132
Tri-Vertices & SU(2)’s Amihay Hanany Noppadol Mekareeya 1 Tuesday, May 17, 2011

Tri-Vertices & SU(2)’s

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Tri-Vertices & SU(2)’s

Tri-Vertices & SU(2)’s

Amihay Hanany

Noppadol Mekareeya

1

Tuesday, May 17, 2011

Page 2: Tri-Vertices & SU(2)’s

Introduction

2

Tuesday, May 17, 2011

Page 3: Tri-Vertices & SU(2)’s

Introduction

• N=2 gauge theories in 3+1 dimensions

2

Tuesday, May 17, 2011

Page 4: Tri-Vertices & SU(2)’s

Introduction

• N=2 gauge theories in 3+1 dimensions

• Vector Multiplet Moduli Space

2

Tuesday, May 17, 2011

Page 5: Tri-Vertices & SU(2)’s

Introduction

• N=2 gauge theories in 3+1 dimensions

• Vector Multiplet Moduli Space

• Hypermultiplet Moduli Space

2

Tuesday, May 17, 2011

Page 6: Tri-Vertices & SU(2)’s

Introduction

• N=2 gauge theories in 3+1 dimensions

• Vector Multiplet Moduli Space

• Hypermultiplet Moduli Space

• revisit - study a class made out of SU(2)’s

2

Tuesday, May 17, 2011

Page 7: Tri-Vertices & SU(2)’s

Introduction

• N=2 gauge theories in 3+1 dimensions

• Vector Multiplet Moduli Space

• Hypermultiplet Moduli Space

• revisit - study a class made out of SU(2)’s

• interesting class of HyperKahler manifolds

2

Tuesday, May 17, 2011

Page 8: Tri-Vertices & SU(2)’s

Hypermultipletmoduli space

3

Tuesday, May 17, 2011

Page 9: Tri-Vertices & SU(2)’s

Hypermultipletmoduli space

• Most attention in the literature - V plet moduli space (Coulomb branch)

3

Tuesday, May 17, 2011

Page 10: Tri-Vertices & SU(2)’s

Hypermultipletmoduli space

• Most attention in the literature - V plet moduli space (Coulomb branch)

• Receives quantum corrections

3

Tuesday, May 17, 2011

Page 11: Tri-Vertices & SU(2)’s

Hypermultipletmoduli space

• Most attention in the literature - V plet moduli space (Coulomb branch)

• Receives quantum corrections

• H plet moduli space is classical

3

Tuesday, May 17, 2011

Page 12: Tri-Vertices & SU(2)’s

Hypermultipletmoduli space

• Most attention in the literature - V plet moduli space (Coulomb branch)

• Receives quantum corrections

• H plet moduli space is classical

• argue it has many interesting features

3

Tuesday, May 17, 2011

Page 13: Tri-Vertices & SU(2)’s

From Quivers to Skeleton Diagrams

4

Tuesday, May 17, 2011

Page 14: Tri-Vertices & SU(2)’s

From Quivers to Skeleton Diagrams

• N=2 Quiver - nodes connected by lines

4

Tuesday, May 17, 2011

Page 15: Tri-Vertices & SU(2)’s

From Quivers to Skeleton Diagrams

• N=2 Quiver - nodes connected by lines

• each node - V plet

4

Tuesday, May 17, 2011

Page 16: Tri-Vertices & SU(2)’s

From Quivers to Skeleton Diagrams

• N=2 Quiver - nodes connected by lines

• each node - V plet

• each line - H plet, bifundamental

4

Tuesday, May 17, 2011

Page 17: Tri-Vertices & SU(2)’s

From Quivers to Skeleton Diagrams

• N=2 Quiver - nodes connected by lines

• each node - V plet

• each line - H plet, bifundamental

• extend to other matter?

4

Tuesday, May 17, 2011

Page 18: Tri-Vertices & SU(2)’s

Tri-Vertices

5

Tuesday, May 17, 2011

Page 19: Tri-Vertices & SU(2)’s

Tri-Vertices

• First - change notation

5

Tuesday, May 17, 2011

Page 20: Tri-Vertices & SU(2)’s

Tri-Vertices

• First - change notation

• Inspired by brane configurations, use lines for V plets and nodes for H plets

5

Tuesday, May 17, 2011

Page 21: Tri-Vertices & SU(2)’s

Tri-Vertices

• First - change notation

• Inspired by brane configurations, use lines for V plets and nodes for H plets

• restrict to 3-valent vertices and lines representing SU(2) gauge group

5

Tuesday, May 17, 2011

Page 22: Tri-Vertices & SU(2)’s

Skeleton Diagrams

6

Tuesday, May 17, 2011

Page 23: Tri-Vertices & SU(2)’s

Skeleton Diagrams

• Lines & 3-valent Vertices

6

Tuesday, May 17, 2011

Page 24: Tri-Vertices & SU(2)’s

Skeleton Diagrams

• Lines & 3-valent Vertices

• Each Line - V plet with SU(2) gauge group

6

Tuesday, May 17, 2011

Page 25: Tri-Vertices & SU(2)’s

Skeleton Diagrams

• Lines & 3-valent Vertices

• Each Line - V plet with SU(2) gauge group

• Each vertex - a tri-fundamental of SU(2)3

6

Tuesday, May 17, 2011

Page 26: Tri-Vertices & SU(2)’s

Skeleton Diagrams

• Lines & 3-valent Vertices

• Each Line - V plet with SU(2) gauge group

• Each vertex - a tri-fundamental of SU(2)3

• 8 half hypermultiplets in (2,2,2) of SU(2)3

6

Tuesday, May 17, 2011

Page 27: Tri-Vertices & SU(2)’s

Skeleton Diagrams

• Lines & 3-valent Vertices

• Each Line - V plet with SU(2) gauge group

• Each vertex - a tri-fundamental of SU(2)3

• 8 half hypermultiplets in (2,2,2) of SU(2)3

• Length of the line L ~ 1/g 2

6

Tuesday, May 17, 2011

Page 28: Tri-Vertices & SU(2)’s

Skeleton Diagrams

• Lines & 3-valent Vertices

• Each Line - V plet with SU(2) gauge group

• Each vertex - a tri-fundamental of SU(2)3

• 8 half hypermultiplets in (2,2,2) of SU(2)3

• Length of the line L ~ 1/g 2

• infinite line - global SU(2) symmetry

6

Tuesday, May 17, 2011

Page 29: Tri-Vertices & SU(2)’s

Example: 8 free 1/2 Hypers

7

Tuesday, May 17, 2011

Page 30: Tri-Vertices & SU(2)’s

Example: 8 free 1/2 Hypers

• global symmetry SU(2)3

7

Tuesday, May 17, 2011

Page 31: Tri-Vertices & SU(2)’s

Example: 8 free 1/2 Hypers

• global symmetry SU(2)3

• No gauge group

7

Tuesday, May 17, 2011

Page 32: Tri-Vertices & SU(2)’s

Example: N=4 SU(2) gauge theory

8

Tuesday, May 17, 2011

Page 33: Tri-Vertices & SU(2)’s

Example: N=4 SU(2) gauge theory

• 1 gauge group

8

Tuesday, May 17, 2011

Page 34: Tri-Vertices & SU(2)’s

Example: N=4 SU(2) gauge theory

• 1 gauge group

• 2 adjoints - an N=2 H plet

8

Tuesday, May 17, 2011

Page 35: Tri-Vertices & SU(2)’s

Example: N=4 SU(2) gauge theory

• 1 gauge group

• 2 adjoints - an N=2 H plet

• 2 singlets - decouple

8

Tuesday, May 17, 2011

Page 36: Tri-Vertices & SU(2)’s

Example: N=4 SU(2) gauge theory

• 1 gauge group

• 2 adjoints - an N=2 H plet

• 2 singlets - decouple

• infinite line - SU(2) global symmetry

8

Tuesday, May 17, 2011

Page 37: Tri-Vertices & SU(2)’s

Example: N=4 SU(2) gauge theory

• 1 gauge group

• 2 adjoints - an N=2 H plet

• 2 singlets - decouple

• infinite line - SU(2) global symmetry

• possible N=2 breaking mass term

8

Tuesday, May 17, 2011

Page 38: Tri-Vertices & SU(2)’s

Example: SU(2) with 4 flavors

9

Tuesday, May 17, 2011

Page 39: Tri-Vertices & SU(2)’s

Example: SU(2) with 4 flavors

• 1 gauge group

9

Tuesday, May 17, 2011

Page 40: Tri-Vertices & SU(2)’s

Example: SU(2) with 4 flavors

• 1 gauge group

• SU(2)4 global symmetry

9

Tuesday, May 17, 2011

Page 41: Tri-Vertices & SU(2)’s

Infinite class of SU(2) theories

10

Tuesday, May 17, 2011

Page 42: Tri-Vertices & SU(2)’s

Infinite class of SU(2) theories

• For each such diagram write a unique Lagrangian in 3+1 dimensions with N=2 supersymmetry

10

Tuesday, May 17, 2011

Page 43: Tri-Vertices & SU(2)’s

Infinite class of SU(2) theories

• For each such diagram write a unique Lagrangian in 3+1 dimensions with N=2 supersymmetry

• Feynmann diagram in phi cubed field theory but each diagram represents a unique Lagrangian

10

Tuesday, May 17, 2011

Page 44: Tri-Vertices & SU(2)’s

Conformal Invariance

11

Tuesday, May 17, 2011

Page 45: Tri-Vertices & SU(2)’s

Conformal Invariance

• Each finite line has 2 ends

11

Tuesday, May 17, 2011

Page 46: Tri-Vertices & SU(2)’s

Conformal Invariance

• Each finite line has 2 ends

• giving 8 fundamental half hypers charged under it

11

Tuesday, May 17, 2011

Page 47: Tri-Vertices & SU(2)’s

Conformal Invariance

• Each finite line has 2 ends

• giving 8 fundamental half hypers charged under it

• beta function is 0

11

Tuesday, May 17, 2011

Page 48: Tri-Vertices & SU(2)’s

An infinite class of N=2 SCFT’s

12

Tuesday, May 17, 2011

Page 49: Tri-Vertices & SU(2)’s

Topology of skeleton diagrams

13

Tuesday, May 17, 2011

Page 50: Tri-Vertices & SU(2)’s

Topology of skeleton diagrams

13

• each diagram has g loops & e external legs

Tuesday, May 17, 2011

Page 51: Tri-Vertices & SU(2)’s

Topology of skeleton diagrams

13

• each diagram has g loops & e external legs

• Number of gauge groups 3g-3+e

Tuesday, May 17, 2011

Page 52: Tri-Vertices & SU(2)’s

Topology of skeleton diagrams

13

• each diagram has g loops & e external legs

• Number of gauge groups 3g-3+e

• Number of matter fields 2g-2+e

Tuesday, May 17, 2011

Page 53: Tri-Vertices & SU(2)’s

Topology of skeleton diagrams

13

• each diagram has g loops & e external legs

• Number of gauge groups 3g-3+e

• Number of matter fields 2g-2+e

• global symmetry SU(2)e

Tuesday, May 17, 2011

Page 54: Tri-Vertices & SU(2)’s

HypermultipletModuli Space

14

Tuesday, May 17, 2011

Page 55: Tri-Vertices & SU(2)’s

HypermultipletModuli Space

• at generic point gauge group is broken down to U(1)g

14

Tuesday, May 17, 2011

Page 56: Tri-Vertices & SU(2)’s

HypermultipletModuli Space

• at generic point gauge group is broken down to U(1)g

• dimension of moduli space (quaternionic)

14

Tuesday, May 17, 2011

Page 57: Tri-Vertices & SU(2)’s

HypermultipletModuli Space

• at generic point gauge group is broken down to U(1)g

• dimension of moduli space (quaternionic)

• (2g-2+e) x 8 x 1/2 - [(3g-3+e)x3 - g] = e+1

14

Tuesday, May 17, 2011

Page 58: Tri-Vertices & SU(2)’s

HypermultipletModuli Space

• at generic point gauge group is broken down to U(1)g

• dimension of moduli space (quaternionic)

• (2g-2+e) x 8 x 1/2 - [(3g-3+e)x3 - g] = e+1

• No dependence on g

14

Tuesday, May 17, 2011

Page 59: Tri-Vertices & SU(2)’s

HypermultipletModuli Space

• at generic point gauge group is broken down to U(1)g

• dimension of moduli space (quaternionic)

• (2g-2+e) x 8 x 1/2 - [(3g-3+e)x3 - g] = e+1

• No dependence on g

• Kibble Branch

14

Tuesday, May 17, 2011

Page 60: Tri-Vertices & SU(2)’s

Look for generic resultsdepending on g & enot on Lagrangian

15

Tuesday, May 17, 2011

Page 61: Tri-Vertices & SU(2)’s

Chiral Operators on Kibble Branch

16

Tuesday, May 17, 2011

Page 62: Tri-Vertices & SU(2)’s

Chiral Operators on Kibble Branch

• Write the theory in N=1 language

16

Tuesday, May 17, 2011

Page 63: Tri-Vertices & SU(2)’s

Chiral Operators on Kibble Branch

• Write the theory in N=1 language

• Many chiral operators

16

Tuesday, May 17, 2011

Page 64: Tri-Vertices & SU(2)’s

Chiral Operators on Kibble Branch

• Write the theory in N=1 language

• Many chiral operators

• Count Chiral Operators on the Kibble branch

16

Tuesday, May 17, 2011

Page 65: Tri-Vertices & SU(2)’s

Chiral Operators on Kibble Branch

• Write the theory in N=1 language

• Many chiral operators

• Count Chiral Operators on the Kibble branch

• Hilbert Series

16

Tuesday, May 17, 2011

Page 66: Tri-Vertices & SU(2)’s

What is aHilbert Series?

17

Tuesday, May 17, 2011

Page 67: Tri-Vertices & SU(2)’s

What is aHilbert Series?

g({ti}) =∑

i1,...,ik

di1,...,iktii

1· · · tik

k

17

Tuesday, May 17, 2011

Page 68: Tri-Vertices & SU(2)’s

What is aHilbert Series?

g({ti}) =∑

i1,...,ik

di1,...,iktii

1· · · tik

k

di1,...,ik

i1, . . . , ik

17

Tuesday, May 17, 2011

Page 69: Tri-Vertices & SU(2)’s

Fugacities

18

Tuesday, May 17, 2011

Page 70: Tri-Vertices & SU(2)’s

Fugacities

18

• t - keeps track of the dimension of operator

Tuesday, May 17, 2011

Page 71: Tri-Vertices & SU(2)’s

Fugacities

18

• t - keeps track of the dimension of operator

• x - SU(2)

Tuesday, May 17, 2011

Page 72: Tri-Vertices & SU(2)’s

Fugacities

18

• t - keeps track of the dimension of operator

• x - SU(2)

• for e SU(2)’s there are e x’s

Tuesday, May 17, 2011

Page 73: Tri-Vertices & SU(2)’s

Fugacities

18

• t - keeps track of the dimension of operator

• x - SU(2)

• for e SU(2)’s there are e x’s

• HS(t, x1, x2, ..., xe)

Tuesday, May 17, 2011

Page 74: Tri-Vertices & SU(2)’s

Example: g=0, e=3

19

Tuesday, May 17, 2011

Page 75: Tri-Vertices & SU(2)’s

Example: g=0, e=3

19

Tuesday, May 17, 2011

Page 76: Tri-Vertices & SU(2)’s

Example: g=0, e=3

19

1 + [1; 1; 1]t + ([2; 2; 2] + [2; 0; 0] + [0; 2; 0] + [0; 0; 2])t2

Tuesday, May 17, 2011

Page 77: Tri-Vertices & SU(2)’s

Example: g=0, e=3

19

1 + [1; 1; 1]t + ([2; 2; 2] + [2; 0; 0] + [0; 2; 0] + [0; 0; 2])t2

Qa,b,c

Tuesday, May 17, 2011

Page 78: Tri-Vertices & SU(2)’s

Example: g=0, e=3

19

1 + [1; 1; 1]t + ([2; 2; 2] + [2; 0; 0] + [0; 2; 0] + [0; 0; 2])t2

Qa,b,cQ(a,b,cQa′,b′,c′)

Tuesday, May 17, 2011

Page 79: Tri-Vertices & SU(2)’s

Example: g=0, e=3

19

1 + [1; 1; 1]t + ([2; 2; 2] + [2; 0; 0] + [0; 2; 0] + [0; 0; 2])t2

Qa,b,cQa,b,cQa′,b′,c′εa,a′

εb,b′Q(a,b,cQa′,b′,c′)

Tuesday, May 17, 2011

Page 80: Tri-Vertices & SU(2)’s

Example: g=0, e=3

19

1 + [1; 1; 1]t + ([2; 2; 2] + [2; 0; 0] + [0; 2; 0] + [0; 0; 2])t2

Qa,b,cQa,b,cQa′,b′,c′εa,a′

εb,b′Q(a,b,cQa′,b′,c′)

Tuesday, May 17, 2011

Page 81: Tri-Vertices & SU(2)’s

Plethystics

20

Tuesday, May 17, 2011

Page 82: Tri-Vertices & SU(2)’s

Example: g=0, e=4

21

Tuesday, May 17, 2011

Page 83: Tri-Vertices & SU(2)’s

Example: g=0, e=4

21

• To compute the HS observe

Tuesday, May 17, 2011

Page 84: Tri-Vertices & SU(2)’s

Example: g=0, e=4

21

• To compute the HS observe

• Higgs branch is the moduli space of 1 SO(8) instanton on R4

Tuesday, May 17, 2011

Page 85: Tri-Vertices & SU(2)’s

Example: g=0, e=4

21

• To compute the HS observe

• Higgs branch is the moduli space of 1 SO(8) instanton on R4

• HS was computed and gives

Tuesday, May 17, 2011

Page 86: Tri-Vertices & SU(2)’s

Example: g=0, e=4

21

• To compute the HS observe

• Higgs branch is the moduli space of 1 SO(8) instanton on R4

• HS was computed and gives

Tuesday, May 17, 2011

Page 87: Tri-Vertices & SU(2)’s

HS: g=0, e=4

22

Tuesday, May 17, 2011

Page 88: Tri-Vertices & SU(2)’s

HS: g=0, e=4

• Next decompose irreps of SO(8) to SU(2)4

22

Tuesday, May 17, 2011

Page 89: Tri-Vertices & SU(2)’s

HS: g=0, e=4

• Next decompose irreps of SO(8) to SU(2)4

• Use fugacity map

22

Tuesday, May 17, 2011

Page 90: Tri-Vertices & SU(2)’s

HS: g=0, e=4

23

Tuesday, May 17, 2011

Page 91: Tri-Vertices & SU(2)’s

Gluing Theories

24

Tuesday, May 17, 2011

Page 92: Tri-Vertices & SU(2)’s

Gluing Theories

24

• 2 theories with (g1, e1) & (g2, e2)

Tuesday, May 17, 2011

Page 93: Tri-Vertices & SU(2)’s

Gluing Theories

24

• 2 theories with (g1, e1) & (g2, e2)

• glue by identifying an infinite leg from each

Tuesday, May 17, 2011

Page 94: Tri-Vertices & SU(2)’s

Gluing Theories

24

• 2 theories with (g1, e1) & (g2, e2)

• glue by identifying an infinite leg from each

• turn it into finite line

Tuesday, May 17, 2011

Page 95: Tri-Vertices & SU(2)’s

Gluing Theories

24

• 2 theories with (g1, e1) & (g2, e2)

• glue by identifying an infinite leg from each

• turn it into finite line

• gauging an SU(2) global symmetry

Tuesday, May 17, 2011

Page 96: Tri-Vertices & SU(2)’s

Gluing Theories

24

• 2 theories with (g1, e1) & (g2, e2)

• glue by identifying an infinite leg from each

• turn it into finite line

• gauging an SU(2) global symmetry

• get the theory with (g1+g2, e1+e2-2)

Tuesday, May 17, 2011

Page 97: Tri-Vertices & SU(2)’s

Gluing 2 theories with(0,3) to form (0,4)

25

Tuesday, May 17, 2011

Page 98: Tri-Vertices & SU(2)’s

permutation symmetry

26

Tuesday, May 17, 2011

Page 99: Tri-Vertices & SU(2)’s

permutation symmetry

26

• The result has S4 symmetry - permutation of external legs (global symmetries)

Tuesday, May 17, 2011

Page 100: Tri-Vertices & SU(2)’s

Example: g=1, e=1

27

Tuesday, May 17, 2011

Page 101: Tri-Vertices & SU(2)’s

g=1, e=1 another method

28

Tuesday, May 17, 2011

Page 102: Tri-Vertices & SU(2)’s

g=1, e=1 another method

28

• two commuting adjoints

Tuesday, May 17, 2011

Page 103: Tri-Vertices & SU(2)’s

g=1, e=1 another method

28

• two commuting adjoints

• symmetric product of 2 C2 s

Tuesday, May 17, 2011

Page 104: Tri-Vertices & SU(2)’s

Example: g=1, e=2

29

Tuesday, May 17, 2011

Page 105: Tri-Vertices & SU(2)’s

Example: g=2, e=0

30

Tuesday, May 17, 2011

Page 106: Tri-Vertices & SU(2)’s

examples: g=3, e=0

31

Tuesday, May 17, 2011

Page 107: Tri-Vertices & SU(2)’s

Duality statement

32

Tuesday, May 17, 2011

Page 108: Tri-Vertices & SU(2)’s

Duality statement

32

• physics depends on g & e and not on the particular choice of the Lagrangian

Tuesday, May 17, 2011

Page 109: Tri-Vertices & SU(2)’s

Duality statement

32

• physics depends on g & e and not on the particular choice of the Lagrangian

• Many to 1 correspondence

Tuesday, May 17, 2011

Page 110: Tri-Vertices & SU(2)’s

general case: (g,e)

33

Tuesday, May 17, 2011

Page 111: Tri-Vertices & SU(2)’s

any g, e=0

34

Tuesday, May 17, 2011

Page 112: Tri-Vertices & SU(2)’s

any g, e=1

35

Tuesday, May 17, 2011

Page 113: Tri-Vertices & SU(2)’s

g, e=1

36

Tuesday, May 17, 2011

Page 114: Tri-Vertices & SU(2)’s

g, e=1

36

• complete intersection

Tuesday, May 17, 2011

Page 115: Tri-Vertices & SU(2)’s

g, e=1

36

• complete intersection

• generated by 5 operators

Tuesday, May 17, 2011

Page 116: Tri-Vertices & SU(2)’s

g, e=1

36

• complete intersection

• generated by 5 operators

• triplet of dimension 2; doublet of dimension 2g-1

Tuesday, May 17, 2011

Page 117: Tri-Vertices & SU(2)’s

g, e=1

36

• complete intersection

• generated by 5 operators

• triplet of dimension 2; doublet of dimension 2g-1

• one relation of degree 4g

Tuesday, May 17, 2011

Page 118: Tri-Vertices & SU(2)’s

generators of the moduli space

37

Tuesday, May 17, 2011

Page 119: Tri-Vertices & SU(2)’s

generators

38

Tuesday, May 17, 2011

Page 120: Tri-Vertices & SU(2)’s

generators

38

• 3e at dimension 2

Tuesday, May 17, 2011

Page 121: Tri-Vertices & SU(2)’s

generators

38

• 3e at dimension 2

• 2e at dimension 2g-2+e

Tuesday, May 17, 2011

Page 122: Tri-Vertices & SU(2)’s

generators

38

• 3e at dimension 2

• 2e at dimension 2g-2+e

• Indication of the complexity at high e

Tuesday, May 17, 2011

Page 123: Tri-Vertices & SU(2)’s

generators

38

• 3e at dimension 2

• 2e at dimension 2g-2+e

• Indication of the complexity at high e

• HyperKahler moduli space

Tuesday, May 17, 2011

Page 124: Tri-Vertices & SU(2)’s

generators

38

• 3e at dimension 2

• 2e at dimension 2g-2+e

• Indication of the complexity at high e

• HyperKahler moduli space

• of dimension e+1

Tuesday, May 17, 2011

Page 125: Tri-Vertices & SU(2)’s

generators

38

• 3e at dimension 2

• 2e at dimension 2g-2+e

• Indication of the complexity at high e

• HyperKahler moduli space

• of dimension e+1

• with SU(2)e isometry

Tuesday, May 17, 2011

Page 126: Tri-Vertices & SU(2)’s

Summary

39

Tuesday, May 17, 2011

Page 127: Tri-Vertices & SU(2)’s

Summary

39

• Study SU(2)’s & matter in tri-fundamental

Tuesday, May 17, 2011

Page 128: Tri-Vertices & SU(2)’s

Summary

39

• Study SU(2)’s & matter in tri-fundamental

• properties of H plet moduli space (Kibble branch)

Tuesday, May 17, 2011

Page 129: Tri-Vertices & SU(2)’s

Summary

39

• Study SU(2)’s & matter in tri-fundamental

• properties of H plet moduli space (Kibble branch)

• Special class of HyperKahler manifolds with SU(2)e isometries

Tuesday, May 17, 2011

Page 130: Tri-Vertices & SU(2)’s

Summary

39

• Study SU(2)’s & matter in tri-fundamental

• properties of H plet moduli space (Kibble branch)

• Special class of HyperKahler manifolds with SU(2)e isometries

• Multi-ality: Physics depends on (g,e)

Tuesday, May 17, 2011

Page 131: Tri-Vertices & SU(2)’s

Summary

39

• Study SU(2)’s & matter in tri-fundamental

• properties of H plet moduli space (Kibble branch)

• Special class of HyperKahler manifolds with SU(2)e isometries

• Multi-ality: Physics depends on (g,e)

• Symmetry: symmetric group in e elements

Tuesday, May 17, 2011

Page 132: Tri-Vertices & SU(2)’s

Thank you!

40

Tuesday, May 17, 2011