26
Triple Integrals MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 J. Robert Buchanan Triple Integrals

Triple Integrals - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Triple/main.pdf · Triple Integrals MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Embed Size (px)

Citation preview

Page 1: Triple Integrals - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Triple/main.pdf · Triple Integrals MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Triple IntegralsMATH 311, Calculus III

J. Robert Buchanan

Department of Mathematics

Fall 2011

J. Robert Buchanan Triple Integrals

Page 2: Triple Integrals - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Triple/main.pdf · Triple Integrals MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Riemann Sum Approach

Suppose we wish to integrate w = f (x , y , z), a continuousfunction, on the box-shaped region

Q = {(x , y , z) |a ≤ x ≤ b, c ≤ y ≤ d , m ≤ z ≤ n}.

1 Let P = {Qk}Nk=1 be a partition of Q into rectangular boxes.2 Let the dimensions of Qk be ∆xk , ∆yk , and ∆zk , then

∆Vk = ∆xk ∆yk ∆zk .

3 Let (uk , vk ,wk ) be any point in Qk .

J. Robert Buchanan Triple Integrals

Page 3: Triple Integrals - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Triple/main.pdf · Triple Integrals MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Riemann Sum Approach

Riemann Sum:N∑

k=1

f (uk , vk ,wk )∆Vk .

If ‖P‖ is the length of the longest box diagonal in P, then wemay define the triple integral.

DefinitionFor any function f (x , y , z) defined on the rectangular box Q, wedefine the triple integral of f over Q by∫∫∫

Qf (x , y , z) dV = lim

‖P‖→0

N∑k=1

f (uk , vk ,wk )∆Vk ,

provided the limit exists and is the same for every choice ofevaluation points (uk , vk ,wk ) in Qk .

J. Robert Buchanan Triple Integrals

Page 4: Triple Integrals - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Triple/main.pdf · Triple Integrals MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Riemann Sum Approach

Riemann Sum:N∑

k=1

f (uk , vk ,wk )∆Vk .

If ‖P‖ is the length of the longest box diagonal in P, then wemay define the triple integral.

DefinitionFor any function f (x , y , z) defined on the rectangular box Q, wedefine the triple integral of f over Q by∫∫∫

Qf (x , y , z) dV = lim

‖P‖→0

N∑k=1

f (uk , vk ,wk )∆Vk ,

provided the limit exists and is the same for every choice ofevaluation points (uk , vk ,wk ) in Qk .

J. Robert Buchanan Triple Integrals

Page 5: Triple Integrals - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Triple/main.pdf · Triple Integrals MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Fubini’s Theorem

Theorem (Fubini’s Theorem)

Suppose that f (x , y , z) is continuous on the box Q defined by

Q = {(x , y , z) |a ≤ x ≤ b, c ≤ y ≤ d , m ≤ z ≤ n}.

Then we can write the triple integral over Q as the triple iteratedintegral:∫∫∫

Qf (x , y , z) dV =

∫ b

a

∫ d

c

∫ n

mf (x , y , z) dz dy dx .

There are five other equivalent orders of integration.

J. Robert Buchanan Triple Integrals

Page 6: Triple Integrals - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Triple/main.pdf · Triple Integrals MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Fubini’s Theorem

Theorem (Fubini’s Theorem)

Suppose that f (x , y , z) is continuous on the box Q defined by

Q = {(x , y , z) |a ≤ x ≤ b, c ≤ y ≤ d , m ≤ z ≤ n}.

Then we can write the triple integral over Q as the triple iteratedintegral:∫∫∫

Qf (x , y , z) dV =

∫ b

a

∫ d

c

∫ n

mf (x , y , z) dz dy dx .

There are five other equivalent orders of integration.

J. Robert Buchanan Triple Integrals

Page 7: Triple Integrals - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Triple/main.pdf · Triple Integrals MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Example (1 of 4)

Let Q = {(x , y , z) |0 ≤ x ≤ 1, −1 ≤ y ≤ 2, 0 ≤ z ≤ 3} andevaluate ∫∫∫

Qxyz2 dV .

J. Robert Buchanan Triple Integrals

Page 8: Triple Integrals - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Triple/main.pdf · Triple Integrals MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Example (2 of 4)

∫∫∫Q

xyz2 dV =

∫ 2

−1

∫ 3

0

∫ 1

0xyz2 dx dz dy

=

∫ 2

−1

∫ 3

0

12

x2yz2∣∣∣∣10

dz dy

=

∫ 2

−1

∫ 3

0

12

yz2 dz dy =

∫ 2

−1

16

yz3∣∣∣∣30

dy

=

∫ 2

−1

92

y dy =94

y2∣∣∣∣2−1

=274

J. Robert Buchanan Triple Integrals

Page 9: Triple Integrals - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Triple/main.pdf · Triple Integrals MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Example (3 of 4)

Let Q = {(x , y , z) |0 ≤ x ≤ 2, −3 ≤ y ≤ 0, −1 ≤ z ≤ 1} andevaluate ∫∫∫

Q(x2 + yz) dV .

J. Robert Buchanan Triple Integrals

Page 10: Triple Integrals - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Triple/main.pdf · Triple Integrals MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Example (4 of 4)

∫∫∫Q

(x2 + yz) dV =

∫ 1

−1

∫ 0

−3

∫ 2

0(x2 + yz) dx dy dz

=

∫ 1

−1

∫ 0

−3

(13

x3 + xyz)∣∣∣∣2

0dy dz

=

∫ 1

−1

∫ 0

−3

(83

+ 2yz)

dy dz

=

∫ 1

−1

(83

y + y2z)∣∣∣∣0−3

dz

=

∫ 1

−18− 9z dz = 8z − 9

2z2∣∣∣∣1−1

= 16

J. Robert Buchanan Triple Integrals

Page 11: Triple Integrals - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Triple/main.pdf · Triple Integrals MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Triple Integrals Over General Regions (1 of 2)

To develop of the triple integral of f (x , y , z) over a generalregion Q we must form an inner partition of Q.

x

y

z

J. Robert Buchanan Triple Integrals

Page 12: Triple Integrals - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Triple/main.pdf · Triple Integrals MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Triple Integrals Over General Regions (2 of 2)

DefinitionFor a function f (x , y , z) defined in the bounded, solid region Q,the triple integral of f (x , y , z) over Q is∫∫∫

Qf (x , y , z) dV = lim

‖P‖→0

N∑k=1

f (uk , vk ,wk )∆Vk ,

provided the limit exists and is the same for every choice ofevaluation points (uk , vk ,wk ) in Qk .

J. Robert Buchanan Triple Integrals

Page 13: Triple Integrals - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Triple/main.pdf · Triple Integrals MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Evaluating Triple Integrals

If region Q can be described as

Q = {(x , y , z) | (x , y) ∈ R, k1(x , y) ≤ z ≤ k2(x , y)}

then ∫∫∫Q

f (x , y , z) dV =

∫∫R

∫ k2(x ,y)

k1(x ,y)f (x , y , z) dz dA.

J. Robert Buchanan Triple Integrals

Page 14: Triple Integrals - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Triple/main.pdf · Triple Integrals MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Example (1 of 7)

Integrate f (x , y , z) = z over the region bounded by the planex + y + z = 1 and the coordinate planes.

J. Robert Buchanan Triple Integrals

Page 15: Triple Integrals - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Triple/main.pdf · Triple Integrals MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Example (2 of 7)

0.0

0.5

1.0

x

0.0

0.5

1.0

y

0.0

0.5

1.0

z

J. Robert Buchanan Triple Integrals

Page 16: Triple Integrals - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Triple/main.pdf · Triple Integrals MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Example (3 of 7)

∫∫∫Q

z dV =

∫∫R

∫ 1−x−y

0z dz dA

=

∫∫R

12

(1− x − y)2 dA

=12

∫ 1

0

∫ 1−x

0(1− x − y)2 dy dx

= −16

∫ 1

0(1− x − y)3

∣∣∣1−x

0dx

=16

∫ 1

0(1− x)3 dx = − 1

24(1− x)4

∣∣∣10

=1

24

J. Robert Buchanan Triple Integrals

Page 17: Triple Integrals - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Triple/main.pdf · Triple Integrals MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Example (4 of 7)

Integrate f (x , y , z) =√

x2 + z2 over the portion of theparaboloid y = x2 + z2 where y ≤ 4.

-2

-1

0

1

2

x

0

1

2

3

4

y

-2

-1

0

1

2

z

J. Robert Buchanan Triple Integrals

Page 18: Triple Integrals - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Triple/main.pdf · Triple Integrals MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Example (5 of 7)

∫∫∫Q

√x2 + z2 dV =

∫∫R

∫ 4

x2+z2

√x2 + z2 dy dA

=

∫∫R

4√

x2 + z2 − (x2 + z2)3/2 dA

=

∫ 2π

0

∫ 2

0(4r − r3)r dr dθ

= 2π∫ 2

0(4r2 − r4) dr

= 2π(

43

r3 − 15

r5)∣∣∣∣2

0

=128π

15

J. Robert Buchanan Triple Integrals

Page 19: Triple Integrals - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Triple/main.pdf · Triple Integrals MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Example (6 of 7)

Find the volume of the solid region in the positive orthantbounded by z = 2− y and x = 4− y2.

0

1

2

3

4

x

0.0

0.5

1.0

1.5

2.0

y

0.0

0.5

1.0

1.5

2.0

z

J. Robert Buchanan Triple Integrals

Page 20: Triple Integrals - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Triple/main.pdf · Triple Integrals MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Example (7 of 7)

V =

∫∫∫Q

1 dV =

∫∫R

∫ 2−y

01 dz dA

=

∫∫R

(2− y) dA =

∫ 2

0

∫ 4−y2

0(2− y) dx dy

=

∫ 2

0(2− y)(4− y2) dy =

∫ 2

0(y3 − 2y2 − 4y + 8) dy

=

(14

y4 − 23

y3 − 2y2 + 8y)∣∣∣∣2

0

=203

J. Robert Buchanan Triple Integrals

Page 21: Triple Integrals - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Triple/main.pdf · Triple Integrals MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Mass and Center of Mass

If ρ(x , y , z) denotes the density of material at (x , y , z) in regionQ, then the mass of the solid occupying region Q is

m =

∫∫∫Qρ(x , y , z) dV .

The moments of with respect to the coordinate planes are

Myz =

∫∫∫Q

xρ(x , y , z) dV

Mxz =

∫∫∫Q

yρ(x , y , z) dV

Mxy =

∫∫∫Q

zρ(x , y , z) dV

The center of mass is the point with coordinates:

(x , y , z) =

(Myz

m,Mxz

m,Mxy

m

)J. Robert Buchanan Triple Integrals

Page 22: Triple Integrals - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Triple/main.pdf · Triple Integrals MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Example (1 of 4)

Find the mass and center of mass of the solid region boundedby the plane z = 4 and the paraboloid z = x2 + y2 whosedensity is described by ρ(x , y , z) = 3 + x .

J. Robert Buchanan Triple Integrals

Page 23: Triple Integrals - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Triple/main.pdf · Triple Integrals MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Example (2 of 4)

-2-1

01

2x

-2

-1

0

1

2

y

0

1

2

3

4

z

J. Robert Buchanan Triple Integrals

Page 24: Triple Integrals - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Triple/main.pdf · Triple Integrals MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Example (3 of 4)

m =

∫∫∫Q

(3 + x) dV =

∫∫R

∫ 4

x2+y2(3 + x) dz dA

=

∫∫R

[4(3 + x)− (x2 + y2)(3 + x)

]dA

=

∫ 2π

0

∫ 2

0

[4(3 + r cos θ)− r2(3 + r cos θ)

]r dr dθ

=

∫ 2π

0

∫ 2

0[12r − 3r3 + (4r2 − r4) cos θ] dr dθ

=

∫ 2π

0

[12 +

(323− 32

5

)cos θ

]dθ

= 24π

J. Robert Buchanan Triple Integrals

Page 25: Triple Integrals - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Triple/main.pdf · Triple Integrals MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Example (4 of 4)

Myz =

∫∫∫Q

(3x + x2) dV =16π

3

Mxz =

∫∫∫Q

(3y + xy) dV = 0

Mxy =

∫∫∫Q

(3z + xz) dV = 64π

Thus

(x , y , z) =

(Myz

m,Mxz

m,Mxy

m

)=

(29,0,

83

).

J. Robert Buchanan Triple Integrals

Page 26: Triple Integrals - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Triple/main.pdf · Triple Integrals MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Homework

Read Section 13.5.Exercises: 1–43 odd

J. Robert Buchanan Triple Integrals