21
Transport processes (TRP) VST rz18 Transport processes – Part 4 Ron Zevenhoven Åbo Akademi University Thermal and Flow Engineering / Värme- och strömningsteknik tel. 3223 ; [email protected] Transport processes (TRP) VST rz18

Transport processes – Part 4 - users.abo.fiusers.abo.fi/rzevenho/trp-slides-4-2018.pdf · Transport processes(TRP) VST rz18 Transport processes – Part 4 Ron Zevenhoven Åbo Akademi

Embed Size (px)

Citation preview

Page 1: Transport processes – Part 4 - users.abo.fiusers.abo.fi/rzevenho/trp-slides-4-2018.pdf · Transport processes(TRP) VST rz18 Transport processes – Part 4 Ron Zevenhoven Åbo Akademi

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

Transport processes – Part 4

Ron ZevenhovenÅbo Akademi University

Thermal and Flow Engineering / Värme- och strömningstekniktel. 3223 ; [email protected]

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

Page 2: Transport processes – Part 4 - users.abo.fiusers.abo.fi/rzevenho/trp-slides-4-2018.pdf · Transport processes(TRP) VST rz18 Transport processes – Part 4 Ron Zevenhoven Åbo Akademi

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

3/42 4

Chapters 7-8-9 (not part of this course)

Except when Re = ∞: inviscid flow)

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

4/42 4

Page 3: Transport processes – Part 4 - users.abo.fiusers.abo.fi/rzevenho/trp-slides-4-2018.pdf · Transport processes(TRP) VST rz18 Transport processes – Part 4 Ron Zevenhoven Åbo Akademi

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

5/42 4

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

6/42 4

Page 4: Transport processes – Part 4 - users.abo.fiusers.abo.fi/rzevenho/trp-slides-4-2018.pdf · Transport processes(TRP) VST rz18 Transport processes – Part 4 Ron Zevenhoven Åbo Akademi

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

7/42 4

scoordinate Cartesianin

y

v

x

vx

v

z

vz

v

y

v

vvrot

xy

zx

yz(viscous effects neglected: ”inviscid”)

Steady state: ∂../∂t = 0

- sign because h↑ and g↓

v not 0 rot v = 0 for streamline

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

Example rot v

• Assume a flow field v = (vx,vy,vz) = (k·y,0,0), with a constant y.

• For this case

• gives a vector with a non-zero component in z-direction.

8/42

kk

y

v

x

vx

v

z

vz

v

y

v

vvrot

xy

zx

yz

0

0

0

00

00

x

yv

Page 5: Transport processes – Part 4 - users.abo.fiusers.abo.fi/rzevenho/trp-slides-4-2018.pdf · Transport processes(TRP) VST rz18 Transport processes – Part 4 Ron Zevenhoven Åbo Akademi

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

9/42 4

dyvdxv

dyy

dxx

d

yx

xy

),(

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

10/42 4

v vectorany for 0

scalarany for 0

v

) chargeelectric an for : forceelectric and fieldelectric an for ,(Similarly qvoltageq

FEFE elec

elecelecelec

Page 6: Transport processes – Part 4 - users.abo.fiusers.abo.fi/rzevenho/trp-slides-4-2018.pdf · Transport processes(TRP) VST rz18 Transport processes – Part 4 Ron Zevenhoven Åbo Akademi

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

11/42 4

.

),(),(),(

: etcdxyx

yx

dxy

yxvv

y

yxv

y

v

x

vcontinuity y

xyyx

02 ..ei

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

12/42 4

r

θ

Page 7: Transport processes – Part 4 - users.abo.fiusers.abo.fi/rzevenho/trp-slides-4-2018.pdf · Transport processes(TRP) VST rz18 Transport processes – Part 4 Ron Zevenhoven Åbo Akademi

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

13/42 4

note: constant A = A(4.23)·C(4.25)

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

14/42 4

Page 8: Transport processes – Part 4 - users.abo.fiusers.abo.fi/rzevenho/trp-slides-4-2018.pdf · Transport processes(TRP) VST rz18 Transport processes – Part 4 Ron Zevenhoven Åbo Akademi

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

15/42 4

½ρv2+p+ρgh = constant

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

16/42 4

Page 9: Transport processes – Part 4 - users.abo.fiusers.abo.fi/rzevenho/trp-slides-4-2018.pdf · Transport processes(TRP) VST rz18 Transport processes – Part 4 Ron Zevenhoven Åbo Akademi

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

17/42 4

D’Alembertparadox

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

18/42 4

Page 10: Transport processes – Part 4 - users.abo.fiusers.abo.fi/rzevenho/trp-slides-4-2018.pdf · Transport processes(TRP) VST rz18 Transport processes – Part 4 Ron Zevenhoven Åbo Akademi

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

Creeping flow

• The expression (4.38) gives, with vz << vy and << vx

which with ∂vx/∂y and ∂vx/∂x << ∂vx/∂z, and similarly ∂vy/∂y and ∂vy/∂x << ∂vy/∂z simplifies to (4.39, 4.40)

μ

pv

and y

p

μz

v

y

v

x

v

x

p

μz

v

y

v

x

v yyyxxx

and y

p

μz

v

x

p

μz

v yx

x

z

y z=0

z=h

vx, vy, vz

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

20/42 4

functionflow potential 6

6 and

6

2

,2,2

µ

ph

vh

µ

x

pv

h

µ

x

pmeanymeanx

Page 11: Transport processes – Part 4 - users.abo.fiusers.abo.fi/rzevenho/trp-slides-4-2018.pdf · Transport processes(TRP) VST rz18 Transport processes – Part 4 Ron Zevenhoven Åbo Akademi

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

21/42 4

Re << 1

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

A classroom exercise - 4

• An inviscid incompressible fluid flow can be described by a two-dimensional stream function ψ(x,y) and potential Φ, for –L ≤ x ≤ L, –L ≤ y ≤ L . With velocity v∞ at x = L, y = L, the velocity potential Φ is given by :

Φ = v∞· x· y /L.

• Give the expression for the velocity vectorv(x,y) = (vx,vy) and for the stream functionψ(x,y).

22/42

Page 12: Transport processes – Part 4 - users.abo.fiusers.abo.fi/rzevenho/trp-slides-4-2018.pdf · Transport processes(TRP) VST rz18 Transport processes – Part 4 Ron Zevenhoven Åbo Akademi

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

23/42 4

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

24/42 4

Page 13: Transport processes – Part 4 - users.abo.fiusers.abo.fi/rzevenho/trp-slides-4-2018.pdf · Transport processes(TRP) VST rz18 Transport processes – Part 4 Ron Zevenhoven Åbo Akademi

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

25/42 4

@ y ≥ δ(x) : vy = 0

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

26/42 4

Page 14: Transport processes – Part 4 - users.abo.fiusers.abo.fi/rzevenho/trp-slides-4-2018.pdf · Transport processes(TRP) VST rz18 Transport processes – Part 4 Ron Zevenhoven Åbo Akademi

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

27/42 4

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

28/42 4

V

x ~

Page 15: Transport processes – Part 4 - users.abo.fiusers.abo.fi/rzevenho/trp-slides-4-2018.pdf · Transport processes(TRP) VST rz18 Transport processes – Part 4 Ron Zevenhoven Åbo Akademi

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

29/42 4

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

30/42 4

4.4) (Fig.velocity flow free ) V(or V, y

)()( fxA

d

dfVfVv x

)()('

Page 16: Transport processes – Part 4 - users.abo.fiusers.abo.fi/rzevenho/trp-slides-4-2018.pdf · Transport processes(TRP) VST rz18 Transport processes – Part 4 Ron Zevenhoven Åbo Akademi

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

31/42 4

see next 4 slides

2

2

3

3

2 d

fdd

fdf

d

dfVfVv x

)()('

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

Boundary layers – Blasius /1• The starting point for Blasius’ analysis are Prandtl’s

boundary layer equations, which with dp/dx ≈ 0 (or at least dp/dx << the other terms) are

with boundary conditions v∞=v∞(x) in the undisturbed flow, vx=vy=0 at x=0, vx=v∞ at y=∞.

• Considering a two-dimensional flow (i.e. symmetry in third dimension) described by stream function ψ(x,y) and introducing a dimensionless variable η(x,y) = y/√(ν·x/v∞) ~ y/δ gives a function f(η):

Page 17: Transport processes – Part 4 - users.abo.fiusers.abo.fi/rzevenho/trp-slides-4-2018.pdf · Transport processes(TRP) VST rz18 Transport processes – Part 4 Ron Zevenhoven Åbo Akademi

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

Boundary layers – Blasius /2• Producing from this the terms for the Prandtl

equations gives resultwhere f´ = ∂f/∂η, f´´ = ∂2f/∂η2 and noting that∂f/∂x = ∂f/∂η·∂η/∂x= f´·∂η/∂x and ∂f/∂y = ∂f/∂η·∂η/∂y= f´·∂η/∂y

• Using this in Prandtl’sequation gives finallywith boundary conditions

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

Boundary layers – Blasius /3• A numerical solution was produced by Howarth (1938)

Page 18: Transport processes – Part 4 - users.abo.fiusers.abo.fi/rzevenho/trp-slides-4-2018.pdf · Transport processes(TRP) VST rz18 Transport processes – Part 4 Ron Zevenhoven Åbo Akademi

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

Boundary layers – Blasius /4• Note that the equation (4.63), however, defines

η(x,y) as which differsby a factor 2 from the expression used by Blasius.

• This then gives instead of f´´´+ f·f´´ = 0 the expression 2·f´´´+ f·f´´ = 0 with boundary conditions f(0) = f´(0) = 0 and f´(∞) = 1.

• The numerical solution for this

is given in the table:

)(vdyvdx

ddy

y

vdy

x

v:Note yx

yx

000

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

36/42 4

0yv

use Leibniz

)(vdyvdx

d

dyy

vdy

x

v:Note

yx

yx

0

00

Page 19: Transport processes – Part 4 - users.abo.fiusers.abo.fi/rzevenho/trp-slides-4-2018.pdf · Transport processes(TRP) VST rz18 Transport processes – Part 4 Ron Zevenhoven Åbo Akademi

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

37/42 4

44

33

2210

bb

bbbV

v y

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

38/42 4

Page 20: Transport processes – Part 4 - users.abo.fiusers.abo.fi/rzevenho/trp-slides-4-2018.pdf · Transport processes(TRP) VST rz18 Transport processes – Part 4 Ron Zevenhoven Åbo Akademi

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

39/42 4

µVV

V

y

v

y

v xx

220

332

0

32

)(@

)(

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

A classroom exercise - 5• Blasius’ boundary layer

analysis describes the velocity profile (vx,vy) in a laminar boundary layer witha function f(η) where η = ½y√(v∞/xν) = ψ(x,y)/√(v∞xν), with kinematic viscosity ν, position x along the surface on which the boundary layer builds up, position y from the surface, and undisturbedflow (v∞, 0). See course material § 4.3.2 + addedmaterial. (continues)

40/42

Page 21: Transport processes – Part 4 - users.abo.fiusers.abo.fi/rzevenho/trp-slides-4-2018.pdf · Transport processes(TRP) VST rz18 Transport processes – Part 4 Ron Zevenhoven Åbo Akademi

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

A classroom exercise - 5• Using the analytical solution

by Howarth, given in the table for η, f´(η)= ∂f/∂η and f´´(η)= ∂²f/∂η², show that the thickness of the boundary layer, defined by vx/v∞ = 0.99, can be approximated by

41/42

νxv

x x

x

ReRe

with 5

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

Sources used(besides course book Hanjalić et al.)

• Beek, W.J., Muttzall, K.M.K., van Heuven, J.W. ”Transport phenomena” Wiley, 2nd edition (1999)

• R.B. Bird, W.E. Stewart, E.N. Lightfoot ”Transport phenomena” Wiley, New York (1960)

• * C.J. Hoogendoorn ”Fysische Transportverschijnselen II”, TU Delft / D.U.M., the Netherlands 2nd. ed. (1985)

• * C.J. Hoogendoorn, T.H. van der Meer ”Fysische Transport-verschijnselen II”, TU Delft /VSSD, the Netherlands 3nd. ed. (1991)

• J.R. Welty, C.E. Wicks, R.E. Wilson. “Fundamentals of momentum, heat and mass transfer” Wiley New York (1969)

* Earlier versions of Hanjalić et al. book but in Dutch

42/42 4