38
1/36 September 2019 Intro Thermodynamic Graphitization Irradiation INGSM-20, 2019 Philippe Ouzilleau 1,2 , Marc Monthioux 3 1. The University of Manchester, United Kingdom 2. Université de Sherbrooke, Canada 3. Université de Toulouse, France (Harris, 2005) (Monthioux, 2002) (Oberlin, 1984) The perspective of thermodynamics on why some carbons may or may not graphitize and the (potential) link to irradiation damage in nuclear graphites

tro The perspective of thermodynamics on why some carbons

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

1/36September 2019

Intr

oT

herm

od

yn

am

icG

rap

hit

iza

tio

nIr

rad

iati

on

INGSM-20, 2019

Philippe Ouzilleau1,2, Marc Monthioux3

1. The University of Manchester, United Kingdom

2. Université de Sherbrooke, Canada

3. Université de Toulouse, France

(Harris, 2005)(Monthioux, 2002)(Oberlin, 1984)

The perspective of thermodynamics on why

some carbons may or may not graphitize

and

the (potential) link to irradiation damage in

nuclear graphites

2/36September 2019

Intr

oT

herm

od

yn

am

icG

rap

hit

iza

tio

nIr

rad

iati

on

INGSM-20, 2019

Dr Who?Intr

o

PhD

2019

Joint postdoctoral researcher

3/36September 2019

Intr

oT

herm

od

yn

am

icG

rap

hit

iza

tio

nIr

rad

iati

on

INGSM-20, 2019

Why am I here?

• I would like to thank the late Prof Malcolm Heggie for

valuable discussions on the link between

graphitization and defects in graphenic carbons.

• I hope to continue said discussions.

Intr

o

4/36September 2019

Intr

oT

herm

od

yn

am

icG

rap

hit

iza

tio

nIr

rad

iati

on

INGSM-20, 2019

Thermal GraphitizationIntr

o

FIGURE 1: The (secondary) Carbonization

(~800 K to ~2000 K) and Graphitization (~2000 K +)

processes (Marsh, 1991)

3000 K

1000 K

5/36September 2019

Intr

oT

herm

od

yn

am

icG

rap

hit

iza

tio

nIr

rad

iati

on

INGSM-20, 2019

My wording of graphitization

Intr

o

-Immature carbon

-Graphenic carbon

-Turbostratic carbon

-Graphitic carbon

-Graphite

-Carbonisation

-Graphitization heat treatment

-Graphitizable carbon

-Non-graphitizable carbon

-Graphitization

6/36September 2019

Intr

oT

herm

od

yn

am

icG

rap

hit

iza

tio

nIr

rad

iati

on

INGSM-20, 2019

Studying graphitization

FIGURE 2: Idealised representation of

a graphenic crystallites(Ouzilleau, 2015)

• Graphites is constructed

froms stacks of graphenic

layers.

• Average distance between

layers (d002):

– d002 = 0.3354 nm (Perfect 3D)

– d002 ≥ 0.344 nm (2D)

• ‘’Diameter’’ of the crystallite

La

• Height of the crystallite

Lc

• If La = ∞ and Lc = ∞;

– d002 = 0.3354 nm (perfect graphite)

Intr

o

7/36September 2019

Intr

oT

herm

od

yn

am

icG

rap

hit

iza

tio

nIr

rad

iati

on

INGSM-20, 2019

Scope of the work

Intr

o

• Single phase carbon material (e.g. HOPG)

• Study of the impact of changes in nanostructure on

graphitic ordering (measured through d002)

8/36September 2019

Intr

oT

herm

od

yn

am

icG

rap

hit

iza

tio

nIr

rad

iati

on

INGSM-20, 2019

FIGURE 3: Variable potentials of graphitization (graphitizability)

To graphitize or not to graphitizeIntr

o

• IUPAC recommends the term graphitization for the

thermal transformation process of graphitizable

carbons.

• IUPAC recommends the term graphitization heat

treatment for the thermal transformation process of

non-graphitizable carbons.

Graphitizable

Non-

graphitizable

9/36September 2019

Intr

oT

herm

od

yn

am

icG

rap

hit

iza

tio

nIr

rad

iati

on

INGSM-20, 2019

Graphitizability: Franklin’s modelIntr

o

FIGURE 4b:

Structure of a high graphitizability carbon

(graphitizable carbon) (Franklin, 1951)

Graphenic crystallite« Non-organized carbon »

(crosslinking carbon)

FIGURE 4a:

Structure of a low graphitizability carbon

(non-graphitizable carbon) (Franklin, 1951)

10/36September 2019

Intr

oT

herm

od

yn

am

icG

rap

hit

iza

tio

nIr

rad

iati

on

INGSM-20, 2019

Graphitizability: Oberlin’s model

FIGURE 5a: Mesostructural arrangements

of LMOs (Oberlin, 1989)

Oriented domain:

Local Molecular Orientation

(LMO)

FIGURE 5b: Nanostructure within

a singular LMO (Monthioux, 2002)

Crosslinking chemical functions

Basic Structural Unit

(BSU)

Intr

o

11/36September 2019

Intr

oT

herm

od

yn

am

icG

rap

hit

iza

tio

nIr

rad

iati

on

INGSM-20, 2019

Graphitizability model of Oberlin

FIGURE 6a : Average size of LMOs as

a function of chemical composition

following primary carbonization (~800 K)(Oberlin, 2006)

FIGURE 6b: Graphitizability of LMOs as

a function of chemical composition

following primiary carbonization

carbonisation primaire (~800 K)(Oberlin, 1989)

Intr

o

12/36September 2019

Intr

oT

herm

od

yn

am

icG

rap

hit

iza

tio

nIr

rad

iati

on

INGSM-20, 2019

Research QuestionT

herm

od

yn

am

ic

• Can we model the graphitizability of some

graphitizable and non-graphitizable carbons, with a

thermodynamic formalism, on the basis of Oberlin and

Franklin graphitizability statements?

Graphitizability is function of :

Local crystallite-crystallite

interactions

Franklin

Graphitizability is function of :

Size of the oriented domains

(LMOs)

Oberlin

13/36September 2019

Intr

oT

herm

od

yn

am

icG

rap

hit

iza

tio

nIr

rad

iati

on

INGSM-20, 2019

Structural modelT

herm

od

yn

am

ic

a) mGBs = mesoscale Grain Boundaries

LMO = Local Molecular Orientation clusters of Oberlin

b) IM = Intercrystalline Matter clusters

CC = Crystallite clusters

c) Idealized graphenic crystallite (i.e. carbon crystallite)

FIGURE 7: Proposed structural model

14/36September 2019

Intr

oT

herm

od

yn

am

icG

rap

hit

iza

tio

nIr

rad

iati

on

INGSM-20, 2019

Thermodynamic hypothesisT

herm

od

yn

am

ic

• #1: Local thermodynamic equilibrium hypothesis :*Critical hypothesis for the application of

reversible equilibrium thermodynamic formalism to

irreversible non-equilibrium processes (like graphitization)

• #2: Based on (Franklin, 1951), for La> 2.5 nm, for the

Gibbs energy (G) of graphitizable carbons :

𝑮𝑪−𝒈𝒓𝒂𝒑𝒉𝒊𝒕𝒊𝒛𝒂𝒃𝒍𝒆~𝑮𝑪−𝑪𝒂𝒓𝒃𝒐𝒏 𝑪𝒓𝒚𝒔𝒕𝒂𝒍𝒍𝒊𝒕𝒆𝒔

• #3: Very high activation energy for graphitization in

mGBs :

𝒅𝟎𝟎𝟐(𝑻)~ 𝒅𝟎𝟎𝟐(𝑻) 𝑳𝑴𝑶𝒔

15/36September 2019

Intr

oT

herm

od

yn

am

icG

rap

hit

iza

tio

nIr

rad

iati

on

INGSM-20, 2019

• A scenario of defect generation and consumption:

The proposed graphitization

mechanism

*Calculated threshold temperatures T0i = 1700 K; Tc = 2550 K; T0

e = 3400 K

ATD (Annealable

Topological Defect)

Th

erm

od

yn

am

ic

16/36September 2019

Intr

oT

herm

od

yn

am

icG

rap

hit

iza

tio

nIr

rad

iati

on

INGSM-20, 2019

Example of a possible ATD

The double heptagon/pentagon pair (Dienes, 1952):

Th

erm

od

yn

am

ic

17/36September 2019

Intr

oT

herm

od

yn

am

icG

rap

hit

iza

tio

nIr

rad

iati

on

INGSM-20, 2019

The thermodynamic graphitization

Order Parameter Ω

• Ω models the density difference between the IM and the

CC during the succession of local equilibrium states

FIGURE 8:

The graphitization Order Parameter (Ω)

Th

erm

od

yn

am

ic

18/36September 2019

Intr

oT

herm

od

yn

am

icG

rap

hit

iza

tio

nIr

rad

iati

on

INGSM-20, 2019

Differential equation model for ATDs

• From δ, we model the thermodynamic effect on d002 of a

change of local equilibrium states during graphitization

by self-diffusion of ATDs (Fischbach, 1971)

δ

δ

*δ = [d002(2073 K) - d002(2400 K)]ATDs generated but not

consumed below Tc

ATDs generated and

consumed below Tc

FIGURE 9: Impact of δ on graphitizability

Th

erm

od

yn

am

ic

19/36September 2019

Intr

oT

herm

od

yn

am

icG

rap

hit

iza

tio

nIr

rad

iati

on

INGSM-20, 2019

Thermodynamic parameters of

the model

Gra

ph

itiz

ati

on

Critical exponent to model a

second-order thermodynamic

transformation in 3D(Gronvold, 1976)

Thermodynamic parameter for the

change of linearity in d002(T)(Ouzilleau, 2016)

Thermodynamic temperature threshold

for “true” graphitization (Ouzilleau, 2015) (Abrahamson, 1971)

Dimensionality of the

merging process of crystallitesDimensionality of the

annealing process of ATDs

20/36September 2019

Intr

oT

herm

od

yn

am

icG

rap

hit

iza

tio

nIr

rad

iati

on

INGSM-20, 2019

Experimentally derived parameters

Gra

ph

itiz

ati

on

• The mathematical model has two constants :

– δc = Normalization constant

– C1 = Proportionality constant

• We derive both from

the data of (Monthioux, 1982):

21/36September 2019

Intr

oT

herm

od

yn

am

icG

rap

hit

iza

tio

nIr

rad

iati

on

INGSM-20, 2019

Graphitizability modelBetween 1700 K and 3400 K

• In the end, we have :

d002(T) = f( d002(2073 K), d002(2400 K))

• Validation procedure : predict d002(T) for

– some graphitizable carbons

– some non-graphitizable carbons

Gra

ph

itiz

ati

on

22/36September 2019

Intr

oT

herm

od

yn

am

icG

rap

hit

iza

tio

nIr

rad

iati

on

INGSM-20, 2019

Tα = 2073 K

Tβ = 2400 K

Ex 1: graphitizable carbons

• For selected values of d002(2073 K), d002(2400 K) :

d002,graphite = 0.3354 nm

d002,turbo = 0.344 nm

ηG = 0.9-1 (graphitizable)

ηG = 0.5-0.9 (semi-graphitizable)

ηG < 0.5 (non-graphitizable)

Figure 10: Graphitizability of various asphalts

Gra

ph

itiz

ati

on

23/36September 2019

Intr

oT

herm

od

yn

am

icG

rap

hit

iza

tio

nIr

rad

iati

on

INGSM-20, 2019

Tα = 2073 K

Tβ = 2400 K

Ex 2: graphitizable carbons

• For selected values of d002(2073 K), d002(2400 K) :

d002,graphite = 0.3354 nm

d002,turbo = 0.344 nm

ηG = 0.9-1 (graphitizable)

ηG = 0.5-0.9 (semi-graphitizable)

ηG < 0.5 (non-graphitizable)

Figure 11: Graphitizability of graphitizable

Polyimide film (KAPTON)

Gra

ph

itiz

ati

on

24/36September 2019

Intr

oT

herm

od

yn

am

icG

rap

hit

iza

tio

nIr

rad

iati

on

INGSM-20, 2019

Tα = 2073 K

Tβ = 2400 K

Ex 3: graphitizable carbons

• For selected values of d002(2073 K), d002(2400 K) :

d002,graphite = 0.3354 nm

d002,turbo = 0.344 nm

ηG = 0.9-1 (graphitizable)

ηG = 0.5-0.9 (semi-graphitizable)

ηG < 0.5 (non-graphitizable)

Figure 12: Graphitizability of two types of PYROCARBONS

Gra

ph

itiz

ati

on

25/36September 2019

Intr

oT

herm

od

yn

am

icG

rap

hit

iza

tio

nIr

rad

iati

on

INGSM-20, 2019

Tα = 2073 K

Tβ = 2400 K

Ex 4: semi-graphitizable carbons

• For selected values of d002(2073 K), d002(2400 K) :

d002,graphite = 0.3354 nm

d002,turbo = 0.344 nm

ηG = 0.9-1 (graphitizable)

ηG = 0.5-0.9 (semi-graphitizable)

ηG < 0.5 (non-graphitizable)

Figure 13: Graphitizability of some

emi-graphitizable PYROCARBONS

Gra

ph

itiz

ati

on

26/36September 2019

Intr

oT

herm

od

yn

am

icG

rap

hit

iza

tio

nIr

rad

iati

on

INGSM-20, 2019

Tα = 2073 K

Tβ = 2400 K

Ex 5: non-graphitizable carbons

• For selected values of d002(2073 K), d002(2400 K) :

d002,graphite = 0.3354 nm

d002,turbo = 0.344 nm

ηG = 0.9-1 (graphitizable)

ηG = 0.5-0.9 (semi-graphitizable)

ηG < 0.5 (non-graphitizable)

Figure 14: Graphitizability of some

carbon blacks

Gra

ph

itiz

ati

on

27/36September 2019

Intr

oT

herm

od

yn

am

icG

rap

hit

iza

tio

nIr

rad

iati

on

INGSM-20, 2019

Ex 6: non-graphitizable carbons

-Fischbach, 1967:

Polymer- based

Glassy Carbon

-Monthioux, 1982:

Non-graphitizable

asphalt

-Yamada, 1964:

Glassy Carbon

Figure 15: Graphitizability of some non-graphitizable carbons

Gra

ph

itiz

ati

on

• For selected values of d002(2073 K), d002(2400 K) :

Tα = 2073 K

Tβ = 2400 K

28/36September 2019

Intr

oT

herm

od

yn

am

icG

rap

hit

iza

tio

nIr

rad

iati

on

INGSM-20, 2019

Implicit validation-A new model is proposed to model the

graphitizability of some carbons between

temperatures 1700 and 3400 K.

-The model is implicitly in agreement with Franklin’s

graphitizability statement as;

Graphitization by self-diffusion of ATDs is affected

by the local orientation of crystallites

- The model is also in implicit agreement with

Oberlin’s statement as;

Larger LMOs can (usually) accommodate more

ATDs than smaller LMOs and graphitization events

are more prevalent in larger LMOs

Gra

ph

itiz

ati

on

29/36September 2019

Intr

oT

herm

od

yn

am

icG

rap

hit

iza

tio

nIr

rad

iati

on

INGSM-20, 2019

The effect of irradiation on d002

Figure 16: Effect of irradiation on

the d002 of nuclear graphite (Zhou, 2017)

Figure 17: Effect of irradiation on

the d002 of nuclear graphite (Tanabe, 1991)

Irra

dia

tio

n

30/36September 2019

Intr

oT

herm

od

yn

am

icG

rap

hit

iza

tio

nIr

rad

iati

on

INGSM-20, 2019

Simplified conceptualization of

irradiation damage

Figure 18: Proposed conceptualization of irradiation damage on

the graphitic order of nuclear graphite(Zhou, 2017) (Tanabe, 1992)

-Adolphe Pacault, founder of the French Carbon

Group, and others proposed that graphitic

degradation (“turbostratification”) by irradiation

could be viewed as “degraphitization”. (Miccaud, 1969)

Irra

dia

tio

n

31/36September 2019

Intr

oT

herm

od

yn

am

icG

rap

hit

iza

tio

nIr

rad

iati

on

INGSM-20, 2019

The proposed turbostratification

mechanism

Irra

dia

tio

n

32/36September 2019

Intr

oT

herm

od

yn

am

icG

rap

hit

iza

tio

nIr

rad

iati

on

INGSM-20, 2019

Graphitic degradation at higher

irradiation dose

Figure 19: Effect of high temperature high high irradiation

on the d002 of HOPG before and after annealing(Gallego, 2018)

***Competition between

two phenomena?***

Irra

dia

tio

n

33/36September 2019

Intr

oT

herm

od

yn

am

icG

rap

hit

iza

tio

nIr

rad

iati

on

INGSM-20, 2019

The reversibility of

turbostratification by irradiation

Figure 20: Effect of annealing (7 hours holding time) on the

graphitic order (d002) of highly irradiated graphite(Nightingale, 1957)

Prediction:

d002(3400 K),

7 hours holding

time,

= 0.3367 nm

Irra

dia

tio

n

34/36September 2019

Intr

oT

herm

od

yn

am

icG

rap

hit

iza

tio

nIr

rad

iati

on

INGSM-20, 2019

Conclusions

• A thermodynamic model for graphitization has been presented.

• This thermodynamic model is in agreement with the

graphitizability statements of:

– Franklin, i.e. graphitizability is function of local crystallite orientation

– Oberlin, i.e. graphitizability is function of LMO size

• Does the present model appears reasonable as a reasonable

(simplified) approach to irradiation if we accept irradiation as a

turbostratification (degraphitization) phenomena?

35/36September 2019

Intr

oT

herm

od

yn

am

icG

rap

hit

iza

tio

nIr

rad

iati

on

INGSM-20, 2019

Acknowledgement

• I would like to thank the organisers of INGSM-20 for allowing

me to present my work.

• The present research was supported by the Natural Science

and Engineering Research Council of Canada, Rio Tinto, Alcoa,

Constellium, Hydro Aluminium and the FRQNT (Fonds de

Recherche du Québec – Nature et technologies)

36/36September 2019

Intr

oT

herm

od

yn

am

icG

rap

hit

iza

tio

nIr

rad

iati

on

INGSM-20, 2019

References

[6] Ouzilleau, Gheribi, Chartrand, Soucy and Monthioux, Why some

carbons may or may not graphitize? The point of view of

thermodynamics, Carbon, 2019, 149, p.419

[7] Ouzilleau, Gheribi, Eriksson, Lindberg and Chartrand, Carbon, 2015, 85,

p.99

[8] Zhou et al., Journal of Nuclear Materials, 2017, 487, p.323

[9] Gallego, Contescu, Burchell, XRD and SANS Evaluation of HOPG and

polycrystalline graphite, 2018, ORNL/TM-2018/871 report

[10] Tanabe, Muto, Niwase, Appl. Phys. Lett., 1992, 61, p.1638

[1] Franklin, Proceedings of the Royal Society of London, 1951, 209,

p.196

[2] Oberlin, Carbon, 1984, 22, p.521

[3] Oberlin, Bonnamy and Rouxhet, Chemistry and Physics of Carbon,

1989, vol 22, p.1-143

[4] Nightingale, Snyder, Distribution of radiation damage in graphite, U.S.

atomic energy commission, 1957

[5] Miccaud et al., Journal de Chimie Physique et de Physico-Chimie

Biologique, 1969, 66, .129

37/36September 2019

Intr

oT

herm

od

yn

am

icG

rap

hit

iza

tio

nIr

rad

iati

on

INGSM-20, 2019

Impact of time of time

38/36September 2019

Intr

oT

herm

od

yn

am

icG

rap

hit

iza

tio

nIr

rad

iati

on

INGSM-20, 2019

Relative sensitivity of the model