Transmission of Motion & Power3

Embed Size (px)

Citation preview

  • 8/17/2019 Transmission of Motion & Power3

    1/67

    & •  ( ) &    .

    •  , &

    .•  ;

    1. (/)

    2. 3.

    .

  • 8/17/2019 Transmission of Motion & Power3

    2/67

    B .

    , :

    1. 

     , . .2.  

     .

      , .. .

  • 8/17/2019 Transmission of Motion & Power3

    3/67

    & B

    The lower side of the belt will have more tension & is called theTight side.

    The upper side of the belt will have less tension & is called theSlack side.

    Belt Materials: Leather, rubber, canvas, balata (rubber withcotton)

  • 8/17/2019 Transmission of Motion & Power3

    4/67

  • 8/17/2019 Transmission of Motion & Power3

    5/67

    DriverDriven

    Adjustable weight

    Gravity Roller

     

    Jockey pulleys are used to get proper arc of contact. It increases theangle of wrap and there by reduce the belt tensions required for a given

    power. Normally the idler pulley is located near to the smaller diameterpulley.1. It is non reversible.2. The bending stress developed in the belt reduces the belt drive.

    3. Requires endless belt.

  • 8/17/2019 Transmission of Motion & Power3

    6/67

    •  A

       

    , ,.Stepped Pulleys

    Belt

    Shaft

    •   3 .

    •  B ,

    .

  • 8/17/2019 Transmission of Motion & Power3

    7/67

  • 8/17/2019 Transmission of Motion & Power3

    8/67

    & •   &

    .

    •   A

    Driver pulley

    Belt

    .

    •  

    .

    Belt shifter

    Fast pulley Loose pulley

  • 8/17/2019 Transmission of Motion & Power3

    9/67

    &

  • 8/17/2019 Transmission of Motion & Power3

    10/67

    B B

    ππππ++++2222αααα

    αααα

    αααα

    A

    −−−−

    P

    αααα

    F

    r

    r

    1

    2

    C

    D

    x

    O O1 2

  • 8/17/2019 Transmission of Motion & Power3

    11/67

    B B

    ππππ++++2222αααα

    αααα

    αααα

    A

    C

    ππππ−−−−2222ααααB

    D

    P

    ααααE

    F

    r

    r

    1

    2

    OO

    1 2

    1 2

    Consider an open belt drive as shown in fig.

    Let r be the radius of the larger pulley & r be the radius of the smaller pulley

    x=Center distance between the pulleys. From the fig, Length of open belt

    L

    { }

    1 2

    1 2From triangle O ,

    r r 

    O P

    π α π α  

    open 

    open 

    = Arc ABC + 2    (AF    )+ Arc DEF 

    L =    (  + 2    )+ 2    (AF    )+    (  - 2    )

    1 11 1 2 2 2 2 2 2 2 2  2 22 2 

    2 1 2 1  2 1 2 1  2 1 2 1  2 1 2 1  O P =    (O O    )-   (O P    )O P =    (O O    )-   (O P    )O P =    (O O    )-   (O P    )O P =    (O O    )-   (O P    )

  • 8/17/2019 Transmission of Motion & Power3

    12/67

    1 11 1 

    ππππ++++2222αααα

    αααα

    αααα

    A

    C

    ππππ−−−−2222ααααB

    D

    P

    ααααE

    F

    x

    r

    r

    1

    2

    O O1 2

    {

    { }

    ( )

    1 2

    2

    1 21 2

    2

    1 21 2

    From triangle O ,

    Expanding using binomial theorem & negelcting higher order terms,

    1 1

    2 2

    O P

    =  

    =

    2 2 2 2 2 2 2 2  2 22 2 

    2 1 2 1  2 1 2 1  2 1 2 1  2 1 2 1  

    1 11 1 

    1 11 1  2 22 2 2 2 2 2 2 2 2 2  2 22 2 

    2 22 2 

    2 22 2 

    O P =    (O O    )-   (O P    )O P =    (O O    )-   (O P    )O P =    (O O    )-   (O P    )O P =    (O O    )-   (O P    )

    r - r r - r r - r r - r O P =    (x    )-   (r - r    ) x 1 - O P =    (x    )-   (r - r    ) x 1 - O P =    (x    )-   (r - r    ) x 1 - O P =    (x    )-   (r - r    ) x 1 - 

    r - r r - r r - r r - r O P = AF = x 1 - x - r - r  O P = AF = x 1 - x - r - r  O P = AF = x 1 - x - r - r  O P = AF = x 1 - x - r - r  

     x

     x x

    2

  • 8/17/2019 Transmission of Motion & Power3

    13/67

    1 2From fig, sinα α  

    ≈ =

    r - r r - r r - r r - r 

     x

    ππππ++++2222αααα

    αααα

    αααα

    A

    C

    ππππ−−−−2222ααααB

    D

    P

    ααααE

    F

    x

    r

    r

    1

    2

    O O1 2

    ( )

    ( )

    ( )

    ( )

    2

    1 2

    2

    1 2

    2 1 2

    2

    1 21 22

    2

    1 2

    1

    1

    2

    2

    (

    12

    ( ) 2

    ( ) 2

    2r 

    π α π α  

    π α 

    π 

    π 

    ⇒  

    − + −

    − + −

    ∴ +

    1 2 1 2 1 2 1 2 

    1 11 1 

    1 11 1 

    r x - r - r r  r x - r - r r  r x - r - r r  r x - r - r r  

    r - r r - r r - r r - r r r    (r r x r r    (r r x r r    (r r x r r    (r r x 

    r - r r - r r - r r - r r - r r - r r - r r - r r r    (r r x r r    (r r x r r    (r r x r r    (r r x 

    r - r r - r r - r r - r 

    r x r x r x r x 

     x

     x

     x

     x

     x

    open 

    open 

    op n 

    ope 

    L =    (  + 2    )+ 2 +    (  - 2 

    L = +      )

    L = +      )+ 2 

    L = +      )+ 2 

  • 8/17/2019 Transmission of Motion & Power3

    14/67

    B B

    ππππ++++2222αααα

    αααα

    A

    ππππ++++2222αααα

    D

    P

    r

    r

    1

    2

    αααα

    C

    αααα

    F

    x

    O1 O2

  • 8/17/2019 Transmission of Motion & Power3

    15/67

    ππππ++++2222αααα

    αααα

    A

    C

    ππππ++++2222ααααB

    D

    P

    αααα

    E

    F

    x

    r

    r

    1

    2

    αααα

    O1 O2

    1 2

    Consider an crossed belt drive as shown in fig.

    Let r be the radius of the larger pulley & r be the radius of the smaller pulley

    x=Center distance between the pulleys. From the fig, Length of crossed

    { }

    1 2

    1 2

     belt

    From triangle O ,

    r r 

    O P

    π α π α  

    crossed L = Arc ABC + 2    (AF    )+ Arc DEF 

    L =    (  + 2    )+ 2    (AF    )+    (  + 2    )1 11 1 

    2 2 2 2 2 2 2 2  2 22 2 2 1 2 1  2 1 2 1  2 1 2 1  2 1 2 1  O P =    (O O    )-   (O P    )O P =    (O O    )-   (O P    )O P =    (O O    )-   (O P    )O P =    (O O    )-   (O P    )

     crossed 

  • 8/17/2019 Transmission of Motion & Power3

    16/67

    ππππ++++2222αααα

    αααα

    A

    C

    ππππ++++2222ααααB

    D

    P

    αααα

    E

    F

    x

    r

    r

    1

    2

    αααα

    O1 O2

    { }

    { }

    ( )

    1 2

    2

    1 21 2

    2

    1 21 2

    From triangle O ,

    Expanding using binomial theorem & negelcting higher order terms,

    1 1

    2 2

    O P

    =  

    =

    2 2 2 2 2 2 2 2  2 22 2 2 1 2 1  2 1 2 1  2 1 2 1  2 1 2 1  

    1 11 1 

    1 11 1  2 22 2 2 2 2 2 2 2 2 2  2 22 2 

    2 22 2 

    2 22 2 

    O P =    (O O    )-   (O P    )O P =    (O O    )-   (O P    )O P =    (O O    )-   (O P    )O P =    (O O    )-   (O P    )

    r + r r + r r + r r + r O P =    (x    )-   (r + r    ) x 1 - O P =    (x    )-   (r + r    ) x 1 - O P =    (x    )-   (r + r    ) x 1 - O P =    (x    )-   (r + r    ) x 1 - 

    r + r r + r r + r r + r O P = AF = x 1 - x - r + r  O P = AF = x 1 - x - r + r  O P = AF = x 1 - x - r + r  O P = AF = x 1 - x - r + r  

     x

     x x

    2

  • 8/17/2019 Transmission of Motion & Power3

    17/67

    1 2From fig, sinα α  

    ≈ = r + r r + r r + r r + r 

    ππππ++++2222αααα

    αααα

    A

    C

    ππππ++++2222ααααB

    D

    P

    αααα

    E

    F

    x

    r

    r

    1

    2

    αααα

    O1 O2

    ( )

    ( )

    ( )

    ( )2

    1 2

    1

    2

    1 2 2

    2

    1 2

    2 1 2

    2

    1 2

    2

    2

    1 22 1

    1

    2

    ( ) 2

    ( ) 2

    ( 2r 

    π α π α  

    π α 

    π 

    π ∴

    ⇒  

    + + −

    + + −

    +

    1 11 1 

    1 11 1 

    1 11 1 

    r x - r + r r  r x - r + r r  r x - r + r r  r x - r + r r  

    r + r r + r r + r r + r r r    (r r x r r    (r r x r r    (r r x r r    (r r x 

    r + r r + r r + r r + r r + r r + r r + r r + r r r    (r r x r r    (r r x r r    (r r x r r    (r r x 

    r + r r + r r + r r + r 

    r x r x r x r x 

     x

     x

     x x

    crossed 

    crossed 

    cr 

    cross 

    o ed 

    ed 

    ss 

    L =    (  + 2    )+ 2 +    (  + 2 

    L = 

    L = +      )

     +      )+ 2 

    L =      )

    + + 2 

     x

  • 8/17/2019 Transmission of Motion & Power3

    18/67

    A A B

    dθ/2

    T

    TA2

    µµµµ R

    dθ/2

    T

    θ

    dθ/2T

    (T+δδδδT)

    P

    Q

    B

    O

    1

    R

    Q

    dθ/2

    (T+δδδδT)

  • 8/17/2019 Transmission of Motion & Power3

    19/67

    θ

    dθ/2

    dθ/2T

    T

    (T+δδδδT)

    T

    P

    Q

    A

    B

    O

    2

    1

    R

    µµµµ R

    dθ/2

    T

    P

    Q

    dθ/2

    (T+δδδδT)

    2

    Consider a belt drive as shown in fig.

    Let be the angle of contact & be the coefficient of friction.

    Let & be the tensions on tight & slack sides of the belt

    Consider an element PQ subtending an

    θ µ 

    1 11 1 T TT T  T 

    angle ' ' at the center of the

    pulley such that the tensions at P & Q are & respectively.

    δθ 

     (T +  (T +  (T +  (T + δT    )δT    )δT    )δT    )T 

  • 8/17/2019 Transmission of Motion & Power3

    20/67

    For equilibrum of the element, 0 & 0

    Equating summaton of horizontal force to zero, we get

    Tsin (T+ T)sin 0.2 2

    Ignoring product of small quantities and putting

    sin2

     H V 

     Rδθ δθ  

    δ 

    δθ δθ  

    = =

    + − =

    ∑ ∑

     for small angles, we get2

     

    θ

    dθ/2

    dθ/2T

    T

    (T+δδδδT)

    T

    P

    Q

    A

    B

    O

    2

    1

    R

    µµµµ R

    T

    0

    Tcos (T+ T)cos 02 2

    and putting cos 1 for small angles, we get2

     Rδθ δθ  

    δ µ 

    δθ 

    δ δ µ 

     µ 

    =

    ⇒   − + =

    =

    ∑⋯⋯⋯

    ⋯⋯⋯

     

    Similarly,Similarly,Similarly,Similarly,

    T TT T T = R Or R  (ii    )T = R Or R  (ii    )T = R Or R  (ii    )T = R Or R  (ii    )

    dθ/2

    P

    Q

    dθ/2

    (T+δδδδT)

  • 8/17/2019 Transmission of Motion & Power3

    21/67

    1

    22 1

    0

    1

    From (i) & (ii), we get

    .

    Integrating the above equation between the limits

     T & T and 0 & , T T 

    T T 

    θ 

    δ   µ  µ 

    δ θ µ δθ  

    =

    =

     

    ∫ ∫

    θ θθ θ 1 11 1 

    T TT T δT δT δT δT T TT Tδθ = Or δθ  δθ = Or δθ  δθ = Or δθ  δθ = Or δθ  T TT T 

    T TT T  

    2

     e

    θ 

    =

          2 22 2 

    Note : Note : Note : Note : 

     (1    )The an  (1    )The an  (1    )The an  (1    )The an 

     

    gle mus gle mus gle mus gle mus 

    T TT T 

    t be t be t be t be 

    1 1 2

    1 1 2

    2sin

    2sin

    s

    r r 

     x

    r r 

     x

    θ θ π 

    θ π 

    − = −

    + +

     in radians in radians in radians in radians 

     (2    )For open belt drive, =  (2    )For open belt drive, =  (2    )For open belt drive, =  (2    )For open belt drive, = 

     (3    )For crossed belt drive, =  (3    )For crossed belt drive, =  (3    )For crossed belt drive, =  (3    )For crossed belt drive, = 

  • 8/17/2019 Transmission of Motion & Power3

    22/67

    1 2

    1 2

    The net driving tension on the pulley =(T )

    Torque on the pulley =(T )

    where r=radius of the pulley.Power transmitted by the belt drive

    T r 

    ∴ − ×

    Power Transmitted by Belt Drive :

    1 2  P= 60000KW 

    1 2(T )

     1000

    2  where v=velocity of belt= m/sec

    60 60

    T vP KW 

    rn dnπ π 

    − ×⇒   =

    =

  • 8/17/2019 Transmission of Motion & Power3

    23/67

    It is the ratio of speed of the driven pulley to the speed of the driving pulley.

    If the driving pulley is suffixed as 1 & driven pulley as 2,

    Velocity ratio Transmitted by

    Velo

     Belt Drive

    city r

    :

    atio =

    2 1

    1 2

    ( neglecting slip & belt thickness)

     

    n d 

    n d =

     

    2 1

    1 2

    2 1

    1 2

     

    (neglecting slip &considering belt thickness)

    1100

    where S=Total % slip on driving & driven

    n d t 

    n d S 

    n d 

    = +

    = −

    Velocity ratio =

    Velocity ratio

     

    pulleys

  • 8/17/2019 Transmission of Motion & Power3

    24/67

      & .

    . .

    2 1

    1 2

    1100

    where S=Total % slip on driving & driven pulleys

    n d    S 

    n d 

    = −

    Velocity ratio

  • 8/17/2019 Transmission of Motion & Power3

    25/67

      &

    .

       

         

    .

    .

  • 8/17/2019 Transmission of Motion & Power3

    26/67

    •        .

    •   , 1 & &

    .

    1 0 0 2

    1 2 0

    . . if =coefficient of expansion or contraction,

    ( ) ( )

    ( ) 2

    i e

    T T T T  

    T T T 

    α 

    α α − = −

    ⇒   + =

    1 2 1 2 1 2 1 2 0 00 0 

    T +T T +T T +T T +T ∴T = ∴T = ∴T = ∴T = 

    2 22 2 

  • 8/17/2019 Transmission of Motion & Power3

    27/67

    1. , , .

    2.

    .

    3. B .

    .

    5. ,

    .

    1. .

    2. .

    3. .

  • 8/17/2019 Transmission of Motion & Power3

    28/67

    •  & .

    • 

    Grooved

    Pulley

    V-Belt

    .

    150 .

    Tension fabric cord

    Base rubber

    Fabric cover

  • 8/17/2019 Transmission of Motion & Power3

    29/67

  • 8/17/2019 Transmission of Motion & Power3

    30/67

    1

    , 3.

    400 .

    30 .

    .

  • 8/17/2019 Transmission of Motion & Power3

    31/67

    1

    2

    1

    1

    2

    Velocity ratio = =3

    Speed of driving pulley n 400 ,Diameter of driven pulley d 30

    n

    n

    rpmcm

    ==

    Data :

    2 1 1

    1 2

    2 2

    1

    We know that 330

    Also 3 3400

    n d d 

    n d 

    n n

    n

    =   ⇒   =

    =   ⇒   =

    1 11 1 Diameter of driving pulley d = 90 cm Diameter of driving pulley d = 90 cm Diameter of driving pulley d = 90 cm Diameter of driving pulley d = 90 cm 

    Sp Sp Sp Sp 

    Solution :

    2 22 2 eed of driven pulley n = 1200rpm eed of driven pulley n = 1200rpm eed of driven pulley n = 1200rpm eed of driven pulley n = 1200rpm 

  • 8/17/2019 Transmission of Motion & Power3

    32/67

    2

    1000

    . 600 &

    1800 ,

    .

  • 8/17/2019 Transmission of Motion & Power3

    33/67

    2

    2

    1

    1 2

    1800Velocity ratio = = =3

    600

    Sum of diameters ( ) 1000

    n

    n

    d d mm

    n d d 

       

    + =

    Data :

     

    1 2 2

    1 2

    1 2 2 2

    2

    e now t at

    . . 3

    Given ( ) 1000 (3 ) 1000

    n d d 

    i e d d  

    d d d d  

    =   ⇒   =

    = ×

    + =  ⇒

      + =∴Diameter of driven pulley d = 250 Diameter of driven pulley d = 250 Diameter of driven pulley d = 250 Diameter of driven pulley d = 250 

     o ut on :

    1&

    mm mm mm mm 

    Diameter of driving pulley d = 750 mm Diameter of driving pulley d = 750 mm Diameter of driving pulley d = 750 mm Diameter of driving pulley d = 750 mm 

  • 8/17/2019 Transmission of Motion & Power3

    34/67

    3

    A 200

    300

    . 500

    .

    8 & 4%.

  • 8/17/2019 Transmission of Motion & Power3

    35/67

    3

    2

    1

    1

    300Velocity ratio = = =1.5

    200

    Diameter of the driving pulley 500

    Thickness of the belt 8 , Slip=4%

    n

    n

    d mm

    t mm

       

    =

    =

    Data :

    2 1

    1 2

    2

    We know that 1100

    500 8

    1.5 18

    n d t    S n d t 

    +   = − +  

    +

    ⇒   = +

    Solution :

    2

    4

    100

    ∴Diameter of pulley on generator d = 317.12 Diameter of pulley on generator d = 317.12 Diameter of pulley on generator d = 317.12 Diameter of pulley on generator d = 317.12mm mm mm mm 

    4

  • 8/17/2019 Transmission of Motion & Power3

    36/67

    4

    600

    300

    .

    .

    ()

    ()

    D t

  • 8/17/2019 Transmission of Motion & Power3

    37/67

    ( )

    1 1

    2 2

    Diameter of the larger pulley 600 0.3

    Diameter of the smaller pulley 300 0.15

    Center distance between pulleys 3

    d mm r m

    d mm r m

     x m

    =   ⇒   =

    =   ⇒   =

    =

    Data :

    2 22 2 

    1 2 1 2 1 2 1 2 

    open 1 2  open 1 2  open 1 2  open 1 2  

    Length of open belt drive Length of open belt drive Length of open belt drive Length of open belt drive 

    r - r r - r r - r r - r L = L = L = L = π    (r + r    )+ 2 x +  π    (r + r    )+ 2 x +  π    (r + r    )+ 2 x +  π    (r + r    )+ 2 x +  x xx x 

    ::::

    ( )2 22 2 

    0.3 - 0.15 0.3 - 0.15 0.3 - 0.15 0.3 - 0.15  open open open open 

    ( )

    ( )

    open open open open 

    2 22 2 

    1 2 1 2 1 2 1 2 

    crossed 1 2  crossed 1 2  crossed 1 2  crossed 1 2  

    2 22 2 

    crossed crossed crossed crossed 

    crossed crossed crossed crossed 

    . .. .. .. .

    3 33 3 L = 7.421m  L = 7.421m  L = 7.421m  L = 7.421m  

    r + r r + r r + r r + r 

    L = L = L = L = π    (r + r    )+ 2 x +  π    (r + r    )+ 2 x +  π    (r + r    )+ 2 x +  π    (r + r    )+ 2 x +   x xx x 

    0.3 + 0.15 0.3 + 0.15 0.3 + 0.15 0.3 + 0.15 L = L = L = L = π    (0.3 + π    (0.3 + π    (0.3 + π    (0.3 + 

    Length of crossed beltLength of crossed beltLength of crossed beltLength of crossed belt

    0.15    )+   (2 × 3    )0.15    )+   (2 × 3    )0.15    )+   (2 × 3    )0.15    )+   (2 × 3    )

    drive :drive :drive :drive :

    + ++ + 3 33 3 

    L = 7.4812 m  L = 7.4812 m  L = 7.4812 m  L = 7.4812 m  

    5

  • 8/17/2019 Transmission of Motion & Power3

    38/67

    5

    A  

    1000 & 500

    1500 .

    0.3.

    700 ,

    400 .

    5

  • 8/17/2019 Transmission of Motion & Power3

    39/67

    5

    1

    2

    2

    Diameter of the larger pulley 1000

    Diameter of the smaller pulley 500

    Center distance 1500Speed of the smaller pulley 400

    d mm

    d mm

     x mmn rpm

    =

    =

    ==

    Data :

    Coefficient of f 

    1 11 2

    riction =0.3

    Angle of contact for open belt1000 500

    = 2sin 2sin2 2 1500

    d d 

     x

     µ 

    θ π π − −− −

    − = − ×

    ∴θ = 2.8067 rad ∴θ = 2.8067 rad ∴θ = 2.8067 rad ∴θ = 2.8067 rad 

    Solution :

    5

  • 8/17/2019 Transmission of Motion & Power3

    40/67

    5

    1

    2

    . .i e

    =

    =   ⇒   =

     μθ 0.3  μθ 0.3  μθ 0.3  μθ 0.3 × 2.8067 × 2.8067 × 2.8067 × 2.8067 

    2 22 2 

    2 22 2 

    Ratio of tensions in the belt : Ratio of tensions in the belt : Ratio of tensions in the belt : Ratio of tensions in the belt : T TT T 

    = e e = 2.321  = e e = 2.321  = e e = 2.321  = e e = 2.321  T TT T 

    700 700 700 700 2.321 T 301.6N  2.321 T 301.6N  2.321 T 301.6N  2.321 T 301.6N  

    T TT T 

    2 2

    1 2

    0.5 400Velocity of the belt V=60 60

    ( - ) (700 -301.6) 10.4

    d n V 

    P T T V  

    π    π  × ×⇒   =

    ∴ =

    = × = ×

    Power transmit Power transmit Power transmit Power transmit 

    1 11 1 

    ted by the beltted by the beltted by the beltted by the belt

    0.472 0.472 0.472 0.472 

    : :: : 

     m / sec  m / sec  m / sec  m / sec  

    72 4172 Watt

    P

    =

    ∴ = 4.172 KW= 4.172 KW= 4.172 KW= 4.172 KW

    6

  • 8/17/2019 Transmission of Motion & Power3

    41/67

    6

    ,

    1600

    & 0.28.  

    5 , .

    Data :

  • 8/17/2019 Transmission of Motion & Power3

    42/67

    0

    1

    Angle of contact =160 160 2.794180

    Width of the belt =200 mm

    Maximum tension in the belt =5N per mm width of belt

    i.e. T 5 200 1000

    Coefficient of friction =0.28

    rad 

     N 

    π 

    θ 

     µ 

    = × =

    = × =

    Data :

     

    1

    2

    1 2

    . .

    1000 457.24

    2 2

    i e

    =

    =   ⇒   =

    + + = =

     μθ 0.28  μθ 0.28  μθ 0.28  μθ 0.28 × 2.794 × 2.794 × 2.794 × 2.794 

    2 22 2 

    2 22 2 

    0 00 0 

    0 00 0 

     

    Initi Initi Initi Initi 

    T TT T  = e e = 2.187  = e e = 2.187  = e e = 2.187  = e e = 2.187  T TT T 

    1000 1000 1000 1000 2.187 T 45  2.187 T 45  2.187 T 45  2.187 T 45  

    al tension in the al tension in the al tension in the al tension in the 

    7.24N 7.24N 7.24N 7.24N 

    T TT T 

    T T T T T T T T T = 7 T = 7 T = 7 T = 7 

     belt T belt T belt T belt T 

    28.62N 28.62N 28.62N 28.62N 

  • 8/17/2019 Transmission of Motion & Power3

    43/67

    •  

     .•   ,

    .

    •   ( & ) .

    •   & , , , .

    •   2 1

    1 2

    1

    2

    1

    2

    , where

    Speed of driving pulleySpeed of driven pulley

    No of teeth on driver sprocket

    No of teeth on driven sprocket

    n z

    n z

    nn

     z

     z

    =

    ==

    =

    =

  • 8/17/2019 Transmission of Motion & Power3

    44/67

    Roller Chains

  • 8/17/2019 Transmission of Motion & Power3

    45/67

    Inverted tooth Chains 

    Silent Chains

    (So named due to quietoperation even underheavy loads)

  • 8/17/2019 Transmission of Motion & Power3

    46/67

    .

    :()

    ,  

    ,

    ()  ()

    / 1 /

    1 /

    B

  • 8/17/2019 Transmission of Motion & Power3

    47/67

    ()

    &

    &

    () 

    ()  

    B

  • 8/17/2019 Transmission of Motion & Power3

    48/67

    •  

    . & .•   .•   B ,

    .

    •   , , .

    Driving member(Pinion)

    BDriven member(Gear)

    Gear

    Pinion

  • 8/17/2019 Transmission of Motion & Power3

    49/67

    Spur gear pair(External &

    Internal)

    B

    Spur gearanimation

    Pitch cylinderswith pure rollingfriction

  • 8/17/2019 Transmission of Motion & Power3

    50/67

    •   .

    •   ,   (10  0  ).

    •   .

    •   . ( ) .

    B

    ββββ

    Driving member(Pinion)

    Driven member(Gear)

    Helixangle

    A

  • 8/17/2019 Transmission of Motion & Power3

    51/67

    A

  • 8/17/2019 Transmission of Motion & Power3

    52/67

    •  B

    .•   . .

    •   .

    •         ,     .

    B

    θθθθ

  • 8/17/2019 Transmission of Motion & Power3

    53/67

    •   ,

    .•   A        .

    •   60:1.

    •     , .. .

    B

    Worm wheel

    Worm

    shaft

    &

  • 8/17/2019 Transmission of Motion & Power3

    54/67

    •   , & .

    •   .

    Pinion

    B

    Rack & pinion Animation

    Rack

  • 8/17/2019 Transmission of Motion & Power3

    55/67

    •  

    .•   ,

    , & .

    •   , ,

    , .

    B

    Focus center of ellipse

  • 8/17/2019 Transmission of Motion & Power3

    56/67

    •     &

    .

    •      &  

    •    

    .

    •    

    .

  • 8/17/2019 Transmission of Motion & Power3

    57/67

    B

    Generation of involute Profile

  • 8/17/2019 Transmission of Motion & Power3

    58/67

    B

    A famous curve that was named by Galileo in 1599 is called acycloid. A cycloid is the path traced out by a point on thecircumference of a circle as the circle rolls (without slipping) along

    a straight line.

  • 8/17/2019 Transmission of Motion & Power3

    59/67

    1. .

    2. , , , ,

    .3. .

     

    1. .

    2. .

    3. ,

    .

    A A

  • 8/17/2019 Transmission of Motion & Power3

    60/67

    Velocity ratio in Gear Drives : Velocity ratio in Gear Drives : Velocity ratio in Gear Drives : Velocity ratio in Gear Drives : 

  • 8/17/2019 Transmission of Motion & Power3

    61/67

    2 1 11 2

    1 2 2

    1 2

    1

    , where Speed of driving pulley, Speed of driven pulley

    Pitch circle diameter (PCD) of driver gear, PCD of of driven gear

    No of teeth on driv

    n d z

    n nn d z

    d d 

     z

    = = = =

    = =

    = 2er gear, No of teeth on driven gear z   =

    A

    & .

    . .

    , .

  • 8/17/2019 Transmission of Motion & Power3

    62/67

    A ;

    1.

    2.

    .

    A A • A simple gear train is one in whicheach shaft carries only one gear

  • 8/17/2019 Transmission of Motion & Power3

    63/67

    A B C

    each shaft carries only one gear.

    • From the fig, gear A is the drivinggear and gear D is the driven gear.B & C are the intermediate gears orIdler gears.

    • The idler gears do not affect thevelocity ratio but simply bridge thegap between the driver & the drivengears.

    A

    Velocity ratio C    A

     A C 

     N    z

     N z

    =

     

    • Also if odd  number of intermediategears are used, the driver & thedriven gears rotate in the   same direction .

    • If   even  number of intermediate

    gears are used, the driver & thedriven gears rotate in the opposite directions .

    B

    D

    C

    Velocity ratio  D A

     A D

     N z

     N z

    =

  • 8/17/2019 Transmission of Motion & Power3

    64/67

    From the fig, and also

    The speed of gear C,

    C  B A B

     A B B C 

    C  B A B

     A B B C 

     N  N z z

     N z N z

     N  N z z

     N N z z

    = =

     

    ∴ × = ×   ⇒  

           

      =   ⇒   =  

    AAAAC CC C 

    C CC C 

    AAAA

    AAAA

    A C A C A C A C 

    C CC C 

    C CC C 

    z zz z 30 30 30 30 N × N N × 90 = 180N × N N × 90 = 180N × N N × 90 = 180N × N N × 90 = 180

    z 15 z 15 z 15 z 15 

    N NN N  z zz z = == = N z N z N z N z 

    rpm.rpm.rpm.rpm.

    A A • In a compound gear train   the intermediate shaft carries two

  • 8/17/2019 Transmission of Motion & Power3

    65/67

    intermediate shaft carries two 

    or more gears  which are keyedto it.

    • Compound gears are used whena high velocity ratio is required ina limited space.

    • The intermediate gears will havean effect on the overall velocityratio.

    A

    B

    C

    D

    From the fig, and also

    As gears B & C are on same shaft, N

     

    Speed of l. .

    C  B A D

     A B C D

    C  B D A

     A C B D

     B C 

     z N z N  N z N z

     z N N z

     N N z z

     N 

    i e

    = =

    ×

    ∴ × = ×

    =

    ×

    ⇒ A C A C A C A C D DD D 

    A B D A B D A B D A B D 

    z z z z z z z z N NN N = == = 

    N z z N z z N z z N z z 

    ast driven shaft Product of no of teeth on driver

    Speed of the first driving shaft Product of no of teeth on driven

    =

    • A reverted gear train is acompound gear train in

  • 8/17/2019 Transmission of Motion & Power3

    66/67

    compound gear train in

    which the first & the lastgears are on the same axis.

    • Hence, in a reverted gear

    train, the center distancesfor the two gear pairs mustbe same.

    AD

    • everte gear tra ns are

    used in automotivetransmissions, lathe backgears, and in clocks.

    C

    ddAs ,2 2

    But d=mz, and the module 'm' is same for all gears,

    z

    C D A B

     A B C D

    d d 

     z z z

    ++   =    

    ∴ + = +

    • An epicyclic gear train isone in which the axis of one

  • 8/17/2019 Transmission of Motion & Power3

    67/67

    one in which the axis of one

    or more gears movesrelative to the frame.

    • Large speed reductions are

    obtained with an epicyclictrain.

    • They are compact in sizean automo e erent a .