tomas Jonsson

Page 16: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

Power electronic systems• Power conversion

– Frequency transformation, e.g. AC to DC, DC to AC

– Voltage level transformation, 230V to 12V

– Current control/limitation

– Power control, charging v.s. discharging

– Control related to load variations

– Control related to source variations

2015-11-03 16TSTE19/Tomas Jonsson

Page 17: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

Goals of the power transformation• High efficiency

• Accurate output voltages/currents

– Voltage/current ripple

– Correct for varying load impedance

• Small size

• Low cost

• :

2015-11-03 17TSTE19/Tomas Jonsson

η = ≈ 1

Page 18: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

Lecture 1,Power electronics over 18 decades(10-8 W - 1010 W)MEMS P = 10-8 = 10 nW (200 mV, 50 nA)Electric Vehicle battery charger P = 1 kW – 50 kWWind turbine speed/power control P=5 MWHVDC power transmission P = 1010 = 10 GW (±800 kV, 6 kA)

Page 19: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

MEMS for pace maker power supply• Energy harvesting from human heart vibrations for power

supply of pace maker implants.

2015-11-03 19TSTE19/Tomas Jonsson

Requirement Value

Power 300 nW

Outputvoltage

300 mV

Page 20: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

Soil moisture sensor node

Requirement Value

Power 25 nW

Output voltage 400 mVOnly wakes up every hourto measure soil moisture

MEMS = Micro electromechanical systems

Page 21: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

Soil moisture sensor PMU

Picks up vibration in the ground or the human body,rectifies and boost the voltage to store it in a supercapacitor

Varying input, ≈ 150 − 250

Stable output voltage ≈ 400

Page 22: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

Battery charging• AC-DC converter

• Power conversion from AC power source to DC load

– Battery

– Mobile phone …

TSTE19/Tomas Jonsson 2015-11-03

Page 23: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

2015-11-03 23TSTE19/Tomas Jonsson

Page 24: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

2015-11-03 24TSTE19/Tomas Jonsson

Page 25: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

Wind turbine converter control

2015-11-03 25TSTE19/Tomas Jonsson

Page 26: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

Lecture 1, Power electronics of20 decades (10-10 W - 1010 W)HVDC

Page 27: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

What is an HVDC Transmission System?

Hydro

Solar

Hydro

Solar

HVDC Converter Station> 6400 MW, Classic

HVDC Converter Station< 1200 MW, Light

HVDC Converter Station> 6400 MW, Classic

HVDC Converter Station< 1200 MW, Light

Power/Energy direction

Cus

tom

ers

Grid

Cus

tom

ers

Grid

Cus

tom

ers

Grid

Cus

tom

ers

Grid

Overhead LinesTwo conductors

Alt.Submarine cables

Land orSubmarine cables

© ABB GroupNovember 3, 2015 | Slide 27

Page 28: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

Today's converter designConverter output voltage

1

2

n

1

2

n

Cell+

-

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02-300

-200

-100

0

100

200

300M9 version 2.2, 320kV, M2LC, P=3.37, N=35, C=1mF, no 2nd harm

VSC Toolbox version 2.4. 05-Dec-2008 10:22:05

Uv(

t)[k

V]

time s

Third harmonic modulation

© ABB GroupNovember 3, 2015 | Slide 28

Page 29: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

© ABB GroupNovember 3, 2015 | Slide 29

The converter valveCell main components – IGBTs and Capacitors

Cell

Double Cell

Page 30: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

© ABB GroupNovember 3, 2015 | Slide 30

IGBT Module

Page 31: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

© ABB GroupNovember 3, 2015 | Slide 31

IGBT inner structure

Page 32: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

Tackling society’s challenges on path to low-carbon erameans helping utilities do more using less

§Source: IEA, World Energy Outlook 2009

12,5

00

Terawatt-hours(TWh)

10,000

20,000

30,00016

,500

2007 2015 2030

20,0

00 29,0

00

+76%

Solutions are needed for:

§ Rising demand forelectricity – moregeneration

§ Increasing energyefficiency - improvingcapacity of existingnetwork

§ Reducing CO2 emissions– Introduce high level ofrenewable integration

Forecast rise in electricityconsumption by 2030

Others

NAM

EuropeIndia

China

Meeting the rise in demand will mean adding a 1 GW power plant

and all related infrastructure every week for the next 20 years© ABB GroupNovember 3, 2015 | Slide 32

Page 33: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

IEA World Energy Outlook 2012 - 2035

§ 5 890 GW of capacity additions (> the total installedcapacity in 2011) is required

§ One-third of this is to replace retiring plants; the rest is to meetgrowing electricity demand.

§ Renewables represent half : 3000 GW. Gas 1400 GW.

§ The power sector requires investment of $16.9 trillion,

§ Investment in generation capacity, > 60% is for renewables:wind (22%), hydro (16%), solar PV (13%).

© ABB GroupNovember 3, 2015 | Slide 33

Page 34: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

Source: DG Energy, European Commission

§1

§2

§3

§4

Hydro power & pump storage -Scandinavia

>50 GW wind power in North Sea and Baltic Sea

Hydro power & pump storage plants - Alps

Solar power in S.Europe, N.Africa & Middle East

§1

§2

§31§4

§ Alternatives to nuclear-distributed generation§ Role of offshore wind / other renewables§ Political commitment§ Investment demand and conditions§ Need to strengthen existing grid

The evolution of HVDC grids: Connect remoterenewablesEurope & Germany are planning large scale HVDC

European Visions Germany (draft grid master plan)

© ABB GroupNovember 3, 2015 | Slide 34

Page 35: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

Lecture 1Power electronic systems {Ch1}Power basicsCircuit theory

Page 36: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

Example: Power Supply• Goal

– Fixed DC voltage

– Accept variation oninput voltage

• Linear power supply

– Adjustable resistorimplemented usinga transistor

– Low efficiency,lot of power dissipatedin transistor

– Bulky line-frequencytransformer

2015-11-03 36TSTE19/Tomas Jonsson

Page 37: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

Example: Power Supply• Switch-mode power supply

– Transistor only used as switch

– High efficiency, small size

2015-11-03 37TSTE19/Tomas Jonsson

Page 38: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

Goal of power conversion• Translate input voltage into expected waveform of output

voltage

• Dissipate little/no power

• Technology: semiconductors, inductors, capacitors, (resistors)

• Should not use semiconductors as resistances

2015-11-03 38TSTE19/Tomas Jonsson

Page 39: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

Symbol definitions• uab, Uab Voltage. Uab is the voltage between points a and b.

• va Potential. The voltage to ground at point a.

• OBS, the course book uses american standard:v for voltages in general.

• ia, Ia Current in path (phase) a.

• pa, Pa Power. Active power

• Lower case symbols denotes instantaneous values

• Upper case symbols denotes average or RMS values

2015-11-03 39TSTE19/Tomas Jonsson

Page 40: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

Power Basics• For AC signal (pure sinusoidal)

• For DC signals

2015-11-03 40TSTE19/Tomas Jonsson

= ∗

i(t)+

-u(t)

=

sin ω + ϕ [ ]

=ˆsin ω + ϕ [ ]

whereω = 2π =2π

= ∫ =

ˆ

2⋅

ˆ

2cos ϕ −ϕ = ∗ ∗ cosϕ[ ]

Page 41: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

Average power and rms current

2015-11-03 41TSTE19/Tomas Jonsson

= ( ) ( )

=1

=1

( ) ( )

=1

=

I= ∫

Instantaneouspower

Averagepower

RMS current:the current valuethat defines theaverage power

Page 42: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

Steady state voltages and currents• Assume repeating waveform

• Ignore startup sequence (steady state)

2015-11-03 42TSTE19/Tomas Jonsson

Page 43: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

Fourier analysis

2015-11-03 43TSTE19/Tomas Jonsson

Page 44: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

Inductor behavour• Frequency and time domain

• =

2015-11-03 44TSTE19/Tomas Jonsson

= ω

= +1∫ ξ

Page 45: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

Inductor in steady state• v(t+T) = v(t)

• i(t+T) = i(t)

• A = Bin steady state

2015-11-03 45TSTE19/Tomas Jonsson

Page 46: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

Capacitor behavior• Frequency and time domain

2015-11-03 46TSTE19/Tomas Jonsson

=1ω

= +1∫ ξ

Page 47: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

Capacitor in steady state• v(t+T) = v(t)

• i(t+T) = i(t)

• A = Bin steady state

2015-11-03 47TSTE19/Tomas Jonsson

Page 48: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

Car ignition system• Sudden opening of

the contact breakergive high dI/dtthrough theignition coil

• 20-50kV obtainedat the spark plug

• Capacitor protectsthe contact breakerfrom excessivevoltage

2015-11-03 48TSTE19/Tomas Jonsson

Page 49: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

Exercises, lecture 11-1, 1-2, 1-3, 1-4, 1-53-3, 3-4, 3-5

2015-11-0349TSTE19/Tomas Jonsson

Page 50: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

2015-11-03 50TSTE19/Tomas Jonsson

Page 51: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

2015-11-03 51TSTE19/Tomas Jonsson

Page 52: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

2015-11-03 52TSTE19/Tomas Jonsson

Vd=20VDuty cycle D=0.75fs = 300kHzL=1.3 µHC=50 µFPload = 240W

Extra questions:a) What is the efficiency?b) Calculate rms values for voi and

iL

Page 53: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

2015-11-03 53TSTE19/Tomas Jonsson

Vd=20VDuty cycle D=0.75fs = 300kHzL=1.3 µHC=50 µFPload = 240W

Page 54: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

3-3• For the waveforms in Fig.

P3-3, calculate theiraverage value and the rmsvalues of the fundamentaland the harmonicfrequency components.

2015-11-03 54TSTE19/Tomas Jonsson

Page 55: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

3-4In the waveforms of Fig. P3-3 of Problem 3-3, A = 10 and u = 20°(ul = U2 = u/2) , where applicable. Calculate their total rms valuesas follows:

a) By using the results of Problem 3-3 in Eq. 3-28.

b) By using the definition of the rms value as given in Eq. 3-5.

2015-11-03 55TSTE19/Tomas Jonsson

Page 56: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

3-5Refer to Problem 3-4 and calculate the following:

a) For each of the waveforms a-e, calculate

i. the ratio of the fundamental frequency component to thetotal rms value

ii. the ratio of the distortion component to the total rmsvalue.

b) For the waveforms f and g, calculate the ratio of the averagevalue to the total rms value.

2015-11-03 56TSTE19/Tomas Jonsson

Page 57: TSTE19 Power Electronics - Linköping University · Freja 1 Computer lab on diode bridge rectifier, phase controlled converter Thu 3/12 17-21 Freja 2 Computer lab on VSC full-bridge

www.liu.se

TSTE19/Tomas [email protected]

2015-11-03TSTE19/Tomas Jonsson 57

www.liu.se