195
TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS by Tauqeer Ahmad A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Cell and Systems Biology University of Toronto © Copyright by Tauqeer Ahmad 2016

TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS

TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS

by

Tauqeer Ahmad

A thesis submitted in conformity with the requirements

for the degree of Doctor of Philosophy

Department of Cell and Systems Biology

University of Toronto

© Copyright by Tauqeer Ahmad 2016

Page 2: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

ii

TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS

TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS

Tauqeer Ahmad

Degree of Doctor of Philosophy

Department of Cell and Systems Biology

University of Toronto

2016

ABSTRACT

In this study, I demonstrated that a non-coding RNA sequence from potato virus X as

small as 127 nucleotides (located near the 3´end of 8 kDa and the start of CP genes as well as the

non-coding intergenic region) is capable of translocating not only its own sequence but also a

reporter gene, fluorescent green protein mRNA into chloroplasts of the transgenic tobacco plants.

This is the first evidence showing that a small viral RNA sequence (designated “RNA tractor”) is

capable of translocating RNA sequences to the chloroplast. The chloroplast translocation

efficiency of the PVX RNA tractor was determined to be 120 X lower than that of Eggplant

latent viroid, a member of the Avsunviroidae family that replicates and accumulates in the

chloroplast. Furthermore, I investigated two begomoviruses on various Nicotiana species to

assess the effects of their ploidy level on infectivity and symptomatology. For this purpose,

infectious clones of Ageratum enation virus (AEV), a monopartite (DNA-A with Beta-satellite

DNA particle) and Tomato leaf curl New Delhi virus (ToLCNDV), a bipartite (DNA-A and

DNA-B), begomoviruses were used. All plants inoculated with ToLCNDV were systemically

infected and showed characteristic symptoms. However, in the case of AEV, all plants except N.

tabacum cv. Xanthi were infected by the virus but remained symptomless. Taken together, these

results indicate that there is no clear relationship between infectivity and ploidy levels;

furthermore, symptomatology depends on the type of virus and/or plant species. Another key

Page 3: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

iii

question to answer was whether or not the genomes of the begomoviruses could be isolated from

chloroplasts of the infected tobacco and tomato plants. PCR results confirmed the presence of

only DNA-A of the AEV in the chloroplasts. Preliminary studies clearly show that the “RNA

tractor” sequence and AEV genome are incapable of targeting the mitochondria. These findings

suggest that members from different viral families may be associated with the same organelle,

but that members do not necessarily target the different organelles. Thus, the present study could

be important for understanding the evolutionary importance of the interactions of viral genomes

with different organelles of plant cells and their consequential pathological effects.

Page 4: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

iv

Acknowledgments

Thanks to Almighty Allah, the Omniscient, Omnipotent and Omnipresence who blessed me the

aptitude of accomplishing this colossal work.

I deem it a profound honor to express the depth of my gratitude to Prof. Mounir G. AbouHaidar,

my supervisor, for the continuous support of my Ph.D. study and related research, motivation, and

immense knowledge. I feel that his guidance has helped me to mature into an independent

researcher with the abilities to cope with any type of research at both the scientific and

administrative levels.

I am greatly indebted to my other committee members: Prof. Richard Collins and Prof. Maurice

Ringuette for their insightful comments, meticulous criticism, encouragement and critical review

of my thesis.

I would like to thank Dr. Eiji Nambara for being a part of my examining committee. I really

appreciate Dr. Andrew White who has devoted his valuable time to review my thesis and took part

in my final defense

My sincere thanks also go to Dr. Christendat and Dr. Guttman for providing me access to their

laboratory facilities. Many thanks are due, to Henry and Audrey for their cooperation with confocal

and electron microscopic studies. Bruce and Andrew, I do appreciate your efforts for the

programming of growth chamber and greenhouse supplies.

Many thanks are immense for the entire CSB staff (especially Ian and Tamar) helping me move

well along with the administration matters in all these years.

My profound thanks to Dr. Saleem Haider, the man who introduced me to Professor AbouHaidar.

Special thanks to Dr. Kathleen Hefferon for proof-reading parts of the thesis and publications.

Thanks to Dr. Srividhya Venkataramana for all the help and the opportunity to collaborate in

publications.

A special note of thanks to all of my colleagues; Alexander, Amanda, Kayvan, Tatyana, Liu,

Amjad, Hasan, Reem, Amira, Dang, Lingjie and other fellows. It has been a pleasure working with

you all and thanks for offering a helping hand whenever needed.

I would like to express my heartfelt gratitude to all my family members. It is through their

wholehearted prayers that enabled me to achieve one of my goals. I am also indebted to all those

who prayed for my success.

I must acknowledge my wife and best friend, Sadaf, without her love, encouragement and editing

assistance, I would not have finished this thesis. Love to my kids Ismaeel, Tayyab and Noor for

always cheering me up.

Page 5: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

v

Table of Contents

Acknowledgments ................................................................................................... iv

Table of Contents ..................................................................................................... v

List of Tables ............................................................................................................ x

List of Figures .......................................................................................................... xi

List of Abbreviations ............................................................................................ xiv

CHAPTER 1 ............................................................................................................. 1

1 LITERATURE REVIEW .............................................................................. 1

1.1 POTEXVIRUSES ......................................................................................... 1

1.1.1 Replication .......................................................................................................................... 1

1.1.2 Intercellular Transport of Potexvirus .................................................................................. 4

1.1.3 Intracellular trafficking of viral RNA in potexviruses ........................................................ 5

1.1.4 Interaction between viral and chloroplast proteins ............................................................. 6

1.1.5 Virion and viral RNA within chloroplasts .......................................................................... 7

1.1.6 Targeting of nuclear-encoded proteins to organelles .......................................................... 8

1.1.7 mRNA-based protein targeting to different organelles ....................................................... 9

1.1.8 The accumulation of Avsunviroidae viroids within the chloroplasts ................................. 10

1.1.9 Non-coding RNAs in plastids ........................................................................................... 11

1.1.10 Translation in chloroplast ................................................................................................. 11

1.1.11 RNA transport into mitochondria ..................................................................................... 14

1.2 GEMINIVIRUSES ..................................................................................... 15

1.2.1 Genus Begomovirus .......................................................................................................... 17

1.2.2 Begomovirus infection ...................................................................................................... 20

1.2.3 Long distance movement within plants ............................................................................ 21

1.2.4 Translocation of begomoviruses into chloroplast ............................................................. 21

CHAPTER 2 ........................................................................................................... 23

2 STUDIES ON TRANSLOCATION OF RNAS FROM CYTOSOL

TO ORGANELLES ................................................................................... 23

2.1 INTRODUCTION ...................................................................................... 23

2.2 RESEARCH PLAN .................................................................................... 27

2.3 MATERIALS AND METHODS .............................................................. 28

2.3.1 Plasmid construction and transformation.......................................................................... 28

Page 6: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

vi

2.3.2 Heat shock transformation of E.coli ................................................................................. 35

2.3.3 Isolation and purification of plasmid DNA from E.coli (mini-prep) ................................ 36

2.3.4 Gel electrophoresis............................................................................................................ 37

2.3.5 Agrobacterium transformation .......................................................................................... 37

2.3.6 Plant transformation .......................................................................................................... 38

2.3.7 Infection of N. tabacum cv. Xanthi with PVX and virus isolation ................................... 39

2.3.8 Extraction of viral genomic RNA ..................................................................................... 41

2.3.9 Chloroplast isolation ......................................................................................................... 42

2.3.10 cDNA synthesis and RT-PCR ........................................................................................... 43

2.3.11 Real-time RT-PCR ............................................................................................................ 44

2.3.12 SDS-PAGE and western blot analysis .............................................................................. 45

2.3.13 Isolation of intact mitochondria and enzymatic treatments .............................................. 46

2.4 RESULTS .................................................................................................... 47

2.4.1 Detection of PVX RNA and coat protein in chloroplast................................................... 47

2.4.2 Reconstruction control experiments ................................................................................. 50

2.4.3 Design of constructs to confirm RNA tractor activity in chloroplasts.............................. 51

2.4.4 Analyses for expression of different constructs in total cellular RNA ............................. 52

2.4.5 Translocation of RNA transcripts driven by different constructs into chloroplasts ......... 53

2.4.6 Quantitation of translocated RNA to chloroplasts by real-time RT-PCR......................... 54

2.4.7 Comparison of translocation efficiency of PVX RNA tractor (pTR:127) to

Eggplant latent viroid sequence (pCELVd-GFP) ............................................................. 57

2.4.8 Translocation of “RNA tractor” sequence to plant mitochondria ..................................... 58

2.5 DISCUSSION ............................................................................................. 60

CHAPTER 3 ........................................................................................................... 65

3 STUDIES ON INFECTIVITY AND TRANSLOCATION OF

VIRAL DNAS FROM CYTOSOL TO ORGANELLES ....................... 65

3.1 INTRODUCTION ...................................................................................... 65

3.2 RESEARCH PLAN .................................................................................... 68

3.3 MATERIALS AND METHODS .............................................................. 68

3.3.1 Plant growth conditions .................................................................................................... 68

3.3.2 Agrobacterium-mediated inoculation ............................................................................... 69

3.3.3 Extraction of total nucleic acids from plants and PCR ..................................................... 69

3.3.4 Isolation of intact chloroplast and enzymatic treatments .................................................. 70

3.3.5 Light microscopy and transmission electron microscopy (TEM) ..................................... 72

3.3.6 Isolation of intact mitochondria and enzymatic treatments .............................................. 73

Page 7: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

vii

3.3.7 Isolation of virus ............................................................................................................... 74

3.4 RESULTS .................................................................................................... 75

3.4.1 Infectivity Assays: Inoculation of plants with AEV and ToLCNDV DNA clones .......... 75

3.4.2 Chloroplast DNA Analysis ............................................................................................... 80

3.4.3 Reconstruction control experiments ................................................................................. 80

3.4.4 Microscopic studies .......................................................................................................... 82

3.4.5 Translocation of AEV DNA in mitochondria ................................................................... 83

3.5 DISCUSSION ............................................................................................. 84

CHAPTER 4 ........................................................................................................... 89

4 GENERAL CONCLUSIONS AND FUTURE DIRECTIONS ................ 89

4.1 GENERAL CONCLUSIONS .................................................................... 89

4.2 FUTURE DIRECTIONS ........................................................................... 90

APPENDIX A ......................................................................................................... 93

5 ATTEMPTS FOR RNA TRACTOR SEQUENCE

MODIFICATION FOR GFP EXPRESSION IN

CHLOROPLASTS ..................................................................................... 93

5.1 INTRODUCTION ...................................................................................... 93

5.2 Addition of SD-like sequence (pCrbcLSD-GFP) .................................... 94

5.3 Addition of 5´-translation control region of large sub-unit

RuBisCO gene ............................................................................................. 96

5.4 Addition of 5´-UTR of Psb A gene for translation initiation of

GFP in chloroplast ................................................................................... 100

5.5 Addition of bacterial translation initiation region (TIR) for GFP

expression .................................................................................................. 103

APPENDIX B ....................................................................................................... 107

6 STRATEGY TO FIND OUT THE CAPACITY OF CHIMERIC

EGGPLANT LATENT VIROID SEQUENCE AS A 5´-UTR FOR

GFP EXPRESSION IN CHLOROPLASTS .......................................... 107

APPENDIX C ....................................................................................................... 112

7 VIRAL AND CHLOROPLASTIC SIGNALS ESSENTIAL FOR

INITIATION AND EFFICIENCY OF TRANSLATION IN

AGROBACTERIUM TUMEFACIENS ................................................... 112

7.1 SUMMARY ............................................................................................... 112

7.2 INTRODUCTION .................................................................................... 113

7.3 MATERIALS AND METHODS ............................................................ 114

7.3.1 Construction of GFP expression plasmids: ..................................................................... 114

Page 8: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

viii

7.3.2 Agrobacterium transformation ........................................................................................ 116

7.3.3 RNA isolation, reverse transcription and PCR ............................................................... 116

7.3.4 Detection of GFP expression .......................................................................................... 117

7.4 RESULTS AND DISCUSSION .............................................................. 118

7.4.1 Estimation of equal GFP transcript levels in A. tumefaciens harboring each of the

above constructs .............................................................................................................. 119

7.4.2 Major differences in translation initiation requirements between A. tumefaciens

and E. coli: High GFP translation levels in A. tumefaciens under the control of

phage T7 translational enhancer and RBS ...................................................................... 120

7.4.3 Effect of the AT-rich sequence from the (AIMV) upstream of the GFP gene on its

translation in A. tumefaciens ........................................................................................... 123

7.4.4 Analysis of 5´ -UTR sequences derived from some natural chloroplastic genes on

translation in A. tumefaciens. .......................................................................................... 124

7.4.5 Identification of the minimal translation initiation sequence of the rbcL gene

required for high-level expression in A. tumefaciens...................................................... 124

7.4.6 Comparison of the 5´-UTRs of both rbcL and Psb A genes for translation

initiation in A. tumefaciens ............................................................................................. 126

7.4.7 5´-UTR of the chloroplastic atp1 gene supports low GFP translation levels in A.

tumefaciens ..................................................................................................................... 127

7.5 CONCLUSION ......................................................................................... 128

APPENDIX D ....................................................................................................... 129

8 ANALYSIS OF THE INTERNAL RIBOSOME BINDING SITE

(IRBS) OF PVX ........................................................................................ 129

8.1 BACKGROUND ....................................................................................... 129

8.2 MATERIALS AND METHODS ............................................................ 130

8.2.1 Construction of GFP expression plasmids ...................................................................... 130

8.2.2 Plant transformation for stable gene expression ............................................................. 131

8.2.3 Confocal microscopy ...................................................................................................... 132

8.2.4 Western Blot ................................................................................................................... 132

8.3 RESULTS AND DISCUSSION .............................................................. 133

8.3.1 Expression of GFP using stable gene experiments ......................................................... 133

8.3.2 Western blot analysis ...................................................................................................... 136

APPENDIX E ....................................................................................................... 138

9 NOVEL AND UNIVERSAL APPROACH TO SILENCE ALL

GEMINIVIRUSES IN PLANTS ............................................................. 138

9.1 SUMMARY ............................................................................................... 138

9.2 INTRODUCTION .................................................................................... 139

Page 9: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

ix

9.3 MATERIALS AND METHODS ............................................................ 141

9.3.1 Vector construction ......................................................................................................... 141

9.3.2 Plant transformation ........................................................................................................ 143

9.3.3 Characterization of transgenic lines ................................................................................ 143

9.3.4 Agroinoculation .............................................................................................................. 144

9.3.5 Detection of viral genome in infected plants .................................................................. 145

9.4 RESULTS .................................................................................................. 145

9.4.1 Production of transgenic lines ......................................................................................... 145

9.4.2 Transgenic plant evaluation against infectious clones of AEV ...................................... 146

9.4.3 Testing of transgenic plants for resistance against ToLCNDV ...................................... 148

9.5 CONCLUSION ......................................................................................... 150

REFERENCES ..................................................................................................... 154

Page 10: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

x

List of Tables

Table 2.1 Oligonucleotides/ primers used in the production of different

constructs. ............................................................................................ 33

Table 2.2 Primer sequences used for semi-quantitative and real time RT-

PCR. .................................................................................................... 44

Table 2.3 Relative quantification (expression) of GFP-transcripts derived

from transgenic leaves harboring given constructs using

comparative real time RT-PCR. .......................................................... 54

Table 2.4 Relative quantification of chloroplast RNA expression of pTR:127

and pC-ELVd-GFP using real time RT-PCR. ..................................... 58

Table 3.1 Primer sequences used for semi-quantitative PCR. ................................. 70

Table 3.2 Summary of the results of the infectivity assays ..................................... 78

Table 7.1 Sequences of the translation initiation signals in the pC-GFP

vector. ................................................................................................ 115

Table 8.1 Oligonucleotides/ primers used in the production of different

constructs with or without a hairpin structure to investigate the

IRBS. ................................................................................................. 131

Page 11: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

xi

List of Figures

Figure 1.1 The organization of the Potexvirus genome............................................. 2

Figure 1.2 Genome organization of isolates in various geminivirus. ...................... 16

Figure 1.3 Genome organizations of begomoviruses and their associated

DNA satellites. .................................................................................... 17

Figure 2.1 Genome of Potato virus X with five open reading frames. .................... 23

Figure 2.2 A partial physical map of modified pCAMBIA1300 construct

designated as pC-GFP with 35S Promoter, GFP gene, and T-

nos terminator cassette. ....................................................................... 30

Figure 2.3 Schematic representation of constructs (A-E) in pC-GFP plasmid

previously studied in our lab. .............................................................. 31

Figure 2.4 Schematic representation of the constructs used in this study for

“RNA tractor” activity. ....................................................................... 32

Figure 2.5 Partial DNA sequence of the pTR:127 construct used in this study

as “RNA tractor”. ................................................................................ 32

Figure 2.6 Detection of PVX RNA and coat protein inside the chloroplast

using RT-PCR and western blot. ......................................................... 49

Figure 2.7 RT-PCR analyses of total and chloroplast RNAs expressed. ................ 53

Figure 2.8 Graphical representation of real-time PCR data to quantify

translocated “RNA tractor” sequence using SYBR® Green

detection method. ................................................................................ 56

Figure 2.9 Graphical representation of real-time RT-PCR data (using

SYBR® Green detection method) showing relative

translocation activity of pTR:127 compared to Eggplant latent

viroid (pCELVd-GFP). ....................................................................... 57

Figure 2.10 Mitochondria isolation and RT- PCR- analyses with

mitochondria and total RNA from transgenic tobacco plants

harboring pTR:127 construct. ............................................................. 59

Figure 3.1 Photographs of symptomatic and non-symptomatic different

Nicotiana species: ............................................................................... 76

Figure 3.2 Photographs of symptomatic and non-symptomatic different

Nicotiana species: ............................................................................... 77

Figure 3.3 PCR-mediated detection of AEV and ToLCNDV DNA extracted

from chloroplasts and leaf tissues (total DNA) of infected plants

at 35 dpi. .............................................................................................. 79

Figure 3.4 Reconstruction experiments to reject the possibility of adsorption

of virions or/and DNA during the purification of chloroplasts. ......... 81

Figure 3.5 Phase contrast and electron microscopic studies of chloroplasts. .......... 83

Page 12: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

xii

Figure 3.6 PCR-mediated detection of AEV DNA extracted from

mitochondria and leaf tissues of N. benthamiana infected plants

at 35 dpi. .............................................................................................. 84

Figure 5.1 Schematic representation of the 3´end portion of tobacco

chloroplast 16SrRNA (290). .............................................................. 94

Figure 5.2 Details of partial DNA sequences of the pCrbcLSD-GFP

construct under the control of 35S promoter and the nopaline

synthase terminator (T-nos). ............................................................... 95

Figure 5.3 Confocal microscopic observation of Nicotiana tabacum cv.

Xanthi leaves harboring pCrbcLSD-GFP. .......................................... 95

Figure 5.4 Details of partial DNA sequences of the pCvdTCR-GFP and

pC127TCR-GFP constructs under the control of the

Cauliflower mosaic virus 35S promoter and the nopaline

synthase terminator (T-nos). ............................................................... 97

Figure 5.5 Confocal microscopic observation of GFP in N. benthamiana

leaves after 72 hr of agro-infiltration. ................................................. 98

Figure 5.6 Confocal microscopic observation of GFP in agrobacteria cells

after 48 hr. ........................................................................................... 99

Figure 5.7 Details of partial DNA sequences of the pCELVdpsbA-GFP

construct in pC-GFP under the control of the Cauliflower

mosaic virus 35S promoter and the nopaline synthase

terminator (T-nos). ............................................................................ 101

Figure 5.8 Confocal microscopic observation for GFP in transgenic tobacco

plant leaves and agrobacteria cells harboring pCELVdpsbA-

GFP construct. ................................................................................... 101

Figure 5.9 Details of partial DNA sequences of the pET-GFP construct in

pET29 under the control of T7 promoter and T7 terminator. ........... 104

Figure 5.10 Fluorescence micrograph of GFP in E. coli cells transfected with

the pET-GFP construct and induced with 0.5 mM IPTG for 16

hr. ....................................................................................................... 104

Figure 5.11 Details of partial DNA sequences of the pC127pETSD-GFP

construct in pC-GFP under the control of the Cauliflower

mosaic virus 35S promoter and the nopaline synthase

terminator (T-nos). ............................................................................ 104

Figure 5.12 Confocal microscopic observation of GFP in leaves and

agrobacteria cells harboring pC127pETSD-GFP after 72 hr. ........... 105

Figure 6.1 Details of partial DNA sequence of Eggplant latent viroid for

different constructs. ........................................................................... 108

Figure 6.2 The GFP arising from different ELVd-5´-UTR-GFP transcripts. ....... 109

Figure 7.1 Schematic representation of constructs used in this study. .................. 118

Page 13: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

xiii

Figure 7.2 Quantitation of equivalent GFP transcript levels for all the

constructs used in this study. ............................................................. 119

Figure 7.3 Detection of green fluorescence due to GFP expression (and

translational efficiency) for each of the constructs (Panels 1-10)

after transformation into Agrobacterium and confocal

microscopy. ....................................................................................... 122

Figure 7.4 Western blots of the enhanced GFP protein (28 kDa) using anti-

GFP antiserum and alkaline phosphatase enzyme-linked

secondary antibody conjugate. .......................................................... 123

Figure 7.5 Confocal microscopic observation of GFP in N. tabacum leaves

after 72 hr of agro-infiltration with a) pC rbcL58-GFP and b)

pC-GFP constructs respectively. ....................................................... 126

Figure 8.1 Confocal microscopic observation of GFP in transgenic N.

tabacum leaves harboring constructs without and with hairpin

structure (Panels A-I). ....................................................................... 135

Figure 8.2 Western blot using anti-GFP antiserum to detect GFP (27 kDa)

expression in transgenic N. tabacum cv. Xanthi plants

harboring constructs in the presence or absence of a hairpin

structure. ............................................................................................ 136

Figure 9.1 A partial Schematic diagram of the binary construct pART27-

AEVIR used for plant transformation. .............................................. 142

Figure 9.2 PCR-verification of transgenic N. benthamiana plants harboring

pTR27-AEVIR construct. ................................................................. 146

Figure 9.3 Semi-quantitative PCR-based testing of wild-type (Wt) and

transgenic N. Benthamiana plants harboring pART27AEV-IR

construct for their resistance against AEV after three weeks of

challenging with infectious clones of AEV DNA-A and DNA-

β in A. tumefaciens strain GV3101. .................................................. 147

Figure 9.4 Infectivity of infectious clones of ToLCNDV in tobacco plants. ........ 149

Figure 9.5 Semi-quantitative PCR-based testing of wild-type and transgenic

N. Benthamiana plants harboring pART27AEV-IR construct

for their resistance against ToLCNDV after three weeks of

challenging with infectious clones of ToLCNDV (DNA-A and

DNA- B) in A. tumefaciens strain GV3101. .................................... 150

Figure 9.6 Organization of a Geminivirus replication origin. ............................... 151

Page 14: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

xiv

List of Abbreviations

A. tumefaciens Agrobacterium tumefaciens

AbMV Abutilon mosaic virus

AEV Ageratum enation virus

AlMV Alfalfa mosaic virus

AltMV Alternanthera mosaic virus

ASBVd Avocado sunblotch viroid

BaMV Bamboo mosaic virus

BAP 6-benzylaminopurine

BCTIV Beet curly top Iran virus

BCTV Beet curly top virus

β Beta

β-ME β-mercaptoethanol

BGMV Bean golden mosaic virus

bp base pair

BSA Bovine Serum Albumin

CaMV Cauliflower Mosaic Virus

5´cap m7GpppGp

°C degree Celsius

cc cubic centimeter

CChMVd Chrysanthemum chlorotic mottle viroid

CIP Calf Intestinal Alkaline Phosphatase

cm centimeter

CNV Cucumber necrosis tombusvirus

CP capsid/coat protein

cpDNA Chloroplast deoxyribonucleic acid

Cq quantification cycle

C-sens complementary sense

CTAB Cetyl trimethylammonium bromide (hexadecyl-trimethyl-

ammonium bromide

cv cultivar

Page 15: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

xv

ddH2O double distilled water

DEPC Diethylpyrocarbonate

DIC Differential Interference Contrast

DNase deoxyribonuclease

dNTP deoxynucleotide triphosphate

dpi days post-inoculation

dsRNA double-stranded ribonucleic acid

DTT dithiothreitol

E. coli Escherichia coli

ECSV Eragrostis curvula streakvirus

EDTA ethylenediaminetetraacetic acid

EF-G elongation factor G

EF-Tu elongation factor thermo unstable

eIF4E Eukaryotic translation initiation factor 4E

ELVd Eggplant latent viroid

ER endoplasmic reticulum

EtOH Ethanol

FdV Ferredoxin V

FIA Freund’s Incomplete Adjuvant

g gravitational constant (9.8m/s2)

g gram

GFP Green Fluorescent Protein

Gs guanosin(s)

HCl Hydrochloric acid

HC-pro helper-component protease

HEL Helicase

HELD helicase-like domain

HEPES N-2-Hydroxyethylpiperazine-N'-2-Ethanesulfonic Acid

hr hour

IF-1 or 3 Initiation Factors 1 or 3

ihp intron-containing hair-pin

Inac Inactivated

Page 16: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

xvi

IPTG isopropyl-β-D-thiogalactopyranoside

IRBS Internal Ribosome Binding Site

IRES Internal Ribosome Entry Site

kbp kilo base pairs

kDa kiloDalton

KOH Potassium hydroxide

L Liter

LB Luria-Bertani (media)

LBA LB media with 15 g/L agar

µg microgram

µL microliter

µM micromolar

M Molar

mA milliamperes

MES 2-(N-morpholino) ethanesulfonic acid

min minutes

mM millimolar

MP movement protein

mRNA messenger ribonucleic acid

MS Murashige and Skoog

MSV Maize streak virus

MT methyltransferase

mtDNA mitochondrial deoxyribonucleic acid

NAA Naphthalene acetic acid

NaCl sodium chloride

NaOAc Sodium acetate

NbRbCS Nicotiana benthamiana ribulose-1,5-bisphosphate

carboxylase/oxygenase small sub-unit

ncRNA non-coding ribonucleic acid

NEP nuclear encoded polymerase

NIG NSP-interacting GTPase

Ni-NTA nickel-nitrilotriacetic acid

Page 17: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

xvii

nm nanometer

NPTII neomycin phosphotransferase

NSP nuclear shuttle protein

nt nucleotide

OCS octopine synthase terminator

OD optical density

ORF open reading frame

ORI origin

PAGE polyacrylamide gel electrophoresis

PCR polymerase chain reaction

PD plasmodesmata

Pdk pyruvate dehydrogenase kinase

PEG Polyethylene glycol

PGK phosphoglycerate kinase

Pi post-inoculation

PLMVd Peach latent mosaic viroid

PMSF phenylmethylsulfonyl fluoride

POL Polymerase

PTGS Post-transcriptional gene silencing

PVP Polyvinylpyrrolidone

PVX Potato virus X

RaLC radish leaf curl

rbcL ribulose-1,5-bisphosphate carboxylase/oxygenase large sub-unit

RbCS RuBisCO small subunit

RBR retinoblastoma-related protein

RBS ribosome binding site

RCR rolling circle replication

RFU relative fluorescence unit

RNase ribonuclease

RNP ribonucleoprotein

rpm revolutions per minute

rRNA ribosomal ribonucleic acid

Page 18: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

xviii

RT-PCR reverse transcription polymerase chain reaction

RT-qPCR reverse transcription quantitative polymerase chain reaction

RuBisCO Ribulose1, 5-bisphosphate carboxylase/oxygenase

SD Shine/Dalgarno

SDS sodium dodecyl sulphate

sec second

SEL size exclusion limit

sgRNA subgenomic RNA

siRNA small interfering RNAs

TBS Tris-buffered saline

5´-TCR 5´-translation control region

TCTV Turnip curly top virus

TE-1 1:10 dilution of 10 mM Tris-HCl (pH 8), and 1mM EDTA

TEM Transmission Electron Microscope

TGBp triple gene block protein

Tic translocon of the inner envelope membrane of the chloroplast

TIM transporter inner membrane

TIR translation initiation region

TMV Tobacco mosaic virus

T-nos Nopalin synthase terminator

Toc translocon of the outer envelope membrane of the chloroplast

ToLCNDV Tomato leaf curl New Delhi virus

TOM transporter outer membrane

ToMV Tomato mosaic tobamovirus

TPCTV Tomato pseudo-curly top virus

TPs Transit peptides

Tris Tris (hydroxymethyl)aminomethane

tRNA transfer ribonucleic acid

TRoV turnip rosette virus

TRV Tobacco rattle virus

TYLCV tomato yellow leaf curl virus

3´and 5´-UTR 3´and 5´-untranslated region

Page 19: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

xix

V Volt

v/v volume/volume

VIGS virus-induced gene silencing

vRNA viral ribonucleic acid

V-sense viral sense

w/v weight/volume

Page 20: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

1

CHAPTER 1

1 LITERATURE REVIEW

1.1 POTEXVIRUSES

1.1.1 Replication

Potexviruses belong to the Alphaflexiviridae, a new family of plant RNA viruses has been

extensively studied. The genomes of the genus Potexvirus contain five open reading frames

(ORFs) encoding an RNA-dependent RNA polymerase (RdRp; replicase), three overlapping

proteins, named triple gene block (TGB1-3), and the coat protein (CP) (1, 2) as shown in Figure

1.1.

Page 21: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

2

Figure 1.1 The organization of the Potexvirus genome.

(A) The RNA-dependent RNA polymerase (RdRp, replicase) gene contains a methyltransferase domain

(MT), a helicase domain (HEL), and an RNA polymerase domain (POL). The three genes of the triple

gene block (TGB) are partially overlapped. Arrows indicate subgenomic (sg) RNAs for expression of

TGBs. (B) The organization of the three TGB genes. TGB1: The first TGB ORF encodes the TGB1

protein and has a helicase- like domain (HELD), which contains seven typical motifs of a general helicase

(I, Ia, II, III, IV, V, and VI; dark boxes). TGB2: the TGB2 protein is encoded in the second TGB ORF and

has two transmembrane domains (dark boxes). The GDx6GGxYxDG sequence is conserved inTGB2-

encoding viruses.TGB3: The TGB3 protein is encoded by the third TGB ORF and contains a

transmembrane domain (dark box). Among the TGB3-encoding potexviruses, the TGB3 gene has a

conserved C(x5) G (x6−9) C sequence (3).

These viral proteins are used either in viral replication or in movement in infected host plants (4-

7). At the early stage of infection, potexviruses, which have a (+) positive stranded RNA

genome, release viral RNA (vRNA) from the virion and synthesize the virus-encoded replicase

using host translation machinery. Replicase then forms a viral replication complex along with

host factors and subsequently synthesizes (i) minus (-) stranded vRNA from (+) vRNA and (ii)

(+) vRNA or (+) subgenomic (sg) RNA from synthesized (-) vRNA. CP and TGB1-3 proteins

Page 22: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

3

are derived from (+) sgRNAs and are used for encapsidation and movement of their progeny (+)

vRNAs, which were synthesized from (-) vRNA as a template, into nearby uninfected cells

through the plasmodesmata (PD). In moving the progeny (+) vRNAs or virions via PD into

adjacent cells, most plant viruses use their own movement proteins. In the case of potexviruses, it

has been established that viral cell-to-cell movement requires TGB proteins and CP (3, 5, 6, 8-

11). Solovyev, et al. (6) abridged the information about TGB proteins and TGB-mediated plant

viruses. The TGB proteins have been divided into two main potex- and hordei-like TGBs groups,

based on phylogeny and on differences in the viral movement mechanism (5, 12). The potex-like

viruses form filamentous virions containing a monopartite RNA genome and depend on CP for

cell-to-cell movement, whereas hordei-like viruses are rod-shaped, consist of multipartite RNA

genomes, and do not require the CP for cell-to-cell movement (2, 5, 12, 13). Verchot-Lubicz, et

al. (5) summarized and compared the movement strategies employed by TGB proteins in potex-

like viruses and hordei-like viruses. Recently, Park, et al. (14) have described the recent findings

on the cell-to-cell movement of potexvirus vRNA and/or virions through the PD including the

intracellular trafficking and intercellular transport of vRNA. TGB1 protein is translated from

sgRNA1, whereas TGB2 and TGB3 proteins are co-translated from sgRNA2 (15). Potexvirus

TGB1 protein is encoded by the first TGB ORF and contains a helicase-like domain (HELD) and

this protein is also important for viral movement (16, 17). Potexvirus TGB1 protein also

functions as a suppressor of RNA silencing (18, 19). Potexvirus TGB2 protein is an important

membrane protein that carries two predicted transmembrane domains that interact with ER

membranes and has sequence-independent RNA-binding activity (12, 20-22). TGB3 protein,

which is translated by the third TGB ORF, is also an integral protein in ER membranes and is

important for cell-to-cell viral movement (23, 24). Studies have shown that localization of TGB2

Page 23: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

4

and TGB3 proteins into ER is critical for viral cell-to-cell movement (20, 23). In addition, both

TGB2 and TGB3 proteins may be responsible for gating the PD (25, 26).

1.1.2 Intercellular Transport of Potexvirus

For intercellular movement of viral RNA, most plant viruses need to increase the PD size

exclusion limit and exit through the PD. Potexvirus and plant viruses, in general, pass their

vRNA through the PD as its RNP movement complex (27) or the virion form (28). Lough, et al.

(29) showed that TGB1 is an integral protein for plasmodesmal gating rather than coat protein

which is involved in RNP movement complex. Potexviruses employ a complex cell-to-cell

movement strategy with the involvement of the triple gene block (TGB) (27). TGBp1 defined as

the potexvirus movement protein, potentiates the intercellular movement of viral RNA in the

presence of TGBp2 and TGBp3 (3, 27, 29-33). Studies provide evidence that the fifth ORF of

potexvirus protein, the coat protein (CP), is also required for potexvirus cell-to-cell movement

(9, 34, 35). The TGBp1-RNA complex appears to be delivered to PD by means of vesicle

trafficking along the ER-microfilament pathway (36, 37). In this model, TGBp2 and TGBp3 are

integral membrane proteins that serve to anchor the TGBp1-RNA complex to the vesicle surface

(3, 38-40) and, following cargo delivery to PD, the TGBp2 and TGBp3 are suggested to be

recycled through the endocytic pathway (38). In a new model for cell to cell movement of PVX

vRNA at the entrances of PD at the late stage of infection, that was proposed by Tilsner, et al.

(41), vRNA processing and movement are highly compartmentalized at PD, i.e., replication

occurs at the PD so that vRNA is rapidly passed through PD and to the nearby cells instantly

after replication. In contrast to earlier models, the new model indicates that virus replication and

movement are not spatially separated within the cell. However, some concerns about interactions

between TBG proteins still need to be experimentally confirmed, i.e., how three TGB proteins

Page 24: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

5

coordinate to facilitate vRNA transport (41) and whether other factors including host protein(s)

are required for these interactions and for vRNA transport.

1.1.3 Intracellular trafficking of viral RNA in potexviruses

After the replication of (+) vRNA, (+) vRNA is changed to the PD-transportable potexvirus

vRNA form by TGB1 protein for cell-to-cell movement through the PD. Two models (virion or a

ribonucleoprotein (RNP) movement complex containing vRNA, TGB1 protein, and CP) have

been suggested for the formation of PD-transportable potexvirus vRNA during the cell-to-cell

movement of vRNA through the PD (14). Lough, et al. (42) showed that vRNAs of potexviruses

were transported by the formation of RNP movement complex involving vRNA, TGB1 protein,

and CP rather than intact virion alone. In contrast, experimental evidence has shown that the PD-

transportable potexvirus vRNA form is partially or fully encapsidated by the CP subunit and that

the TGB1 protein is associated with the 5′ end of the CP-coated vRNA (5, 43). As the cell-to-cell

movement of potexvirus vRNA through the PD requires three TGB proteins and the CP. Studies

also indicate that potexvirus TGB1 protein requires viral CP in the RNP movement complex to

move together with their vRNA into PD (44, 45). Various host proteins might also be required

for the formation of the RNP movement complex, but how host proteins cooperate with the RNP

movement complex remains unanswered. It has been demonstrated that both TGB2 and TGB3

proteins are important membrane proteins in the ER or ER-associated vesicles located at actin

filaments (12, 46). Considering the role of TGB2 and TGB3 proteins for potexvirus vRNA

trafficking to PD, two models have been designed (5, 45). Verchot-Lubicz, et al. (5) summarized

the first model with two pathways of potexvirus vRNA trafficking to PD based on the

interactions between TGB2 and TGB3 proteins. One pathway suggests that the potexvirus RNP

movement complex is transported by TGB2-induced granular vesicles as directed by TGB3

protein (TGB2/3 granular vesicles) to PD. The first pathway, therefore, suggests that the

Page 25: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

6

potexvirus RNP movement complex is released from membrane bound bodies by TGB3 protein

and that the released RNP movement complex then binds to the TGB2/3 granular vesicles in the

ER tubule and moves to the PD (5). The second pathway for the vRNA trafficking of potexvirus

to PD by TGB3 protein is supported by interaction and localization assays between TGB2 and

TGB3 proteins (24, 47). In the second model, the stable association of the virion cargo with the

TGB2- and TGB3-based membrane complex and recruitment of TGB1 protein to the PD has

been proposed for cell-to-cell movement of bamboo mosaic virus (48). They also found that the

stable TGB2-TGB3-virion complex associates with TGB1 protein for targeting PD and

suggested the refined model for potexvirus vRNA trafficking to PD (48).

1.1.4 Interaction between viral and chloroplast proteins

Various specific interactions are known to occur between viral and chloroplast proteins. Qiao, et

al. (49) have reported that Potato virus X coat protein (PVXCP) interacts with the precursor of

plastocyanin, a protein involved in photosynthesis, and thus is involved in the virus movement

and symptom development processes. Tomato mosaic virus coat protein (CP) interacts with a

long distance movement-related protein in tobacco, designated IP-L, and localizes at the

thylakoid membranes and it is believed to develop the chlorotic symptoms in infected plants

(50). The role of the chloroplast protein, N receptor-interacting protein 1, in the activation of

defense signaling is affected by direct interaction with both the plant N immune receptor and the

helicase domain of Tobacco mosaic virus (TMV) (51). In addition, this viral domain may also be

associated with the 33K subunit of the oxygen-evolving complex of photosystem II, as a

decrease in 33K subunit mRNA was observed after infection of Nicotiana benthamiana with

TMV (52). Similarly, an increase of Plum pox virus titer was observed after downregulation of

the psaK gene of photosystem I in infected plants (53). The HC-Pro of Potato virus Y has been

shown to interact with the chloroplast division-related factor, NtMinD in the chloroplasts of

Page 26: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

7

infected leaves (54). The HC-Pro protein of Sugarcane mosaic virus likewise interacts with the

precursor of Ferredoxin-5 (Ferredoxin V) (FdV) in maize and affect the import of FdV into

chloroplasts, which could lead to disruption of chloroplast structure and function (55). Kong, et

al. (56) showed that silencing of PsbA, a 23-kDa oxygen-evolving complex protein, expression

increased Rice stripe virus (RSV) accumulation and disease symptom severity in infected plants,

suggesting an interaction between disease-specific protein (SP) of (RSV) and PsbA.

Additionally, accumulation of SP during RSV infection resulted in perturbation of chloroplast

structure and function. Zhao, et al. (57) showed that Tomato mosaic tobamovirus (ToMV)

movement protein (MP) interacted with the RuBisCO small subunit (RbCS) of Nicotiana

benthamiana in vitro and in vivo, as silencing of Nicotiana benthamiana RbCS

(NbRbCS) enabled ToMV to induce necrosis in infected leaves, thus suggesting

that NbRbCS plays a key role in tobamovirus movement and plant antiviral defenses.

Alternanthera mosaic virus (AltMV) TGB3 protein was localized near the chloroplast membrane

in mesophyll cells, suggestive of facilitating virus movement between different cell types (58).

Jang, et al. (59) revealed an interaction between AltMV TGB3 and Photosystem II (PSII)

oxygen-evolving complex (OEC) protein (PsbO), a nuclear-encoded major component of the

chloroplast-localized OEC of PS II, surrounding chloroplast in mesophyll cells, raising the

possibility that the interaction induces symptom development. Together, these findings show that

the mechanisms for viral movement may differ among potexviruses (60).

1.1.5 Virion and viral RNA within chloroplasts

Previously, it was shown that tobacco mosaic virus (TMV) was accumulated in the

chloroplasts of infected plants (61). However, it was later revealed that some of the isolated

virions were only one-third the length of the wild-type virus and that not all of the virus-like

particles actually contained TMV RNA (62). It was also demonstrated that the TMV coat

Page 27: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

8

protein was able to encapsidate some chloroplastic RNAs, and encapsidation was more likely

to occur with chloroplastic transcripts than with nuclear transcripts (63). It was then proposed

that the TMV coat protein is able to encapsidate chloroplast RNA transcripts inside the

chloroplast itself, and this leads to the formation of pseudovirions within the organelle (64).

Thus, it was established that both the TMV coat protein and virus-like rods are present within

the chloroplasts of infected plants (65). Recently, Cheng, et al. (66) observed that Bamboo

mosaic virus (BaMV) viral RNA with the coordination of chloroplast phosphoglycerate kinase

localizes to chloroplasts of infected cells of Nicotiana benthamiana plant, suggesting that host

factors play a key role in targeting of viral RNA to the cellular organelles.

1.1.6 Targeting of nuclear-encoded proteins to organelles

Plant cells contain two types of endosymbiotic organelles, chloroplasts, and mitochondria, where

as a result of endosymbiotic gene transfer, the majority of their proteins are encoded in the

nucleus which post-translationally must be transported into the respective organelle after

synthesis in the cytoplasm (67-69). The most common pathway of this transport involves N-

terminal targeting signals, also known as transit peptides, which are usually cleaved off after

import into the organelle. Such signal peptides are recognized by import receptors on the

organellar outer membrane, and precursors are targeted into the organelle through translocase

complexes located on the outer and inner membranes of the organelles, such as Toc (translocon

of the outer envelope membrane of the chloroplast) and Tic (translocon of the inner envelope

membrane of the chloroplast) in the chloroplasts and Tom (transporter outer membrane) and Tim

(transporter inner membrane) in the mitochondria (70). The following translocation into the

chloroplast stroma or mitochondrial matrix, the targeting signals are cleaved off by either the

stromal processing peptidase or the mitochondrial processing peptidase, respectively. It is known

that targeting signals for mitochondria and chloroplasts are distinct from that for the endoplasmic

Page 28: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

9

reticulum, with respect to sequence composition and predicted secondary structure. Despite

similarities observed between chloroplastic and mitochondrial targeting signals, a given protein

is targeted specifically into either mitochondria or chloroplasts (67, 70). However, a number of

proteins have been identified that exhibit dual targeting properties, i.e., they are imported into

both chloroplast and mitochondria (71, 72). In some cases, such dual targeting results from

transit peptides comprising two independent transport signals in tandem. As a result of

differential transcription, splicing and/or translation processes, either of the two signals can be

exposed at the N-terminus of the precursor protein, where it decides the target organelle. In some

cases, however, the dual attribute is due to ambiguous transit peptides, which are able to interact

with the protein transport machinery of both endosymbiotic organelles (71, 72). Recently,

Baudisch, et al. (67) have estimated the number of proteins in Arabidopsis with dual importing

attributes by a combination of extended in silico analyses and protein transport experiments.

1.1.7 mRNA-based protein targeting to different organelles

Previously, it was assumed that proteins are synthesized at random locations in the cytosol and

then imported into the different organelles using localization information in the polypeptide

sequence (73). Over the past decades, mRNAs and ribosome subunits were observed to target to

the ER membrane in the absence of translation and, hence, the signal peptide and nascent chain.

These results raised the possibility that proteins are targeted to the ER by the localization of the

mRNAs encoding them (74, 75). Supporting these possibilities, it was shown that most mRNAs

encoding mitochondrial proteins were not equally distributed in the cytoplasm but enriched in

the vicinity of mitochondria (76-78). Further studies also showed the mRNA localization in the

proximity of chloroplast and peroxisomes (79, 80). In addition to targeting the protein, this

mRNA-based targeting may also function to (i) keep out the protein from intracellular regions

where it would be toxic, (ii) overcome the requirement for other targeting mechanisms, (iii)

Page 29: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

10

guarantee expeditious translational responses to changing abiotic or biotic conditions, (iv) allow

the regulation of the protein synthesis by cellular and extracellular stimuli that reflect demand for

the product, (v) impart economic benefits from not having to localize the many copies of a

protein translated from a single mRNA and (vi) substantiate translation sites that are secluded

from other regions under stress. Localization is specified by a cis-acting sequence in the mRNA

called a localization element or Zipcode (81). Zipcodes range from only a few nucleotides (82) to

highly complex and redundant sequences of up to 1 kb (83). These codes are most often located

within the 3'-UTR and in most cases sufficient for the localization of a reporter mRNA.

Currently, many of the 3'-UTR features leading to mRNA localization are known (84) and were

found by experiments using fluorescence microscopy or cross-linking and immunoprecipitation

(85, 86).

1.1.8 The accumulation of Avsunviroidae viroids within the chloroplasts

Viroids are single-stranded, circular RNA plant pathogens that are approximately

247-401 nucleotides in length (87). Viroids are divided into two families, the Pospiviroidae,

and the Avsunviroidae. The four members of the Avsunviroidae family are the Avocado

sunblotch viroid (ASBVd), the Peach latent mosaic viroid (PLMVd), the Chrysanthemum

chlorotic mottle viroid (CChMVd), and the Eggplant latent viroid (ELVd) (88). Viroids do not

code for any proteins and they depend on their host factors for replication (89). It has also

been shown that members of the Avsunviroidae family accumulate and replicate within the

chloroplasts of infected plants (90, 91) and that these viroids may use the nuclear-encoded

polymerase (NEP) of the chloroplast for their replication (92). Therefore, it has been proposed

that these viroids enter the chloroplast using some endogenous RNA translocation pathway,

however, the mechanism of this RNA import has yet to be described (93). Furthermore, there is

very little sequence conservation between the four members of the Avsunviroidae outside of

Page 30: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

11

their hammerhead structures, therefore secondary structure might play a more important role in

the import of the RNA into the chloroplast (94). In a recent work, it has been shown that

Eggplant latent viroid RNA sequence acting as a 5'-UTR end mediates the specific trafficking

and accumulation of a functional foreign mRNA into N. benthamiana chloroplasts (95, 96).

1.1.9 Non-coding RNAs in plastids

As a result of relaxed transcription and translation in plastids, many transcripts may

arise from a single promoter from both strands. After their downstream processing, a number

of stable RNA species are synthesized including a distinct class of plastid-encoded non-

coding (nc) RNA, however, their role still needs to be determined in plastid gene regulation

(97). Surprisingly, strand-specific RNA sequencing has shown a large number of ncRNAs in

Arabidopsis and barley chloroplasts (98, 99). Most of these transcribed ncRNAs are antisense

to the protein-coding genes. Such antisense transcripts bind near the 3’end of the mRNA and

stabilize the target transcripts by protecting the 3’ ends from 3’ 5’exoribonulceases (99).

1.1.10 Translation in chloroplast

Chloroplasts are membrane-enclosed organelles that are characteristic of

photosynthetic plants and algae (100). Of all the organelles contained within a eukaryotic cell,

chloroplasts and mitochondria are unique because they carry some of their own genetic

information and are able to synthesize some of their own proteins (101). Chloroplasts contain

double-stranded, circular chromosomes that range in size from 120 to 160 kbp and typically

contain four segments: a large region of single copy genes, a small region of single copy genes

and 2 copies of inverted repeats (101). These genomes encode various components that are

necessary for protein syntheses such as 4 ribosomal RNAs (rRNAs), 30 transfer RNAs

(tRNAs), 21 ribosomal proteins and 4 RNA polymerase subunits. The chloroplast genome also

Page 31: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

12

encodes proteins that are involved in photosynthesis such as 28 thylakoid proteins and the

ribulose-1, 5-bisphosphate carboxylase/oxygenase (RuBisCO) large subunit (102). Although

chloroplasts possess their own genome and protein synthesis machinery, these organelles are

unable to exist autonomously outside of the eukaryotic cell. This is likely due to a considerable

relocation of genetic information from the chloroplastic genome to the host nucleus (103). This

suggests that the maintenance of the chloroplast is likely to require rigid coordination of both

transcription and translation in the nucleus as well as in the chloroplast (104). Despite

importing numerous peptides, the chloroplast also utilizes prokaryotic protein synthesis

machinery to generate many of its own proteins. Although prokaryotic protein synthesis

follows the same three steps required for eukaryotic translation (Initiation, Elongation, and

Termination), there are a few major differences. For example, while eukaryotic messenger

RNAs (mRNAs) possess 5’caps (m7GpppGp) and 3’poly-A tails, prokaryotic RNA transcripts

are missing both of these structures. Without the 5’cap, a prokaryotic ribosome identifies the

translational start site within an mRNA transcript by binding to a Shine-Dalgarno sequence

(typically GGAGG in chloroplasts) upstream of the initiator AUG (101, 105). The prokaryotic

and eukaryotic systems also differ in the sizes of their ribosomal subunits, in the number of

initiation factors involved in translation, and in the number of cistrons contained within their

mRNA transcripts (105).The chloroplast utilizes a prokaryotic system to synthesize proteins

encoded in its own genome. Prokaryotic translation can be divided into 3 stages: Initiation,

Elongation, and Termination. Protein synthesis initiates when the 16SrRNA of the 30S small

ribosomal subunit base pairs with the Shine-Dalgarno sequence upstream of the initiator AUG

in the mRNA transcript. Meanwhile, Initiation Factor 2 (IF-2) binds to a tRNA aminoacylated

with formylmethionine (tRNAfMet

) and facilitates the base pairing between this tRNA and the

start codon of the mRNA (105). Finally, the 50S large ribosomal subunit unites with the

Page 32: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

13

previously mentioned components to complete the initiation complex. The formation of this

complex is promoted by two additional initiation factors. Initiation Factor 3 (IF-3) binds to the

30S subunit and prevents it from joining the 50S subunit when no mRNA transcript is present

and Initiation Factor 1 (IF-1) promotes the dissociation of the 70S ribosome (106). In the

second phase of protein synthesis, the peptide chain is elongated through the addition of amino

acids. First, a new amino-acyl tRNA molecule bound to an EF-Tu elongation factor enters the

ribosome, and if the correct codon-anticodon pairing is made, a molecule of Guanosine

Triphosphate (GTP) within the EF-Tu is hydrolyzed and the elongation factor dissociates from

the tRNA (105). The amino-acyl tRNA then moves into the A site of the ribosome and peptidyl

transferase catalyzes the formation of a new peptide bond between the amino acids in the A

and P sites. Next, another elongation factor, EF-G, enters the ribosome, which triggers the

hydrolysis of an attached GTP molecule. This hydrolysis than triggers a drastic change in the

conformation of the ribosome that shifts the tRNAs located in the A and P sites to the P and E

sites, respectively. The uncharged tRNA that is now located in the E site is expelled from the

ribosome and the A site is now free to accept a new amino-acyl tRNA molecule (105). The

final stage of protein synthesis is called termination and this occurs when one of the three

termination codons enters the A site of the ribosome (105). Since these codons are not

recognized by any tRNA molecule, an additional amino acid is not added. Rather, these codons

are recognized by release factors that cleave the polypeptide from the final tRNA and release

the newly synthesized protein. Release Factor 1 (RF-1) recognizes the UAA and UAG codons

while Release Factor 2 (RF-2) recognizes the UAA and UGA codons. A third Release Factor

(RF-3) promotes the release of RF-1 and RF-2 as the final step in the translation process (107).

Page 33: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

14

1.1.11 RNA transport into mitochondria

Mitochondria of the most eukaryotic cells play an integral role in cellular processes including

respiration, oxidative phosphorylation-mediated ATP production, cellular metabolism and

apoptosis (108). These organelles carry their own genome which varies depending on species

(e.g. 17 kb in human and 367 kb in Arabidopsis thaliana), but normally encode only a limited set

of proteins (e.g. 13 in human and 32 in A. thaliana), suggesting that the most of the

mitochondrial proteins are encoded in the nucleus and translocated into the mitochondria (109).

In addition to nuclear-encoded proteins, synthesis of mitochondria-encoded proteins is essential

for organelle functions which require rRNAs and a complete set of tRNAs. Plant mitochondrial

genomes lack several tRNA genes, consequently, nuclear-encoded tRNAs are imported from the

cytosol (110). Based on genetic origin, in plant mitochondria, there are three tRNAs: 1. native

mitochondrial tRNAs coded for by the mitochondrial genome, 2. chloroplast-like tRNAs,

initially coded for by chloroplast DNA and finally inserted into the mitochondrial genome during

evolution, and 3. cytosol-like tRNAs, coded for by the nuclear genome, which are required to

import from the cytosol into the mitochondria (110). So far it is known that only noncoding

RNAs are translocated into mitochondria. The import of cytosolic 5S rRNA into mitochondria

has been demonstrated in mammals, however, its functional importance remains unanswered

(111). Additionally, two other cytosolic RNAs, the RNA component of the nuclease

mitochondrial RNA processing and the RNA component of RNase P, are imported in humans

but their existence within the mitochondria remains questionable (112, 113). In higher plants,

one-third to one-half of the mitochondrial tRNAs are encoded in the nucleus and then imported

into mitochondria (114). Of the nuclear-encoded tRNAs imported from the cytosol, tRNAs

aminoacylated with Glycine and Valine (tRNAGly and tRNAVal, respectively) have been most

thoroughly studied. Salinas, et al. (115) demonstrated that import of tRNAGly into tobacco

Page 34: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

15

mitochondria is sequence-dependent. They found that tRNAG1y (UCC) and tRNAGly (CCC) were

detected in the cytosol and mitochondria, while tRNAGly (GCC) was only present in the cytosol.

It has been demonstrated that point mutations in the anticodon of tRNAVal abolish both

aminoacylation and import and that D- and T-domains are essential for tRNAVal import (114).

Furthermore, It has been found that both the anticodon and the D-domain regions contain

essential determinants for tRNAVal(AAC) import into plant mitochondria (114). Mitochondrial

tRNA import has been experimentally documented in several organisms including protozoa, the

yeast Saccharomyces cerevisiae, higher plants, and marsupials, however, little is known about

the mechanism of tRNA translocation across plant mitochondrial membranes. The import of a

tagged bean tRNALeu into mitochondria of transgenic potato was the first direct evidence of this

phenomenon (116). Later, it was found that in order to be imported, a nuclear-encoded tRNA

first needs to interact with mitochondrial membrane receptors which require ATP-dependent step

(s) (117). The tRNA would then pass through the transporter outer membrane (TOM) and

transporter inner membrane (TIM) complex via a still unknown mechanism.

1.2 GEMINIVIRUSES

The family Geminiviridae is comprised of plant DNA viruses that have long been known as

model systems for the elucidation of basic cellular components of the plant replication and

transport machinery (118-121). This family consists of phytopathogenic viruses with

characteristic twinned, quasi-isometric virions encapsidating genomes of circular single-stranded

(ss) DNA. These viruses replicate through an intermediate dsDNA molecule in the nuclei of

infected host plant cells and rely on the host DNA replication machinery (122). Geminiviridae is

classified into seven genera, six of which (Mastrevirus, Curtovirus, Topocuvirus, Becurtovirus,

Eragrovirus, and Turncurtovirus) consist of viruses with monopartite genomes while the seventh

one (Begomovirus) comprises of either monopartite or bipartite (Fig.2). Geminiviruses, with the

Page 35: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

16

smallest known genome of plant-infecting viruses, replicate independently in the host cells by

using bidirectional mode of transcription from some of the overlapping genes for efficient coding

of proteins (121).

Figure 1.2 Genome organization of isolates in various geminivirus.

lineages (LIR, long intergenic region; SIR, short intergenic region; CR, common region; rep, replication-

associated protein (C1or AC1); ren, replication enhancer (C3 or AC3); trap, trans activator protein (C2 or AC2);

ss, silencing suppressor; sd, symptom determinant (C4 or AC4); cp, capsid protein V1 or AV1); mp, movement

protein V2 or BC1); reg, regulatory gene (V3); nsp, nuclear shuttle protein (BV1) (123).

Page 36: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

17

1.2.1 Genus Begomovirus

Viruses of the genus Begomovirus consists of either monopartite (a single DNA) or bipartite

(with two DNA components: DNA-A and DNA-B) genomes (123-127). The DNA-A of bipartite

and the single component of monopartite begomoviruses contain five or six Open Reading

Frames (ORFs) while the DNA-B contains two ORFs (BV1 and BC1, in V-sense and C-sense

strand, respectively). Both DNA-A and DNA-B are approximately 2.8-3.0 kb in size.

Monopartite begomoviruses are often associated with one or smaller DNA components, about

1.4 kb in size, known as satellite DNAs (Figure 1.3).

Figure 1.3 Genome organizations of begomoviruses and their associated DNA satellites.

Lollipop, origin for rolling-circle replication; C2, possible transcriptional activator protein; C4/AC4, possible

symptom determinant; CP, coat protein; NSP, nuclear shuttle protein; AV2, anti-defence proteins; V2, movement

protein; Rep, Replication initiator protein; TrAP, transcriptional activator protein; REn, Replication enhancer

protein; MP, movement proteins; βC1, Betasatellite encoded protein (128).

Two types of satellite DNAs are known: the alpha-satellites and beta-satellites, depending upon

the organization of their DNA and their effects on the symptoms produced by the helper

Page 37: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

18

begomovirus. Both the alpha- and betasatellites are dependent upon the helper virus for

replication and, in many cases, mitigate the symptoms produced by it (129). DNA-A and DNA-B

components in bipartite begomoviruses differ from each other, except a short sequence of ~200

nucleotides with high sequence identity that is referred to as “common region” (CR). The

genomes of monopartite (and DNA-A components of bipartite) begomoviruses are typically

∼2.8 kb in size and have genes in both orientations from a non-coding intergenic region (IR),

which contains promoter elements and the origin (ori) of virion-strand DNA replication. The

virion strand ori consists of a predicted hairpin structure containing a conserved (between

geminiviruses) nonanucleotide (TAATATTAC) sequence in the loop and repeated upstream

motifs known as “iterons”. The DNA-A component of begomoviruses consists of either five or

six ORFs in both orientations. These proteins are required for multiple functions: viral

replication; virus assembly; host gene regulation and silencing suppression; and vector

transmission. Despite the genes are named on the basis of their functions, however, their

functions can differ within the genus Begomovirus (130, 131). The virion-sense strand of most

begomoviruses encodes the following two proteins:

Coat protein (CP; V1): Coat protein is required for encapsidation, insect transmission and

movement in plants (128, 132, 133). It is also believed that CP interferes with nicking of DNA

thus limiting the viral DNA copy number during rolling circle replication (RCR) (121, 134). It

also functions as the nuclear shuttle protein (NSP) for monopartite viruses (135).

Pre-coat protein (Pre-CP; V2): A pathogenicity determinant, which is believed to involve in

virus movement in plants (121, 128) and/or acts as a suppressor of RNA silencing (134, 136). It

also contributes in the perinuclear distribution of begomoviruses by association with the

endoplasmic reticulum (ER) and cytoplasmic strands (137).

The complementary sense strand encodes four proteins:

Page 38: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

19

Replication-associated protein (Rep; C1):

The only virus-encoded gene product required for viral DNA replication. Rep is an RCR-initiator

protein that recognizes the reiterated motifs (iterons) and nicks within the nonanucleotide

sequence to initiate replication (138, 139). It also conducts ATPase and helicase activities and

binding of retinoblastoma-related proteins (140).

Transcriptional activator protein (C2; TrAP):

This protein up-regulates the late (virion sense) genes (for bipartite begomoviruses) and also acts

as a suppressor of RNA silencing in bipartite (128, 141) as well as monopartite begomoviruses

(142). It also prevails over virus-induced hypersensitive cell death (143, 144).

Replication enhancer protein (REn; C3): It is involved in establishing an environment

conducive for optimal virus replication by interacting with host-encoded proteins (145-147).

C4 protein: The role of the C4 protein is unknown but for some viruses it is a pathogenicity

determinant and also counteracts PTGS (148-150).

As mentioned earlier, the bipartite begomovirus genome comprises of two components. Both

components are required for different functions; DNA-A component is responsible for

replication and transcription while DNA-B is required for inter- and intracellular movement of

the virus. DNA-A and DNA-B together are required for a successful systemic infection. The

DNA-B component contains two ORFs in opposite orientations encoding.

Nuclear shuttle protein (NSP; BV1): NSP is responsible for transport of viral DNA from the

nucleus into the cytoplasm (151-153).

Movement protein (MP; BC1): BC1 coordinates the movement of viral DNA across

plasmodesmata boundaries (152) and it is also responsible for viral pathogenic properties (154).

Its function is also mediated by V2 alone or in a complex with C4 (155).

Page 39: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

20

1.2.2 Begomovirus infection

As with all other geminiviruses, which require an insect vector to be transmitted to other plants,

begomoviruses rely entirely on their arthropod vector the whitefly Bemisia tabaci for their plant-

plant transmission. The feeding of a viruliferous whitefly vector, B. tabaci, on the phloem cells

of a suitable host plant leads to the beginning of the begomovirus infection cycle. As soon as the

feeding starts, viral particles enter into the vascular system of the plant. From the cells in the

vascular system, the viral particles are transmitted to the mesophyll cells. Once these viral

particles are in the cells they become uncoated and viral DNA enters the nucleus where viral

DNA replication and transcription occur (156). For monopartite begomoviruses CP is

responsible for the transfer of viral DNA into the host cell nucleus and later into the cytoplasm.

Bipartite begomoviruses do not need CP for movement and they use NSP to act as a shuttle for

virus movement from the nucleus into the cytoplasm (151). In the nucleus, the complementary

strand is synthesized following primer synthesis to produce a dsDNA intermediate, which serves

as a template for transcription of viral proteins (157). Once the dsDNA is formed, bi-directional

transcription starts with the help of promoter sequences located in the IR. The viral transcripts

are transported into the cytoplasm for translation (133). The translated proteins enter the nucleus

to carry out replication, packaging, and movement of viral DNA. The Rep protein of the

begomovirus binds to the ori and starts RCR mode of replication. After accumulation of ssDNA

CP switch RCR and shuttles ssDNA into the cytoplasm (long distance movement of

begomovirus DNA will be discussed in detail in the preceding section). The CP starts packaging

of the viral DNA to produce virions and the virus is either transported to the next cell through

plasmodesmata or taken up by the whitefly to be transmitted to the next plant.

Page 40: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

21

1.2.3 Long distance movement within plants

The movement of geminiviruses within host plants has been studied extensively (120, 137, 151,

155, 158-161). These viruses use the DNA replication machinery of their host to amplify their

genomes in the nuclei of infected plant cells (162). When the viral DNA reaches an optimum

level in the nucleus it is transported out of the plant cell nucleus to undergo systemic spread by

crossing plasmodesmata openings in the cell membrane. Bipartite begomoviruses are dependent

upon DNA-B encoded NSP and MP for their movement in host plants (152, 153, 156). The NSP

supports viral DNA export from the nucleus into the cytoplasm from where MP transports viral

DNA to neighboring cells via plasmodesmata (36, 163). It has been shown that βC1 of CLCuMB

can substitute the movement function of DNA-B to facilitate movement of begomovirus from the

nucleus to the cell periphery (159). Monopartite begomoviruses cross cell membranes with the

help of interaction between CP and Pre-CP (137). The CP of monopartite begomoviruses

localizes to the periphery of the nucleus and nucleolus, thus acting as a nuclear shuttle

homologous to NSP of bipartite begomoviruses. Pre-CP localizes around the nucleus and at the

cell periphery with the ER. Such a localization pattern is similar to MP of bipartite

begomoviruses, probably assigning movement function to these proteins (135, 137). The

transport of viral ssDNA from the nucleus towards plasmodesmata is facilitated by a nuclear

export signal (NES) on the CP C-terminus and NES on the Pre-CP N-terminus (132, 137).

1.2.4 Translocation of begomoviruses into chloroplast

The DNA of Abutilon mosaic virus (AbMV), a geminivirus that has a circular single-stranded

DNA genome, was isolated from intact chloroplasts (164) representing the only other example of

a geminiviral genome in chloroplasts. Chloroplasts were purified from AbMV- infected and

uninfected control Abutilon sellovianum var. marmorata plants. The single-stranded AbMV DNA

was examined in the plastids of infected plants. The possibility of adsorption of virions or DNA

Page 41: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

22

on the external surface of intact chloroplasts was ruled out by treating them with DNase I and

protease. Furthermore, the lamellar system of plastids from AbMV-infected plants was

degenerated, suggesting that the virus affected the structure of the plastids in AbMV-infected

plants. Bhattacharyya, et al. (165) found that chloroplast structure was severely damaged with

the coinfection of Tomato leaf curl New Delhi virus DNA-A and the betasatellite which is

associated with radish leaf curl disease (RaLC), conversely, the structure of chloroplasts

remained undamaged when the host cells were infected with Tomato leaf curl New Delhi virus

DNA-A alone. Furthermore, these findings demonstrate that protein βC1 encoded for by

betasatellite is responsible for damaging the structure and is capable of targeting to chloroplasts,

suggesting that a DNA virus-encoded protein is responsible for causing structural and functional

damage to this vital organelle. With its unique origin as an endosymbiont converted into a

subcellular organelle, a chloroplast is speculated to have potential to carry tools necessary for

replication and transcription of viruses (166).

Page 42: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

23

CHAPTER 2

2 STUDIES ON TRANSLOCATION OF RNAS FROM

CYTOSOL TO ORGANELLES

2.1 INTRODUCTION

Potato Virus X (PVX) is the type member of the Potexvirus genus and systemically infects many

species of the Solanaceae family (167). This virus is highly applicable as a model system for

exploring various aspects of its infection and how these attributes can be exploited in the

molecular biology field. This virus is very useful for genetic studies of proteins and RNA

components required for infection, isolation, and biochemical characterization of viral proteins

and replication complexes (168). It is a rod-shaped, filamentous virus that possesses a single-

stranded, ~6435-7560 nucleotide positive-sense RNA genome. This polycistronic RNA genome

is capped at the 5´ end (m7GpppGp), polyadenylated at the 3´ end, and contains five open reading

frames (ORFs) (169) as depicted in Figure 2.1.

Figure 2.1 Genome of Potato virus X with five open reading frames.

TGBp, Triple gene block protein; CP, coat protein; m7G, 7-methylguanylate cap; Poly-A, Polyadenylation.

Note: Figure not drawn to scale.

Page 43: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

24

The first ORF encodes a 166 kDa RNA replicase (RNA-dependent RNA polymerase). The

second, third and fourth ORFs encode a 25 kDa protein, a 12 kDa protein, and an 8 kDa protein

respectively. These proteins are known as the “triple gene block” (TGB) and are thought to be

involved in the cell-to-cell movement of the virus (170). The fifth ORF encodes a capsid protein

(CP), which has also been implicated in viral intercellular movement (171). Some plant virus

proteins, in particular, the capsid protein (CP), are known to accumulate in the chloroplasts of

infected plants (172-175). The CP, as well as other viral RNAs, have been reported to translocate

into chloroplasts (172, 176).

Many studies have documented the role of transit peptides and viral proteins in targeting

a variety of viruses to specific subcellular regions of their hosts (14, 20, 45, 58, 59, 177, 178).

The majority of chloroplast proteins are translated in the cytoplasm as pre-proteins with amino-

terminal transit peptides (TPs) that direct transport to the chloroplast via specific interactions

with various components of the import machinery (172, 179). Some viruses seem to use the same

TP mechanism to direct their proteins to chloroplasts. The cucumber necrosis Tombusvirus

(CNV) uses the first 38 amino acids of the capsid protein not only to translocate the CP to the

chloroplast but also the green fluorescent protein which is in fusion with the 38 amino acid from

the CNV CP. This viral protein seems to contain the 14-3-3 chloroplast targeting motif which is

typical to most cellular proteins which are targeted to chloroplasts (177). The TGB proteins of

PVX were shown to play an important role in the cell-to-cell movement of PVX RNA during

viral infection (170). The 25 kDa protein of TGB is targeted to plasmodesmata (180) and it is

also known to modulate plasmodesmata gating by increasing the size exclusion limit (SEL) to

allow the 25 kDa protein as well as the viral RNA to move from cell-to-cell (181). TGBp3 (25

kDa protein) also plays an important role as a suppressor protein which could delay the onset of

post-transcriptional gene silencing (PTGS) in plant tissues (182). The other two proteins 12 kDa

Page 44: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

25

and 8 kDa were also shown to be implicated in cell-to-cell movement of viral RNA (44, 183).

The CP of PVX has also been shown to play a role in viral intercellular movement by forming

ribonucleoprotein particles with the viral RNA and the 25 kDa protein; allowing the PVX RNA

to move from cell-to-cell and possibly facilitating long distance movement (42, 184-186).

However, there are currently no reports showing any role of the CP and/or TGB proteins in the

RNA transport to organelles.

Of all the organelles contained within a eukaryotic cell, chloroplasts and mitochondria

are unique because they carry their own genetic information and are able to synthesize some of

their own proteins (187). The interactions between viruses and host components underlie the

appropriate subcellular targeting of viral proteins and nucleic acids during the viral infection

cycle (188-190). The genome replication of all plus-strand RNA viruses infecting eukaryotic

cells is associated with cellular membranes (191). The membranes can be derived from the

endoplasmic reticulum (ER), other organelles of the secretory pathway, mitochondria,

chloroplasts, or from the endo-lysosomal compartment. The membrane association provides a

structural framework for replication: it fixes the RNA replication process to a spatially confined

place, increasing the local concentration of necessary components (192). After entry into host

cells, viruses usually target a specific organelle for replication. Tobacco etch virus (193),

Cowpea mosaic virus (194), Tomato ringspot virus (195), Potato virus X (196), and Tobacco

mosaic virus (197, 198) target the ER membrane; Tomato bushy stunt virus (199) and Melon

necrotic spot carmovirus (200) target the peroxisome and mitochondria, respectively; and

Turnip yellow mosaic virus (201), Turnip mosaic virus (202) and Bamboo mosaic virus (66)

associate with the chloroplast membrane. These findings suggest that members from different

viral families might be associated with the same organelle, but that members of the same family

do not necessarily target the same organelle or organellar membrane (203). Otulak, et al. (204)

Page 45: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

26

examined the Tobacco rattle virus (TRV) not only in the membranous and vesicular ER

structures but other cell organelles (chloroplast and mitochondria) as well. This finding also

indicates that same virus has the ability to target different cellular organelles during its infectious

cycle.

Previous research conducted in our laboratory revealed the presence of PVX CP within

the chloroplasts of both PVX-infected potato plants and transgenic potato plants containing the 8

kDa and CP sequences. Further, these studies showed that the dicistronic mRNA was found not

only to be translocated to chloroplasts, but also the CP was translated by chloroplastic ribosomes

that are sensitive to chloramphenicol treatment. In addition, a Shine/Dalgarno-like (SD) sequence

was identified upstream of the CP gene. This SD sequence was probably essential for the

translation of CP by chloroplast ribosomes (205). Northern blot analyses were performed to

confirm the existence of PVX CP messenger RNA inside the chloroplasts of infected and

transgenic plants (205). Furthermore, it was also shown that a small viral sequence from the

PVX RNA is responsible for translocating the PVX RNA to chloroplasts (206). We mapped this

viral RNA sequence “RNA tractor” (located near the end of 8 kDa and the start of CP genes

including the small non-coding intergenic region) on the PVX genome by a series of mutation

and deletion experiments using pC-GFP binary vector, where PVX sequence is driven by the 35S

promoter followed by the GFP gene and the T-nos (nopaline synthase terminator). Previous data

indicate that the “RNA tractor” is composed solely of RNA sequence and there is no expressed

viral protein involved in such translocation. In this respect it may be comparable to the transport

and translocation of the RNA of viroids of the Avsunviridae, which do not code for any proteins

and they have to rely on cellular proteins (if any) for their transport, entry to chloroplast for

replication (likely using chloroplastic DNA-dependent RNA polymerase) and for exit (90).

Gomez and Pallas (95) demonstrated for the first time that an RNA sequence of Eggplant latent

Page 46: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

27

viroid (ELVd) can be transported to chloroplast and it is also functional in this organelle. This

supports the existence of a novel signaling mechanism between the host cell and these

organelles. (95, 207). In an earlier study, it was demonstrated that the mRNA encoding the

eukaryotic translation factor 4E enters the chloroplasts. Furthermore, the localization in the

chloroplast of a heterologous GFP mRNA fused to the eIF4E RNA was also observed. However,

interestingly, the eIF4E RNA was not translated in the chloroplasts (208). mRNA localization

might facilitate the import of proteins targeted to specific organelles. This highlights a novel

host-modulated regulatory mechanism that would be potentially able to control the gene

expression and the accumulation of the nuclear-encoded proteins in chloroplasts

In a recent study, it has been shown that the Bamboo mosaic virus (BaMV) RNA could

be transported to chloroplasts by interacting with nuclear-encoded chloroplast proteins (209).

The “RNA tractor” activity described here is the first report of a virus non-coding sequence that

is capable of not only the translocation of its own sequence but also that of a foreign RNA

sequence (GFP) to chloroplasts. Presumably, any foreign RNA could be targeted to chloroplast

by this “RNA tractor” sequence. These findings suggest that the translocation of PVX RNA into

chloroplasts is dependent upon a limited region of the PVX RNA transcript. However, from this

work, many questions may be asked. Does the PVX RNA translocation depend upon the sequence

or is it a secondary structure? Is this RNA tractor activity limited to chloroplasts or

mitochondria can also be targeted? To explore these secrets, experiments are designed to

answer some of the above questions.

2.2 RESEARCH PLAN

The overall objectives of this study are:

1. Detection of PVX RNA and coat protein in chloroplasts.

Page 47: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

28

2. To determine the smallest RNA sequence required for the translocation process observed

with PVX RNA.

3. To determine the efficiency (quantitation) of translocation of “RNA tractor” to chloroplasts.

4. To compare the translocation efficiency of “RNA tractor” (pTR:127) sequence with

Eggplant latent viroid (pCELVd-GFP; used as a positive control) to chloroplasts.

5. Finally to study the translocation of “RNA tractor” sequence to plant mitochondria.

2.3 MATERIALS AND METHODS

2.3.1 Plasmid construction and transformation

The plasmid pCAMBIA1300 (CAMBIA, Canberra, Australia), a compact binary vector (8.9-

kbp), is used in this study. A 35S:GFP:T-nos expression cassette (Gen Bank EF546437) of size

1.9-kbp was subcloned into this binary vector by HindIII and EcoRI sites in the multiple cloning

sites and designated as pC-GFP (Figure 2.2). To create pCELVd-GFP, a chimeric DNA

containing a modified Eggplant latent viroid (ELVd) sequence, (AN - HM136583) (95),

pCATvd-GFP (ELVd sequence with AT-rich sequence derived from 5´-UTR of capsid protein of

Alfalfa mosaic virus (AlMV) RNA), pCATvdmut-GFP, SD-like sequence GGAGGATTCG

within ELVd was replaced with CCTCCTAAGC, pC127TCR-GFP and pCELVdTCR-GFP

constructs containing a translation control region (TCR) (210), comprised of 58 nucleotides of

5'-UTR and 45 nucleotides from N-terminal coding region of ribulose-1,5-bisphosphate

carboxylase/oxygenase large sub-unit (rbcL) gene and pCELVdpsbA-GFP construct comprised

of ELVd sequence with 85 nucleotides of 5´-UTR of tobacco chloroplast gene psbA (211) were

synthesized and cloned in pUC57 plasmid (Bio Basic Inc.). Following digestion of pUC57

by KpnI/ BamHI and NheI or/and XbaI/BglII restrictions enzymes and gel purification (QIAquick

Page 48: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

29

Gel Extraction Kit, QIAgen), the fragments were subcloned into a pC-GFP binary plasmid using

the respective restriction sites. The pCrbcLSD-GFP was generated by amplified 127 nucleotides

using pTR:127 as a template and RBSKpnIF and RBSBglIIR, with an extension of rbcL anti-SD-

like sequence (CCCTCCC), primers. The resulting product was cloned into the pC-GFP vector

using its KpnI/BamHI sites. To generate pCSD-GFP (construct with PhageT7 trailer sequence,

T7 translational enhance RBS, is available in pET-X-series), first GFP sequence was amplified

using GFP specific primers and resulting PCR product was cloned into the pET29 vector using

NdeI/BamHI sites, designated pET-GFP. Subsequently, GFP with an extension corresponding to

the T7 translational enhance RBS in pET vector was amplified using F-Pet BglII and R- GFP

BamHI primers with BgIII and BamHI restriction sites respectively (Table 2.1). The obtained

product after digestion and purification was introduced into the pre-existing recombinant

pTR:127 construct using its BamHI site and named pC127pETSD-GFP. The construct pC8K-

GFP, containing the sequence upstream of the ATG codon of the PVX CP gene including the 8

kDa ORF and 177 nucleotides upstream of this ORF, was generated by amplifying the product

using pre-existing recombinant pTR:8k as a template, subsequently the obtained product was

inserted into pC-GFP in its KpnI/BamHI sites. The ATG of CP ORF was fused with ATG of

GFP ORF. To generate pChp-GFP and pChp8K-GFP, a sequence expected to form a stable

hairpin was introduced in KpnI site (inac) of both pC-GFP and PC8k-GFP constructs. To create

pCAT-GFP, AT-rich sequence derived from 5´-UTR of the capsid protein of Alfalfa mosaic virus

RNA was inserted into a pC-GFP construct using its KpnI (inac) and XbaI sites. To generate

pCATvd80-GFP construct, ELVd sequence comprised of 80 nucleotides was cloned into a

pCAT-GFP construct using its XbaI/BamHI sites. These four constructs were produced by

ligating double-stranded oligonucleotides into restriction-enzyme digested plasmid DNA with

compatible ends (Table 2.1). Briefly, complementary oligonucleotides synthesized by Eurofins

Page 49: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

30

MWG Operon (Huntsville, AL) were mixed in equimolar amounts (50 µM each), boiled and

annealed by cooling to room temperature and ligated into already restriction enzyme digested

pC-GFP vector using T4 DNA ligase (New England Biolabs, NEB) according to the

manufacturer's protocol. All those constructs which were linearized with single restriction

enzyme were also treated with Calf Intestinal Alkaline Phosphatase (CIP) (New England

Biolabs, NEB) to prevent religation of linearized plasmid DNA. The product of each ligation

reaction was used to transform E.coli DH5-alpha competent cells and Kanamycin (50 µg/mL)

resistant bacterial colonies were screened for the presence of the proper recombinant constructs.

Plasmid extraction was done using the QIAprep spin miniprep kit (Qiagen) or mini-prep method

described by Sambrook, et al. (212).

Table 2.1 shows a complete list oligonucleotides and DNA sequence used to generate the

plasmids in this study.

Figure 2.2 A partial physical map of modified pCAMBIA1300 construct designated as pC-GFP with 35S

Promoter, GFP gene, and T-nos terminator cassette.

GFP; green fluorescent protein, 35S; Cauliflower mosaic virus 35S promoter, T-nos; nopaline synthetase

terminator, Lac p; lac promoter, lac Z α; lacZ gene alpha codes for beta- galactosidase in E.coli, L; left (T-

border), R; right (T-border). Note: Figure not drawn to scale.

To determine the smallest RNA sequence required for the translocation process, a series of

deletion clones (Figure 2.3 A-E) were generated from the previous dicistronic construct

(sequence between the PVX 8 kDa and CP proteins (174).

Page 50: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

31

Figure 2.3 Schematic representation of constructs (A-E) in pC-GFP plasmid previously studied in our lab.

To investigate the translocation of PVX RNA into chloroplasts, regions of the PVX sequence were cloned into PC-

GFP binary vector to generate transgenic tobacco plants. A) pTR:8K-CP; this construct contains both the 8 kDa

and CP genes and was produced to confirm the previously observed translocation of CP mRNA into chloroplasts. B)

pTR:8K(insG80)-CP; the pTR:8K-CP clone was digested with EcoRI and filled with a Klenow fragment; which

caused the insertion of a G in the 80th nt position of the 8 kDa gene. This produces a frame shift mutation in the

resulting protein. C) pTR:8K; In this construct, the CP gene was truncated so that only the first 13 nt remained.

PCR inserts were cloned into PC-GFP binary vector using KpnI/XbaI sites. D) pTR:224; this construct consists of

224 nt of the PVX sequence, including 201 nucleotides from the 3´ end of 8 kDa gene, 10 nt of intergenic region

and the first13 nucleotides from the CP gene. E) pTR:127; this construct contains 127 nt of the PVX sequence

(“RNA tractor”), including 104 nt from the 8 kDa gene, 10 nt of intergenic region and 13 nucleotides from the CP

gene. 35S; Cauliflower mosaic virus 35S promoter, 8k; 8 kDa gene, IR; intergenic region, CP; coat protein, GFP;

green fluorescent protein, T-nos; nopaline synthetase terminator. Note: Figures not drawn to scale.

In this study two potential constructs pTR:127 and pTR:27 are used to verify the PVX RNA

sequence responsible for translocation of not only PVX RNA but also GFP RNA from cytosol to

chloroplasts. Two constructs namely pCELVd-GFP containing Eggplant latent viroid (ELVd) (a

non-coding viroid) sequence and pC-GFP are included as positive and negative controls

respectively (Figure 2.4 A-D).

Page 51: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

32

Figure 2.4 Schematic representation of the constructs used in this study for “RNA tractor” activity.

To confirm the trafficking of “RNA tractor” into chloroplasts, transgenic tobacco plants were generated using

these constructs. A) pC-GFP; this construct, without any PVX sequence, is included as a negative control B)

pTR:27; this construct contains only last 5 nt of 8 kDa, 10nt of intergenic region and 12 nt from the CP gene C)

pTR:127; this construct comprises 127 nt of the PVX sequence (“RNA tractor”), including 104 nt from the 8

kDa gene, 10 nt of intergenic region and 13 nt from the CP gene. D) pCELVd-GFP; in this construct a chimeric

Eggplant latent viroid (ELVd) sequence consisting of 330 nt (Accession Number - HM136583) is used for a

positive control. 35S; Cauliflower mosaic virus 35S promoter. 8k; 8 kDa gene. IR; intergenic region. CP; coat

protein. GFP; green fluorescent protein. T-nos; nopaline synthetase terminator. Note: Figures not drawn to scale.

Figure 2.5 Partial DNA sequence of the pTR:127 construct used in this study as “RNA tractor”.

KpnI and XbaI are restriction enzymes that were used in the cloning of the pTR:127 construct into the pC-GFP

binary plasmid. XbaI (Inac) indicates the inactivated XbaI site.

pTR:127 35S KpnI 8k (104 nt)

…//TATATAAGGAAGTTCATTTCATTTGGAGAGAACACGGGGACggtacccaggcCTGGAGAATCAATCACA

GTGTTGGCTTGCAAGTTAGATGCAGAAACCATCAGAGCCATTGCCGATCTCAAGCCACTCTCCGTTGA

IR (10 nt) CP (13 nt) XbaI Inac GFP T-nos

ACAGTTAAGTTTCCATTGATACTCGAAAGATGTCAGCACCAGgctagaggatccATGGTGAG//……………

Page 52: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

33

Table 2.1 Oligonucleotides/ primers used in the production of different constructs.

Constructs

Oligo Name/

Remarks

Oligo/Primer sequence* (5'-3´)

Cloning

sites**

pTR:127 S8K-F

8K-R

AATATTGGTACCCAGGCCTGGAGAATCAATCACAGTGTTG

ACTACTGCTAGCCTGGTGCTGACATCTTTCGAGTATC

KpnI

NheI

pTR:27 27 sense

27 antisense

TAGGCCTATTGATACTCGAAAGATGTCAGCACCAT

TAGATGGTGCTGACATCTTTCGAGTATCAATAGGCCTAGATC

XbaI /

KpnI

pET-GFP F-GFPNdeI

R- GFP BamHI

AATTAACATATGGTGAGCAAGGGCG

ACGTGGATCCTTTACTTGTACAGCTCGCC

NdeI/

BamHI

pCrbcLSD-

GFP

F-RBSKpnI

R-BSBglII

ATGTACGGTACCCAGGCCTGGAGAATCAATCACAGT

AATTATAGATCTCCCTCCCTGGTGCTGACATCTTTCG

KpnI/

BglII

pC8k-GFP 12K-F

12K-R

ATCGGGTACCCTAGAAATAGTTTACCCC

CCATGGATCCTCTAGCTGGTGCTGACAT

KpnI/

BamHI

pcSD-GFP F-Pet BglII.

R- GFPBamHI

CACTCCAGATCTAATAATTTTGTTTAACTTTAAG

ACGTGGATCCTTTACTTGTACAGCTCGCC

BglII/

BamH1

pChp-GFP

pChp8k-GFP

Stem loop sense

Stem loop antisense

ACGCGCTCCCCCCGGGGGGTCGACCCCCCGGGGGGAAAGCAGTAC

TGCTTTCCCCCCGGGGGGTCGACCCCCCGGGGGGAGCGCGTGTAC

KpnI

(inac)

pCAT-GFP AT sense

AT anti sense

TTAAATCTAGCTATATAAGGAAGTTCATTTCATTTGGAGAGGGTTTTTATT

TTTAATTTTCTTTCAAATACTTCCAGGATCAGTAC

TGATCCTGGAAGTATTTGAAAGAAAATTAAAAATAAAAACCCTCTCCAA

ATGAAATGAACTTCCTTATATAGCTAGATTTAAGTAC

KpnI

pCATvd80-

GFP

80 ELVd sense

80 ELVd antisense

CTAGCACTTTAAATTCGGAGGATTCGTCCTTTAAACGTTCCTCCAAGAGT

CCCTTCCCCAAACCCTTACTTTGTAAGTGTGGTTCG

GATCCGAACCACACTTACAAAGTAAGGGTTTGGGGAAGGGACTCTTGGA

GGAACGTTTAAAGGACGAATCCTCCGAATTTAAAGTG

XbaI

(inac)/

BamHI

pCATvd-GFP Eggplant latent

viroid (ELVd)

chimeric sequence

with an At-rich

leader sequence.

DNA was

synthesized.

Sequence of only

plus strand is given.

5´GCTAGCTATATAAGGAAGTTCATTTCATTTGGAGAGGGTTTTTATTTTT

AATTTTCTTTCAAATACTTCCAGGATCGGTACCTTGGCGAAACCCCATTTC

GACCTTTCGGTCTCATCAGGGGTGGCACACACCACCCTATGGGGAGAGGT

CGTCCTCTATCTCTCCTGGAAGGCCGGAGCAATCCAAAAGAGGTACACCC

ACCCATGGGTCGGGACTTTAAATTCGGAGGATTCGTCCTTTAAACGTTCC

TCCAAGAGTCCCTTCCCCAAACCCTTACTTTGTAAGTGTGGTTCGGCGAA

TGTACCGTTTCGTCCTTTCGGACTCATCAGGGAAAGTACACACTTTCCGA

CGGTGGGTTCGTCGACACCTCTCCCCCTCCCAGGTACTATCCCCTTTCCAG

GATTTGTTCCCAGATCTAAAAAGCCTTCCATTTTCTATTTTGATTTGTAGA

AAACTAGTGTGCTTGGGAGTCCCTGATGATTAAATAAACCAAGATTTTAC

CATGGGATCC

NheI/

BamHI

pCELVd-GFP Eggplant latent

viroid (ELVd)

sequence. DNA was

synthesized. The

sequence of only plus

strand is given.

GGTACCTTGGCGAAACCCCATTTCGACCTTTCGGTCTCATCAGGGGTGGC

ACACACCACCCTATGGGGAGAGGTCGTCCTCTATCTCTCCTGGAAGGCCG

GAGCAATCCAAAAGAGGTACACCCACCCATGGGTCGGGACTTTAAATTC

GGAGGATTCGTCCTTTAAACGTTCCTCCAAGAGTCCCTTCCCCAAACCCTT

ACTTTGTAAGTGTGGTTCGGCGAATGTACCGTTTCGTCCTTTCGGACTCAT

CAGGGAAAGTACACACTTTCCGACGGTGGGTTCGTCGACACCTCTCCCCC

TCCCAGGTACTATCCCCTTTCCAGGATTTGTTCCCGGATCC

KpnI

/BamHI

Page 53: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

34

* Underlined bold letters indicate restriction endonuclease recognition sequences.

** Restriction endonuclease recognition sequences introduced into the primers to facilitate cloning of fragments into

PC-GFP.

All these constructs were transformed into E. coli DH5α cells. The presence and accuracy of

each inserted DNA sequence in the final recombinant constructs were confirmed by DNA

sequencing (The Centre for Applied Genomics, Toronto, Canada) using the GFP-R reverse

primer Table 2.2. Subsequently, these confirmed clones were transformed into Agrobacterium

tumefaciens strain GV3101 as given in section 2.3.5.

Constructs

Oligo Name/

Remarks

Oligo/Primer sequence* (5´-3´)

Cloning

sites**

pCATvd mut-GFP SD-like

(GGAGGATTCG)

sequence is

replaced with anti-

SD-like

(CCTCCTAAGC)

sequence.

5’GCTAGCTATATAAGGAAGTTCATTTCATTTGGAGAGGGTTTTTATTTT

TAATTTTCTTTCAAATACTTCCAGGATCGGTACCTTGGCGAAACCCCATT

TCGACCTTTCGGTCTCATCAGGGGTGGCACACACCACCCTATGGGGAGA

GGTCGTCCTCTATCTCTCCTGGAAGGCCGGAGCAATCCAAAAGAGGTAC

ACCCACCCATGGGTCGGGACTTTAAATTCCCTCCTAAGCTCCTTTAAAC

GTTCCTCCAAGAGTCCCTTCCCCAAACCCTTACTTTGTAAGTGTGGTTCG

GCGAATGTACCGTTTCGTCCTTTCGGACTCATCAGGGAAAGTACACACT

TTCCGACGGTGGGTTCGTCGACACCTCTCCCCCTCCCAGGTACTATCCCC

TTTCCAGGATTTGTTCCCAGATCT

NheI/

BglII

pCELVdpsbA-

GFP

5´-UTR of psbA gene

is included for

translation in

chloroplasts.

5´GGTACCTTGGCGAAACCCCATTTCGACCTTTCGGTCTCATCAGGGGTG

GCACACACCACCCTATGGGGAGAGGTCGTCCTCTATCTCTCCTGGAAGG

CCGGAGCAATCCAAAAGAGGTACACCCACCCATGGGTCGGGACTTTAA

ATTCGGAGGATTCGTCCTTTAAACGTTCCTCCAAGAGTCCCTTCCCCAAA

CCCTTACTTTGTAAGTGTGGTTCGGCGAATGTACCGTTTCGTCCTTTCGG

ACTCATCAGGGAAAGTACACACTTTCCGACGGTGGGTTCGTCGACACCT

CTCCCCCTCCCAGGTACTATCCCCTTTCCAGGATTTGTTCCCAGATCTAA

AAAGCCTTCCATTTTCTATTTTGATTTGTAGAAAACTAGTGTGCTTGGGA

GTCCCTGATGATTAAATAAACCAAGATTTTACCATGGGATCC

KpnI/

BamHI

pC127TCR-GFP 5´-translation control

region of the rbcL

gene, comprised of

14 N-terminal amino

acids and 58 of 5´-

UTR region, was

added for translation

in the chloroplasts.

GGTACCCAGGCCTGGAGAATCAATCACAGTGTTGGCTTGCAAGTTAGAT

GCAGAAACCATCAGAGCCATTGCCGATCTCAAGCCACTCTCCGTTGAAC

AGTTAAGTTTCCATTGATACTCGAAAGATGTCAGCACCAGTCTAGAGTC

GAGTAGACCTTGTTGTTGTGAGAATTCTTAATTCATGAGTTGTAGGGAG

GGATTTATGTCACCACAAACAGAGACTAAAGCAAGTGTTGGATTCAAA

GCTAGATCT

KpnI/

BglII

pCELVdTCR-

GFP

5´-translation control

region of the rbcL

gene, comprised of

14 N-terminal amino

acids and 58 of 5´-

UTR region, was

added for translation

in the chloroplasts.

GGTACCTTGGCGAAACCCCATTTCGACCTTTCGGTCTCATCAGGGGTGG

CACACACCACCCTATGGGGAGAGGTCGTCCTCTATCTCTCCTGGAAGGC

CGGAGCAATCCAAAAGAGGTACACCCACCCATGGGTCGGGACTTTAAAT

TCGGAGGATTCGTCCTTTAAACGTTCCTCCAAGAGTCCCTTCCCCAAACC

CTTACTTTGTAAGTGTGGTTCGGCGAATGTACCGTTTCGTCCTTTCGGAC

TCATCAGGGAAAGTACACACTTTCCGACGGTGGGTTCGTCGACACCTCT

CCCCCTCCCAGGTACTATCCCCTTTCCAGGATTTGTTCCCAGATCTGTCG

AGTAGACCTTGTTGTTGTGAGAATTCTTAATTCATGAGTTGTAGGGAGG

GATTTATGTCACCACAAACAGAGACTAAAGCAAGTGTTGGATTCAAAGC

TGGATCC

KpnI/

BamHI

Page 54: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

35

2.3.2 Heat shock transformation of E.coli

Escherichia coli (strains DH5 alpha or BL21- CodonPlus used for pET vector only) were made

competent and transformed using a calcium chloride heat shock method described by Sambrook,

et al. (212). A glycerol stock of E. coli, strain DH5 alpha, was used to inoculate 2 mL of LB

medium (1% tryptone, 0.5% bacto yeast extract and 1% sodium chloride, pH 7.5 adjusted with 1

M NaOH), and the culture was grown overnight at 37°C on a shaker (225 rpm). Two hundred

microliter of the overnight culture was added to 25 mL fresh LB media and set on a 37°C shaker

for an additional 2-3 hours (hr) until the optical density at 595 nm (OD595) was 0.4-0.6. The

culture was incubated on ice for 10-20 min and then divided into two tubes which were

centrifuged at

3,000 g at 4°C for 5 min. The supernatant was decanted and the pellet was resuspended in 5 mL

of sterilized ice-cold 50 mM calcium chloride and incubated 20 min on ice. The cells were

pelleted under the same conditions for 5 min. The supernatant was discarded and the pellet was

resuspended in 670 μL of ice-cold 100 mM calcium chloride. The tubes were chilled on ice for

30 min. Aliquots of 200 µL were used for transformation with 5 μL ligation mixture (500 ng

DNA of each undigested and digested plasmids used as positive and negative controls

respectively). After chilled on ice for 30 min, heat-shock was performed on all samples at 42°C

for 50 sec followed by chilled on ice for 2 min. Eight hundred microliter of fresh LB medium

was added to each sample and tubes shaked (225 rpm) at 37°C for 45 min. The cells were

pelleted at 10, 000 g for 1 minute at room temperate and 800 μL of the supernatant was

discarded. The pellet was resuspended in the remaining supernatant and evenly plated on LBA

plates (LB media, 15 g/L agar) with 50 μL/mL Kanamycin. The agar plates were inverted and

incubated at 37°C overnight for growth. Single colonies were selected and grown in 2 mL LB

media supplemented with 50 μL/mL Kanamycin in a 37°C shaker and plates were stored at 4°C.

Page 55: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

36

Plasmid DNA was extracted from these cultures (see section 2.3.3). Cloning was then confirmed

by sequencing the plasmid insert using a GFP reverse primer (Table 2.1).

2.3.3 Isolation and purification of plasmid DNA from E.coli (mini-prep)

E. coli cells (store at -80°C) were used to inoculate 2 mL of LB media (1% tryptone, 0.5% bacto

yeast extract and 1% sodium chloride, pH 7.5 adjusted with 1M NaOH) supplemented with the

appropriate selection antibiotic (60 μg/mL Ampicillin for pUC 57 plasmid and 50 μg/mL

Kanamycin for constructs in pC-GFP) and the cells were cultured overnight at 37°C on an orbital

shaker (225 rpm). The plasmid DNA was extracted using a modified method as described

previously by Sambrook, et al. (212). E.coli cells were pelleted at 10, 000 g for 2 min. The

supernatant was decanted and pellets were resuspended in 100 μL of Solution I (50 mM glucose,

10 mM EDTA pH 8.0, 25 mM Tris-HCl pH 8.0) stored at 4°C and 5 mg/mL lysozyme stored at -

20°C. After a 10 min incubation period at room temperature, 200 μL of freshly prepared Solution

II (0.2 N sodium hydroxide (NaOH) and 1% sodium dodecyl sulphate (SDS)) was added to each

sample to promote lysis of bacterial cells, denaturation of cellular proteins, chromosomal DNA,

and degradation of cellular RNA. The solution was thoroughly mixed by gently inverting the

tubes and chilled on ice for 20 min followed by adding 150 µL of ice-cold neutralizing Solution

III (3M sodium acetate pH 4.8). After thoroughly mixing, samples were incubated on ice for 45

min and centrifuged at 14,000 g for 5 min at 4°C to separate precipitated proteins, lipids, and

chromosomal DNA from plasmid DNA. The supernatant with plasmid DNA of each sample was

transferred to a new tube and mixed with 0.6 volumes of isopropanol. After incubation at room

temperature for 1 hr, plasmid DNA was pelleted at 14,000 g for 15 min. Plasmid DNA pellets

were washed with 70% ethanol to remove salt followed by 95% ethanol. These pellets were air-

dried resuspended in 50 μL of TE-1 buffer (1 mM Tris-HCl pH 8.0 and 0.1 mM EDTA pH 8.0)

Page 56: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

37

and purified by adding an equal volume of phenol (saturated with 0.1 M Tris-HCl pH 8.0). Each

sample was thoroughly mixed by vortexing and centrifuged at 14,000 g for 5 min at room

temperature. The top phase was dispensed without disturbing the interface into a new tube. Two

volumes of saturated chloroform stored at 4°C were added to each sample. After mixing, samples

were centrifuged at 14,000 g for 5 min at room temperature. The chloroform was removed and

this step was repeated. The aqueous phase containing DNA was taken into a new tube and

sodium acetate was added to a final concentration of 0.1 M along with 2.5 volumes of ice-cold

95-100% ethanol. The samples were thoroughly mixed and stored at -20°C for further

downstream applications.

2.3.4 Gel electrophoresis

DNA and RNA samples were analyzed using gel electrophoresis. TBE buffer (0.1 M Tris base,

0.5 M Boric acid, and 2 mM EDTA pH 8.0) was used for both the preparation of the agarose gel

(1-2%) as well as the running buffer. The DNA or RNA was diluted with 5 μL of TE-1 and 3 μL

loading dye (0.25% xylene cyanol, 0.25% bromophenol blue, 20% glycerol). After loading the

sample, the gel was subjected to electrophoresis at a constant current of 50 mA and voltage of

120 V. Once the bromophenol dye had migrated half-way down the gel, the gel was stained with

1% ethidium bromide and photographed under ultraviolet light (300 nm) with a transilluminator.

2.3.5 Agrobacterium transformation

A freeze-thaw method for transformation of Agrobacterium tumefaciens strain GV3101 was used

as reported previously (213) with minor modifications. A single colony of A.tumefaciens was

selected and grown in 2 mL LB medium containing 50 µg/mL Gentamycin (BioBasic) at 28°C

on a shaker at 225 rpm. Overnight cell culture was diluted with 50 mL fresh LB medium and

grown at 28°C until cells reached an optical density (OD595) of 0.4. The cells were harvested by

Page 57: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

38

centrifugation at 3,000 g for 10 min and resuspended in 1 mL precooled 20 mM calcium chloride

and incubated on ice for 20 min. Aliquots of 100 µL were used directly for transformation with

plasmid DNA (500 ng of the respective constructs) and incubated further for 20 min on ice. In

the next step, the mixture of cells, calcium chloride, and DNA was momentarily frozen in liquid

nitrogen and then incubated at 37°C for 5 min. After dilution in 1 mL LB-medium, the cells were

incubated 3 h at 28°C with gentle shaking (150 rpm). Cells were pelleted down by a brief spin

and the supernatant was discarded while leaving behind 100 µL of the media. Cells were mixed

well with the media, plated on LB plates containing Kanamycin (100 µg /mL) and Gentamycin

(50 µg/mL) and incubated for 2 days at 28°C. Single colonies from the respective plates with the

various constructs were recovered from the plates and grown in 2 mL LB media with Kanamycin

and Gentamycin overnight at 28°C with gentle shaking. Next day, 200 µL of the culture was

transferred to 20 mL of fresh medium supplemented with the same antibiotics and 100 µM

acetosyringone and shaked for 5-6 hr at 28°C until cells reached an optical density (OD595) of

0.4-0.6. These cultures were used for plant transformation and also mixed with autoclaved

glycerol (1:1 v/v) and stored at -80°C.

2.3.6 Plant transformation

Healthy viable seeds of tobacco (Nicotiana. tabacum cv. Xanthi) were surface-sterilized by

rinsing in 10% household bleach with 0.05% tween-20 (as a surfactant) for 10 min and then

washed 3-5 times in sterile distilled water. Seeds were blotted dry on sterilized Whatman filter

paper and cultured on ½ MS medium (2.2 g/L MS salts, 15g/L sucrose, 8 g/L agar, pH 5.8

adjusted with 1M KOH) in GA-7 magenta vessels (Sigma- Aldrich). Stable Agrobacterium-

mediated transformation was performed as described by Horsch, et al. (214) with some minor

modifications. Four to five weeks old plants were used for transformation. Explants (leaf discs,

Page 58: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

39

2-3 mm) were co-cultivated for 10-20 min with Agrobacterium cultures (prepared as mentioned

in section 2.3.5. These Agrobacterium infected explants were then blotted on sterile filter paper

and placed with the abaxial surface touching the regeneration MS1 medium (4.4 g/L MS salts,

30g/L sucrose, 2 g/L 2-(N-morpholino) ethanesulfonic acid (MES) , 1 mg/L 6-benzyl-

aminopurine (BAP), 0.4 mg/L naphthalene acetic acid (NAA), and 8 g/L agar, pH 5.8) in Petri-

dishes. After three days, transformants were selected on the regeneration MS2 medium (4.4 g/L

MS salts, 30 g/L sucrose, 2 g/L MES, 1 mg/L BAP, 0.4 mg/L NAA, 8 g/L agar, 0.4g/L

Carbenicillin and 0.02 g/L Hygromycin, pH 5.8). Following a 4-6 week culture period,

Hygromycin resistant shoots were transferred to a phytohormone-free ½ MS medium containing

0.4 g/L Carbenicillin and 0.02 g/L Hygromycin in magenta vessels. After 4-6 weeks, the

transformants were confirmed by PCR of plant chromosomal DNA and transgene expression was

verified by RT-PCR of total plant RNA using the primer sets (Table 2.2). Transgenic plants

with roots were transferred from Magenta vessels to pots containing Pro-Mix (Premier Tech,

Canada). Plastic pots were enveloped in polyethylene bags to preserve humidity for one week.

The plants were grown at 23-27°C under 16 hr light/8 hr dark condition in an insect-free

greenhouse. All the cultures were kept in the growth chamber at 23±1°C under 16 hr

photoperiods of 3000 Lux supplied with cool white fluorescent tube lights. All plant growth

regulators (filter sterilized) were added after autoclaving the media. All operations of tissue

culture and transformation were carried out in laminar airflow sterile cabinet.

2.3.7 Infection of N. tabacum cv. Xanthi with PVX and virus isolation

N. tabacum cv. Xanthi is a good propagation host for PVX. Plants (4 true-leaf-age) were lightly

dusted with Carborundum (400 mesh) and inoculated with infected leaf extracts. After 20 min,

the infected plants were washed to remove any residual inoculum. The inoculated plants were

Page 59: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

40

kept under greenhouse conditions (23-27°C, 16 hr photoperiod). Two-three weeks post-

inoculation (pi), the virus was purified according to the method of AbouHaidar, et al. (215).

Infected leaves were homogenized in 0.1 M Tris-borate buffer, pH 7.5, 0.25% β-mercaptoethanol

(βME) (2 mL of buffer for 1 g of leaves). Subsequent steps were performed at 4°C.

Homogenized tissue was squeezed through four layers of cheesecloth with the addition of n-

butanol to the plant sap to a final concentration of 6%. The mixture was kept on ice for 45 min

with constant stirring. A low-speed centrifugation for 15 min was then performed (15,000 g) and

the supernatant was saved. The virus was precipitated from the supernatant by the addition of

polyethylene glycol (PEG M, 8,000) to a final concentration of 8% in the presence of 2% sodium

chloride (NaCl) and left at 4°C for 30 to 60 min. After centrifugation at 15,000 g for 10 min, the

pellets were resuspended in 0.1 M Tris-borate buffer, pH 7.5. The virus solution was then

centrifuged three times at 7,500 g for 5 min each. The supernatant was overlaid onto a 4 mL

cushion of 30% sucrose in 0.1 M Tris-borate buffer, pH 7.5 (w/v), in Ti 60 ultracentrifuge tubes

(Beckman). The virus was then pelleted at 86,500 g (35,000 rpm, Ti 60 rotor) for 3 hr. Pellets

were re-dissolved in Tris-borate buffer, pH 7.5 (w/v), in Ti 60 ultracentrifuge tubes (Beckman).

The virus was then pelleted at 86,500 g (35,000 rpm, Ti 60 rotor) for 3 hr. Pellets were re-

dissolved in the same buffer as above overnight at 4°C and centrifuged three times at 7,500 g for

10 min each. For further purification, the virus in the supernatant can be centrifuged in a CsCl

density gradient for 17 hr at 86,500 g at 15°C. Virus band can be collected and diluted 4 times

with 0.1 M Tris-borate acid buffer, pH 7.5. The virus can be sedimented by centrifugation at

100,000 g for 2 hr re-dissolved in the same buffer. OD readings were taken at 260 and 280 nm to

determine the purity of the virus (A260/A280 ratio of 1.2 for PVX). The concentration of the virus

was determined using an extinction coefficient (E260nm 0.1%,1 cm = 3.0 for PVX) (216). The virions

Page 60: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

41

were utilized in a reconstruction control experiment to rule out externally adsorbed virions on

chloroplasts.

2.3.8 Extraction of viral genomic RNA

Before the isolation of RNA, purified virions were subjected to DNase I treatments according to

the manufacturer’s instructions (New England Biolabs, NEB) to remove host DNA left in the

virus. The reaction was carried out at 37°C for 30 min and the reaction was terminated by

EDTA. Treated virus solution was then subjected to a high-speed centrifugation at 86,500 g for 2

hr and the virus pellets were dissolved in diethylpyrocarbonate-treated distilled water (DEPC-

dH2O). The viral RNA was extracted from purified virions according to the methods of

AbouHaidar, et al. (215). Virions were incubated in 0.1% (w/v) SDS at 37°C for 10 min. The

RNA was extracted with 2 volumes of phenol/chloroform (1:1 v/v) at 40°C with occasional

vortexing (phenol was equilibrated with 0.1 M Tris-HCl, pH 4.0 containing 0.2% βME). The

aqueous phase was re-extracted with an equal volume of phenol/chloroform and subsequently

subjected to two chloroform extractions with 2 volumes of chloroform/isoamyl alcohol (24:1,

v/v). The RNA was precipitated by the addition of sodium acetate (NaOAc) to a final

concentration of 0.1 M and 2.5 volumes of ice-cold 95% ethanol (EtOH). The mixture was

chilled to -70°C for 15-20 min (or -20°C overnight). Viral RNA was centrifuged at 12,000 g for

30 min. RNA pellets were rinsed with 70% EtOH, vacuum-dried for 5 min, and dissolved in a

desired volume of DEPC-dH2O. The purity and concentration of the RNA were determined

according to the OD readings at 260 and 280 nm (E260nm 0.1%,1 cm =25 for RNA). The virion RNA

was utilized in a reconstruction control for chloroplastic RNA isolation as well as in a positive

control RT-PCR analyses.

Page 61: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

42

2.3.9 Chloroplast isolation

Chloroplasts were isolated from transgenic, non-transgenic and PVX- infected plants using the

modified method (205). Each isolation step was performed at 4°C separately. Twenty grams of

leaves were harvested and homogenized with mortar and pestle in 100 mL of cold grinding

buffer (50 mM HEPES-KOH, pH 7.3, 330 mM mannitol, 0.1% BSA, 1 mM MgCl2, 1 mM

MnCl2, 2 mM Na2EDTA, 1 mM DTT). Homogenate was filtered through eight layers of

cheesecloth and the filtrate was pelleted at 500 g for 2 min to remove the plant debris. After that,

the suspension containing chloroplasts was sedimented by centrifugation at 4°C, 2,500 g for 20

min. Subsequently, each pellet containing the chloroplasts was carefully resuspended in 1 mL

grinding buffer. These chloroplasts in each sample were counted by haemocytometer and the

quantity was equally adjusted ensuring a similar sample size. Each sample was loaded on top of

a sucrose step gradient developed with 4 mL of 30%, 3 mL of 45%, and 2 mL of 60% sucrose in

grinding buffer and centrifuged at 77,140 g for 55 min. Intact chloroplasts were collected from

the interphase between 30% and 45% sucrose, washed twice with washing buffer (50 mM

HEPES-KOH, pH 8.0, and 330 mM mannitol) and resuspended in 1 mL washing buffer. The

purified chloroplasts were visualized under a light microscope to confirm their integrity. Each

suspension was incubated at 30°C with RNase A (100 µg/mL) for 40 min to ensure that no

cytoplasmic RNA associated with the chloroplasts and/or first with proteinase K (4000 µg/mL)

in case of PVX-infected plants followed by twice washing and then RNase A (100 µg/mL). After

washing, each pellet was gently resuspended in 1 mL of washing buffer and treated with

proteinase K (4000 µg/mL) for 40 min to inactivate the RNase A. These chloroplasts were

washed twice with 15 mL of washing buffer. After the final washing, the chloroplasts were used

for protein isolation or/and lysed for RNA isolation using phenol-chloroform method.

Subsequently, isolated RNAs were treated twice with DNAse1 (New England Biolabs, NEB) to

Page 62: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

43

remove any traces of genomic DNA. After phenol/chloroform purification, the RNAs were

precipitated by the addition of sodium acetate (NaOAc) to a final concentration of 0.1 M and 2.5

volumes of ice-cold 95% EtOH and stored at -20°C. Next day RNAs were centrifuged at 12,000

g for 30 min and the pellets were rinsed with 70% EtOH, vacuum-dried for 5 min, and dissolved

in a desired volume of DEPC-dH2O. RNA concentration and the 260/280 nm absorbance ratios

were determined for purity using an ND-1000 Spectrophotometer (NanoDrop Technologies Inc.,

USA). For reconstruction experiments, purified chloroplasts (1 mL) were incubated with 5 µg of

purified PVX RNA (extracted from purified virus particles). Half of this sample was used to

extract chloroplast RNA without any treatment with RNase A and used as a positive control. The

remaining 0.5 mL sample was treated with 100 µg/mL of RNase A for 60 min at room

temperature followed by washing. Washed chloroplasts were again resuspended in 0.5 mL

washing buffer and treated with 4,000 µg/mL proteinase K for 60 min followed by three

washings.

2.3.10 cDNA synthesis and RT-PCR

Samples of DNAse-treated total and chloroplast RNAs were subjected to 200 units of M-MLV

reverse transcriptase (New England Biolabs, NEB) with the GFP187-R, 16SrRNA187-R,

Act187-R, and PVXCP-R reverse primers shown in Table 2.2. Two hundred and fifty

nanograms of RNA was used as a template for cDNA synthesis with 200 units of M-MLV

reverse transcriptase, 400 nM of each primer and 500 of mM dNTPs in each reaction of 20 µL

final volume. PCR reaction were carried out on 2 µL cDNA in a final volume of 30 µL, with

reagents provided by New England BioLabs (longTaq polymerase), in a PTC-100 thermocycler

(MJResearch). The PCR was performed at 95°C for 5 min, followed by 95°C for 50 sec, 60°C

for 50 sec, 72°C for 50 sec for 32 cycles, and 72°C for 5 min. A minus RT control was included

Page 63: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

44

in each RT-PCR reaction to check for any possible genomic DNA contamination. All the primers

used to amplify the total and chloroplast RNAs are displayed in Table 2.2.

Table 2.2 Primer sequences used for semi-quantitative and real time RT-PCR.

2.3.11 Real-time RT-PCR

Real-time RT-PCRs were performed using a CFX96 Real-Time PCR Detection System (Bio-

Rad) with the use of a Power Sybr Green Master Mix (Applied Biosystems). Reaction mixtures

contained 10 µL of 2X SYBR Green I Master Mixture, 400 nM of each primer (GFP187F&R,

16SrRNA187 F&R, and Actin187 F&R) and 2 µL of cDNA as template, in a total volume of 20

µL. The following amplification program was used in all PCR reactions: 95ºC for 3 min, 32

cycles of 10 sec at 95°C and 30 sec at 62°C. The specificity of each amplification reaction was

verified by a dissociation curve (melting curve) analysis after the 32 cycles, by heating the

amplicon from 65°C to 95°C. No-template controls were included for each primer pair. All

treatments are performed in triplicate including a duplicate of minus RT controls. The relative

quantification of gene expression was performed using the comparative CT (threshold cycle)

method in which the amount of target (GFP), normalized to an endogenous reference (16SrRNA)

and relative to a calibrator (pTR:127), is given by the formula 2-∆∆CT (217).

Target

sequence

Forward (F) and reverse (R) primers (5´-3´) Gene

Bank

Accession

No

RT-PCR

product

size/bp

GFP GFP187-F ACGTAAACGGCCACAAGTTC

GFP187-R AAGTCGTGCTGCTTCATGTG

JQ733047 187

16SrRNA 16SrRNA-F GAAGAACCTTACCAGGGCTTGA

16SrRNA-R CAGTCTGTTCAGGGTTCCAAAC

Z00044.2 187

Actin

Act187-F AGTCCTCTTCCAGCCATCCA

Act187-R AGCCAAAGCCGTGATTTCC

U60495 187

PVX 8K S8K-F AATATTGGTACCCAGGCCTGGAGAATCAATCACAGTGTTG

8K-R ACTACTGCTAGCCTGGTGCTGACATCTTTCGAGTATC -

-

PVXCP PVXCP-R AAAATACTATGAAACTGGGGTAG - -

Page 64: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

45

2.3.12 SDS-PAGE and western blot analysis

For preparation of total proteins from PVX-infected tobacco plants, 0.2 g of plant tissue or

enzymatic treated chloroplast was homogenized in 160 µL of protein extraction TMPDTNU

buffer (50 mM Tris, 20 mM MgCl2, 1 mM PMSF, 100 mM DTT, 2% Triton X-100, 0.5% NP-40

and 8 M urea) plus 40 µL of 5x SDS-PAGE loading dye (212). These samples were boiled at 95-

100 °C for 5 min and 40 µL of each sample was loaded onto 12% SDS-PAGE gels along with

the appropriated protein molecular weight markers (Thermo Fisher Scientific). Protein

concentrations were determined by the Bradford Protein Assay reagent kit (Bio-Rad, Hercules,

CA). Electrophoresis was performed initially at 150 V until the samples entered the separating

gel followed by 100 V until dye reached at the bottom of the gel (218). The proteins were then

transferred onto nitrocellulose membrane (0.45 nm pore size, Pall Corporation) for 1 hr in

transfer buffer using the Bio-Rad protein electrophoresis unit. The membrane containing the

transferred proteins was blocked in Tris-buffered saline (TBS buffer: 50 mM Tris and 150 mM

sodium chloride) along with 5% skimmed milk for 5 hr. Subsequently, the membrane was

incubated at 4°C overnight with mild shaking with (1:1000) Anti-PVX coat protein, raised in

Rabbit, polyclonal antibodies in TBS+3% BSA. The membrane was washed (TBS, 0.3% Tween

20) 4 times and incubated with (1:3000) Goat Anti-Rabbit IgG (H & L) Alkaline Phosphatase

(Bioshop Canada Inc) for 2 hr at room temperature with mild shaking. The membrane was

washed 3 times with TBS-T followed by a final washing with TBS. Finally, signals were

developed with alkaline phosphatase substrate solution (BCIP / NBT, Bioshop Canada Inc.)

according to the manufacturer instructions. The membranes were dried and photographed.

Page 65: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

46

2.3.13 Isolation of intact mitochondria and enzymatic treatments

Tobacco (N. tabacum cv. Xanthi) seeds harvested from transgenic plants harboring pTR:127,

pCELVd-GFP constructs were screened on ½ MS medium supplemented with 20 μg/mL

Hygromycin in magenta vessels. Three-week-old plants were transferred to pots (1-2 plants per

pot) containing Pro-Mix (Premier Tech, Canada), and grown in a greenhouse. These pots were

covered with polyethylene bags to preserve humidity for one week. Non-transgenic tobacco

seeds were also sown in Pro-Mix and infected with PVX virus as mentioned in Section 2.3.7.

The plants were grown at 23-27°C under 16 hr light/8 hr dark condition in an insect-free

greenhouse. After 4-6 weeks mitochondria were isolated from these plants using the modified

method as described previously by Block, et al. (219). Fresh leaves (50 g), for each preparation,

were cut and homogenized in a mortar in 120 mL of extraction medium (EM) (20 mM HEPES-

Tris pH 7.6, 0.4 M sucrose, 5 mM EDTA pH 8.0, 0.6% PVP (w/v), 0.6 mM cysteine). The

extract was filtered through 8 layers of cheesecloth and centrifuged 5 min at 3500 g. The

supernatant was centrifuged at 28,000 g for 10 min to pellet organelles. The pellet was

resuspended in 120 mL EM without PVP and centrifuged at 28,000 g for 10 min and the pellet

resuspended in 2 mL of suspension buffer (SB) (10 mM MOPS-KOH pH 7.2, 0.2 M sucrose)

and loaded on a percoll gradient developed with 2 mL of 10%, 3.5 mL of 32% and 3.5 mL of

50% percoll in SB. The gradient was centrifuged at 40,000 g for 1h and the mitochondria

collected as a fuzzy yellow band between the 32% and 50% percoll stages. These mitochondria

were washed in 2 volumes of SB buffer at 85,600 g for 90 min at 4°C to remove the percoll. The

intact mitochondria isolated from PVX-infected leaves were incubated with 1/10 volume of

Proteinase K (20 mg/mL) at RT for 1 hr to ensure that no virions associated with the

mitochondria and washed twice with SB buffer and centrifuged at 28,000 g for 10 min. The

supernatant was discarded and each pellet was gently resuspended in washing buffer. These

Page 66: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

47

proteinase K treated and other mitochondria, isolated from transgenic plants, were treated with

RNase A (100 µg/mL) (New England Biolabs, NEB) for 1 hr at RT to digest the viral RNA or

transgene transcripts adsorbed on the surface of mitochondria and washed with SB washing

buffer at 28,000 g for 10 min. Each preparation was again treated with proteinase K to inactive

RNase. After twice washing, the mitochondria were lysed with 1/10 volume of mitochondrial

lysis buffer (MLB) (10% (w/v) N-lauroylsarcosine sodium salt, 25 mM Tris-HCl pH 7.5, 20 mM

EDTA pH 8.0 and 2% βME) at 65°C for 30 min. After lowering the temperature of the sample

to room temperature, one volume of chloroform: isoamyl alcohol (24:1) was added, mixed well

and centrifuged at 14,000 × g for 10 min at room temperature. The aqueous phase was with

mixed 1 μg/μL glycogen (Thermo scientific) as a carrier for nucleic acid, 0.1 M sodium acetate

and 0.6 volume of isopropanol to precipitate the mitochondrial RNA (mtRNA) overnight at -

20ºC. The mtRNA was pelleted by centrifugation at 14000 × g for 10 min, washed with 70%

EtOH and air-dried. Finally, each pellet was dissolved in 50 μl TE buffer (10 mM Tris-HCI pH

8.0 and 1 mM EDTA). RT-PCR reactions were carried out as mentioned above in Section

2.3.10.

2.4 RESULTS

2.4.1 Detection of PVX RNA and coat protein in chloroplast

PVX RNA and coat protein were identified inside the chloroplasts of infected N.tabacum cv.

Xanthi leaf tissues by RT-PCR. To determine the PVX RNA inside the chloroplasts, RNAs were

isolated from enzymatic (Proteinase K and RNAase A) treated chloroplasts of PVX-infected

plants and reverse transcribed into cDNA using reverse primer specific to coat protein gene

followed by PCR amplification using primers specific to 8k gene sequence. These PCR results

Page 67: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

48

confirm the existence of PVX RNA inside the chloroplasts of infected leaf tissues as shown in

Figure 2.6 A; Lane 3.

Page 68: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

49

Figure 2.6 Detection of PVX RNA and coat protein inside the chloroplast using RT-PCR and

western blot.

A) RT-PCR analysis. Total and chloroplast RNAs from health and PVX-infected plants were

reverse transcribed into cDNAs with CP reverse primer followed by RT-PCR using forward and

reverse primers specific to 8 kDa gene sequence. An RT-PCR product of size 156 bp could be seen

in both total and chloroplasts RNAs samples isolated from PVX-infected plants (Panel a: Lanes 1

and 3 respectively). However this RT-PCR product was absent in both total and chloroplasts RNAs

samples isolated from healthy plants (Panel a: Lanes 2 and 4 respectively) which were used as

negative controls. The purity of chloroplast was confirmed using nuclear-encoded Actin gene. The

187 bp Actin product was not detected in chloroplast RNAs (Panel b: Lanes 3 and 4). A DNA

size marker (100 bp) in 100bp increments was electrophoresed in Lane L. The resulting PCR

products were analyzed on a 2% agarose gel. B) Western blot analysis of a 12.5% acrylamide

gel. PVX CP specific antisera reacted with 50 µg protein (25 kDa coat protein) extracted from

chloroplasts and leaf tissues of PVX-infected plants (Lanes 2 and 4 respectively). However,

this 25 kDa band corresponding to coat protein was absent in both samples purified from

chloroplasts and leaf tissues of healthy plants (Lanes 1 and 3 respectively). C) Reconstruction

experiments: RT-PCR analyses were performed on total and chloroplast RNAs using primers

specific to the PVX 8 kDa gene sequence (Panel a). Total RNA samples isolated from PVX-

infected (Lane 1) and healthy plants (Lane 2) were used as positive and negative controls

respectively. Chloroplast RNA isolated from healthy chloroplasts (mixed with PVX RNA) without

(Lane 3) and with (Lane 4) RNase A treatment respectively. 16SrRNA gene was included as an

internal control (Panel b).

Page 69: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

50

To determine whether PVX CP is present in the chloroplasts, these organelles were purified and

treated with protease K to remove any externally associated cytoplasmic protein, and tested for

the presence or absence of PVX gene products. A band, 25 kDa in size, is seen only in protein

extracts from total and chloroplast proteins purified from PVX-infected plants (Figure 2.6 B;

Lanes 2 and 4) but not in the samples of total and chloroplast proteins isolated from non-

infected plants (Figure 2.6 B; Lanes 1 and 3).

2.4.2 Reconstruction control experiments

Additionally, reconstruction controls were also included to rule out that the RNA found inside

the chloroplasts did not originate from RNA adsorbed on the exterior surface of chloroplasts.

Experiments were conducted where chloroplasts from leaf tissues of healthy non-transgenic N.

tabacum plants were isolated and further purified by sucrose gradient centrifugation. Purified

chloroplast were mixed with PVX RNA and subjected to enzymatic treatments as mentioned in

materials and methods section 2.3.9. Chloroplasts from PVX-infected tobacco plants were

isolated and treated with proteinase K prior to the RNase A treatment. Another preparation of

untreated purified chloroplasts from leaf tissues of healthy non-transgenic plants was also

included as a negative control. Chloroplast RNA samples were reverse transcribed after DNase I

treatment, followed by subsequent RT-PCR reactions. It is clear from the reconstruction

experiments that viral RNA is completely degraded after RNase treatment (Figure 2.6 C; Lane

4). However, a sample without RNase A treatment showed a prominent band of viral RNA

corresponding to 8k gene (Figure 2.6 C; Lane 3). These results clearly demonstrate that PVX

RNA found in chloroplasts cannot be due a simple contamination of adsorbed RNA on the

surface of chloroplasts.

Page 70: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

51

2.4.3 Design of constructs to confirm RNA tractor activity in chloroplasts

Previously Hefferon, et al. (205) demonstrated that potato plants transformed with clones

containing the PVX sequences of the CP and 8 kDa proteins resulted in the translocation of PVX

RNA sequences to the chloroplasts. To establish the role, if any, of either the CP and/or 8kDa

proteins in the translocation process of viral RNA from the cytosol to chloroplasts and to

determine the minimum sequence “RNA tractor” required for RNA translocation to chloroplasts,

several constructs were engineered. To establish the minimum PVX sequence (“RNA tractor”)

required for the translocation of RNA to chloroplasts, five constructs were produced in a pC-

GFP binary plasmid, where all PVX sequences are driven by the 35S promoter followed by the

GFP gene and the T-nos terminator (Figure 2.3). Successful transformation of tobacco plants

was confirmed for every construct by RT-PCR of total RNA and by DNA sequencing and

selected for further experiments. Results obtained from RT-PCR analyses with constructs (pTR:

8K-CP, pTR: 8K (insG80)-CP, pTR: 8K and pTR: 224) indicated that PVX sequence

corresponding 8 kDa RNA was present within chloroplasts of transgenic plants harboring these

constructs, even where both 8 kDa and CP proteins were disabled either independently or in

tandem (Figure 2.3). This suggests that neither protein is responsible for translocation of PVX

RNA into chloroplasts. Furthermore, to elucidate the smallest possible region that retains “RNA

tractor” activity, two more constructs, pTR:127 and pTR:27 were designed (Figure 2.3). Note

that pTR:127 construct was designed in a manner that the AUG for the GFP is not in frame with

the AUG of CP (Figure 2.5). Consequently, the GFP protein will not be translated in

chloroplasts. In addition, the viroid clone (pCELVd-GFP) containing 330 nucleotides of

Eggplant latent viroid (GenBank Accession number AN - HM136583) as a 5´-UTR followed by

the GFP gene and pC-GFP construct which contains solely the GFP gene were included as

positive and negative controls respectively (Figure 2.3).

Page 71: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

52

2.4.4 Analyses for expression of different constructs in total cellular RNA

Total RNA from leaf tissues of plants transformed with pC-GFP, pTR:27, pTR:127 and

pCELVd-GFP constructs were subjected twice to DNaseI treatments, sequentially repeated using

deproteinization and re-precipitation steps between the successive DNAseI digestion steps, to

ensure that the RNA in the extract was entirely free of genomic DNA. A reverse transcription

reaction of each sample was performed and cDNAs were amplified by PCR using GFP187

primers specific to GFP gene sequence. Chloroplast 16SrRNA, and nuclear Actin genes were

also utilized as reference controls using 16SrRNA187 (forward and reverse primers) and

Actin187 (forward and reverse primers) respectively. The PCR products obtained demonstrated

that all samples for total RNA used expressed the same levels of RNAs (GFP, Actin, and

16SrRNA) as seen in Figure 2.7 Lanes 1, 3, 5 and 7 respectively.

Page 72: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

53

Figure 2.7 RT-PCR analyses of total and chloroplast RNAs expressed.

RNAs were extracted from leaf tissues (total RNA) and chloroplasts of transgenic N. tabacum cv. Xanthi harboring

pTR:127, pTR:27, pC-GFP and pCELVd-GFP constructs. Chloroplast coded 16SrRNA and nuclear-coded Actin

transcripts were used as positive and negative controls respectively for chloroplast samples using gene specific primer

pairs giving product size 187 bp in each case. The resulting RT-PCR products were analyzed on 2% gel and the

expected 187 bp product was detected from A) GFP: Lanes 1,3,5 and 7 in the case of total RNA and only Lanes 2

and 8 in the case of chloroplast RNA, the 187 bp GFP product was detected. B) Actin: Lanes 1, 3, 5 and 6 in the

case of total RNAs, the 187 bp Actin product was not detected in chloroplast RNAs Lanes 2, 4, 6 and 8. C)

16SrRNA: Lanes 1 to 8, the 16SrRNA 187 bp product was detected in all samples which ensure the integrity of

RNAs.

2.4.5 Translocation of RNA transcripts driven by different constructs into

chloroplasts

RT-PCR experiments were carried out to detect the presence of PVX RNA short sequences

within the chloroplasts of transgenic plants. Chloroplast RNAs, from the same transgenic plants

used for total RNA extractions, were reverse transcribed into cDNAs and amplified by PCR.

Chloroplast 16SrRNA and nuclear Actin Tob103 genes were utilized as positive and negative

controls respectively. Results obtained show that the expected 187 bp fragment of GFP was

detected in the only pTR:127 and in the positive control of pCELVd-GFP (Figure 2.7, Lanes 2

and 8). GFP was not detected in pTR:27 and pC-GFP (Figure 2.7, Lanes 4 and 6). 16SrRNA

Page 73: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

54

(chloroplast-encoded gene) bands with equal intensity were visible in all lanes while Actin bands

with equal intensity were only visible in total RNA samples (Figure 2.7 Lanes 1, 3, 5 and 7).

This indicated that RNAs extracted from chloroplasts were free from any contaminating

cytosolic RNAs. pTR:27 failed to be translocated to chloroplasts which indicates that the PVX

RNA tractor activity requires additional PVX sequence beyond the 27 nucleotides. On the other

hand the pTR:127 preserved this RNA tractor activity and could also translocate a foreign

mRNA (GFP mRNA) (Figure 2.7 Lane 2).

2.4.6 Quantitation of translocated RNA to chloroplasts by real-time RT-PCR

To reinforce the semi-quantitative RT-PCR data obtained, real time RT-PCR experiments were

performed. To check for the variability in expression in transgenic plants, comparative real time

RT-PCR experiments were performed with total RNA isolated from leaf tissue harvested from

selected lines of transgenic plants harboring pC-GFP, pTR:27, pTR:127 and pCELVd-GFP

constructs respectively (Table 2.3).

Table 2.3 Relative quantification (expression) of GFP-transcripts derived from transgenic leaves harboring

given constructs using comparative real time RT-PCR.

Total RNAs were extracted and normalized to the expression of endogenous reference actin gene. GFP-transcripts

driven by pC-GFP were used as a control.

(a): Threshold cycle (Ct: the number of cycles at which the fluorescence exceeds the threshold); mean values of

duplicate assays carried out with two different samples. (b): The range given is relative to control (in brackets).

ΔCt: Difference between values of reference and target (target is normalized to the reference). ΔΔCt: ΔCt of each

sample is further normalized to the control. 2-ΔΔCt: Fold change relative to control.

Total

Cta (Mean)

ΔCt

ΔΔCt

2-ΔΔCt

GFP

(Target)

Actin

(Reference)

GFP fold

difference

relative to

control

pC-GFP (Control) 18.99±0.01 23.75±0.07 -4.76±0.07 0.00±0.07 1

(0.94-1.72)b

pTR:27

18.95±0.08 24.21±0.00 -5.56±0.08 -0.8±0.08 1.7

(1.641-1.846)

pTR:127

18.90±0.01 23.40±0.02 -4.50±0.02 0.26±0.02 0.8

(0.604-1.612)

pCELVd-GFP 18.80±0.20 24.15±0.70 -5.35±0.73 -0.59±0.73 2.0

(0.907-2.49)

Page 74: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

55

Calculated Ct values in each case were around 18.9 showing almost the same level of expression.

Furthermore, the change (in the fold) was calculated after normalizing with a reference gene

(Actin). Results shown in Table 2.3 indicate values 1.7, 0.8 and 2-fold of messenger RNA for

pTR:27, pTR:127 and pCELVd-GFP respectively, suggesting that even a lower expression of

pTR:127 could manage to translocate into chloroplasts and rules out external contamination.

To check the sub-cellular (chloroplast) localization of transcripts, RT-q PCR experiments

were performed with chloroplast RNAs isolated from transgenic plants expressing different

constructs. RNA transcripts driven by pCELVd-GFP were used as a positive control for

chloroplast translocation. Amplification plot is shown in Figure 2.8 A validated the translocation

of PVX sequence “RNA tractor”. The light green and dark green plots representing Eggplant

latent viroid (pCELVd-GFP) and RNA tractor sequence (pTR:127) respectively showed

amplification while there is no amplification for the blue and orange curve in case of pTR:27 and

pC-GFP samples respectively. PCR amplification efficiency (91.8%) was set by means of

standard curve which was set with serial 10-fold dilutions of the template PCR product (GFP

187) with 5 points (red) as shown in Figure 2.8 A. The efficiency of the PCR should be close to

100 (90-110 %) meaning doubling of the amplicon at each cycle with r2 (coefficient of

determination) values above 0.98 and the slope -3.32 (with a tenfold serial dilution the Cq or Ct

values should be separated by 3.32 cycles).

Page 75: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

56

Figure 2.8 Graphical representation of real-time PCR data to quantify translocated “RNA tractor” sequence using

SYBR® Green detection method.

A) Quantitative PCR amplification is performed on serial 10-fold dilutions with 5 points (red color) of the template (GFP

standardized to 187bp) to establish a standard curve. Duplicate lines indicate a repeat of the same sample. Chloroplast RNA

samples; pTR:127 (dark green), pCELVd-GFP (light green), pTR:27 (Blue) and pC-GFP (orange) were amplified by RT-

qPCR along with standard (GFP 187). B) Standard curve: Cq is calculated from values in A are plotted (Y-axis) against the

log of the copy number (x-axis) of the template to establish a standard curve with an efficiency of 91.8% from the slope -

3.536 and r2 value 0.999. C) Melt curve analysis of the amplicons shows a single peak (about 88°C) displaying the negative

first derivative of temperature versus relative fluorescence units (-d (RFU)/dT) plotted against temperature. Cq:

quantification cycle. RFU: relative fluorescence unit. A standard curve was a duplicate.

As illustrated in the melting curve in Figure 2.8 C, there is a significant single sharp peak with

Tm of 88°C in each amplicon. This single peak rules out the presence of non-specific bands

which may arise due to non-specific binding of primers. These RT-qPCR results are similar to

those described for the semi-quantitative RT- PCR (Figure 2.7).

Page 76: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

57

2.4.7 Comparison of translocation efficiency of PVX RNA tractor (pTR:127)

to Eggplant latent viroid sequence (pCELVd-GFP)

Chloroplast translocation capacity of pTR:127 was compared with that of pCELVd-GFP using

chloroplast 16SrRNA gene as an internal control (Figure 2.9 A and B).

Figure 2.9 Graphical representation of real-time RT-PCR data (using SYBR® Green detection method)

showing relative translocation activity of pTR:127 compared to Eggplant latent viroid (pCELVd-GFP).

A) Relative real time RT-PCR amplification is performed on chloroplast transcripts (GFP) isolated from pTR:127

(dark green) and pCELVd-GFP (light green) in triplicate samples. Chloroplast 16SrRNA from pTR:127 (black)

and pCELVd-GFP (purple) were used as internal controls. B) Melt curve analyses of the amplicons (GFP and

16SrRNA) in single peaks, displaying the negative first derivative of temperature versus relative fluorescence

units (- d (RFU)/dT) plotted against temperature. RFU, relative fluorescence units.

Steep curves were observed in the amplification profile suggesting that the reference gene

(16SrRNA) was expressed in all samples almost in a similar way (Figure 2.9 A). A single sharp

peak is observed in each sample which confirms the presence of a specific PCR product (Figure

2.9 B). The translocational activity of RNA tractor (pTR:127) was compared to that of Eggplant

latent viroid (pCELVd-GFP). Results obtained show that relative RNA abundance of viroid is

about 120-fold that of pTR:127 (Table 2.4).

Page 77: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

58

Table 2.4 Relative quantification of chloroplast RNA expression of pTR:127 and pC-ELVd-GFP using real

time RT-PCR.

RNAs were extracted from purified chloroplasts and normalized to the expression of endogenous reference

16SrRNA gene. The abundance of GFP-transcripts driven by pCELVd-GFP was compared with that of GFP-

transcripts driven by pTR:127 in chloroplasts.

(a): Threshold cycle (number of cycles at which the fluorescence exceeds the threshold). Mean values of duplicate

assays carried out with two different samples. (b): The range relative to the control is given in brackets.

2.4.8 Translocation of “RNA tractor” sequence to plant mitochondria

To determine the translocation of “RNA tractor” sequence into mitochondria, RT-PCR with

mitochondrial RNA isolated and purified from transgenic plants harboring pTR:127 construct

were performed using GFP187 primers specific to GFP gene sequence. Results obtained showed

that the expected 187 bp fragment of GFP was detected in only total pTR:127, while this GFP

gene fragment was absent in mitochondrial sample (Figure 2.10, Panel a; Lanes 1 and 2

respectively).

Chloroplast

RNA

Cta (Mean)

ΔCt

ΔΔCt

2-ΔΔCt

GFP

(Target)

16SrRNA

(Ref.)

GFP fold

change

pTR:127 (control) 28.82±0.08 8.81±0.27 20.01±0.29 0±0.29 1

(0.817-1.22)b

pCELVd-GFP tested 22.34±34 9.24±0.01 13.10±0.38 -6.91±.10 120.25

(112.20-128.89)

Page 78: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

59

Figure 2.10 Mitochondria isolation and RT- PCR- analyses with mitochondria and total RNA from

transgenic tobacco plants harboring pTR:127 construct.

A) The mitochondria were collected as a fuzzy yellow band between the 32% and 50% percoll stages after

ultracentrifugation and subjected to enzymatic treatments to remove any external contamination. B)

Mitochondrial RNA was isolated and subjected to RT-PCR after DnaseI treatment. GFP primers were used to

amplify 187 bp product from leaf tissues (total) and mitochondria (Panel a; Lane 1 and 2 respectively). Primers

for18SrRNA gene from mitochondrial genome were used to amplify 187 bp product as an internal control to

check the integrity of RNA from leaf tissues (total) and mitochondria (Panel b; Lane 1and 2 respectively). A

DNA size marker (100 bp) in 100bp increments was electrophoresed in Lane L. The resulting PCR products

were analyzed on a 2% agarose gel.

Taken together these preliminary results, it might be concluded that “RNA tractor” sequence of

PVX failed to translocate into mitochondria of pTR:127 transgenic plants.

Page 79: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

60

2.5 DISCUSSION

Our previous studies have shown that the CP and CP RNA of PVX accumulate within

chloroplasts of plants transformed with the PVX 8 k-CP dicistronic construct (174, 205).

Although these results established the presence of PVX RNA within chloroplasts, very little was

known about the mechanism by which this RNA entered the organelle. At first, it was believed

that viral proteins (i.e. the CP and/or 8 kDa proteins) were involved in this translocation

phenomenon since they have been previously implicated in the intercellular movement of the

viral RNA (170). Results described in this study clearly demonstrated that neither protein (8 kDa

or CP) alone or together were required for the translocation of RNA into the chloroplast. Indeed,

when an out of frame mutation was introduced into the 8 k gene or when a large segment of the 8

k gene was deleted (pTR:127), the RNA was still translocated to the chloroplast. Similar results

were obtained when the CP gene was essentially deleted, with the exception of the first 13

nucleotides including the initiation codon. Construct pTR:127 was still capable of translocation

of not only its original PVX sequence but also the downstream sequence of GFP, which

constitutes a part of the same original tricistronic (8 k, CP and GFP genes respectively) transcript

and is under the control of the 35S promoter. Conversely, results obtained with the pTR:27

construct suggested that the translocation capability was abolished when 127 nucleotides

sequence was further deleted to only 27 nucleotides. This finding provides a second line of

evidence, indicating the required length of the RNA sequence must be more than 27 RNA

nucleotides to maintain the RNA tractor activity. A reconstruction control experiment (Figure

2.6 C) was also included to eliminate the possibility that the RNA we detected was attached to

the surface of the chloroplast as a result of the isolation procedure and not degraded even treated

with RNase A. The results shown in Figure 2.7 validate the purity of our chloroplast

Page 80: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

61

preparations and rule out the possibility that cytoplasmic/nuclear RNAs may co-purify with

chloroplasts.

To calculate the relative expression level and also to reinforce the semi-quantitative

results, we have used the comparative Ct method, also known as 2-∆∆CT, which is a convenient

way to analyze the relative changes in gene expression (217, 220, 221). Comparative Ct method

assumes that the amplification efficiency of the target gene, i.e. GFP, and endogenous control,

i.e. 16SrRNA, must be the same (221). It is noteworthy that RNA expression level in the selected

transgenic lines of pTR:27 and PC-GFP is higher in comparison with RNA level in pTR:127

which further supports our findings and rules out external contamination. The chloroplast

translocation efficiency of the PVX RNA tractor was determined to be 120 X lower than that of

Eggplant latent viroid. One explanation for this major difference is the fact that unlike PVX,

eggplant latent viroid replicates inside chloroplasts. It is possible that PVX RNA targets this

organelle to escape from the host immune system.

To provide another line of evidence of the RNA tractor activity for chloroplasts and

determine that the GFP sequence is functional in the chloroplast, pTR:127 construct was

redesigned considering the translation mechanism of chloroplasts. Various strategies were

attempted to make the RNA tractor sequence functional for GFP mRNA as a reporter gene

(Appendix A). Despite the presence of chloroplastic genome sequences, required for the

translation, GFP was failed to express in the chloroplasts, however, it was observed that the GFP

was functional in the agrobacteria cells (Appendix C). Further research is required to establish

the generality of this phenomenon using RNA tractor.

Since the Eggplant latent viroid chimeric sequence was included as a positive control, for

translocation into the chloroplasts, on the basis of the previous findings by Gomez and Pallas

(95) who demonstrated that the viroid sequence acting as a 5´-UTR end mediated the trafficking

Page 81: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

62

and accumulation of a functional foreign mRNA into the N. benthamiana chloroplasts. However,

it is not clear how and why such a chimeric viroid sequence allowed the translation in

chloroplasts. Whether the viroid sequence or/and specific structure motifs are required for the

translation of GFP in the chloroplasts. To address these questions, mutational analyses were

performed with this chimeric sequence (Appendix B). Overall these results suggest that

sequence elements and/or secondary or tertiary structural domain together may require the

translation of functional mRNA into the chloroplasts. Further experiments are required to solve

this mystery.

Previously in our lab Hefferon, et al. (174) demonstrated with transgenic plants

that the 8 kDa protein and the CP could be translated from a dicistronic construct

corresponding to the C-terminal half of the 12 kDa protein, the complete 8 kDa and CP

genes of PVX, indicating that translation of CP could take place either by internal entry

of ribosomes (IRBS) or by a termination/reinitiation mechanism. To confirm and reassess

the IRBS property of the PVX 8K region using the GFP gene as a reporter (fused with ORF of

CP of PVX) in in vivo, a stable transgene expression system was used. Western blot and

confocal studies indicated the expression of a downstream cistron (GFP) only in absence of the

hairpin in transgenic tobacco plants harboring the dicistronic construct, suggesting that that the

translation of GFP could take place by a termination/reinitiation or leaky scanning rather an

internal ribosome binding site (IRBS) mechanism (Appendix D).

Numerous positive-sense RNA viruses were shown to replicate their genomes on a

variety of membrane systems including endosomes and lysosomes, nuclear envelopes,

endoplasmic reticulum (ER), and organelles (chloroplasts, mitochondria) (see (222) for more

citations). A recent study has shown that Bamboo mosaic virus (BaMV) RNA was transported to

chloroplast by interacting with nuclear-encoded chloroplast proteins (209). Many viral proteins

Page 82: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

63

(in particular RNA-dependent-RNA polymerases) contain hydrophobic regions which interact

with the specific cellular membrane system(s) to generate “vesicle-like” systems where the viral

replication is shown to take place. Normally such replication is carried out on the surface of

organelles and/or membrane system. Other viruses employ the normal cellular strategy to

translocate their proteins to chloroplasts. The fungus transmitted Tombusvirus cucumber necrosis

virus (CNV) employs the strategy of the signal peptide to translocate its capsid proteins to the

chloroplast. Such a targeting motif was also shown to contain 14-3-3 binding domain typical of

cellular protein translocation from cytosol to chloroplasts (177). These findings suggest that viral

and/or host proteins could be responsible for the movement of the viral genome and proteins to

the outer membrane system. In our case, however, the PVX RNA tractor system seems to

involve no viral proteins. In this respect, it may be most comparable to the transport and

translocation of the RNA of viroids and in particular, Avsunviroidae. An Eggplant latent viroid -

derived sequence (pCELVd-GFP) was used as a 5´-UTR end to mediate the import of GFP-

mRNA into chloroplasts (95). Viroids do not code for any proteins and they have to rely on

cellular proteins (if any) for their transport, entry into chloroplasts for replication and for the exit.

Some cellular proteins such as PARBP33 and PARBP35 were shown to be involved in

replication, self-cleavage (ribozyme), protection of RNA and possibly escort of this type of

viroid to the chloroplast (223). The RNA tractor described here is the first reported for a viral

small sequence that is capable of not only translocating its own sequence but also a foreign

sequence such as that of GFP into chloroplasts. Presumably, any foreign RNA could be targeted

to chloroplast by this RNA tractor. However, the exact mechanism of viroid and “RNA tractor”

translocation (and exit) to chloroplasts remains unclear.

Sequence analysis data of pTR:127 with other Potex and Carlaviruses revealed no

sequence homology which implies that our RNA tractor may be unique to PVX. The role of

Page 83: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

64

cellular protein (s) involved in such an RNA translocation event is/are not yet established.

However, we can theorize that the RNA translocation to chloroplast may simply involve an RNA

structure which is capable of interacting with a chloroplastic membrane protein which acts in an

analogous fashion to a receptor binding process to trigger pinocytosis and/or endocytosis, thereby

allowing the internalization of the RNA to the chloroplast. RNA folding analysis of “RNA

tractor” sequence revealed the formation of a hairpin (finger-like) structure which potentially

could be involved in the attachment of the RNA tractor to the chloroplastic membrane followed

by its entry into the chloroplast.

Although this study has provided an intriguing rationale for “RNA tractor” localization to the

chloroplasts, the functional consequences or mechanism of localization remains to be determined.

Since it has been established that none of the viral proteins are involved for the movement of

PVX “RNA tractor” into chloroplasts, it is, therefore, possible that some host factors are

interacting with PVX “RNA tractor” and facilitating its transport into the chloroplasts. Further

studies are required to detect any potential host protein(s) interacting with Eggplant latent viroid

and PVX “RNA tractor” using biochemical approaches like electrophoretic mobility shift assay

(224, 225) or/ and UV cross-linking RNA/protein complexes (223, 226, 227), followed by mass

spectrometry to analyze the sequence of the purified proteins (228). Understanding the molecular

mechanisms of this RNA tractor may lead in the future to further comprehension of some of the

trafficking mechanisms of RNAs between organelles (chloroplasts and mitochondria) and

nucleus. This may also lead to understanding some aspects of gene regulation and development.

Page 84: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

65

CHAPTER 3

3 STUDIES ON INFECTIVITY AND TRANSLOCATION OF

VIRAL DNAS FROM CYTOSOL TO ORGANELLES

3.1 INTRODUCTION

The family Geminiviridae is comprised of plant DNA viruses that have long been known as

model systems for the elucidation of basic cellular components of the plant replication and

transport machinery (118, 119, 229, 230). This family consists of phytopathogenic viruses with

characteristic twinned, quasi-isometric virions encapsidating genomes of circular single-stranded

(ss) DNA. Geminiviridae is classified into seven genera, six of which (Mastrevirus, Curtovirus,

Topocuvirus, Becurtovirus, Eragrovirus and Turncurtovirus) consist of viruses with monopartite

genomes. The seventh genus Begomovirus consists of viruses with either monopartite (a single

DNA) or bipartite (with two DNA components: DNA-A and DNA-B) genomes (123, 125, 126,

231, 232). The DNA-A of bipartite and the single component of monopartite begomoviruses

contain five or six Open Reading Frames (ORFs) while the DNA-B contains two ORFs (BV1

and BC1, in viral-sense and complementary sense strand, respectively). Both DNA-A and DNA-

B are approximately 2.8-3.0 kb in size. Monopartite begomoviruses are often associated with one

or smaller DNA components, about 1.4 kb in size, known as satellite DNAs. Two types of

satellite DNAs are known: the alpha-satellites and beta-satellites, depending upon the

organization of their DNA and their effects on the symptoms produced by the helper

begomovirus. Both the alpha- and betasatellites are dependent upon the helper virus for

replication and, in many cases, mitigate the symptoms produced by it (233). The major

symptoms caused by begomoviruses are leaf curling, stunting, and chlorosis. Geminiviruses

encode proteins that contribute to pathogenicity. These proteins differ between monopartite and

Page 85: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

66

bipartite begomoviruses, as well between viruses within the individual groups (234, 235).

Begomoviruses infect a wide range of economically important dicotyledonous host plants and are

transmitted by the whitefly Bemisia tabaci (236, 237). Various aspects of the Family

Geminiviridae have been comprehensively reviewed (238-240).

I used tobacco and tomato plants for pathogenicity assays. Tobacco is a model plant

organism to study basic biological processes (241) and it is also a major crop species used for

studying plant disease susceptibility, which it shares with other Solanaceae plants like potato,

tomato, and pepper (242). The genus Nicotiana (family Solanaceae) has been the main focus of

research which has provided information about the host-pathogen relationship in the context of

innate immunity and defense signaling. Particularly Nicotiana benthamiana and N.tabacum (both

allotetraploid) species have been widely used as experimental hosts of plant virology studies

(243). N. benthamiana is generally susceptible to the majority of plant viruses. It is the most

widely used experimental host in plant virology mainly but not restricted to its ability to express

foreign genes, used as a virus-induced gene silencing (VIGS), as a research model for

agroinfiltration (243) and also combination of these methods to investigate signal transduction

(244) and protein trafficking (245).

The movement of geminiviruses within host plants has been studied extensively (161,

229, 243, 246-250). Geminiviruses use the DNA replication machinery of their host to amplify

their genomes in the nuclei of infected plant cells (251). This viral DNA is transported out of the

plant cell nucleus to undergo systemic spread by crossing plasmodesmatal openings in the cell

membrane. For monopartite begomoviruses coat protein with the conjunction of pre-coat is

required to cross cell membranes (249). In contrast to monopartite begomoviruses, bipartite

begomoviruses are dependent upon DNA-B encoded nuclear shuttle protein (NSP) and

movement protein (MP) for their movement in host plants (156, 246, 252). It has been revealed

Page 86: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

67

that βC1 of beta-satellite can substitute the movement function of DNA-B to facilitate movement

of begomovirus from the nucleus to the cell periphery (248). The transport of viral ssDNA from

the nucleus towards plasmodesmata is mediated by a nuclear export signal (NES) on the coat

protein C-terminus and NES on the Pre-coat protein N-terminus (249, 250). Nuclear shuttle

protein interacts with histone H3, raising the possibility that viral DNA moves as a

minichromosome (253). An NSP-interacting GTPase (NIG) associated with the exterior of the

nuclear envelope might facilitate NSP transit into the cytosol, probably through the nuclear pore

(254). The NSP-DNA complex then moves to the cell periphery through interaction with MP.

Viral DNA might be transferred to MP through a mechanism involving NIG-catalyzed GTP

hydrolysis (255). Alternatively, NIG might facilitate the interaction of MP with an NSP-DNA

complex that moves through plasmodesmata, which provides a mechanism for movement of

viral DNA into the nucleus of the next cell. The chaperone, the nuclear-encoded and chloroplast-

targeted heat shock cognate 70 kDa protein (cpHSC70-1) was shown to interact with the

Abutilon mosaic virus (AbMV, Geminiviridae) movement protein (MP) for trafficking along

plastids and stromules into a neighboring cell or from plastids into the nucleus (256). An

involvement of plastids and stromules is assumed in the DNA-virus life cycle as well, but their

functional role needs to be determined (257).

The molecular mechanisms underlying intercellular movement of viruses have been well

studied; however studies on sub-cellular, other than the nucleus, localization of genome of these

viruses have been less explored. The key research question in this study is whether or not, viral

DNA can be translocated into chloroplasts. The study conducted to answer this question

confirms the presence of only AEV DNA-A (monopartite), conversely, ToLCNDV DNA-A was

absent in chloroplasts of the viral infected leaves. The DNA of Abutilon mosaic virus was

isolated from intact chloroplasts (164) representing the only other example of a geminiviral viral

Page 87: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

68

genome in chloroplasts. Considering these findings on the sub-cellular localization, it is

conceivable that viruses use fundamentally different transport mechanisms within their hosts. In

this study, I also demonstrate the infectivity of monopartite and bipartite begomoviruses to

Solanum lycopersicum and different Nicotiana species to assess the effects of ploidy level on

susceptibility to begomoviruses. These findings could be useful to provide us a better

understanding of begomovirus pathogenicity and virus-host interactions.

3.2 RESEARCH PLAN

The overall objectives of this study are:

1. To determine the infectivity of monopartite (AEV) and bipartite (ToLCNDV)

begomoviruses in tomato and different Nicotiana species.

2. To study the capacity of these single-stranded DNA viruses (AEV and ToLCNDV) to

translocate their genomic DNA to chloroplasts of different Nicotiana species and tomato

plants.

3. Finally to study the translocation of AEV DNA-A genome to plant mitochondria.

3.3 MATERIALS AND METHODS

3.3.1 Plant growth conditions

Tobacco (Nicotiana alata, N. benthamiana, N. clevelandii, N. glutinosa, N. rustica, N. sylvestris,

N. tabacum cv. Xanthi, N. tabacum cv. Samsun) and tomato (Solanum lycopersicum, variety

Ultra Girl VFN) seeds were sown in Pro-Mix (Premier Tech ,Canada) and transferred to pots (1-

2 plants per pot) containing Pro-Mix when the seedlings were 3 weeks old. The plants were

grown at 23-27°C under 16 h light/8 h dark condition in an insect-free greenhouse.

Page 88: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

69

3.3.2 Agrobacterium-mediated inoculation

Infectious clones of AEV (DNA-A and DNA-β) and ToLCNDV (DNA-A and DNA-B) were

kindly provided by the Molecular Virology Laboratory, Institute of Agricultural Sciences, The

Punjab University. These clones were transformed into competent cells of Agrobacterium

tumefaciens strain GV3101. A single colony of each infectious clone of AEV (DNA-A and

DNA-β) and ToLCNDV (DNA-A and DNA-B) in A. tumefaciens was cultured in 2 mL of LB

culture containing antibiotics Kanamycin (100 µg/mL) and Gentamycin (30 µg/mL) and grown

overnight at 28°C at 225 rpm. A large 30 mL LB media suspension was then inoculated with the

overnight culture and grown at 28°C to an optical density (OD595) of ~1.0. The cells were

harvested by centrifugation at 1200 g for 10 min and resuspended in Agrobacterium induction

medium (10 mM MgCl2, 10 mM MES pH 5.6 and 150 µM acetosyringone) to a final OD595 of

1.0 and incubate at room temperature for 4-6 hr with gentle shaking (80-100 rpm). These

cultures were pelleted again by centrifugation at 1200 g for 10 min and resuspended in 10 mM

MES buffer and adjust to OD595~0.5. At the four true leaf stage, plants were inoculated with

AEV (A + β) and ToLCNDV (A+B) using a 1 cc syringe into the abaxial surface of the leaves.

Each experiment was repeated ten times. Plants were also infiltrated with buffer alone used a

negative control. Following inoculation, plants were observed daily for the appearance of

symptoms. At 30-35 days post-inoculation (dpi) the plants were photographed and leaf samples

were harvested to isolate DNA for PCR analysis.

3.3.3 Extraction of total nucleic acids from plants and PCR

Total genomic DNA was extracted from leaf samples using modified CTAB method (258).

About 100 mg plant material were harvested from newly emerged leaves and ground in 800 μl

2×CTAB buffer (100 mM Tris-HCl pH 8.0, 20 mM EDTA, 1.4 M NaCl, 2% (w/v) cetyl

Page 89: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

70

trimethylammonium bromide (CTAB), 0.25 % polyvinylpolypyrrolidone (PVP) and 2.5% (v/v)

β-mercaptethanol) using a pestle and mortar and incubated at 65°C for 30 min. After lowering

the temperature of the sample to room temperature, a 500 μl of chloroform: isoamyl alcohol

(24:1) was added, mixed well and centrifuged at 10,000 × g for 10 min at room temperature. The

upper DNA containing phase was mixed with 0.6 volume isopropanol to precipitate the DNA.

DNA was pelleted by centrifugation at 14,000 × g for 10 min, washed with 70% ethanol and air

dried. Finally, each pellet was dissolved in 50 μl TE buffer (10 mM Tris-HCI pH 8.0/1 mM

EDTA). PCR reaction were carried out on one microgram DNA as template, determined by ND-

1000 Spectrophotometer (NanoDrop Technologies Inc., USA), in a final volume of 30 µL with

reagents provided by FroggaBio (2X PCR MasterMix) in a PTC-100 thermocycler (MJ

Research). The PCR was performed at 95°C for 5 min, followed by 95°C for 50 sec, 60°C for 50

sec, 72°C for 50 sec for 32 cycles, and 72°C for 5 min. All the primers used are displayed in

Table 3.1.

Table 3.1 Primer sequences used for semi-quantitative PCR.

Target sequence Forward (F) and reverse (R) primers (5´-3´) PCR product size

(base pairs)

Bego CP

F GAAGCGACCAGCAGATATAATC

R CATCCTGTACATCCTGGGCTT

169

AEV CP

F GCCCAGGATGTACAGGATGT

R CACAGGCCTACGATCCCTAA

283

16SrRNA

F GAAGAACCTTACCAGGGCTTGA

R CAGTCTGTTCAGGGTTCCAAAC

187

Actin (tobacco)

F AGTCCTCTTCCAGCCATCCA

R AGCCAAAGCCGTGATTTCC

187

Actin (tomato)

F GAAATAGCATAAGATGGCAGACG

R ATACCCACCATCACACCAGTAT

277

3.3.4 Isolation of intact chloroplast and enzymatic treatments

Chloroplasts were isolated from healthy and infected plants using the modified method (205).

Each isolation step was performed at 4°C separately. Five grams of leaves were harvested and

Page 90: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

71

homogenized with mortar and pestle in 50 mL of cold grinding buffer (50 mM HEPES-KOH pH

7.3, 330 mM mannitol, 0.1% BSA, 1 mM MgCl2, 1 mM MnCl2, 2 mM Na2EDTA, and 1 mM

DTT). Homogenate was filtered through eight layers of cheesecloth and the filtrate was pelleted

at 500 g for 2 min to remove the plant debris. After that, the suspension containing chloroplasts

was sedimented by centrifugation at 2,500 g for 20 min at 4°C. Subsequently, each pellet

containing the chloroplasts was carefully resuspended in 1 mL grinding buffer. These

chloroplasts in each sample were counted by haemocytometer and the quantity was equally

adjusted ensuring a similar sample size. Each sample was loaded on top of a sucrose step

gradient developed with 4 mL of 30%, 3 mL of 45%, and 2 mL of 60% sucrose in grinding

buffer and centrifuged at 77,140 g for 55 min. Intact chloroplasts were collected from the

interphase between 30 and 45 % sucrose, washed twice with washing buffer (50 mM HEPES-

KOH pH 8.0, and 330 mM mannitol) and resuspended in 1 mL washing buffer. The purified

chloroplasts were visualized under a light microscope to confirm their integrity. Each suspension

was incubated with 1/10 volume of Proteinase K (20 mg/mL) for 1 hr at 32°C to ensure that no

virions associated with the chloroplasts and washed twice with washing buffer. The supernatant

was discarded and each pellet was gently resuspended in 1 mL of washing buffer and treated

with 20 units DNase 1 (New England Biolabs, NEB) for 1 hr at 32 °C to digest the viral DNA

adsorbed on the surface of chloroplasts. Theses chloroplasts were washed twice with 15 mL of

washing buffer. These chloroplasts were lysed with 1/10 volume of 2×CTAB at 65°C for 30 min.

After lowering the temperature of the sample to room temperature, one volume of chloroform:

isoamyl alcohol (24:1) was added, mixed well and centrifuged at 10,000 × g for 10 min at room

temperature. The aqueous phase was mixed with 1 μg/μL glycogen (Thermo scientific) as a

carrier for nucleic acid, 0.1 M sodium acetate and 0.6 volume of isopropanol to precipitate the

chloroplast DNA (cpDNA) overnight at -20ºC. The cpDNA was pelleted by centrifugation at

Page 91: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

72

14,000 × g for 10 min, washed with 70% ethanol and air dried. Finally, each pellet was dissolved

in 50 μL TE buffer (10 mM Tris-HCI pH 8.0 /1 mM EDTA). PCR reaction were carried out on

one microgram cpDNA as mentioned in material and method section 3.3.3.

3.3.5 Light microscopy and transmission electron microscopy (TEM)

The chloroplasts were visualized under a light microscope to confirm their integrity and purity.

A drop of each sample was overlaid on a glass slide and live chloroplast imaging was performed

with a 40 × oil objective lens using a differential interference contrast (DIC) feature of a

confocal microscope (TCS SP5, Leica Microsystems). For TEM sample preparation, chloroplasts

were pelleted by centrifugation, and the pellets were resuspended 3% glutaraldehyde in 0.1M

Sorensen phosphate buffer pH 7.35 for 60 min on a shaker at room temperature and stored

overnight at 4°C. After 3x buffer washing (each 10 min), samples were post-fixed with 1%

osmium tetroxide in phosphate buffer for 60 min at room temperature. After three washing, these

samples were dehydrated for 10 min each step in a graded series of increasing concentrations of

ethanol (30%, 50%, 70%, 80%, 90%, and 100%) and infiltrated with 3:1, 1:1 and 1:3 mixtures

of ethanol: Spurr’s resin (EMS, USA) for 60 min each step. These samples were replaced with

100% Spurr’s resin and left overnight at room temp. Infiltration was continued the next day and

finally, samples were embedded in fresh 100% Spurr’s resin and polymerized at 65°C overnight.

Sections of one-micron thickness were cut with a Leica EM UC6 ultramicrotome (Leica

Microsystems Inc.) to visualize the samples under a light microscope. Ultimately ultra-thin

sections (100 nanometer) for TEM were picked up on 200 mesh Cu grids (EMS, USA) and

stained with 3% Uranyl acetate in 50% methanol for 45min, followed by Reynold’s lead citrate

for 10 min, and allowed to dry overnight at RT and examined with the Hitachi H7700

Transmission Electron Microscope.

Page 92: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

73

3.3.6 Isolation of intact mitochondria and enzymatic treatments

Mitochondria were isolated from AEV-infected N.benthamiana leaves using the modified

method (219). Fresh leaves (50 g) were cut and homogenized in a mortar in 120 mL of extraction

medium (EM) (20 mM HEPES-Tris pH 7.6, 0.4 M sucrose, 5 mM EDTA, 0.6% PVP (w/v) and

0.6 mM cysteine). The extract was filtered through 8 layers of cheesecloth and centrifuged 5 min

at 3500 g. The supernatant was centrifuged at 28,000 g for 10 min to pellet organelles. The pellet

was resuspended in 120 mL EM without PVP and centrifuged at 28,000 g for 10 min and the

pellet resuspended in 2 mL of suspension buffer (SB) (10 mM MOPS-KOH pH 7.2 and 0.2 M

sucrose) and loaded on a percoll gradient of 10%, 32% and 50% percoll in SB. The gradient was

centrifuged at 40,000 g for 1h and the mitochondria collected as a fuzzy yellow band between

the 32% and 50% percoll stages. These mitochondria were washed in 2 volume of SB buffer at

85,600 g for 90 min at 4°C to remove the percoll. These intact mitochondria were incubated with

1/10 volume of Proteinase K (20 mg/mL) at RT for 1hr to ensure that no virions associated with

the mitochondria and washed twice with SB buffer and centrifuged at 28,000 g for 10 min. The

supernatant was discarded and each pellet was gently resuspended in washing buffer and treated

with 20 units DNaseI (New England Biolabs, NEB) for 1hr at RT to digest the viral DNA

adsorbed on the surface of mitochondria and washed twice with SB washing buffer at 28,000 g

for 10 min. After the final washing, the mitochondria were lysed with 1/10 volume of 2×CTAB

buffer at 65°C for 30 min. After lowering the temperature of the sample to room temperature,

one volume of chloroform: isoamyl alcohol (24:1) was added, mixed well and centrifuged at

14,000 × g for 10 min at room temperature. The aqueous phase was with mixed 1 μg/μL

glycogen (Thermo scientific) as a carrier for nucleic acid, 0.1 M sodium acetate and 0.6 volume

of isopropanol to precipitate the mitochondrial DNA (mtDNA) overnight at -20ºC. The mtDNA

was pelleted by centrifugation at 14,000 × g for 10 min, washed with 70% ethanol and air dried.

Page 93: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

74

Finally, each pellet was dissolved in 50 μL TE buffer (10 mM Tris-HCI pH 8.0 /1 mM EDTA).

PCR reaction were carried out on one microgram mtDNA as a template as mentioned in material

and method section 3.3.3.

3.3.7 Isolation of virus

N.benthamiana plants, at the four true leaf stage, were inoculated with infectious clones of AEV

(A + β; 1:1) and ToLCNDV (A+B; 1:1) in Agrobacterium tumefaciens strain GV3101 using a 1

cc syringe into the abaxial surface of the leaves as mentioned above. At 2-3 weeks post-

inoculation, virions were purified as described previously (259) with the following

modifications. Infected leaves were homogenized in virus extraction buffer (EB) (0.1 M

trisodium citrate, 0.75% (w/v) sodium sulphite, 5 mM disodium EDTA, 1% (v/v) 2-

mercaptoethanol and 0.325% (w/v) L-ascorbic acid pH 7.0, adjusted with NaOH); 2 mL/g of

fresh tissue. The homogenate was made 2.5% (v/v) in Triton X-100, stirred for 16 hr at 4°C and

then squeezed through four layers of cheesecloth. The filtrate was clarified by centrifuged at

10,000 g for 15 min and the supernatant was collected and centrifuged at 91,862 g in a Beckman

Ti 60 rotor for 3 hr. The virus pellets were covered with resuspension buffer (RB) (0.01 M

trisodium citrate, 1 mM disodium EDTA with 0.05% 2-mercaptoethanol, adjust to pH 7 with

NaOH) overnight at 4°C and then resuspended. The suspension was overlaid onto a cushion of

20% (w/v) sucrose in RB buffer and centrifuged for 3 hr at 91,862 g in a Beckman Ti 60 rotor

for 3 hr. The virus solution was clarified by centrifugation three times at 15,000 g for 5 min each.

The virus can be further purified by centrifugation for 16 hr at 52,836 g through 10 to 50% (w/v)

sucrose gradients in RB buffer. These virions were stored at 4°C in the presence of 0.01 %

sodium azide for further downstream applications.

Page 94: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

75

3.4 RESULTS

3.4.1 Infectivity Assays: Inoculation of plants with AEV and ToLCNDV DNA

clones

Infectious clones of monopartite AEV (DNA-A and DNA-β) and bipartite ToLCNDV (DNA-A

and DNA-B) begomoviruses in Agrobacterium strain of GV3101 were infiltrated into plants to

assess their ability to infect systemically. Agro-infiltrated plants were observed periodically for

the appearance of symptoms. Plants inoculated with the monopartite begomovirus AEV

remained asymptomatic. In contrast, inoculation with the bipartite begomovirus ToLCNDV

showed mild to severe characteristic symptoms in all plants at 35 days post-inoculation (Figure

3.1 and 3.2; Table 3.2).

Page 95: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

76

Figure 3.1 Photographs of symptomatic and non-symptomatic different Nicotiana species:

N. alata (A, F, and K), N. clevelandii (B, G and L), N. rustica (C, H and M), N. sylvestris (D, I and N), and N. tabacum

(E, J, and O). Plants were inoculated with infectious clones of ToLCNDV (DNA-A and DNA-B), showed severe to no

typical symptoms (Panel 1), AEV (AEV-A and DNA-β), remained symptomless (Panel 2) and buffer only as a control

(Panel 3). Photographs were taken at 35 days post-inoculation (dpi).

Page 96: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

77

Figure 3.2 Photographs of symptomatic and non-symptomatic different Nicotiana species:

N. Benthamiana (A, F, and K), N. glutinosa (B, G, and L), N. tabacum cv. Xanthi (C, H and M), N. tabacum

cv. Samsun (D, I and N), and Solanum lycopersicum (E, J, and O). Plants were inoculated with infectious

clones of ToLCNDV (DNA-A and DNA-B), showed typical symptoms (Panel 1), AEV (AEV-A and DNA-β),

remained symptomless (Panel 2) and buffer only as a control (Panel 3). Photographs were taken at 35 days

post-inoculation (dpi).

Page 97: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

78

Table 3.2 Summary of the results of the infectivity assays

Species

(ploidy level,

chromosome

number)

Infectivity

of

ToLCNDV

(plants

infected

/inoculated)

Plants

PCR

positive

for

ToLCNDV

Infectivity

of

AEV

(plants

infected

/inoculated)

Plants

PCR

positive

for

AEV

Symptoms

ToLCNDV

AEV

N.benthamiana

(4x = 38)

10/10

10

10/10

10

Severe symptoms

leaf curling, thickening of

veins, stunted growth,

leaf crumple

no to very

mild

symptoms

N.glutinosa

(2x=24)

10/10

10

10/10

10

Severe symptoms

distortion of leaves,

stunted

growth, leaf crumple,

depressions on the upper

surface of the leaves

no

symptoms

N. clevelandii

(4x=48)

10/10

10

10/10

10

Severe symptoms

distortion of leaves,

stunted growth, leaf

crumple, depressions on

the upper surface of the

leaves

no

symptoms

N. sylvestris

(2x=24)

10/10

10

10/10

10

no to very mild symptoms

no

symptoms

N. rustica

(4x=48)

10/10

10

10/10

10

no to very mild symptoms

no

symptoms

N. alata

(2x=24)

10/10

10

10/10

10

no to very mild symptoms

no

symptoms

N. tabacum

cv. Samsun

(4x=48)

10/10

10

10/10

10

mild symptoms

depressions on the upper

surface

of the leaves

no

symptoms

N.tabacum

cv. Xanthi

(4x=48)

10/10

10

0/10

0

Severe symptoms

distortion of leaves,

stunted growth, leaf

crumple, depressions on

the upper surface of the

leaves

no

symptoms

N.tabacum

cv. unknown

(4x=48)

10/10

10

10/10

10

no to very mild symptoms no

symptoms

Solanum

lycopersicum

(2x=24-26)

10/10

10

10/10

10

Severe symptoms

leaf curling, thickening of

veins, stunted growth,

yellow mosaic or mottled

pattern, failure of

reproductive organs to

develop normally

no

symptoms

Page 98: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

79

Consequently, the virus infectivity was determined by PCR (Figure 3.3). Total genomic DNA

was extracted from leaves and subjected to semi-quantitative PCR using consensus Bego CP F

and R primers which were designed to amplify a 169 base pair region of coat protein gene of

begomoviruses (Table 3.1). The expected size of coat protein gene could be amplified from

plants challenged with infectious clones of AEV and ToLCNDV whereas no band was detected

with DNA extracted from buffer treated plants (Figure 3.3, Panel C). The exception was N.

tabacum cv. Xanthi plant where only ToLCNDV was systemically infected. The DNA-A titer of

AEV was higher in N. benthamiana than other plants and in comparison to DNA-A of

ToLCNDV as well (Figure 3.3 Panel C). To validate the semi-quantitative results of AEV and

ToLCNDV, DNA samples were amplified by PCR using primers pairs for Actin gene used as an

internal control (Figure 3.3, Panel D).

Figure 3.3 PCR-mediated detection of AEV and ToLCNDV DNA extracted from chloroplasts and leaf tissues

(total DNA) of infected plants at 35 dpi.

Bego CP primers specific to the similar coat protein gene sequences of AEV and ToLCNDV were used to amplify 169

product from chloroplasts (Ch) and leaf tissues (Panels A and C respectively). 16SrRNA gene with consensus primers

was included as an internal control to check the integrity of DNA isolated from chloroplasts (Panel B). Actin genes

(tobacco and tomato, Table 2) were used as a loading control for total DNA (Panel D). A DNA size marker (100 bp)

in 100bp increments was electrophoresed in Lane L. The resulting PCR products were analyzed on a 2% agarose gel.

Page 99: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

80

Overall, these results indicate that AEV likewise ToLCNDV can manage to replicate and spread

from the site of inoculation, however, the ability of AEV to systemically infect plants without

causing symptoms is of interest and suggests that the virus is unable to interact with factors

involved in inducing symptoms. It is also noteworthy that AEV behaves distinctly in different

cultivars of same species of N. tabacum. This virus infects the cv. Samsun but not the cv.Xanthi,

both belong to the same tabacum species, as shown in Figure 3.3.

3.4.2 Chloroplast DNA Analysis

To investigate the subcellular localization of DNA of AEV and ToLCNDV, chloroplasts were

isolated under isotonic conditions from different tobacco and tomato plants infected with AEV

and ToLCNDV infectious clones (Figure 3.2). DNA was isolated from purified chloroplasts and

subjected to PCR analysis. Results obtained demonstrated that the expected size fragment of the

coat protein (CP) gene could be amplified from DNA of chloroplasts isolated from only AEV

infected plants (Figure 3.3 Panel A, Lanes 1, 2, 3 and 4). On the contrary, no specific CP gene

bands were detected with DNA of chloroplasts extracted from ToLCNDV (Figure 3.3, Panel A,

Lanes 5, 6, 7 and 8). Chloroplast DNA of N. tabacum cv. Xanthi was used as a negative control

in case of AEV CP gene (Figure 3.3 Panel A, Lane 9). The integrity of chloroplast DNA was

confirmed with 16SrRNA gene included as an internal control (Figure 3.3 Panel B, Lanes 1-9).

Thus, these results for both ToLCNDV and AEV infectious clones suggest that the viruses

themselves exhibit different properties with respect to subcellular localization.

3.4.3 Reconstruction control experiments

Additionally, reconstruction controls were also included to rule out that the AEV DNA-A found

inside the chloroplasts did not originate from DNA adsorbed on the exterior surface of

chloroplasts. Experiments were conducted where chloroplasts from leaf tissues of healthy N.

Page 100: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

81

benthamiana plants were isolated and purified by sucrose gradient centrifugation. These purified

chloroplasts were incubated with AEV virions, half of this sample was used to extract

chloroplast DNA without proteinase K and DNase I treatment and used as a positive control. The

remaining half sample was treated with proteinase K and DNase I followed by proteinase K with

in between washings as described in material and method section 3.3.4. Another preparation of

untreated purified chloroplasts from leaf tissues of healthy plants was also included as a negative

control. Subsequently, DNA from these chloroplasts was isolated and subjected to PCR reactions

using Bego CP F and R primer pairs.

Figure 3.4 Reconstruction experiments to reject the possibility of adsorption of virions or/and DNA during

the purification of chloroplasts.

PCR experiments were performed with (Panel A, Lanes1-4). Lanes: 1, DNA isolated from infected leaves

(AEV) used as a positive control with Bego CP primers; 2, DNA isolated from chloroplast of healthy plants

where AEV virions were mixed and used as a reconstruction experiment but without proteinase K and DNase I

treatment; 3, DNA isolated from chloroplast of healthy plants and used as a reconstruction experiment where

AEV virions were mixed and subsequently treated with proteinase K and DNase I treatment to confirm enzymatic

activity and to rule out the possibility that virions or DNA adsorbed with chloroplasts; 4, DNA of chloroplast

isolated from healthy leaves infiltrated with buffer only, used as a negative control. Panel B: 16SrNA gene was

included as an internal control to check the integrity of chloroplast DNA. Panel C: Actin gene was used as a

negative control for chloroplast DNA as shown in Lanes 2, 3 and 4 while Lane 1 band was amplified from total

DNA isolated from AEV infected leaf tissues to confirm the integrity of Actin primers. The resulting PCR

products were analyzed on a 2% agarose gel.

Page 101: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

82

It is clear from the reconstruction experiments that sample which lacks enzymatic treatment

exhibits a prominent band of viral DNA, however, virions and DNA were completely degraded

after enzymatic treatment (Figure 3.4 Panel A, Lane 2 and 3 respectively). These results clearly

demonstrate that DNA found in chloroplasts cannot be the result of a simple contamination of

adsorbed virions or DNA on the surface of chloroplasts. This study is also consistent with the

data as seen most clearly in Figure 3.3. In addition, chloroplast 16SrRNA, and nuclear Actin

genes used as positive and negative reference controls respectively further confirmed the ability

to cleanly purify chloroplast DNA from any contaminating complete cells. The reliability of

primers and experimental conditions were confirmed with total DNA isolated from AEV infected

N. benthamiana plants (Figure 3.4, Panel A, B and C Lane 1). The efficiency of DNase I

digestion after proteinase K treatment was controlled with DNA of AEV that was added to some

plastid samples (data not shown). Overall, these results demonstrate that solely the DNA from

AEV is capable of being translocated into chloroplasts. Members from the same begomoviruses

family do not necessarily target the same organelles.

3.4.4 Microscopic studies

Chloroplast purity and intactness were further confirmed using a phase contrast microscopy.

Purified chloroplasts were visualized under a phase contrast microscopy to confirm their

integrity. Ten aliquots of each sample were examined in detail for their purity. Figure 3.5 A

shows these isolated chloroplasts are free from intact cells. In addition, electron microscopic

examination with purified chloroplasts revealed that these samples were free of other cellular

organelles (Figure 3.5 B and C). Furthermore, ultrastructure of chloroplasts from healthy and

AEV infected asymptomatic plants were studied in details. In both samples, chloroplasts

contained a dense stroma with thylakoids, starch grains, and plastoglobuli. However, the

Page 102: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

83

chloroplast of infected plants have more plastoglobuli than those of uninfected plants, in

addition, chloroplasts of infected plants are also associated with mild damage in thylakoids and

grana as shown (Figure 3.5 C).

Figure 3.5 Phase contrast and electron microscopic studies of chloroplasts.

(A) Phase contrast photographs of chloroplasts to examine intactness after purification through sucrose gradient

centrifugation. (B) Electron micrographs of chloroplasts from healthy (C) and infected plants. Chloroplasts from

infected plants are characterized by degenerated thylakoids (circled) and more plastoglobuli (p). Bar =10µM

3.4.5 Translocation of AEV DNA in mitochondria

To determine the translocation of AEV DNA-A into mitochondria, DNA was isolated from

mitochondria of infected plant leaves and subjected to PCR using AEV CP F and R primers. The

expected size of coat protein gene could be amplified from total DNA sample whereas no band

was detected with DNA extracted from mitochondria of the infected plants (Figure 3.6, Panel A;

Lanes 1 and 2 respectively). It might be concluded from these experiments that DNA-A of AEV

failed to translocate into mitochondria of AEV infected pants.

Page 103: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

84

Figure 3.6 PCR-mediated detection of AEV DNA extracted from mitochondria and leaf tissues of N. benthamiana

infected plants at 35 dpi.

AEV CP primers specific to the coat protein gene were used to amplify a 283bp product from AEV infected leaf tissues

and mitochondria (Panel A; Lane 1 and 2 respectively). Primers for18SrRNA from mitochondrial genome were used to

amplify 187 bp product as an internal control to check the integrity of DNA from leaf tissues and mitochondria (Panel B;

Lane 1and 2 respectively). A DNA size marker (100 bp) in 100 bp increments was electrophoresed in Lane L. The

resulting PCR products were analyzed on a 2% agarose gel.

3.5 DISCUSSION

The results presented here suggest that all the Nicotiana and tomato plants tested are susceptible

to ToLCNDV and exhibit rigorous symptoms of infection. All Nicotiana species, with the

exception of N. tabacum cv. Xanthi plants were shown to be susceptible to Ageratum enation

virus infection, however, all of these plants remained asymptomatic. This contrasts with the

results described by others (260, 261), where tobacco and tomato plants infected with AEV

Tomato isolate and AEV isolate ACL exhibited severe leaf curling, vein clearing, vein enation,

reduction in leaf lamina, dimples on upper leaf surface, chlorosis, necrosis and stunted growth

symptoms. The causes of symptom induction are multiple but always depend on the aggregation

of viral nucleic acids or proteins that interfere with the normal function of the plant and/or trigger

a symptomatic defense response (262, 263). Previously, it has been revealed that begomovirus

and curtovirus Rep proteins bind to retinoblastoma-related protein (RBR), a key regulator of the

plant cell cycle, through a unique motif. Mutation of these motifs in Rep A and Rep results in

Page 104: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

85

milder symptoms and reduced viral DNA accumulation (264, 265). AEV used in the study is

associated with betasatellite (DNA-β). DNA-β bears a βC1 open reading frame on the

complementary sense strand, which is conserved among distinct betasatellites in terms of

position and size. Mutational analyses and constitutive expression have revealed that βC1 is a

strong pathogenicity/symptom determinant (266-268). Guo, et al. (269) exhibited more severe

symptoms and also enhanced viral DNA accumulation when Tomato yellow leaf curl Thailand

virus was inoculated in association with betasatellites. These findings are not consistent with our

observations where all plants remained symptomless when infected with infectious clones of

AEV DNA-A and DNA-β. The DNA-A molecule nucleotide sequence of infectious AEV clone

used in this study exhibited the highest levels of nucleotide sequence identity (94.1%) with the

DNA-A of AEV Tomato isolate. This asymptomatic infectivity of AEV is suggestive of the

virus’s inability to interact with factors involved in inducing symptoms. In certain cases, these

factors are considered to be involved in the miRNA pathway, which is affected by virus

pathogenicity determinants (270). In specific geminiviruses, the C4 protein is a pathogenicity

determinant and a suppressor of PTGS by binding to siRNAs (271, 272). Different host proteins

such as Shaggy-like protein kinases like SK4-1/SKK have been shown to interact with other

geminiviral C4 proteins; this interaction is required to trigger disease symptoms (273, 274) and

for C4 function to suppress gene silencing (273). These findings suggest that viral and host

factors play a key role in symptom development which are probably correlated with the viral

sequences and their mimicry to certain cellular mRNAs in plants.

The present study also shows that individual Nicotiana species even with same ploidy levels

differ in their susceptibility to begomoviruses. Species of Nicotiana vary from immune (N.

tabacum cv. Xanthi) to high susceptibility (N. benthamiana) to AEV. The susceptibility of N.

benthamiana (polyploid), N. glutinosa (diploid) and N. tabacum (polyploid) and resistance

Page 105: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

86

response of N. tabacum cv. Xanthi (polyploid) to AEV illustrates that there is no clear

relationship between infectivity and ploidy levels. Our results are consistent with those described

by others (275) who showed that there is no clear relationship between begomovirus

susceptibility/resistance and the ploidy level of Nicotiana spp. Gottula, et al. (276) also

demonstrated that there is a limited relationship between host ploidy level and virus resistance.

Interestingly, our results showed that the levels of viral DNA were lower in symptomatic

plants than those of asymptomatic plants inoculated with ToLCNDV and AEV respectively. Our

studies also exhibited a higher level of viral DNA-A in the case of N. benthamiana plants as

compared to that of other Nicotiana species and Solanum lycopersicum. Tsuda, et al. (277)

showed that the pathogenicity of pepper mild mottle virus is regulated by the RNA silencing

suppressor activity of its replication protein, and not by the levels of viral accumulation. The

virus titer does not necessarily correlate with the severity of symptoms indicating that disease

can be the result of other molecular mechanisms that underlie the onset of disease symptoms and

not general distress.

To address the geminivirus infection, an RNA silencing system which targets the

conserved region (CR) of many geminiviruses is designed to generate transgenic tobacco plants.

This system generates a 176 base pair double stranded RNA which encompasses most of the CR

region of many begomo- and geminiviruses infecting a large number of economically important

crops. This construct was tested against two begomoviruses (AEV and ToLCNDV). The

preliminary studies show a very strong reduction in virus replication in the transgenic Nicotiana

benthamiana plants (Appendix E). Molecular mechanisms involve in the resistance, as well

other molecular approaches for the development of plant resistance are also discussed (see

details in Appendix E).

Page 106: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

87

Another question that we investigated was whether genome of the begomovirus genomes

could be isolated from chloroplasts of tobacco and tomato leaves systemically infected with

these viruses. Accordingly, we have demonstrated that only DNA-A of AEV is present within

chloroplasts. Several lines of evidence are presented to allow us to conclude that Ageratum

enation virus DNA-A enters the chloroplast in vivo. A reconstruction control included in the

experiment ruled out the possibility that virions or DNA may co-purify with chloroplasts or that

they might become attached to the surface of chloroplasts as a result of the isolation procedure.

The nuclear gene encoding Actin, used as a negative control, further confirmed our ability to

cleanly purify chloroplast DNA from any contaminating complete cells. Microscopic studies

with isolated chloroplasts provide another line of evidence that these chloroplasts are free from

other cellular organelles. These results are in accordance with earlier studies on Abutilon mosaic

virus (AbMV), a begomovirus, conducted by Groning, et al. (164) who showed that AbMV DNA

was present in the plastids of AbMV-infected Abutilon sellovianum plants. Despite several

decades of research, the mechanism by which geminiviruses DNA translocates into the

chloroplast remains to be determined. It is believed that viral proteins are involved in the

intracellular movement of DNA. The transport of viral ssDNA from the nucleus towards the

plasmodesmata is facilitated by a nuclear export signal (NES) on the CP C-terminus and NES on

the Pre-CP N-terminus (249, 250). A nuclear shuttle protein is involved in the transportation of

viral DNA from the nucleus into the cytoplasm (246, 278). Host factors also play a major role in

targeting of the genome of the viruses towards different organelles. Krenz, et al. (256) showed

that a chloroplastic HSC70 from Arabidopsis interact with Abutilon mosaic virus movement

protein; an interaction that seems to be important for viral transport and symptom induction.

Cheng, et al. (209) demonstrated that chloroplast phosphoglycerate kinase is responsible for the

targeting of the bamboo mosaic virus to chloroplasts in N. benthamiana plants. Our studies also

Page 107: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

88

revealed that DNA of ToLNDV could not be isolated from chloroplasts of infected plants. These

findings suggest that members of the same family do not necessarily target the same organelles.

These studies also indicate that same virus AEV is incapable of targeting different cellular

organelles (mitochondria) during its infectious cycle. The potential underlying transport

mechanism of AEV genome into chloroplasts is not yet known but it can be hypothesized that

genomic determinants in combination with host factors may play a major role in the targeting of

nucleic acid to different organelles.

Page 108: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

89

CHAPTER 4

4 GENERAL CONCLUSIONS AND FUTURE DIRECTIONS

4.1 GENERAL CONCLUSIONS

The subject of the current study involves pioneering research on the discovery of equivalent

RNA activity embedded in PVX genome where a part of viral RNA functions as a tractor to

transport the tagged RNA into chloroplasts. This “RNA tractor” activity is dependent upon a

limited non-coding region (127 nucleotides) of the PVX RNA transcript, located near the end of

the PVX 8 kDa gene and the start of the coat protein (CP) gene as well as the small non-coding

intergenic region. Our PVX “RNA tractor” system doesn’t seem to involve any viral proteins,

and in this regard, may be comparable to the translocation of the Eggplant latent viroid RNA.

The PVX “RNA tractor” activity described here is the first report of its kind for a virus non-

coding sequence that is capable of translocating not only its own sequence (the entire PVX RNA

and the PVX CP mRNA) but also that of a foreign RNA sequence (GFP) into chloroplasts.

Another key research question in this study is whether or not a viral DNA can be

translocated into chloroplasts. The research conducted with two begomoviruses, Ageratum

enation virus (AEV) and Tomato leaf curl New Delhi virus (ToLCNDV), answers this question

by confirming the presence of only AEV DNA-A (monopartite) in chloroplasts of viral infected

leaves. The DNA of abutilon mosaic virus was isolated from intact chloroplasts (164),

representing the only other example of a geminiviral viral genome in chloroplasts. Considering

these findings on the sub-cellular localization, it is plausible that viruses use fundamentally

different transport mechanisms within their hosts.

Since both chloroplasts and mitochondria share many structural similarities, in

particular, a double membrane and prokaryotic ribosomes (279), we postulated that the PVX

Page 109: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

90

“RNA tractor” and AEV DNA-A might be able to target the mitochondria. However, I

determined that both the PVX “RNA tractor” and AEV DNA do not target the mitochondria.

Although mitochondria and chloroplasts both considered being evolved from prokaryotic

ancestors.

4.2 FUTURE DIRECTIONS

Since it has been determined that none of the viral proteins are involved in the movement of

PVX “RNA tractor” into chloroplasts, it is predicted that host factor (s) is/are interacting with the

PVX RNA and facilitating its trafficking into the chloroplasts. Further studies are required in

order to detect whether any potential host protein(s) interact with eggplant latent viroid and the

PVX “RNA tractor,” through the use of biochemical approaches such as Electrophoretic

Mobility Shift Assay (224, 225) or/and UV cross-linking RNA/protein complexes (223, 226,

227), followed by mass spectrometry to analyze the sequence of the purified proteins (228). In

addition to this, a chloroplast localization signal within the RNA tractor/DNA sequence,

analogous to a nuclear localization signal, needs to be identified. Also, the unique structural

features (such as receptors) of chloroplast membranes involved in interaction with RNA tractors

would need to be further explored. The prime determinants of the tractor activity such as a

canonical nucleotide sequence or secondary structure within the tractor need to be addressed. It

would also be interesting to investigate whether this translocation phenomenon occurs in related

viruses. Understanding the contingent scenarios of this molecular landscape will provide us clues

into how the noncoding RNAs and pathogenic DNAs evolved, and should ultimately allow us to

characterize them. This may also lead us to understand some aspects of gene regulation,

development and help establish evolutionary relationships.

Our studies also revealed that DNA of AEV, but not of ToLNDV, could be isolated from

chloroplasts of infected plants. This finding suggests that members of the same family do not

Page 110: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

91

necessarily target the same organelles. The potential underlying transport mechanism of the AEV

genome into chloroplasts is not yet known but it can be hypothesized that genomic determinants

in combination with viral and/or host protein(s) may be playing a major role in the targeting of

nucleic acids to chloroplasts. In addition, the relevance of the findings should be tested for

additional geminiviruses other than AEV. All plants inoculated with ToLCNDV were

systematically infected and showed characteristic symptoms. However, in the case of AEV, all

plants tested, with the exception of N. tabacum, were infected by the virus but remained

symptomless. The mechanism by which the N. tabacum cv. Xanthi conferred resistance has not

been addressed. Detailed studies of both the molecular genetics of these viruses and their hosts’

natural defense systems will result in the development of novel ways to control virus diseases in

plants. The knowledge gained from these studies will not only contribute significantly to the

elucidation of the geminiviral intra- and intercellular movement processes but will additionally

provide a better understanding of virus replication processes as well as insight with respect to

strategies designed to reduce the economic damage caused by these viruses.

Lastly, a novel idea has emerged to use plant chloroplasts as bioreactors to target and

overexpress nucleic acid and/or protein molecules in chloroplasts through the previously

mentioned RNA and DNA tractors. This could act as a viable biotechnological alternative to

bacterial and fungal fermentation or mammalian cell culture towards the industrial-scale

production of several compounds (280-283). Therefore, the identification of non-coding RNAs

and DNAs as untranslated signals capable of mediating the stable expression of foreign proteins

in chloroplasts provides an enriched conceptual basis to develop distinctive strategies for

production of biologicals, biopharmaceuticals, vaccines or drugs in bioreactors designed using

plant chloroplasts. Genetic engineering of proteins with chloroplast permeability would be

another approach in this direction.

Page 111: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

92

APPENDICES

Page 112: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

93

APPENDIX A

5 ATTEMPTS FOR RNA TRACTOR SEQUENCE

MODIFICATION FOR GFP EXPRESSION IN

CHLOROPLASTS

5.1 INTRODUCTION

We have demonstrated that the pTR:127 has the capacity to translocate the GFP mRNA to

chloroplasts. To provide another line of evidence of RNA tractor activity in chloroplasts and

determine that the GFP sequence is functional in the chloroplast, pTR:127 construct was

redesigned considering the translation mechanism of chloroplasts. Chloroplasts are plant cellular

organelles that have their own genome and a prokaryotic-type translation machinery consisting

of 70S-type ribosomes, ~30 tRNA species, initiation/elongation factors (e.g. IF-1, EF-Tu, and

EF-G) and aminoacyl-tRNA synthetases which are highly homologous to those in prokaryotes

(284-288). In prokaryotes, translation is believed to be facilitated by mRNA-rRNA interactions

between the Shine-Dalgarno (SD) sequence upstream of the translation initiation codon and the

anti-Shine-Dalgarno sequence (ASD) at the 3´end of the small (16S) ribosomal RNA.

Chloroplast mRNAs are not capped, instead, over 90% of chloroplast genes in land plants

possess an upstream sequence similar to the bacterial SD sequence (typically GGAGG) that is

capable of binding to a complementary sequence near the 3´end of the chloroplast 16SrRNA

(289) as shown in Figure 5.1.

Page 113: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

94

Figure 5.1 Schematic representation of the 3´end portion of tobacco chloroplast 16SrRNA (290).

Chloroplast ribosome-binding sites were identified on the plastid RuBisCO large subunit (rbcL)

mRNAs. The rbcL translation initiation domain is highly conserved which contains a

prokaryotic Shine-Dalgarno (SD) like sequence (AGGGAGGGA) located 4 to 12 nucleotides

upstream of the initiation AUG codon and found to be essential for translation (291). Knowing

about translation system of chloroplasts and PVX RNA tractor sequence (127 nt) which is

enough to translocate not only its own PVX RNA sequence but also a reporter gene (GFP

mRNA) into the chloroplast, these strategies were attempted to make RNA tractor sequence

functional for GFP mRNA as a reporter gene.

5.2 Addition of SD-like sequence (pCrbcLSD-GFP)

To determine the functionality of rbcL SD-like sequence (AGGGAGGGA) and reflecting the

importance of RuBisCO (the most abundant protein in leaves, accounting for 30-50% of soluble

leaf protein in plants) the SD-like sequence was inserted to the upstream of GFP initiation codon

AUG in pTR:127 construct and named it pCrbcLSD-GFP (Figure 5.2). Note that

pTR:127rbcLSD construct was designed in such a way that the AUG for the GFP is not in frame

with the AUG of PVX CP, consequently GFP will not be functional in the cytosol.

Page 114: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

95

However, confocal microscopic observations with transgenic plant harboring pCrbcLSD-GFP

construct failed to show GFP expression inside the chloroplasts as depicted in Figure 5.3.

Figure 5.3 Confocal microscopic observation of Nicotiana tabacum cv. Xanthi leaves harboring pCrbcLSD-

GFP.

Autofluorescence of chloroplasts is shown in red. DIC: Differential interference contrast (microscopy).

From this experiment, it could be speculated that the SD sequence alone might not be able to

mediate an efficient initiation of translation but needs to be complemented with an enhancer

sequence or/and additional levels of regulation for translation in chloroplasts. According to the

previous studies, the following sequence elements of the translation initiation region (TIR)

contribute to its translation efficiency: (a) the initiation codon, which is most commonly AUG

but sometimes GUG and very rarely UUG, AUU or CUG (292-295); (b) the Shine-Dalgarno

(SD) sequence (296, 297); (c) regions upstream of the SD sequence and downstream of the

initiation codon, which are often described as enhancers of translation (297-299). Cross-linking

studies have shown that the nucleic acid-binding domain of S1 is aligned with a region of the

Figure 5.2 Details of partial DNA sequences of the pCrbcLSD-GFP construct under the control of 35S promoter

and the nopaline synthase terminator (T-nos).

SD-like sequence (AGGGAGGG) is located 6 nucleotides upstream of the initiation AUG codon of GFP for possible

translation in the chloroplast.

Page 115: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

96

mRNA upstream of the SD, suggesting that S1 may interact with 5´ parts of the TIR (300, 301).

Consistent with this observation, A/U-rich sequences in front of the SD or downstream of the

initiator codon enhance protein synthesis (302, 303). Komarova, et al. (302) demonstrated that

nine sequences were acting as translational enhancers. They are all A/U-rich and contain very

few Gs contents. Disruption of the E. coli gene coding for S1 has been reported to be lethal

(304). A decreased level of S1 protein in the cell leads to a rapid decrease in total protein

synthesis (305). Thus, it can be speculated that the SD sequence alone cannot mediate efficient

initiation of translation but has to be complemented with an enhancer sequence.

5.3 Addition of 5´-translation control region of large sub-unit RuBisCO gene

To determine whether the additional determinants along with SD sequence are required to

translate GFP mRNA in chloroplasts, 5´-translation control region of chloroplastic large sub-unit

RuBisco gene, comprise of 14 N-terminal amino acids and 59 of 5´-UTR region, is designed

based on previous studies (210). In higher plant plastids mRNA sequences in the 5´-untranslated

region (UTR) were shown to be important for translation. 5´-UTRs and cis-elements required for

efficient translation of plastid mRNAs have been characterized by both in vivo and in vitro

studies (211, 306, 307). Using in vitro system, Yukawa, et al. (308) found that mRNAs carrying

unprocessed or processed rbcL 5´-UTRs were efficiently translated at similar rates by employing

a green fluorescent protein (GFP). Transcription of the tobacco rbcL mRNA initiates at 182

nucleotides upstream of the translation initiation codon (309). The primary transcript may be

processed to create an mRNA with a 58 nucleotide 5´-UTR (310, 311). Kuroda and Maliga (210)

employed a transgenic approach to demonstrate accumulation of the neomycin

phosphotransferase (NPTII) reporter enzyme when translationally fused with 14 N-terminal

amino acids encoded in the rbcL. Fifty-nine nucleotides of upstream were used as 5´-UTR

region. N-terminal coding region and the 5´-UTR were collectively designated as the 5´-

Page 116: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

97

translation control region or 5´-TCR. Considering the importance of 5´-TCR region, two clones

pC127TCR-GFP, and pCVdTCR-GFP are designed with the 5´-TCR region (Figure 5.4).

Figure 5.4 Details of partial DNA sequences of the pCvdTCR-GFP and pC127TCR-GFP constructs under the

control of the Cauliflower mosaic virus 35S promoter and the nopaline synthase terminator (T-nos).

Eggplant latent viroid chimeric construct pCvdTCR-GFP was included on the base of previous

findings by Gomez and Pallas (95) who demonstrated that the viroid sequence acting as a 5´-

UTR end mediated the trafficking and accumulation of a functional foreign mRNA into N.

benthamiana chloroplasts. However when the tobacco leaves were agroinfiltrated with

pCvdTCR-GFP and pC127TCR-GFP constructs it was observed that GFP is functional in

agrobacteria cells but not in chloroplasts (Figure 5.5).

Page 117: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

98

Figure 5.5 Confocal microscopic observation of GFP in N. benthamiana leaves after 72 hr of agro-

infiltration.

GFP is expressed inside the infiltrated leaves due to fluorescent bacterial cells harboring pCvdTCR-GFP (Panel

A) and pC127TCR-GFP (Panel B) constructs respectively. The signal for GFP is shown in green, the

autofluorescence of the chloroplast is shown in red.

To confirm whether this GFP expression is inside the agrobacteria cells, these bacterial

cells are analyzed as well under confocal microscopy. Consequently, a robust expression of GFP

is detected in bacterial cells as demonstrated by confocal microscopy as depicted in Figure 5.6.

Page 118: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

99

Figure 5.6 Confocal microscopic observation of GFP in agrobacteria cells after 48 hr.

GFP is expressed inside the bacteria cells harboring pCvdTCR-GFP (Panel A) and pC127TCR-GFP (Panel B)

constructs respectively in the presence of 5´TCR of rbcL which is located upstream of the GFP gene in the both

constructs.

In this context, it is important to note that the 16SrRNA of both the chloroplasts and the A.

tumefaciens share 79% nucleotide sequence homology and both have the sequence CCUCC at

their 3´ end that is complementary to the SD-like sequence GGAGG in the translation initiation

region. However, this expression in A. tumefaciens was at least 10 times less than what was

observed for the pCpETSD-GFP construct containing the highly efficient phage T7 5´-UTR

context (Figure 5.10). Previously we have shown (312) that there was no difference in GFP

expression between agrobacteria cells harboring constructs containing the entire 5´-TCR of rbcL

and only the 58 nucleotide 5´-UTR region, implying that the coding region downstream of the

AUG codon did not affect protein translation initiation in agrobacteria cells unlike that of

chloroplasts which require the entire 5´-TCR for successful protein translation (210).

Despite the presence of 5´-TCR in both pCvdTCR-GFP and pC127TCR-GFP constructs,

GFP was failed to express in the chloroplast of the infiltrated plants. One of the possibilities that

RNA tractor sequence is not translocated in the chloroplasts, it can be ruled out by the fact that

Page 119: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

100

Eggplant latent viroid (ELVd), a member of the Avsunviroidae family (a class of subviral plant

pathogens that infect, replicate and accumulate in chloroplasts), sequence definitely targets to the

chloroplast. In the case of pCvdTCR-GFP if the TCR is functional then GFP should be expressed

inside the chloroplast. So in this case, it might require some additional levels of regulation for

translation or change in secondary structure of RNA due to TCR sequence which inhibits

translation. Secondary structure formation near the 5´-end of a eukaryotic mRNA can have

negative or positive effects upon translation initiation (313).

5.4 Addition of 5´-UTR of Psb A gene for translation initiation of GFP in

chloroplast

Another attempt was carried out to translate GFP in chloroplast using 5´-UTR of psbA

chloroplast gene along with ELVd sequence used as a carrier sequence to the chloroplast. The 5´-

UTR of psbA gene previously has been successfully characterized for translation of reporter

genes both in vivo and in vitro studies (211, 308, 314, 315). Three elements within the 5´-UTR of

the chloroplast mRNA are reportedly required for translation in psbA gene. Two of them are

complementary to the 3´-terminus of chloroplast 16SrRNA (termed RBS1 and RBS2) and the

other is an AU-rich sequence (UAAAUAAA) located between RBS1 and RBS2 and is termed

the AU box. RBS1 and RBS2 are cooperatively required for efficient translation of psbA mRNA

encoding the D1 protein of photosystem II that is synthesized only in light-grown chloroplasts.

To determine translation in the chloroplast, a construct pCELVdpsbA-GFP that contained

ELVd sequence, 85 nucleotides as a 5´-UTR including RBS, AU-rich region and ATG of the

psbA gene upstream of the GFP gene was designed (Figure 5.7) and transformed in

Agrobacterium.

Page 120: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

101

Figure 5.7 Details of partial DNA sequences of the pCELVdpsbA-GFP construct in pC-GFP under the control

of the Cauliflower mosaic virus 35S promoter and the nopaline synthase terminator (T-nos).

Confocal microscopy studies with agro-infiltrated N.tabacum leaves exhibit that there is no

expression of GFP in both chloroplasts and agrobacterium (Figure 5.7), suggesting a major

difference in the translatability of the GFP protein between the 5´ non-coding sequences of the

Figure 5.8 Confocal microscopic observation for GFP in transgenic tobacco plant leaves and agrobacteria

cells harboring pCELVdpsbA-GFP construct.

GFP is not expressed both in the chloroplasts of transgenic plants (Panel A) and inside the bacteria cells

(Panel B) in the presence 5´-UTR of chloroplastic psbA gene which is located upstream of the GFP gene

in the construct.

RuBisCO large subunit gene and that of the psbA gene, even though both are encoded by the

chloroplastic genome and are known to be involved in photosynthesis. This led me to conclude

that the presence of the SD-like sequence close to the AUG start codon and a specific 5´-UTR

Page 121: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

102

sequence are required for translatability in A. tumefaciens. The rbcL gene with the SD-like

sequence 10 nucleotides away from the AUG codon satisfies this requirement whereas the psbA

gene SD-like sequence is much farther away (40 nucleotides upstream) from the AUG codon

and, therefore, does not allow positive GFP expression. GFP expression was not observed inside

the chloroplasts, even in the plants harboring pCELVdpsbA-GFP construct it can be assumed

that it requires some additional levels of regulation for translation in the chloroplasts. It might

need the interaction of 5´and 3´ ends of chloroplast mRNA which is common in cytoplasmic

mRNAs. In eukaryotes, interactions between the two termini of cytoplasmic mRNAs stimulate

the initiation of translation. The poly (A) binding protein (PABP) bound to the 3´poly (A) tail

interacts with initiation factors bound to the 5´-UTR, thus creating a ‘closed loop’ that promotes

the recruitment of the 40S ribosomal subunit. It is generally thought that the ‘closed loop’ role is

a quality control mechanism to promote translation of full-length mRNAs rather than truncated

forms (316). Translatable chloroplast mRNAs do not contain poly (A) tails. Most of them,

similarly to prokaryotic mRNAs, contain an AU-rich 3´-UTR with a terminal inverted repeat.

The 3´-UTR inverted repeat has been shown to play a role in the processing and stabilization of

the mRNA (317). Examples of modulation of translation initiation by interactions between the

two termini of mRNA in prokaryotes (318, 319) raise the possibility that such interactions might

also exist in chloroplast mRNAs and influence their expression. Indeed, there are several reports

that support a role for the 3´-UTR in translation initiation of several mRNAs. Correct processing

of the 3´-UTR was suggested to be required for high levels of translation initiation and

polysomal association in Chlamydomonas reinhardtii cells (320). Recent results from tobacco

transformants in which the influence of the psbA UTRs on the translation of a reporter gene were

studied indicated that including the psbA 3´-UTR resulted in a three to four-fold enhancement of

translation (321). Furthermore, through high-affinity binding of regulatory proteins to C.

Page 122: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

103

reinhardtii psbA mRNA is primarily via its 5´-UTR, the 3´-UTR was shown to increase the

affinity of binding of the 5´-UTR-binding protein complex (322). In another study, deletion of

the inverted repeat of the 3´ UTR of tobacco petD mRNA led to a reduction in petD expression

beyond that expected by the decrease in mRNA accumulation alone, indicating that the 3´-UTR

might also contribute to efficient translation (317). Further research is needed to establish the

generality of this phenomenon and its importance for translation efficiency.

5.5 Addition of bacterial translation initiation region (TIR) for GFP

expression

Since the translation machinery in the chloroplast generally resembles that of prokaryotes; the

chloroplast ribosomes are closely related to the eubacterial 70S-type ribosomes, chloroplast

transcripts like prokaryotes are not m7G capped at their 5´end, and lack 3´poly (A) tails.

Furthermore, the anti-Shine-Dalgarno (SD) sequences at the 3´ends of the 16SrRNAs of

cyanobacteria and chloroplasts share high homology with the E. coli anti-SD sequence (323-

325). I decided to express GFP using in E.coli translation initiation region, comprises the

initiator codon, Shine-Dalgarno (SD) sequence and translational enhancer A/U-rich sequences.

To achieve this target, first pET: GFP-construct was generated by cloning the GFP gene into a

Kanamycin-resistant plasmid pET29 vector, containing original SD sequence (AGGAGA) and

A/U-rich region (uuuguuuaacuuuaagaAGGAGAuauacauAUG) under the control of strong

bacteriophage T7 promoter (Figure 5.9). For protein production, this recombinant plasmid was

transferred to a host containing a chromosomal copy of the gene for T7 RNA polymerase. The

addition of isopropyl-β-D-thiogalactopyranoside (IPTG) to a growing culture induces T7 RNA

polymerase, which in turn transcribes the target DNA in the plasmid. The SD sequence

(AGGAGA) helps recruit the ribosome to the mRNA (GFP) to initiate protein synthesis by

Page 123: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

104

aligning it with the codon. The expression of GFP in E. coli BL21 Codon Plus strain harboring

pET-GFP construct is very high as shown in Figure 5.10.

Figure 5.9 Details of partial DNA sequences of the pET-GFP construct in pET29 under the control of T7

promoter and T7 terminator.

Figure 5.10 Fluorescence micrograph of GFP in E. coli cells transfected with the pET-GFP construct and induced

with 0.5 mM IPTG for 16 hr.

This clearly indicates that the S/D sequence (AGGAGA) is quite functional in E. coli.

Subsequently, this cassette including A/U rich, SD sequence and GFP was inserted into pTR:127

construct and designated as pC127pETSD-GFP (Figure 5.11).

Figure 5.11 Details of partial DNA sequences of the pC127pETSD-GFP construct in pC-GFP under the

control of the Cauliflower mosaic virus 35S promoter and the nopaline synthase terminator (T-nos).

Page 124: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

105

Figure 5.12 Confocal microscopic observation of GFP in leaves and agrobacteria cells harboring pC127pETSD-

GFP after 72 hr.

GFP is expressed inside the infiltrated leaves due to fluorescent agrobacterial cells (Panel A) which is confirmed by

observing the agrobacteria cells alone (Panel B). The signals for GFP are shown in green and the autofluorescence of

the chloroplast is shown in red.

Agroinfiltration experiments demonstrated that GFP was expressed in agrobacterial cells but not

in the chloroplast as shown in Figure 5.12. CaMV 35S promoter was regarded to be plant

specific and not active in other organisms such as bacteria, fungi or human cells. This

assumption had been proven wrong. It has also been established that the CaMV35S promoter is

not only active in plants but also in E.coli, in soil bacteria Agrobacterium rhizogenes (326),

yeast (327) and in extracts of human cancer cell lines (328). According to these results this viral

35S promoter has the ability to initiate gene expression in A. tumefaciens (Figure 5.12).

However from the Figure 5.12, it seems that the additional levels of regulation are required for

translation in chloroplasts. The chloroplast S1 protein is a nuclear-encoded protein and is much

shorter than the bacterial protein. Different RNA-binding specificities were reported for the

chloroplast S1 protein with preference to AU-rich RNA sequences that are common in the 5´-

UTR of chloroplast genes (329-332). Further research is needed to establish the generality of this

phenomenon and its importance for translation efficiency. In future experiments are required to

Page 125: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

106

generate a construct where, beside the RNA tractor activity, sequences like SD and other

chloroplast ribosomal recognition sequences would be tested to allow translation of the GFP

reporter gene in the chloroplast.

Page 126: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

107

APPENDIX B

6 STRATEGY TO FIND OUT THE CAPACITY OF CHIMERIC

EGGPLANT LATENT VIROID SEQUENCE AS A 5´-UTR FOR

GFP EXPRESSION IN CHLOROPLASTS

Gomez and Pallas (95) reported that a chimeric DNA containing a modified Eggplant latent

viroid cDNA sequence fused as a 5´-UTR of GFP mediates not only the import of GFP mRNA

into the chloroplasts but also allows a high expression of GFP in chloroplasts. The specific

localization of the functional chimeric transcripts was demonstrated in transient expression

assays with N. benthamiana plants using confocal microscopy. This non-coding viroid,

a member of the Avsunviroidae family, is naturally transported and replicated in chloroplasts.

When a chimeric sequence of this viroid was placed in front of GFP, it resulted in a high degree

of the GFP expression (95). However, it is not clear how and why such a chimeric viroid

sequence allowed the translation in chloroplasts. Whether the viroid sequence or/and specific

structure motifs are required for translation of GFP in chloroplasts. To address these questions,

first the chimeric viroid sequence (AN -HM136583) from the Eggplant latent viroid (ELVd) was

synthesized and cloned in a binary vector pC-GFP carrying the GFP cDNA under the control of

the Cauliflower mosaic virus 35S promoter and the nopaline synthase terminator (T-nos). The

resultant vector pCELVd-GFP contains an ELVd derived cDNA fused as a untranslated region

(UTR) to the 5´end of the GFP cDNA but without AT-rich leader sequence Figure 6.1.

Page 127: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

108

Figure 6.1 Details of partial DNA sequence of Eggplant latent viroid for different constructs.

A) pCELVd-GFP without an AT-rich leader sequence B) pCATvd-GFP, with an AT-rich leader sequence C)

pCATvdAnti-GFP, SD-like (GGAGGATTCG) sequence (red) is replaced with anti-SD-like (CCTCCTAAGC) sequence

D) and pCATvd80-GFP (an internal110 nt of the functional chimeric ELVd sequence previously shown to be sufficient

for the trafficking of functional GFP-mRNA into chloroplasts (96) is further truncated to 80 nt. All constructs are under

the control of the Cauliflower mosaic virus 35S promoter and the nopaline synthase terminator (T-nos).

This construct was transfected into A.tumefaciens. When the functionality of this chimeric

transcript in N. benthamiana transgenic plants was analyzed by confocal microscopy, GFP

expression was either invisible or very low in the chloroplasts. However when AT- rich leader

sequence is inserted to the upstream of viroid sequence (Figure 6.1) the accumulation of GFP in

Page 128: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

109

chloroplasts is very high (Figure 6.2, panel B), suggesting that viroid sequence is fully

functional for GFP expression only in the presence of AT-rich sequence.

Figure 6.2 The GFP arising from different ELVd-5´-UTR-GFP transcripts.

Confocal microscope observation of the N. benthamiana leaves expressing GFP: Panel A) pCELVd-GFP

construct without AT-rich region at the upstream of ELVd, GFP is localized in nucleus, cytoplasm and less in

chloroplast; Panel B) pCATvd-GFP construct with AT-rich region, GFP is mostly localized in the chloroplasts;

Panel C) pCATvdAnti-GFP construct, SD-like (GGAGGATTCG) sequence is replaced with anti-SD-like

(CCTCCTAAGC) sequence, GFP is equally localized in the nucleus, cytoplasm, and chloroplasts; Panel D)

pCATvd80-GFP construct, ELVd sequence is truncated to 80 nucleotides only, GFP is localized in nucleus and

cytoplasm only. These observations were taken from agroinfiltrated leaves after 72 hr. The left Panel (top to

bottom) show the GFP fluorescence (green), middle Panel (top to bottom) indicates the autofluorescence (red) of

Page 129: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

110

chloroplasts (chlorophyll) and any overlap of GFP and chloroplast fluorescence is indicated in yellow in the

merged right Panel (top to bottom).

This AT-rich sequence is derived from the 5´-UTR region of the capsid protein of Alfalfa mosaic

virus (AIMV) and is believed one of the most efficiently translated RNAs known (333). This

sequence was shown to function as a translational enhancer in vitro (334) and in vivo (335).

Previously it has been also shown that the middle region of the chimeric vd 5´-UTR, comprised

of 110 nucleotides, is important for the expression GFP in the chloroplast, however, the

functionality of the localization is increased when it is combined with other regions (96). A Shin-

Dalgarno like sequence (GGAGGATTCG) is noticed in this middle region of the chimeric ELVd

sequence. It is hypothesized this sequence in combination with secondary or/and tertiary

structure of the central region may be playing a role in the translation of GFP in chloroplasts. To

find this, the SD-like sequence GGAGGATTCG is replaced with CCTCCTAAGC sequence and

a new construct, pCATvdAnti-GFP, is generated. When the functionality of pCATvd-GFP was

analyzed by comparing its transient expression with that of the pCATvdAnti-GFP, it was

observed in agroinfiltrated N.benthamiana plants that the GFP from the transcripts of pCATvd-

GFP was mostly localized in the chloroplasts (Figure 6.2, Panel B). However, GFP from the

transcripts of pCVdAnti-GFP was equally distributed in the nucleus, cytoplasm and the

chloroplasts (Figure 6.2, Panel C), indicating that the Shine-Dalgarno-like sequence may be

contributing more in the localization of the RNA rather an expression of GFP in chloroplasts or it

might have a dual role. In another experiment, the middle region (110 nt) was further truncated

to 80 nucleotides, still having an SD-like sequence, and inserted into pCAT-GFP to create

pCATvd80-GFP to determine its functionality for GFP expression. When the agroinfiltrated N.

benthamiana plants were examined by confocal microscopy, it was observed that the GFP

arising from the transcripts of this construct was uniformly distributed in the nucleus and

cytoplasm (Figure 6.2, Panel D) but not in the chloroplasts, suggesting this SD-like sequence

Page 130: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

111

alone is not enough for translation in chloroplasts which also confirms the requirement of its

structure motif. Another possibility is, it might have lost its translocation capacity to ship its

RNA to the chloroplasts which needs to be determined. However, it is not clear how and why

such a chimeric viroid sequence allowed the translation in chloroplasts. Whether the viroid

sequence or/and specific structure motifs are required for translation of GFP in chloroplasts.

Overall these results suggest that sequence elements and/or secondary or tertiary structural

domain together may require the translation of functional mRNA into the chloroplasts. Further

experiments are required to solve this mystery.

Page 131: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

112

APPENDIX C

7 VIRAL AND CHLOROPLASTIC SIGNALS ESSENTIAL

FOR INITIATION AND EFFICIENCY OF TRANSLATION

IN AGROBACTERIUM TUMEFACIENS

Results of this study were published (Ahmad T, Venkataraman S, Hefferon K, AbouHaidar MG.

2014.. Biochemical and biophysical research communications 452:14-20).

7.1 SUMMARY

High-level protein expression vectors using CaMV 35S promoter and highly efficient translation

initiation signals for Agrobacterium tumefaciens are relatively less explored compared to that of

Escherichia coli. In the current study, we experimentally investigated the capacity of CaMV 35S

promoter to direct GFP gene expression in A. tumefaciens in the context of different viral and

chloroplastic translation initiation signals. GFP expression and concomitant translational

efficiency were monitored by confocal microscopy and western blot analysis. Among all of the

constructs, the highest level of translation was observed for the construct containing the phage

T7 translation initiation region followed by that with chloroplastic RuBisCO Large Subunit

(rbcL) 58-nucleotide 5´ leader region including its SD-like (GGGAGGG). Replacing the SD-like

(GGGAGGG) with non-SD-like (TTTATTT) or replacing the remaining 52 nucleotides of rbcL

with nonspecific sequence completely abolished translation. In addition, this 58 nucleotide

region of rbcL serves as a translational enhancer in plants when located within 5´-UTR of the

GFP mRNA. Other constructs including those containing sequences upstream of the coat

proteins of Alfalfa Mosaic Virus, or the GAGG sequence of T4 phage or the chloroplastic atpI

and/or PsbA 5´-UTR sequence supported low levels of GFP expression or none at all. From these

studies, we propose high expression vectors in A. tumefaciens and /or plants which contain the

CaMV 35S promoter, followed by the translationally strong T7 SD plus RBS translation

Page 132: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

113

initiation region or the rbcL 58-nucleotide 5´ leader region upstream of the gene for the protein

of interest.

7.2 INTRODUCTION

Initiation of translation in E. coli involves base pairing between a purine-rich Shine-Dalgarno

(SD) domain at the 5´ untranslated region (5´-UTR) of mRNA and the complementary anti-SD

sequence at the 3´ end of 16SrRNA (336). There are distinct sequence elements of the translation

initiation region known to contribute to its efficiency (337): the initiation codon, the Shine-

Dalgarno (SD) sequence (297, 338) as well as regions upstream of the SD sequence and

downstream of the initiation codon, described as enhancers of translation (339). The distance

between the SD sequence and the initiation triplet has a marked effect on the efficiency of

translation (340). The 6-nucleotide consensus SD AGGAGG core sequence causes the highest

level of protein synthesis.

Chloroplasts have their own translation system, which shows strong homologies to that of

prokaryotes. This is consistent with the presence of a Shine-Dalgarno (SD) sequence (GGAGG)

located within 12 nucleotides of the AUG initiation codon of many plastid genes (341).

Moreover, the sequence near the 3´ end of the plastid 16SrRNA contains a highly conserved

polypyrimidine-rich region (CCUCC) complementary to the SD sequence as in bacteria. Over

90% of higher plant chloroplast genes encoding polypeptides possess an upstream sequence

similar to the bacterial SD sequence. The spacing of these chloroplast SD-like sequences is less

conserved, ranging from -2 to -29 nucleotides (342). Translation of several chloroplast mRNAs

is also regulated in response to light as well as to some nuclear-encoded factors. In this regard, it

is interesting to study how well chloroplastic translational machinery function in Eubacteria such

as E. coli and A. tumefaciens. The transfer of T-DNA from Agrobacterium into the plant genome

represents a natural horizontal gene transfer across kingdom barriers and implicates a closer

Page 133: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

114

evolutionary relationship between Agrobacterium and plants than between any other Eubacterial

organism (such as the E. coli) and plants. The aim of the present study is to investigate the

sequence determinants responsible for efficient translation in A. tumefaciens, which on the one

hand is highly similar to E. coli in terms of its dependency on the SD sequence for the

translation, while on the other hand is also mechanistically similar to chloroplast genes such as

the large subunit of the RuBisCO in its dependence on the 5´upstream control region. Also, the

essential molecular determinants for the design of an ideal Agrobacterial expression vector are

considered.

7.3 MATERIALS AND METHODS

7.3.1 Construction of GFP expression plasmids:

The binary vector pCAMBIA1300 (CAMBIA, Canberra, Australia) was used in this study. To

create a pCTCR-GFP construct, the translation control region (TCR) (210), comprised of 58

nucleotides of 5´-UTR and 45 nucleotides from the N-terminal coding region of the rbcL gene

were synthesized and cloned in the pUC57 plasmid (Bio Basic Inc.). Following digestion of

pUC57 by KpnI/BamHI and XbaI/BglII respectively and gel purification (QIAquick Gel

Extraction Kit, QIAgen), rbcL TCR DNA fragments were subcloned into a pC-GFP binary

plasmid using the respective restriction sites. All other vectors of the pC-GFP series were

produced by ligating double-stranded oligonucleotides into restriction-enzyme digested plasmid

DNA with compatible ends (Table 7.1).

Page 134: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

115

Table 7.1 Sequences of the translation initiation signals in the pC-GFP vector.

Vector Description Oligonucleotid/DNA sequence (5´→3´)

pC T7SD-GFP

Construct with

PhageT7 trailer

sequence (T7

translational enhance

RBS) and is

available in pET-X-

series.

Sense (XbaI overhang)

ctagttaataattttgtttaactttaaGAAGGAGatatacatATGg

Antisense ( BamHI overhang)

gatccCATatgtatatCTCCTTCttaaagttaaacaaaattattaa

pC rbc58-GFP

Construct with only

58 nucleotides of 5´-

UTR of the rbcL gene.

Sense (XbaI overhang)

ctagtgtcgagtagaccttgttgttgtgagaattcttaattcatgagttgtaGGGAGGGatttATGg

Antisense (BamHI overhang)

gatccCATaaatCCCTCCCtacaactcatgaattaagaattctcacaacaacaaggtctactcgaca

PC rbc58AT-GFP Construct with 58

nucleotides of 5´UTR

of the rbcL gene

where GGGAGGG

sequence is replaced

with TTTATTT.

Sense (XbaI overhang)

ctagtgtcgagtagaccttgttgttgtgagaattcttaattcatgagttgtaTTTATTTatttATGg

Antisense (BamHI overhang)

gatccCATaaatAAATAAAtacaactcatgaattaagaattctcacaacaacaaggtctactcgaca

pC rbc33-GFP

Construct with 33

nucleotides of 5´-UTR

of the rbcL gene.

Sense (XbaI overhang ctagtaattcttaattcatgagttgtaGGGAGGGatttATGg

Antisense (BamHI overhang) gatccCATaaatCCCTCCCtacaactcatgaattaagaatta

pC rbcSD-GFP

Construct with only

SD sequence of rbcL

gene, the 5´-UTR

sequence is replaced

with non rbcL

sequence

Sense (KpnI overhang)

gtacattgaacagttaagtttccattgatactcgaaagatgtcagcaccaGGGAGGGg

Antisense (BamHI overhang)

gatccCCCTCCCtggtgctgacatctttcgagtatcaatggaaacttaactgttcaat

pC PsbA-GFP

Construct with 85

nucleotides of 5´-UTR

of PsbA gene

Sense (XbaI overhang)

ctagtaaaaagccttccattttctattttgatttgtagaaaactagtgtgcttGGGAGtcccTGATGATtaaataa

accAAGattttaccATGg

Antisense (BamHI overhang)

gatccCATggtaaaatCTTggtttatttaATCATCAgggaCTCCcaagcacactagttttctacaaatca

aaatagaaaatggaaggcttttta

pC ATP58 Construct with 58

nucleotides of 5´-UTR

of ATPI gene.

Sense (XbaI overhang)

ctagtagatggttgaatcaaaaaattttgtttaaagttcaattttttcaGAGGGCAAGGcaatATGg

Antisense (BamHI overhang

gatccCATattgCCTTGCCCTCtgaaaaaattgaactttaaacaaaattttttgattcaaccatcta

pC AT-GFP Construct with 5´-

UTR of the capsid

protein of alfalfa

mosaic virus RNA.

Sense (KpnI overhang) gtacagtttttatttttaattttctttcaaatacttccaggatctctaGAg

Antisense (BamHI overhang)

gatcCTCtagagatcctggaagtatttgaaagaaaattaaaaataaaaact

pC TCR-GFP

Construct with 58

nucleotides of 5´-UTR

and 45 nucleotides

from the N-terminal

coding region of the

rbcL gene. The

required DNA

fragment was

synthesized. The

sequence of only plus

strand is given.

ctagtgtcgagtagaccttgttgttgtgagaattcttaattcatgagttgtaGGGAGGGatttATGtcaccacaaa

cagagactaaagcaagtgttggattcaaagctg

Page 135: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

116

Italic letters indicate restriction site overhangs. Underlined capitalized bold letters indicate SD-sequences. Upper

case bold letters indicate start codons. Sequence of the sense and antisense primers used to generate the various

constructs is shown

Briefly, complementary oligonucleotides synthesized by Eurofins MWG Operon (Huntsville,

AL) were mixed in equimolar amounts (50 µM each), boiled and annealed by cooling to room

temperature and ligated into already restriction enzyme digested pC-GFP vector using T4 DNA

ligase (New England Biolabs) according to the manufacturer's protocol. The product of each

ligation reaction was used to transform E. coli DH5-alpha competent cells and Kanamycin

(50µg/mL) resistant bacterial colonies were screened for the presence of the proper recombinant

constructs. The presence and accuracy of the inserted gene within the expression cassette in the

final recombinant constructs was confirmed by DNA sequencing (The Centre for Applied

Genomics, Toronto, Canada) using the GFP-R reverse primer:5´-

AAGTCGTGCTGCTTCATGTG -3´.

7.3.2 Agrobacterium transformation

A modified freeze-thaw method for transformation of Agrobacterium tumefaciens was used as

reported previously (343). After transformation, the cells were resuspended in LB such that all

the samples contained a uniform OD595 of 1.0. From this, equal culture amounts were in turn

taken to perform the downstream RNA, confocal microscopy, and western blot analyses.

7.3.3 RNA isolation, reverse transcription and PCR

Total RNA was isolated according to a modified method described by AbouHaidar, et al. (344)

and subjected twice to DNase I treatments (New England Biolabs, NEB). A reverse transcription

reaction of each sample was performed on 1 µg of total RNA with 200 units of M-MLV reverse

transcriptase (Promega), 200 ng of GFP/16SrRNA reverse primer and 500 µM dNTPs in a final

volume of 20 µl as recommended. Primers GFP 5´-ACGTAAACGGCCACAAGTTC-3´

Page 136: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

117

(forward) and GFP 5´-AAGTCGTGCTGCTTCATGTG-3´ (reverse) were used to amplify an

187 bp of GFP gene. Primers 16SrRNA 5´-AACACATGCAAGTCGAACGC-3´ (forward) and

16SrRNA-R 5´-TAGGCCTTTACCCCACCAAC-3´ (reverse) were used to amplify a 187 bp

fragment of Agrobacterium 16SrRNA as an internal and comparative control for semi-

quantitative PCR.

7.3.4 Detection of GFP expression

7.3.4.1 Confocal microscopy

Following Agro-transformation, cell samples each containing OD595 to 1.0 were spun down and

the pellets resuspended in 10 mM MES (4-Morpholineethanesulfonic acid sodium salt) buffer,

pH 5.7. A drop of each cell culture was overlaid on a glass slide and live cell imaging was

performed on a confocal microscope (TCS SP5, Leica Microsystems) using a 100× oil objective

lens. The 488-nm laser was used for GFP imaging. Differential interference contrast (DIC)

microscopy was used for comparative studies of all the constructs. Images were analyzed by

Leica Application Suite Advanced Fluorescence (LAS AF) software.

7.3.4.2 SDS-PAGE and Western blotting

Following Agro-transformation, the cell samples, each adjusted OD595 to 1.0, were harvested by

centrifugation and protein from each pellet was extracted using in TMPDTNU (50 mM Tris, 20

mM MgCl2, 1 mM PMSF, 100 mM DTT, 2% Triton X-100, 0.5% NP-40 and 8 M urea) buffer

Equivalent protein amounts were loaded as determined by the Bradford Protein Assay reagent kit

(Bio-Rad, Hercules, CA) and Coomassie Brilliant Blue R-250 staining. SDS-PAGE and western

blot analyses were according to Sambrook, et al. (212).

Page 137: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

118

7.4 RESULTS AND DISCUSSION

GFP expression in ten pCAMBIA constructs (Fig. 1B) containing different translation initiation

contexts upstream of the GFP gene was monitored by confocal microscopy and western blot

analysis, after transformation of A. tumefaciens (GV3101 strain) with the respective constructs.

Figure 7.1 Schematic representation of constructs used in this study.

Arrows indicate the direction of transcription and translation. 35S is the CaMV 35S promoter. T-nos:

represents the transcription terminator; the box between the 35S and GFP contains the different translation

initiation contexts. GFP box is differently colored to reflect the efficiency of its expression. Dark green box for

the T7SD shows the highest expression, followed by that of the rbcL TCR and the rbcL 58 nucleotide 5´-UTR

region (light green). Boxes in light green represent marginal GFP expression while unfilled boxes show no

GFP expression. Note: Figures not drawn to scale.

All constructs uniformly contained the CaMV 35S promoter and GFP gene followed by the T-

nos terminator. This produces the same GFP transcript levels for all the constructs. The only

difference between the constructs was in the sequence of the translation context upstream of the

GFP coding sequence, which resulted in the differential GFP expression.

Page 138: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

119

7.4.1 Estimation of equal GFP transcript levels in A. tumefaciens harboring

each of the above constructs

Transcription levels of the GFP mRNA for all the constructs were measured by semi-quantitative

RT-PCR experiments using the 16SrRNA expression levels as the internal control (Figure 7.2,

Top Panel).

Figure 7.2 Quantitation of equivalent GFP transcript levels for all the constructs used in this study.

Two percentage agarose-TBE gel analysis of RT-PCR products using primers specific for the 16SrRNA of

Agrobacterium as well as primers specific for the GFP mRNA (Materials and Methods). Note the relatively

higher levels of the cDNA for 16SrRNA (Panel A) compared to that of the GFP mRNA (Panel B); also of note is

the equivalent amounts of the cDNA for the 16SrRNA in all the Lanes (Panel A) as well as equivalent amounts

of the GFP-specific cDNA in all the Lanes (Panel B), each representing the constructs used in this study. The

fractional numbers in Panel C represent the various dilutions of the RT-PCR product for the 16SrRNA. Compare

the amounts of cDNA in Panel B with those of Panel C: the amounts of the GFP cDNA is equivalent with that of

the 1/6th dilution of the RT-PCR product for the 16SrRNA.

The transcriptional efficiency of the CaMV 35S promoter was also compared to that of the

ribosomal RNA (rrn) promoter, as the latter uniformly showed similar high-level stable

expression in all the cells harboring the respective constructs. PCR reactions in the above

experiment were extended only up to 20 cycles in order to enable quantitation of the RNAs at the

log phase before cDNA synthesis reached saturation levels. We observed that the GFP mRNA

expression was uniform and the transcript levels corresponded to 1/6 dilution of the 16SrRNA in

Page 139: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

120

all the cells harboring the respective constructs (Figure 7.2, compare middle and bottom

Panels).

7.4.2 Major differences in translation initiation requirements between A.

tumefaciens and E. coli: High GFP translation levels in A. tumefaciens

under the control of phage T7 translational enhancer and RBS

Figure 7.1 shows a summary of a series of constructs with different ribosomal initiation contests.

Construct pC T7 SD-GFP which contained the phage T7 translational enhancer along with the

Shine-Dalgarno sequence (GAAGGAG) and the ribosome binding site (derived from the 5´ non-

coding region of the Novagen expression vector, pET29) upstream of the GFP coding sequence,

yielded very high levels of GFP protein (Figure 7.3, Panel 2) as observed by strong green

signals upon confocal microscopy and by western blot analysis of the expressed protein at ca.27

kDa (Figure 7.4, Lane 1, pCT7SD-GFP). Surprisingly, this construct gave very poor expression

in E. coli (data not shown) indicating major differences in the translational machinery between

these two microorganisms.

Page 140: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

121

Page 141: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

122

Figure 7.3 Detection of green fluorescence due to GFP expression (and translational efficiency) for each of

the constructs (Panels 1-10) after transformation into Agrobacterium and confocal microscopy.

The first image of each Panel represents an image with GFP filter; the middle image that of the DIC filter; and the

last image is an overlap of the GFP over the DIC picture.

On the other hand, a construct containing solely the phage T4 SD sequence GAGG between the

CaMV 35S promoter and the ATG of the GFP gene did not express GFP in A. tumefaciens

showing that the T4 SD sequence alone was not sufficient for translation initiation in this

Page 142: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

123

organism (Figure 7.3, Panel 1 and Figure 7.4, Lane 10, pC-GFP), whereas in E. coli where the

T4 SD sequence by itself was sufficient to drive detectable GFP expression (345).

Figure 7.4 Western blots of the enhanced GFP protein (28 kDa) using anti-GFP antiserum and alkaline

phosphatase enzyme-linked secondary antibody conjugate.

Note the highest level of GFP expression for the pCT7SD-GFP construct (Lane 1), followed by that of the

pCrbcL TCR-GFP (Lane 2) and the pCrbcL58-GFP constructs (Lane 3), the latter two in equivalent amounts.

The pCrbcL33-GFP (Lane 4), pCAT-GFP (Lane 6) and pCATP58-GFP (Lane 7) constructs show faint bands

indicating marginal GFP expression. All other Lanes (Lanes 5, 8, 9 and 10) are negative for GFP expression.

7.4.3 Effect of the AT-rich sequence from the (AIMV) upstream of the GFP

gene on its translation in A. tumefaciens

AIMV CP RNA is one of the most efficiently translated RNAs known (333) and its sequence has

been shown to function as a strong translational enhancer (335). Thirty-three nucleotides

containing the 5´-UTR of the AIMV capsid protein gene with SD sequence GAGG were cloned

upstream of the GFP coding sequence and then expressed in A. tumefaciens. Data presented in

Figure 7.3, Panel 3 and Figure 7.4, Lane 6, pC AT-GFP, showed weak GFP signals as

compared to that of T7 SD construct. This result demonstrated that in A. tumefaciens, the T4 SD

sequence did not produce enhanced levels of GFP translation even though in combination with

the reportedly translationally robust AIMV CP 5´-UTR sequence.

Page 143: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

124

7.4.4 Analysis of 5´ -UTR sequences derived from some natural chloroplastic

genes on translation in A. tumefaciens.

Regulation of expression of chloroplastic genes occurs mainly at the level of translation and has

several features similar to that of prokaryotes. However, although the SD complementary

sequence of the chloroplast 16SrRNA is highly conserved between prokaryotes and plastids

(346), the putative SD sequence is poorly conserved in chloroplasts, both in terms of primary

sequence and location relative to the start codon (306, 347). Also, plastid gene expression is

controlled at the posttranscriptional level by protein factors that are encoded in the nucleus and

transported into the chloroplast (348, 349), adding a layer of complexity to chloroplast gene

expression that is not found in prokaryotes.

In order to compare the above prokaryotic translation initiation sequence context with

that of the chloroplast context, and in order to examine the evolutionary closeness of

translational regulation between A. tumefaciens and chloroplasts as against E. coli, we made

constructs with 5´ initiation contexts from different chloroplast genes and used them to examine

the extent of GFP expression in A. tumefaciens.

7.4.5 Identification of the minimal translation initiation sequence of the rbcL

gene required for high-level expression in A. tumefaciens

Ribulose1, 5-bisphosphate carboxylase/oxygenase (RuBisCO) large subunit (rbcL) is encoded by

chloroplast genome. The 5´-UTR of rbcL is highly conserved in the region - 1 to -58 and

contains an SD sequence (GGAGG) between -4 and -12 (350). When GFP was cloned

downstream of the 5´ translation initiator region of the rbcL gene that included the SD-like

sequence (GGAGG that is complementary to the CCUCC at the 3´ terminal region of the

Agrobacterium 16SrRNA), there was no detectable translation of the GFP in A. tumefaciens

Page 144: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

125

(Figure 7.3, Panel 5, Figure 7.4, Lane 5, pC rbcSD-GFP), demonstrating that the rbcL 5´

translation initiator region (GGGAGGG) by itself is not sufficient for successful translation

initiation. When the 5´ TCR (translation control region containing the 58 nucleotide 5´ leader,

the SD-like sequence and the N-terminal coding sequence for the first 14 amino acids) of the

rbcL gene that was essential for successful translation initiation in chloroplasts (210), was

introduced upstream of the ATG of the GFP gene sequence, a robust expression of GFP was

detected in Agrobacterium, as demonstrated by confocal microscopy (Figure 7.3, Panel 6) and

by immunoblot analysis (Figure 7.4, Lane 2, pC rbcLTCR-GFP). Next, we cloned just the 58

nucleotide 5´ -UTR of the rbcL gene upstream of the GFP gene and transformed it into A.

tumefaciens. Confocal microscopy (Figure 7.3, Panel 7) and western blotting (Figure 7.4, Lane

3, pCrbc58-GFP) showed that the GFP expression with this construct was equivalent to that of

the 5´ TCR. However, it was comparatively less than what was observed for the construct

containing the highly efficient phage T7 5´-UTR context (Figure 7.3, compare Panels 2 and 6,

Figure 7.4, compare Lane 1, pC T7SD-GFP and Lane 2, pC rbcLTCR-GFP). This led us to

the conclusion that just the 58 nucleotides at the rbcL 5´-UTR was sufficient to initiate efficient

translation in Agrobacteria. Furthermore, it was observed that these 58 nucleotides serve as

translational enhancers when located within 5´-untranslated mRNA leaders (Figure 7.5, a) in

plants.

Page 145: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

126

Figure 7.5 Confocal microscopic observation of GFP in N. tabacum leaves after 72 hr of agro-infiltration

with a) pC rbcL58-GFP and b) pC-GFP constructs respectively.

A truncation of the same sequence from 58 to 33 nucleotides from the 5´-terminus resulted in a

dramatic reduction of GFP translation (Figure 7.3, Panel 8, Figure 7.4, Lane 4, pC rbcL33-

GFP), showing the importance of the 58 base leader sequence for translation in A. tumefaciens.

In another experiment when SD-like (GGGAGGG) of the 58 base leader sequence was mutated

to the TTTATTT sequence, the translation was totally abolished (Figure 7.3, Panel 4, Figure

7.4, Lane 9, pC rbcL58AT-GFP), indicating that SD-like sequence and context sequence are

important for successful translation.

7.4.6 Comparison of the 5´-UTRs of both rbcL and Psb A genes for

translation initiation in A. tumefaciens

Testing translational requirements for successful protein expression in A. tumefaciens was

performed using the psbA gene that encodes the D1 protein of photosystem II. A construct that

contained 85 nucleotides as a 5´-UTR including RBS, AU-rich region and ATG of the psbA gene

(350) upstream of the GFP gene was made and transformed into Agrobacterium. Results showed

no detectable GFP expression as judged by confocal microscopy (Figure 7.3, Panel 9) and by

western blot analysis (Figure 7.4, Lane 8, pC psbA-GFP). This indicated that there is a major

Page 146: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

127

difference in the translatability of the GFP protein between the 5´ non-coding sequences of the

rbcL gene and that of the psbA gene, even though both are encoded by the chloroplastic genome

and are known to be involved in photosynthesis. The rbcL gene with the SD-like sequence 10

nucleotides away from the AUG codon (along with its 58 nucleotide 5´ leader) satisfies the

requirement for successful translation in A. tumefaciens, whereas the psbA gene SD-like

sequence is much farther away (40 nucleotides upstream) with unfavorable 5´ sequence context

and, therefore, does not allow positive GFP expression.

7.4.7 5´-UTR of the chloroplastic atp1 gene supports low GFP translation

levels in A. tumefaciens

The atpI gene, which encodes the CFo-IV subunit of the ATP synthase complex (351) is an

important chloroplastic gene, which possesses an SD-like, sequence at an ideal distance: 5

nucleotides upstream of the start codon. When the SD-like sequence along with the 58 nucleotide

5´ translational determinant of the atpI gene in chloroplasts (352), was cloned upstream of the

GFP coding sequence and expressed in A. tumefaciens, a low level of GFP expression was

observed (Figure 7.3, Panel 10; Figure 7.4, Lane 7, pC ATP58-GFP). This result shows that

recognition of the translational context in A. tumefaciens is dependent on factors other than just

the correctly positioned SD-like sequence and that the upstream sequence that works in

chloroplasts may not work in A. tumefaciens. Therefore, of all the chloroplastic constructs used

in this study, the rbcL 58 with the ideal spacing of the SD-like sequence from the initiation

codon (10 nucleotides) and the ideal upstream sequence was the most robust in supporting GFP

expression in A. tumefaciens.

Page 147: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

128

7.5 CONCLUSION

In the light of the above findings, it would be interesting to examine if there is any other

chloroplastic gene besides the rbcL gene that can be translated to the same level, if not higher

than that of the rbcL gene product in A. tumefaciens. Results from such further experiments

would enable us to make a firm conclusion on both the cis- and trans-acting factors of the

Agrobacterial translation machinery. It would also help establish the nature of the evolutionary

relationship between A. tumefaciens and the chloroplasts as much of the studies in this regard

have so far been predominantly performed using E. coli as the major Eubacterial organism.

The current study reveals unique translation initiation requirements for high-level protein

expression in A. tumefaciens. This together with the high strength 35S promoter that shows

enhanced transcription levels would enable the design of unique, robust protein expression

vectors for A. tumefaciens using binary vectors such as pCambia. This system also facilitates

transgene design for high-level expression of recombinant proteins using a binary vector in A.

tumefaciens before further downstream applications such as generation of transgenic plants and

plastid-based expression. Thus preliminarily enhanced translation in A. tumefaciens can be used

as a predictor of high-level protein synthesis in transgenic plants considering the time-consuming

nature of the latter process.

Page 148: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

129

APPENDIX D

8 ANALYSIS OF THE INTERNAL RIBOSOME BINDING

SITE (IRBS) OF PVX

8.1 BACKGROUND

In potexviruses, translation of the downstream ORFs, triple gene block, and CP, is believed to

take place from a series of capped subgenomic RNAs (sgRNAs) which are generated from the

genomic RNA. In vitro translation studies (171, 353) showed that two sgRNAs (sgRNA1 and

sgRNA2) of 2.1 and 1.4 kb were necessary for translation of the TGB while a third sgRNA of

0.9 kb (sgRNA3) was required for expression of the viral coat protein. It was also noticed that

that the 25 kDa protein was synthesized as a single translation product of the 2.1 kb subgenomic

(sg) RNA and that both the 12 kDa and 8 kDa proteins are expressed from the same 1.4 kb

sgRNA. In vitro translation studies also indicated that the CP could not be translated from

genomic RNA; rather, it could be readily translated from a smaller, subgenomic RNA encoding

the CP gene (171, 354, 355). However, in vitro studies of papaya mosaic virus, narcissus mosaic

virus and clover yellow mosaic virus exhibited that expression of the CP could take place from

genomic as well as subgenomic RNAs, possibly by means of internal initiation of translation

(356-360).

Previously in our lab Hefferon, et al. (174) demonstrated with transgenic plants that the 8

kDa protein and the CP could be translated from a dicistronic construct corresponding to the C-

terminal half of the 12 kDa protein, the complete 8 kDa and CP genes of PVX, indicating that

translation of CP could take place either by internal entry of ribosomes or by a

termination/reinitiation mechanism. Furthermore, these authors showed that expression of the

downstream cistron was persisted in protoplasts electroporated with RNA transcripts of the

Page 149: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

130

dicistronic construct, even after stable hairpin structures were placed in front of dicistronic

constructs containing either the PVX CP gene or a reporter gene as the downstream cistron. The

8 kDa protein or reporter gene was detected only in the absence of the hairpin structure. Since

CP was detected in the presence or absence of a stable hairpin structure at the 5´ terminus,

suggesting that the former model (IRBS) is more likely.

This study aimed to confirm and further investigate (reassess) the IRBS property of the

PVX 8K region using the GFP gene as a reporter (fused with ORF of CP of PVX) in in vivo

with stable transgene expression systems and to identify the precise sequence within that region

that is responsible for the internal initiation function. Western blot and confocal studies indicate

the expression of a downstream cistron (GFP) only in the absence of the hairpin in transgenic

tobacco plants harboring the dicistronic construct, suggesting that that translation of GFP could

take place by a termination/reinitiation rather internal ribosome binding site (IRBS)

mechanism.

8.2 MATERIALS AND METHODS

8.2.1 Construction of GFP expression plasmids

To test the IRBS nature of the PVX sequence, the construct pC8K-GFP, containing the sequence

upstream of the ATG codon of the PVX CP gene including the 8 kDa ORF and 177 nucleotides

upstream of this 8k ORF, was generated by amplifying the product using pre-existing

recombinant pTR:8k as a template and 12KKpnI.F/CPBamHI.R primers. To map the IRBS

sequence, pC8K-GFP was truncated to generate pC220K-GFP and pC127K-GFP constructs by

amplifying the products using a pC8K-GFP construct as a template, 8K220KpnI.F /CPBamHI.R,

and 8K127KpnI.F/CPBamHI.R primers respectively. Subsequently, the obtained products were

inserted into the pC-GFP construct in its KpnI/BamHI sites. The start codon of the CP was also

retained as part of the constructs, such that it was in frame with the GFP ORF. Furthermore to

Page 150: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

131

confirm IRBS sequence, a sequence expected to form a stable hairpin was introduced in KpnI

site of all above constructs to generate pChp8K-GFP, pChp220K-GFP, and pChp127K-GFP

constructs. This stable hairpin sequence was also inserted into pC-GFP in KpnI/XbaI sites to

create a pChp-GFP construct which is believed to block the translation of GFP completely and

used as a negative control. The hairpin was ligated into the digested constructs as mentioned in

section 2.3.1. The presence and accuracy of the inserted sequence were confirmed by DNA

sequencing (The Centre for Applied Genomics, Toronto, Canada) using the GFP-R reverse

primer: 5´- AAGTCGTGCTGCTTCATGTG -3´. Table 8.1 shows a list oligonucleotides and

DNA sequence used to generate the plasmids in this study.

Table 8.1 Oligonucleotides/ primers used in the production of different constructs with or without a hairpin

structure to investigate the IRBS.

* Underlined bold letters indicate restriction endonuclease recognition sequences.

** Restriction endonuclease recognition sequences introduced into the oligos to facilitate cloning of fragments

into PC-GFP.

8.2.2 Plant transformation for stable gene expression

Stable Agrobacterium-mediated transformation was performed as described in section 2.3.6.

Constructs Primers Oligo/Primer sequence* (5´-3´) Cloning

sites**

pC8K-GFP 12KKpnI.F

CPBamHI.R

ATCGGGTACCCTAGAAATAGTTTACCCC

CCATGGATCCTCTAGCTGGTGCTGACAT

KpnI

BamHI

pC220-GFP 220KKpnI.F

CPBamHI.R

AATATTGGTACCCAGGCCTCATATCTCAACGCAATC

ATACTAGGATCCTGGTGCTGACATCTTTCGAGTATC

KpnI

BamHI

pC127-GFP 127KKpnI

CPBamHI.R

AATATTGGTACCCAGGCCTGGAGAATCAATCACAGT

ATACTAGGATCCTGGTGCTGACATCTTTCGAGTATC

KpnI

BamHI

Hairpin For

above three

construct

Sense

Antisense

ACGCGCTCCCCCCGGGGGGTCGACCCCCCGGGGGGA

AAGCAGTAC

TGCTTTCCCCCCGGGGGGTCGACCCCCCGGGGGGAG

CGCGTGTAC

KpnI

(inac)

Hairpin for

pC-GFP

Sense

Antisense

TCGCGCTCCCCCCGGGGGGTCGACCCCCCGGGGGGA

AAGCT

CTAGAGCTTTCCCCCCGGGGGGTCGACCCCCCGGGG

GGAGCGCGAGTAC

KpnI

(inac)/

XbaI

Page 151: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

132

8.2.3 Confocal microscopy

Live cell imaging was performed on a confocal microscope (Leica TCS SP5; Leica

Microsystems) using a 40× or 63× oil immersion objective. GFP fluorescence was imaged at an

excitation wavelength of 488 nm, and the emission signal was detected between 495 and 530 nm

for GFP and between 643 and 730 nm for chlorophyll autofluorescence. Differential interference

contrast (DIC) and fluorescence images were acquired simultaneously for comparative studies of

all the constructs. Images were analyzed by Leica Application Suite Advanced Fluorescence

(LAS AF) software.

8.2.4 Western Blot

Following plant-transformation, leaf samples were grinded in the presence of liquid nitrogen

using pre-cooled pestle and mortar. Using a flame-sterilized spatula, the powder was transferred

to 1.5 mL tubes containing 160 µL of protein extraction TMPDTNU (50 mM Tris, 20 mM

MgCl2, 1 mM PMSF, 100 mM DTT, 2% Triton X-100, 0.5% NP-40 and 8 M urea) buffer plus

40 µL of 5× SDS-PAGE loading dye (212). These samples were boiled at 95-100 °C for 5 min

and 40 µL of each sample was loaded onto 12% SDS-PAGE gels along with the appropriated

protein molecular weight markers (Thermo Fisher Scientific). Protein concentrations were

determined by the Bradford Protein Assay reagent kit (Bio-Rad, Hercules, CA). Electrophoresis

was performed initially at 150 V until the samples entered the separating gel followed by 100 V

until dye reached at the bottom of the gel (218). The proteins were then transferred onto

nitrocellulose membrane (0.45 nm pore size, Pall corporation) for 1 hr in transfer buffer (212)

using the Bio-Rad protein electrophoresis unit. The membrane containing the transferred proteins

was blocked in Tris-buffered saline (TBS buffer: 50 mM Tris and 150 mM sodium chloride)

along with 5% skimmed milk for 5 hr. Subsequently, the membrane was incubated at 4°C

overnight with mild shaking with (1:1000) Anti-GFP, Rabbit IgG Fraction (Anti-GFP, IgG),

Page 152: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

133

polyclonal antibody (Invitrogen) in TBS+3% BSA. The membrane was washed (TBS, 0.3%

Tween-20) 4 times and incubated with (1:3000) Goat Anti-Rabbit IgG (H & L) alkaline

phosphatase (Bioshop) for 2 hr at room temperature with mild shaking. The membrane was

washed 3 times with TBS-T followed by a final washing with TBS. Finally, signals were

developed with alkaline phosphatase substrate solution (BCIP/NBT, Bioshop) according to the

manufacturer instructions. The membranes were dried and photographed.

8.3 RESULTS AND DISCUSSION

8.3.1 Expression of GFP using stable gene experiments

To determine the expression strategy of the GFP in dicistronic and deletion constructs where CP

ORF fused in frame to the N-terminus of the GFP ORF (CP-GFP fusion) and to better define the

mechanisms (internal ribosome binding or an alternative mechanism such as leaky scanning or

termination/reinitiation of translation) on its translation initiation, transgenic tobacco plants

harboring different constructs with and without stable hairpin structure were analyzed by western

blot and confocal microscopy. Previous studies have shown that secondary structure in the 5′

leader inhibits translation by influencing the binding of 40S ribosomal subunits to the 5′ end of

an mRNA (361-364). Kozak (362) also demonstrated the positioning effect of a hairpin in

translation, according to the author, the translation was drastically inhibited when a hairpin was

inserted within the first 12 nucleotides of the gene, however when the same hairpin was

repositioned 52 nucleotides from the 5′ end, it no longer inhibited translation. The stable hairpin

structure is placed within 25 nucleotides from the 5′ end in the present studies. The pChp-GFP

construct was included as a negative control to test the functionality of hairpin structure to stop

the translation. Confocal and western blot studies with transgenic plants show that translation of

GFP gene is completely blocked by inserting the hairpin as depicted in Figure 8.1 (Panel B, D,

F, and H) and Figure 8.2 (Lanes 2,4,5,6 and 7), confirming the stability and functionality of the

Page 153: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

134

hairpin in case of stable gene expression. In contrast, expression and accumulation of GFP can

be observed clearly in the case of transgenic plants harboring pC-GFP, pC127-GFP, pC220-GFP

and pC8K-GFP constructs without hairpin (Figure 8.1: panel A, C, E, and G).

Page 154: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

135

Figure 8.1 Confocal microscopic observation of GFP in transgenic N. tabacum leaves harboring constructs

without and with hairpin structure (Panels A-I).

The first image of each Panel represents the image with a GFP filter; the middle image that of the DIC filter; and

the last image is an overlap of GFP over the DIC picture. The red small block represents CP-GFP 'fusion protein'

includes the first few amino acids of the CP. Bar =20µM

Page 155: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

136

8.3.2 Western blot analysis

Western blot result also confirms the GFP expression in the case of transgenic plants harboring

pC8K-GFP construct as shown in Figure 8.2; Lane 1. Finally, when a 0.4 kb cDNA fragment

containing the sequence upstream of the AUG codon of the PVX CP gene was placed between

two reporter genes, expression of the downstream GFP cistron was lost, suggesting the absence

of IRBS in this PVX sequence as shown in Figure 8.1; Panel I and Figure 8.2; Lane 4.

Figure 8.2 Western blot using anti-GFP antiserum to detect GFP (27 kDa) expression in transgenic N.

tabacum cv. Xanthi plants harboring constructs in the presence or absence of a hairpin structure.

Lanes 1 and 3 contain total proteins extracted from transgenic plants with pC8K-GFP and pC-GFP constructs

respectively. Note the lower GFP expression in the case of pC8K-GFP as that of pC-GFP used as a positive

control, suggesting an alternative translation mechanism. Lane 4 consists of total protein from the plant where

PVX sequence is placed between two reporter genes, indicating non-functionality of PVX sequence as an IRBS.

Lanes 2, 5, 6 and 7 contain total proteins from transgenic plants harboring constructs with a stable hairpin,

confirming the complete blockage of GFP expression. Lane 5 protein ladder where green band depicts 25 kDa.

The present data provides an evidence for the absence of IRBS sequence which was previously

suggested by Hefferon, et al. (174). It is noteworthy that the same PVX sequence, previously

believed to be working as an IRBS sequence, is investigated. However, the current findings have

ruled out the translation of GFP by the IRBS. These results contradict the previous results (174).

Since 8 KDa was shown to be expressed by dicistron (8K-CP) (174), suggesting that translation

of the downstream cistron (CP) could be controlled by leaky scanning and/or with a

Page 156: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

137

termination/reinitiation mechanism. The expression of GFP is lower in the case of pC8K-GFP as

that of pC-GFP, suggesting the presence of an alternative mechanism(s). Leaky ribosome

scanning also contributes in translation from downstream start codons in some positive-stranded

RNA viruses and retroviruses (365, 366). Verchot, et al. (15) described an in vivo analysis of the

PVX TGB translation strategy, where they presented evidence that the 8K ORF could be

translated by leaky ribosome scanning through the 12K ORF. It is also possible the expression of

a downstream cistron (CP/GFP) is controlled by termination-reinitiation mechanism as well.

Previous studies showed that translation of the HBV polymerase gene could be controlled by

leaky scanning together with a termination-reinitiation mechanism involving an upstream

minicistron (367, 368). In the case of PVX, coat protein is a translation by sub-genomic RNA

(sgRNA3) of 0.9 kb, why it requires alternative translation mechanisms? It can be hypothesized

that it may be expressed by genomic, larger subgenomic or before sgRNAs are produced and

play some roles early in virus infection. This speculation is supported by McCormick, et al. (369)

who reported that capsid protein of bovine norovirus could be expressed as a result of translation

termination-reinitiation between ORF1 and ORF2. The alternative translation strategies may be

common in all polycistronic viruses to assist during their replication cycle for the maximum

accumulation of required proteins (174). However relative importance of these alternative

translation strategies remains to be determined.

Page 157: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

138

APPENDIX E

9 NOVEL AND UNIVERSAL APPROACH TO SILENCE ALL

GEMINIVIRUSES IN PLANTS

9.1 SUMMARY

Plant-microbe interactions have been explored for many years. In recent years, molecular

dissections of some of those interactions have been investigated, particularly, the role played by

a battery of host plant small interfering RNAs with pathogen replication. RNA interference

(RNAi) was shown to play a major role in controlling infections caused by RNA viruses. Since

the begomoviruses are DNA viruses, it was assumed that RNAi does not function against DNA

viruses. Recent studies have shown that RNAi may also function against DNA viruses (370-

374). Although the molecular mechanisms are being deciphered, the results indicate that

begomoviruses may also be targeted with an engineered RNAi system. Previous studies in this

lab were focused on the development of plant resistant to RNA viruses (375). Presently we are

focusing on geminiviruses which are known to infect a large number of economically important

plants. There are over 680 isolates of geminiviruses infecting over 200 plant species. Most of

those viruses are transmitted in the field by white flies. Geminiviruses infecting major crops like

cotton, vegetables (tomato, potato, pepper etc.) and ornamental plants cause enormous economic

losses not only in the yield of those crops but also in the quality of crops. In this study, I

demonstrate that an engineered RNAi system which targeted the conserved control region (CR)

of many geminiviruses resulted in the protection of transgenic plants from geminivirus

infections. This construct generates a 176 base pair double stranded RNA which encompasses

most of the CR region of many begomo- and geminiviruses infecting a large number of

economically important crops. This construct was tested against two begomoviruses (Ageratum

Page 158: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

139

enation virus (AEV), and Tomato leaf curl New Delhi virus (ToLCNDV) as model studies. Data

show that a very strong reduction in virus replication in transgenic Nicotiana benthamiana plants

in comparison to non-transgenic healthy control plants. Sequence alignments of our construct to

available begomovirus sequences indicate that a large number of those viruses will be protected

using this construct. Molecular mechanisms involve in the resistance, as well other molecular

approaches for the development of plant resistance will also be discussed.

9.2 INTRODUCTION

Geminiviruses have recently emerged not only as the cause of devastating diseases of important

crop plants (376) but also as a tool to study fundamental aspects of RNA interference (RNAi)

and virus-induced gene silencing (377). RNA silencing is an evolutionarily conserved

mechanism protecting cells from pathogenic RNA and DNA, which is increasingly viewed as an

adaptive immune system of plants against viruses (378). Expression of hairpin double-stranded

RNA (dsRNA) homologous to coding sequences of RNA and DNA viruses has been shown to

restrict viral infection in plants (379-381). It is assumed that long dsRNA is processed by dicer

proteins into small interfering RNAs (siRNA), which then target viral RNA for cleavage and

degradation in a sequence specific manner (382, 383). siRNAs have also been implicated in

transcriptional gene silencing (TGS) when Mette, et al. (384) found that dsRNA expression

could trigger the methylation of a cognate target promoter sequence. Sijen, et al. (385) conclude

that DNA methylation is an essential process for regulating TGS and important for reinforcing

Post-transcriptional gene silencing (PTGS). This ability has been correlated with reduced

transcription levels (386).

Geminiviruses are known to contain a conserved nine nucleotides (nonanucleotides) at

the origin of replication. The flanking sequences are involved in the recognition of cellular DNA

polymerase to the single stranded viral DNA to start the replication process and to produces a

Page 159: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

140

double-stranded circular DNA. Furthermore, this nonanucleotide sequence is also nicked by the

viral rep protein to allow the viral DNA replication through the rolling circle model (see Figure

9.6). In this study, we report a novel approach which is based on the design of a complementary

RNA sequence to bind to the origin of replication of geminiviruses and consequently blocking

their replication. Since in geminiviruses the promoter region and the origin of replication are not

normally transcribed, blocking this region of viral DNA will have a detrimental consequence on

the viral replication and consequently confers an excellent resistance of plants to geminiviruses

infection. Further, the presence of complementary RNA sequences to the non-coding region of

geminiviruses may also induce the viral DNA methylation in the promoter and origin of

replication regions which will also lead to the blocking of gene transcription and lack of viral

gene expression which also will reinforce the lack of replication and consequently improve the

resistance of plants to viral infections. This provides a novel method to engineer DNA virus

resistance in plants without targeting the coding sequence.

In order to investigate the efficacy of this approach in a stably transformed plant system,

we produced transgenic N. benthamiana expressing hairpin dsRNA homologous to the sequences

including the bidirectional promoter and common region (CR) of Ageratum enation virus (AEV)

a begomovirus of family Geminiviridae. Begomoviruses infect a wide range of economically

important dicotyledonous host plants and are transmitted by the whitefly Bemisia tabaci (236,

237). Begomoviruses consist of either monopartite (a single DNA) or bipartite (with two DNA

components: DNA-A and DNA-B) genomes (123, 125, 126, 231, 232). The DNA-A of bipartite

and the single component of monopartite begomoviruses contain five or six Open Reading

Frames (ORFs) while the DNA-B contains two ORFs (BV1 and BC1, in viral-sense and

complementary sense strand, respectively). Both DNA-A and DNA-B are approximately 2.8-3.0

kb in size. Both components are organized into divergent transcription units separated by an

Page 160: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

141

intergenic region (IR) of about 200 bp, which contain the replication origin and two divergent

promoters (133). The virus AEV consists of a monopartite circular, single-stranded DNA

genome (DNA-A) of a size 2.8 Kb enclosed in a characteristic twinned quasi-icosahedral particle

(387). In addition, AEV is also associated with a class of single-stranded DNA satellites known

as DNA β which range from 1247-1374 nucleotides in length (388). In this study, we report the

development of RNAi-based resistance to AEV (monopartite) and ToLCNDV (bipartite) through

the expression of dsRNA homologous to its viral non-coding sequence. These results expand the

potential of RNAi strategy against DNA viruses to their entire genome.

9.3 MATERIALS AND METHODS

9.3.1 Vector construction

An infectious clone of Ageratum enation virus (AEV) was used for vector construct. The 176

nucleotides fragment corresponding to the intergenic region (IR) of DNA-A of AEV for

antisense was amplified by using PCR primers (AEVKpnI 5’-

CTGACAGGTACCACTCCAATGGCATAATTGTA-3’ and AEVSalI 5’-

GACTGAGTCGACGGGACCACGAAACAATTAAG-3’) from position 2671-96 (GenBank

accession number AM261836) (including the underlined sites for KpnI and SalI respectively). A

primer pair (AEV ClaI 5’-CTGACAATCGATACTCCAATGGCATAATTGTA-3’ and

AEVNheI 5’-GACTGAGCTAGCGGGACCACGAAACAATTAAG-3’ (including the

underlined sites for ClaI and NheI respectively, was used to amplify a 176 bp fragment from the

same intergenic region for sense strand. PCR reactions were carried out in a 50 μL solution

containing 10-30 ng of DNA, 10 mM Tris-HCl pH 8.3, 50 mM KCl, 2.5 mM MgCl2, 200 µM

each dNTP, 0.5 µM each primer, and 0.05 units/µL of Taq DNA polymerase (Sigma, CA,

U.S.A.). The mixture was treated at 95ºC (5 min) and subjected to 30 cycles of amplification

(95ºC for 1 min, 68ºC for 40 sec and 72ºC for 1 min), with a final elongation cycle of 10 min at

Page 161: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

142

72ºC. These sense and antisense fragments were cloned into the pHANNIBAL vector (389).

Once the assembly of the inverted repeat was completed and verified by sequencing then this

cassette (Figure 9.1) was cloned with NotI into a pART27 binary vector and named pART27-

AEVIR.

Figure 9.1 A partial Schematic diagram of the binary construct pART27-AEVIR used for plant

transformation.

A) The intergenic common region-containing promoter sequences from positions 2671-2750 and 1-96 of AEV

DNA- A (GenBank accession number AM261836) separated by a pyruvate dehydrogenase kinase (Pdk) intron in

the reverse and the forward orientations were inserted between CaMV 35S promoter and octopine synthase

terminator (OCS). The expression cassette was subcloned in the NotI site of pART27 to generate the binary

vector pART-AEVIR. B) Predicted hairpin secondary structure of the RNA transcript.

This pART27-AEVIR vector was transferred to Agrobacterium tumefaciens strain GV3101

competent cells. Recombinant colonies were selected on LB plates supplemented with 100

µg/mL Spectinomycin and 30 µg/mL Gentamycin.

Page 162: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

143

9.3.2 Plant transformation

Stable Agrobacterium-mediated transformation of N. benthamiana plants was performed by a

standard protocol (390) with some modifications. Three to four weeks old tissue cultured plants

were used for transformation. Leaf discs were co-cultivated for 10 min with 36 hr old

Agrobacterium culture incubated at 28°C in a shaker. These leaf discs were cultured on MS

medium containing 100 mg/L BAP and 0.4 mg/L NAA. After three days, transformants were

selected on MS medium containing 100 mg/L Kanamycin, 400 µg/ml Carbenicillin, 1 mg/L BAP

and 0.4 mg/L NAA. Every three weeks, the explants were subcultured to a fresh selection

medium for shoot regeneration. Developed shoots were transferred to a phytohormone-free ½

MS medium containing 300 mg/L Kanamycin, and 400 mg/L Carbenicillin for root formation.

Regenerated plants were transferred from Magenta boxes to pots and further grown under

greenhouse conditions (23-27°C, 16 hr light and 8 hr dark).

9.3.3 Characterization of transgenic lines

N. benthamiana genomic DNA of transgenic lines was extracted from leaves of tissue cultured

plants according to Kang and Yang (391). About 0.5 cm2 leaf of each tissue cultured grown plant

was put in a 1.5 mL microfuge tube. The leaf tissue was homogenized in 50 µL DNA extraction

buffer (500 mM NaCl, 100 mM Tris-HCl pH 7.5, and 50 mM EDTA pH 7.5), using a hand-

operated homogenizer (Sigma, Z35997-1) with a plastic pestle, for 15~20 sec. After an initial

homogenization, another 150 µl of DNA extraction buffer was added and homogenized with the

same homogenizer for 15~20 sec. Then, 20 µL of 20% SDS were added and vortexed for 30 sec.

Samples were incubated at 65°C for 10 min for cell lysis. An equal volume of

phenol/chloroform/isoamyl alcohol (25:24:1) was added to the samples, mixed by vortexing for

30 sec, and then centrifuged at 10,000 g for 3 min at 4°C. The supernatant was transferred to a

fresh tube and extracted one more time with phenol/chloroform/isoamyl alcohol (25:24:1) and

Page 163: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

144

then with chloroform alone. The supernatant was transferred to a fresh tube, and a double

volume of ethanol was added to each sample, mixed well, and the samples were incubated at -

20°C for 30 min. The samples were centrifuged at 10,000 g for 10 min at 4°C. The pellet was

washed with 70% ethanol, dried, and resuspended in sterile distilled H2O containing 20 µg/mL

DNase-free RNase A. The concentration and purity were determined from the A260/A280 ratio

using a spectrophotometer. PCR amplifications were performed as mentioned before but at 55°C

annealing temperature. Primers Pdk 5’- AACAAAGCGCAAGATCTATCA -3’ (forward) and

Ocs 5’- TAGGCGTCTCGCATATCTCA-3’ (reverse) were used to amplify a 456 bp region

including IR sense of the transgene T-DNA cassette. Primers 35S 5’-

CCACTATCCTTCGCAAGACC-3’ (forward) and Pdk 5’-

CTTCGTCTTACACATCACTTGTCA-3’ (reverse) were used to amplify a 428 bp region

including IR antisense of the transgene T-DNA cassette. The PCR products were resolved by

electrophoresis in 2.0% agarose gels. Successful transformation of transgenic plant lines was also

confirmed by chromosomal DNA sequencing.

9.3.4 Agroinoculation

A single colony of each infectious AEV clones of DNA-A and DNA-β in Agrobacterium strain

of GV3101 was cultured in 5 ml of LB culture containing antibiotics Kanamycin (100 µg/mL)

and Gentamycin (50 µg/mL) and grown overnight at 28°C at 225 rpm. A large LB media

suspension was then inoculated with the overnight culture and grown at 28°C to an OD600 of

~1.0. The cells were harvested by centrifugation at 1200 g for 10 min and resuspended in

Agrobacterium induction medium (10 mM MgCl2, 10 mM MES pH 5.6 and 150 µM

acetosyringone to a final OD595 of 1.0 and incubate at room temperature for 4-6 h with gentle

shaking (80-100 rpm). The culture was pelleted again by centrifugation at 1200g for 10 min and

resuspended in 10 mM MES buffer and adjust to OD595~0.0005. The both bacterial suspensions

Page 164: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

145

were mixed and taken in a syringe and infiltrated through the abaxial surface of two lower leaves

of different transgenic lines (T0 generation) and wild-type plants at four leaf stage. Each

experiment was repeated five times (five treatments). Five plants were also infiltrated with buffer

alone for negative control.

9.3.5 Detection of viral genome in infected plants

Total DNA was extracted from systemic leaves of infected plants of each transgenic line and

wild-type plants grown under greenhouse conditions as mentioned in section 3.3.1. One

microgram of DNA was used per PCR reaction. Primers AEVCP.F 5’-

GCCCAGGATGTACAGGATGT-3’ (forward) and AEVCP.R 5’-

CACAGGCCTACGATCCCTAA-3’ (reverse) were used to amplify a 283 bp of the coat protein

of AEV (GeneBank accession AM698011). Primers TlcvCP.F

5’CCTAGCACTGCCACTGTGAA-3’ (forward) and TlcvCP.R 5’-

CGGGATTAGAGGCGTGAGTA -3’ (reverse) were used to amplify a 232 bp of the coat

protein of ToLCNDV (GenBank accession HM134234.1). Primers Actin-F 5’-

ATCCGTGGAGAAGAGCTACG-3’ (forward) and Actin-R 5’-

TGGTACCACCACTGAGGACA-3’ (reverse) were used to amplify a 209 bp of Nicotiana

benthamiana actin gene (GeneBank accession AY179605) as an internal control for semi-

quantitative PCR.

9.4 RESULTS

9.4.1 Production of transgenic lines

Nicotiana benthamiana plants were regenerated from Kanamycin resistant embryogenic calli that

had been transformed with Agrobacterium tumefaciens GV3101 harboring the binary vector

pART27-AEVIR. All generated plants had a normal phenotype. The integration of the transgene

T-DNA cassettes has been confirmed by PCR. A simple and reproducible procedure for PCR

Page 165: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

146

amplification of transgenes was done. Four independent transgenic lines were confirmed by PCR

(Figure 9.2). Expression of the transgene was under the control of the cauliflower mosaic virus

(CaMV) 35S promoter to produce high levels of hp-derived small interfering RNAs (siRNA) in

leaves, where virus transmission usually occurs.

Figure 9.2 PCR-verification of transgenic N. benthamiana plants harboring pTR27-AEVIR construct.

The expected 456 and 428 bp fragments for regions including IR sense and IR antisense respectively were

detected in four transgenic lines (Lanes 1-4). However, these products were absent in wild-type plant (Lane 5).

9.4.2 Transgenic plant evaluation against infectious clones of AEV

To determine the resistance against AEV virus, wild-type and transgenic N. benthamiana plants

harboring pART-AEVIR construct were infiltrated with infectious clones of AEV (DNA-A and

DNA-β) in Agrobacterium. Since the optical density value of 1 corresponds to 108 cells/mL

culture. This number (OD595~0.5 ) of bacterial cells harboring infectious clones is very high as

compared to a number of virus particles during a natural infection by white flies. At an

exceptionally high inoculum, the virus resistance mechanism in transgenic plants will certainly

be overcome. Consequently, transgenic plants will naturally produce large quantities of virus.

Serial dilutions were produced and used to infect plants. A dilution factor of 1000 fold (i.e. OD

595 = 0.0005, equivalent to about 10 cells/mL) was considered as adequate. All agroinfiltrated

plants were observed periodically for the appearance of symptoms. However, both transgenic

and non-transgenic plants showed no viral symptoms. Consequently, determination of the virus

Page 166: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

147

quantity or viral genome produced in wild-type and transgenic plants was the method of choice

to gauge the virus resistance (see Figure 9.3). To investigate the effect of the hairpin sequence

on the accumulation of viral DNA (replication), total DNA was extracted from the uppermost

fully expanded leaf tissues of all treatments at 21 days post inoculation and 1µg of this DNA was

subjected to semi-quantitative PCR using specific primer pairs (AEV-F and AEV-R) for coat

protein to detect AEV and primers (Actin-F and Actin-R) to detect the N. benthamiana Actin

gene for internal control.

Figure 9.3 Semi-quantitative PCR-based testing of wild-type (Wt) and transgenic N. Benthamiana plants

harboring pART27AEV-IR construct for their resistance against AEV after three weeks of challenging

with infectious clones of AEV DNA-A and DNA- β in A. tumefaciens strain GV3101.

A) Primers specific to the coat protein gene (Tlcv and AEV-CR, 283bp fragment) were used to produce the PCR

amplicons: Lane 1; wild-type treated with buffer alone used as a negative control. Lanes 2 and 3; wild-type

plants infected with AEV infectious clones. Lanes 4, 5 and 6; three transgenic lines infected with AEV infectious

clones. B) Actin gene was included for internal control experiments. The resulting PCR products were analyzed

on a 2% Agarose gel.

The capsid protein gene was used to determine the amount of virus in infected plants. The

expected size of AEV coat protein fragment (283 bp) could only be amplified from plants

challenged with infectious clones of AEV whereas no bands could be detected when DNA

extracted from control. The expected 283 bp PCR product is very prominent in wild-type plants

Page 167: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

148

(Figure 9.3; Lanes 2 and 3) that indicate high susceptibility of wild-type plants against the

virus. In transgenic plants light to the intense band could be detected depending upon the level of

resistance that indicates the various level of tolerance or resistance of transgenic lines against

AEV (Figure 9.3). To ascertain the semi-quantitative results, DNA samples from non-transgenic

and transgenic plants were amplified by PCR using primers pairs for Actin. The fragment size of

209 bp from Actin gene was detected in both transgenic and non-transgenic plants as shown in

Figure 9.3.

9.4.3 Testing of transgenic plants for resistance against ToLCNDV

Transgenic plants harboring pART27 AEVIR construct were also tested for resistance against

another begomovirus; Tomato leaf curl New Delhi virus (ToLCNDV). When wild-type and

transgenic N.benthamiana plants were challenged with infectious clones of ToLCNDV (DNA-A

and DNA-B), all wild-type plants showed symptoms of virus infection in the upper, newly

emerging leaves at 21 days post-inoculation (dpi) consisting of foliar yellowing, curling upwards

and thickening of veins (Figure 9.4; B). In contrast, transgenic plants remained symptomless or

appeared with mild symptoms (Figure 9.4; A) for first 4 weeks.

Page 168: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

149

Figure 9.4 Infectivity of infectious clones of ToLCNDV in tobacco plants.

Symptomatic wild-type plants (B) compared to putative transgenic plants showing mild symptoms (A)

Photographs were taken at 21 days post-inoculation.

To investigate the resistance and/or tolerance effect on the accumulation of viral DNA

(replication) in transgenic plants, total DNA was extracted from non-inoculated uppermost fully

expanded leaf tissues of all treatments inoculated with either infectious clones or buffer alone

after three-week post inoculation. One microgram DNA of each plant was subjected to semi-

quantitative PCR using specific primer pairs to amplify a 232 bp of the coat protein of

ToLCNDV. The expected size of coat protein gene could only be amplified from plants

challenged with infectious clones of ToLCNDV whereas no bands were detected with DNA

extracted from buffer treated plants. The CP PCR product is in a range from sharp to faint in

different transgenic lines harboring pART27 AEV-IR construct that indicates the various level of

tolerance or resistance of transgenic lines against the virus (Figure 9.5; Panel A, Lanes 2-5).

Page 169: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

150

Figure 9.5 Semi-quantitative PCR-based testing of wild-type and transgenic N. Benthamiana plants

harboring pART27AEV-IR construct for their resistance against ToLCNDV after three weeks of

challenging with infectious clones of ToLCNDV (DNA-A and DNA- B) in A. tumefaciens strain GV3101.

A) Primers specific to the coat protein gene (TlcvCP.F and Tlcv.R for 232 bp fragment) were used to produce the

PCR amplicons: Lane 1; wild-type treated with buffer alone used as a negative control. Lanes 2, 3 and 4; three

transgenic lines infected with TolCNDV infectious clones. B) Actin gene was included for internal control

experiments. The resulting PCR products were analyzed on a 2% Agarose gel.

To validate the semi-quantitative result, the same DNA samples from non-transgenic and

transgenic plants were amplified by PCR using primers pairs for Actin gene as an internal

control (Figure 9.5; Panel B)

9.5 CONCLUSION

From the results obtained, we can conclude that the dsRNA strategy confers a good resistance to

viral infection. A 176 bp sequence of the non-coding intergenic region (IR) from AEV infectious

clone was chosen as the blocking sequence in sense and anti-sense orientations interrupted with a

pyruvate dehydrogenase kinase (pdk) intron. The blocking sequence (seen below in Figure 9.6;

B) which spans the origin of replication (Ori) of geminiviruses contains 100% identity to the

begomovirus (AEV).

Page 170: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

151

Figure 9.6 Organization of a Geminivirus replication origin.

A) A diagram of the tomato golden mosaic virus (TGMV) replication origin is presented by Bisaro (392). Shown are

the relative positions of Rep-binding sites, the invariant sequence (TAATATTAC), and the site where plus-strand

synthesis initiates. Sequences involved in origin recognition/specificity are also depicted (393). The location of

sequence elements that interact with the transcription machinery, including TATAA sequence, Rep and CP

transcription start sites (references cited in (394)), a putative binding site for G-box family transcription factors, and a

putative TrAP response element (the conserved late element; (395)) are also indicated. A sequence that appears to be

an additional Rep-binding site in inverted orientation has been identified by sequence analysis (395). Nucleotide

coordinates are from TGMV DNA-A. B) Blockage of the origin of replication by an antisense single stranded

complementary RNA (depicted in red) sense RNA. The internal sequence is that of geminivirus viral origin of

replication (+strand).

This blocking sequence also contains 42-100 % sequence homology to several other published

sequences of begomoviruses and expectedly to a large number of geminiviruses which are

circulating in the field but are not yet discovered and/or identified. Our blocking sequence is

designed to contain in its core region the highly conserved nonanucleotide sequence in

geminiviruses. This conserved sequence is also flanked by complementary sequences to the IR

control region for geminiviruses. We expect this blocking sequence to target the origin of

replication of all major members of begomoviruses. Because this sequence contains several

stretches of perfect homology to the origin of replication of begomoviruses, it is expected that

inhibition of the replication of these viruses will be carried out (for molecular mechanisms of

blockage, see Figure 9.6). An intron-containing hairpin (ihp) transformation construct pART27-

AEVIR was made by using the pHANNIBAL/pART27 system. The 176-bp double-stranded

RNA sequence is the target for the RNA silencing/dicer machinery which could produce 21-25

double-stranded RNA sequences. Binding of the Argonaut and other plant proteins to the double-

stranded RNA fragments result in activation of several plant defense mechanisms against the

Page 171: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

152

invading begomoviruses. A complementary RNA sequence could be expected to target the

hairpin loop (nonanucleotides) at the origin of replication on the viral begomovirus single-

stranded (positive-sense) (Figure 9.6). An RNA-DNA hybrid is quite stable which might result

in blocking the origin of replication of the virus by the cellular polymerases (there will not be at

this stage any viral transcription from single-stranded viral DNA) and consequently, the viral

replication could be inhibited at very early stages. Binding of the single-stranded complementary

RNA may also disturb the double-stranded stem-loop of viral DNA rendering it not recognizable

by cellular polymerases. Further, the complementary RNA sequences generated by our construct

possibly activate the RNA-directed DNA methylation which targets the stem of the hairpin loop

which is double-stranded and rich in GC. Consequently, the DNA methylation of the stem of the

hairpin loop which constitutes the origin of replication could result in blocking that region of

viral DNA of being copied into a double-stranded sequence (replicative form) by cellular

enzymes. This stem is quite rich in CG dinucleotides (primary target for DNA methylation).

During viral replication, the viral “rep” protein is responsible for nicking the double-stranded

DNA at the origin of replication to allow the replication to continue through the rolling circle

model. Our complementary single-stranded sequences may be responsible for blocking the

nicking of the hairpin loop a sine qua none condition for replication by rolling circle model.

Further, the control region (which includes the nonanucleotide) could also be methylated by the

RNA-directed DNA methylation. Consequently, the rolling circle replication and the promoter

regions may be entirely methylated which leads not only to blocking replication but also

inhibition of transcription of viral essential genes (e.g. rep gene and other viral genes). Viral

double-stranded DNA is known to be covered by heterochromatin which also can be targeted by

the RNA-directed methylation. The complementary sequences of hairpin may be involved to

block the region at the stem-loop which is required in the binding of rep protein (Figure 9.6).

Page 172: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

153

The prototype for transgenic plants resistant to geminiviruses is completed and proved to be

functional. Based on the results, three major novelties in this system are 1) the targeted control

region in Geminiviruses. 2) The universality covering ALL the Geminiviruses. 3) Inhibition of

the Rep protein of initiating the replicative cycle of Geminiviruses. In conclusion, our study

demonstrates that resistance to geminiviruses in plants can be achieved via TGS and/or PTGS by

expressing siRNA derived from non-coding viral sequences.

Page 173: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

154

REFERENCES

1. King AM, Adams MJ, Lefkowitz EJ. 2011. Virus taxonomy: classification and

nomenclature of viruses: Ninth Report of the International Committee on Taxonomy of

Viruses, vol. 9. Elsevier.

2. Adams MJ, Antoniw JF, Bar-Joseph M, Brunt AA, Candresse T, Foster GD,

Martelli GP, Milne RG, Zavriev SK, Fauquet CM. 2004. The new plant virus family

Flexiviridae and assessment of molecular criteria for species demarcation. Archives of

virology 149:1045-1060.

3. Morozov SY, Solovyev AG. 2003. Triple gene block: modular design of a

multifunctional machine for plant virus movement. Journal of General Virology 84:1351-

1366.

4. Verchot-Lubicz J. 2005. A new cell-to-cell transport model for Potexviruses. Molecular

plant-microbe interactions : MPMI 18:283-290.

5. Verchot-Lubicz J, Torrance L, Solovyev AG, Morozov SY, Jackson AO, Gilmer D.

2010. Varied movement strategies employed by triple gene block-encoding viruses.

Molecular plant-microbe interactions : MPMI 23:1231-1247.

6. Solovyev AG, Kalinina NO, Morozov SY. 2012. Recent advances in research of plant

virus movement mediated by triple gene block. Front Plant Sci 3:276.

7. Park MR, Seo JK, Kim KH. 2013. Viral and nonviral elements in potexvirus replication

and movement and in antiviral responses. Advances in virus research 87:75-112.

8. Baulcombe DC, Chapman S, Santa Cruz S. 1995. Jellyfish green fluorescent protein as

a reporter for virus infections. The Plant journal : for cell and molecular biology 7:1045-

1053.

9. Chapman S, Hills G, Watts J, Baulcombe D. 1992. Mutational analysis of the coat

protein gene of potato virus X: effects on virion morphology and viral pathogenicity.

Virology 191:223-230.

10. Niehl A, Heinlein M. 2011. Cellular pathways for viral transport through

plasmodesmata. Protoplasma 248:75-99.

11. Schoelz JE, Harries PA, Nelson RS. 2011. Intracellular transport of plant viruses:

finding the door out of the cell. Molecular plant 4:813-831.

12. Morozov SY, Solovyev AG. 2003. Triple gene block: modular design of a

multifunctional machine for plant virus movement. The Journal of general virology

84:1351-1366.

13. Martelli GP, Adams MJ, Kreuze JF, Dolja VV. 2007. Family Flexiviridae: a case

study in virion and genome plasticity. Annual review of phytopathology 45:73-100.

14. Park M-R, Jeong R-D, Kim K-H. 2014. Understanding the intracellular trafficking and

intercellular transport of potexviruses in their host plants. Frontiers in plant science 5:60.

15. Verchot J, Angell SM, Baulcombe DC. 1998. In vivo translation of the triple gene

block of potato virus X requires two subgenomic mRNAs. Journal of virology 72:8316-

8320.

16. Lin MK, Chang BY, Liao JT, Lin NS, Hsu YH. 2004. Arg-16 and Arg-21 in the N-

terminal region of the triple-gene-block protein 1 of Bamboo mosaic virus are essential

for virus movement. The Journal of general virology 85:251-259.

17. Gorbalenya AE, Koonin EV. 1993. Helicases: amino acid sequence comparisons and

structure-function relationships. Current Opinion in Structural Biology 3:419-429.

Page 174: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

155

18. Lim HS, Vaira AM, Domier LL, Lee SC, Kim HG, Hammond J. 2010. Efficiency of

VIGS and gene expression in a novel bipartite potexvirus vector delivery system as a

function of strength of TGB1 silencing suppression. Virology 402:149-163.

19. Bayne EH, Rakitina DV, Morozov SY, Baulcombe DC. 2005. Cell-to-cell movement

of potato potexvirus X is dependent on suppression of RNA silencing. The Plant journal :

for cell and molecular biology 44:471-482.

20. Mitra R, Krishnamurthy K, Blancaflor E, Payton M, Nelson RS, Verchot-Lubicz J.

2003. The potato virus X TGBp2 protein association with the endoplasmic reticulum

plays a role in but is not sufficient for viral cell-to-cell movement. Virology 312:35-48.

21. Cowan GH, Lioliopoulou F, Ziegler A, Torrance L. 2002. Subcellular localisation,

protein interactions, and RNA binding of Potato mop-top virus triple gene block proteins.

Virology 298:106-115.

22. Hsu HT, Tseng YH, Chou YL, Su SH, Hsu YH, Chang BY. 2009. Characterization of

the RNA-binding properties of the triple-gene-block protein 2 of Bamboo mosaic virus.

Virology journal 6:50.

23. Krishnamurthy K, Heppler M, Mitra R, Blancaflor E, Payton M, Nelson RS,

Verchot-Lubicz J. 2003. The Potato virus X TGBp3 protein associates with the ER

network for virus cell-to-cell movement. Virology 309:135-151.

24. Wu CH, Lee SC, Wang CW. 2011. Viral protein targeting to the cortical endoplasmic

reticulum is required for cell-cell spreading in plants. J Cell Biol 193:521-535.

25. Tamai A, Meshi T. 2001. Cell-to-Cell Movement of Potato virus X: The Role of p12 and

p8 Encoded by the Second and Third Open Reading Frames of the Triple Gene Block.

Molecular Plant-Microbe Interactions 14:1158-1167.

26. Haupt S, Cowan GH, Ziegler A, Roberts AG, Oparka KJ, Torrance L. 2005. Two

plant-viral movement proteins traffic in the endocytic recycling pathway. Plant Cell

17:164-181.

27. Lough TJ, Shash K, Xoconostle-Cázares B, Hofstra KR, Beck DL, Balmori E,

Forster RL, Lucas WJ. 1998. Molecular dissection of the mechanism by which

potexvirus triple gene block proteins mediate cell-to-cell transport of infectious RNA.

Molecular plant-microbe interactions 11:801-814.

28. Cruz SS, Roberts AG, Prior DA, Chapman S, Oparka KJ. 1998. Cell-to-cell and

phloem-mediated transport of potato virus X. The role of virions. The Plant Cell 10:495-

510.

29. Lough TJ, Netzler NE, Emerson SJ, Sutherland P, Carr F, Beck DL, Lucas WJ,

Forster RL. 2000. Cell-to-cell movement of potexviruses: evidence for a

ribonucleoprotein complex involving the coat protein and first triple gene block protein.

Molecular plant-microbe interactions 13:962-974.

30. Beck DL, Guilford PJ, Voot DM, Andersen MT, Forster RL. 1991. Triple gene block

proteins of white clover mosaic potexvirus are required for transport. Virology 183:695-

702.

31. Oparka K, Roberts A, Roberts I, Prior D, Cruz S. 1996. Viral coat protein is targeted

to, but does not gate, plasmodesmata during cell‐to‐cell movement of potato virus X. The

Plant Journal 10:805-813.

32. Yang Y, Ding B, Baulcombe DC, Verchot J. 2000. Cell-to-cell movement of the 25K

protein of Potato virus X is regulated by three other viral proteins. Molecular plant-

microbe interactions 13:599-605.

33. Verchot-Lubicz J. 2005. A new cell-to-cell transport model for potexviruses. Molecular

plant-microbe interactions 18:283-290.

Page 175: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

156

34. Baulcombe DC, Chapman S, Cruz S. 1995. Jellyfish green fluorescent protein as a

reporter for virus infections. The Plant Journal 7:1045-1053.

35. Forster RL, Beck DL, Guilford PJ, Voot DM, Van Dolleweerd CJ, Andersen MT.

1992. Thecoat protein of white clover mosaic potexvirus has a role in facilitating cell-to-

cell transport in plants. Virology 191:480-484.

36. Lucas WJ. 2006. Plant viral movement proteins: agents for cell-to-cell trafficking of

viral genomes. Virology 344:169-184.

37. Oparka KJ. 2004. Getting the message across: how do plant cells exchange

macromolecular complexes? Trends in plant science 9:33-41.

38. Haupt S, Cowan GH, Ziegler A, Roberts AG, Oparka KJ, Torrance L. 2005. Two

plant–viral movement proteins traffic in the endocytic recycling pathway. The Plant Cell

17:164-181.

39. Ju H-J, Samuels TD, Wang Y-S, Blancaflor E, Payton M, Mitra R, Krishnamurthy

K, Nelson RS, Verchot-Lubicz J. 2005. The potato virus X TGBp2 movement protein

associates with endoplasmic reticulum-derived vesicles during virus infection. Plant

physiology 138:1877-1895.

40. Zamyatnin Jr AA, Solovyev AG, Savenkov EI, Germundsson A, Sandgren M,

Valkonen JP, Morozov SY. 2004. Transient coexpression of individual genes encoded

by the triple gene block of Potato mop-top virus reveals requirements for TGBp1

trafficking. Molecular plant-microbe interactions 17:921-930.

41. Tilsner J, Linnik O, Louveaux M, Roberts IM, Chapman SN, Oparka KJ. 2013.

Replication and trafficking of a plant virus are coupled at the entrances of

plasmodesmata. The Journal of cell biology 201:981-995.

42. Lough TJ, Netzler NE, Emerson SJ, Sutherland P, Carr F, Beck DL, Lucas WJ,

Forster RL. 2000. Cell-to-cell movement of potexviruses: evidence for a

ribonucleoprotein complex involving the coat protein and first triple gene block protein.

Molecular plant-microbe interactions : MPMI 13:962-974.

43. Tilsner J, Linnik O, Louveaux M, Roberts IM, Chapman SN, Oparka KJ. 2013.

Replication and trafficking of a plant virus are coupled at the entrances of

plasmodesmata. J Cell Biol 201:981-995.

44. Howard AR, Heppler ML, Ju HJ, Krishnamurthy K, Payton ME, Verchot-Lubicz J.

2004. Potato virus X TGBp1 induces plasmodesmata gating and moves between cells in

several host species whereas CP moves only in N. benthamiana leaves. Virology

328:185-197.

45. Samuels TD, Ju HJ, Ye CM, Motes CM, Blancaflor EB, Verchot-Lubicz J. 2007.

Subcellular targeting and interactions among the Potato virus X TGB proteins. Virology

367:375-389.

46. Hsu HT, Chou YL, Tseng YH, Lin YH, Lin TM, Lin NS, Hsu YH, Chang BY. 2008.

Topological properties of the triple gene block protein 2 of Bamboo mosaic virus.

Virology 379:1-9.

47. Lee SC, Wu CH, Wang CW. 2010. Traffic of a viral movement protein complex to the

highly curved tubules of the cortical endoplasmic reticulum. Traffic (Copenhagen,

Denmark) 11:912-930.

48. Chou YL, Hung YJ, Tseng YH, Hsu HT, Yang JY, Wung CH, Lin NS, Meng M,

Hsu YH, Chang BY. 2013. The stable association of virion with the triple-gene-block

protein 3-based complex of Bamboo mosaic virus. PLoS pathogens 9:e1003405.

49. Qiao Y, Li HF, Wong SM, Fan ZF. 2009. Plastocyanin transit peptide interacts with

Potato virus X coat protein, while silencing of plastocyanin reduces coat protein

Page 176: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

157

accumulation in chloroplasts and symptom severity in host plants. Molecular plant-

microbe interactions : MPMI 22:1523-1534.

50. Zhang C, Liu Y, Sun X, Qian W, Zhang D, Qiu B. 2008. Characterization of a specific

interaction between IP-L, a tobacco protein localized in the thylakoid membranes, and

Tomato mosaic virus coat protein. Biochemical and biophysical research communications

374:253-257.

51. Caplan JL, Mamillapalli P, Burch-Smith TM, Czymmek K, Dinesh-Kumar SP.

2008. Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a

viral effector. Cell 132:449-462.

52. Abbink TE, Peart JR, Mos TN, Baulcombe DC, Bol JF, Linthorst HJ. 2002.

Silencing of a gene encoding a protein component of the oxygen-evolving complex of

photosystem II enhances virus replication in plants. Virology 295:307-319.

53. Jimenez I, Lopez L, Alamillo JM, Valli A, Garcia JA. 2006. Identification of a plum

pox virus CI-interacting protein from chloroplast that has a negative effect in virus

infection. Molecular plant-microbe interactions : MPMI 19:350-358.

54. Jin Y, Ma D, Dong J, Li D, Deng C, Jin J, Wang T. 2007. The HC-pro protein of

potato virus Y interacts with NtMinD of tobacco. Molecular plant-microbe interactions :

MPMI 20:1505-1511.

55. Cheng YQ, Liu ZM, Xu J, Zhou T, Wang M, Chen YT, Li HF, Fan ZF. 2008. HC-

Pro protein of sugar cane mosaic virus interacts specifically with maize ferredoxin-5 in

vitro and in planta. The Journal of general virology 89:2046-2054.

56. Kong L, Wu J, Lu L, Xu Y, Zhou X. 2014. Interaction between Rice stripe virus

Disease-Specific Protein and Host PsbP Enhances Virus Symptoms. Molecular plant

7:691-708.

57. Zhao J, Liu Q, Zhang H, Jia Q, Hong Y, Liu Y. 2013. The rubisco small subunit is

involved in tobamovirus movement and Tm-2(2)-mediated extreme resistance. Plant

physiology 161:374-383.

58. Lim HS, Vaira AM, Bae H, Bragg JN, Ruzin SE, Bauchan GR, Dienelt MM, Owens

RA, Hammond J. 2010. Mutation of a chloroplast-targeting signal in Alternanthera

mosaic virus TGB3 impairs cell-to-cell movement and eliminates long-distance virus

movement. The Journal of general virology 91:2102-2115.

59. Jang C, Seo EY, Nam J, Bae H, Gim YG, Kim HG, Cho IS, Lee ZW, Bauchan GR,

Hammond J, Lim HS. 2013. Insights into Alternanthera mosaic virus TGB3 Functions:

Interactions with Nicotiana benthamiana PsbO Correlate with Chloroplast Vesiculation

and Veinal Necrosis Caused by TGB3 Over-Expression. Front Plant Sci 4:5.

60. Lin MK, Hu CC, Lin NS, Chang BY, Hsu YH. 2006. Movement of potexviruses

requires species-specific interactions among the cognate triple gene block proteins, as

revealed by a trans-complementation assay based on the bamboo mosaic virus satellite

RNA-mediated expression system. The Journal of general virology 87:1357-1367.

61. Zaitlin M, Boardman N. 1958. The association of tobacco mosaic virus with plastids: I.

Isolation of virus from the chloroplast fraction of diseased-leaf homogenates. Virology

6:743-757.

62. Shalla T, Petersen L, Giunchedi L. 1975. Partial characterization of virus-like particles

in chloroplasts of plants infected with the U5 strain of TMV. Virology 66:94-105.

63. Siegel A. 1971. Pseudovirions of tobacco mosaic virus. Virology 46:50-59.

64. Rochon DA, Siegel A. 1984. Chloroplast DNA transcripts are encapsidated by tobacco

mosaic virus coat protein. Proceedings of the National Academy of Sciences 81:1719-

1723.

Page 177: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

158

65. Schoelz JE, Zaitlin M. 1989. Tobacco mosaic virus RNA enters chloroplasts in vivo.

Proceedings of the National Academy of Sciences 86:4496-4500.

66. Cheng S-F, Huang Y-P, Chen L-H, Hsu Y-H, Tsai C-H. 2013. Chloroplast

phosphoglycerate kinase is involved in the targeting of Bamboo mosaic virus to

chloroplasts in Nicotiana benthamiana plants. Plant physiology 163:1598-1608.

67. Baudisch B, Langner U, Garz I, Klosgen RB. 2014. The exception proves the rule?

Dual targeting of nuclear-encoded proteins into endosymbiotic organelles. The New

phytologist 201:80-90.

68. Peltier J-B, Friso G, Kalume DE, Roepstorff P, Nilsson F, Adamska I, van Wijka

KJ. 2000. Proteomics of the Chloroplast: Systematic Identification and Targeting

Analysis of Lumenal and Peripheral Thylakoid Proteins. The Plant Cell 12:319-341.

69. Chew O, Whelan J. Just read the message: a model for sorting of proteins between

mitochondria and chloroplasts. Trends in Plant Science 9:318-319.

70. Rudhe C, Chew O, Whelan J, Glaser E. 2002. A novel in vitro system for simultaneous

import of precursor proteins into mitochondria and chloroplasts. The Plant journal : for

cell and molecular biology 30:213-220.

71. Karniely S, Pines O. 2005. Single translation—dual destination: mechanisms of dual

protein targeting in eukaryotes. EMBO Reports 6:420-425.

72. Peeters N, Small I. 2001. Dual targeting to mitochondria and chloroplasts. Biochimica et

Biophysica Acta (BBA) - Molecular Cell Research 1541:54-63.

73. Blobel G. 1980. Intracellular protein topogenesis. Proceedings of the National Academy

of Sciences of the United States of America 77:1496-1500.

74. Loya A, Pnueli L, Yosefzon Y, Wexler Y, Ziv-Ukelson M, Arava Y. 2008. The 3′-

UTR mediates the cellular localization of an mRNA encoding a short plasma membrane

protein. RNA 14:1352-1365.

75. Pyhtila B, Zheng T, Lager PJ, Keene JD, Reedy MC, Nicchitta CV. 2008. Signal

sequence- and translation-independent mRNA localization to the endoplasmic reticulum.

RNA 14:445-453.

76. Marc P, Margeot A, Devaux F, Blugeon C, Corral-Debrinski M, Jacq C. 2002.

Genome-wide analysis of mRNAs targeted to yeast mitochondria. EMBO Reports 3:159-

164.

77. Gadir N, Haim-Vilmovsky L, Kraut-Cohen J, Gerst JE. 2011. Localization of

mRNAs coding for mitochondrial proteins in the yeast Saccharomyces cerevisiae. Rna

17:1551-1565.

78. Saint-Georges Y, Garcia M, Delaveau T, Jourdren L, Le Crom S, Lemoine S, Tanty

V, Devaux F, Jacq C. 2008. Yeast Mitochondrial Biogenesis: A Role for the PUF RNA-

Binding Protein Puf3p in mRNA Localization. PLoS ONE 3:e2293.

79. Uniacke J, Zerges W. 2009. Chloroplast protein targeting involves localized translation

in Chlamydomonas. Proceedings of the National Academy of Sciences 106:1439-1444.

80. Zipor G, Haim-Vilmovsky L, Gelin-Licht R, Gadir N, Brocard C, Gerst JE. 2009.

Localization of mRNAs coding for peroxisomal proteins in the yeast, Saccharomyces

cerevisiae. Proceedings of the National Academy of Sciences of the United States of

America 106:19848-19853.

81. Jambhekar A, Derisi JL. 2007. Cis-acting determinants of asymmetric, cytoplasmic

RNA transport. Rna 13:625-642.

82. Munro TP, Magee RJ, Kidd GJ, Carson JH, Barbarese E, Smith LM, Smith R.

1999. Mutational analysis of a heterogeneous nuclear ribonucleoprotein A2 response

element for RNA trafficking. The Journal of biological chemistry 274:34389-34395.

Page 178: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

159

83. Ainger K, Avossa D, Diana AS, Barry C, Barbarese E, Carson JH. 1997. Transport

and Localization Elements in Myelin Basic Protein mRNA. The Journal of Cell Biology

138:1077-1087.

84. Kraut-Cohen J, Gerst JE. 2010. Addressing mRNAs to the ER: cis sequences act up!

Trends Biochem Sci 35:459-469.

85. Haim L, Zipor G, Aronov S, Gerst JE. 2007. A genomic integration method to

visualize localization of endogenous mRNAs in living yeast. Nature methods 4:409-412.

86. Ule J, Jensen K, Mele A, Darnell RB. 2005. CLIP: a method for identifying protein–

RNA interaction sites in living cells. Methods 37:376-386.

87. Daròs JA, Elena SF, Flores R. 2006. Viroids: an Ariadne's thread into the RNA

labyrinth. EMBO reports 7:593-598.

88. Molina-Serrano D, Suay L, Salvador ML, Flores R, Daròs J-A. 2007. Processing of

RNAs of the family Avsunviroidae in Chlamydomonas reinhardtii chloroplasts. Journal

of virology 81:4363-4366.

89. Daròs J-A, Marcos JF, Hernandez C, Flores R. 1994. Replication of avocado

sunblotch viroid: evidence for a symmetric pathway with two rolling circles and

hammerhead ribozyme processing. Proceedings of the National Academy of Sciences

91:12813-12817.

90. Lima M, Fonseca M, Flores R, Kitajima E. 1994. Detection of avocado sunblotch

viroid in chloroplasts of avocado leaves by in situ hybridization. Archives of virology

138:385-390.

91. Bussière F, Lehoux J, Thompson D, Skrzeczkowski L, Perreault J-P. 1999.

Subcellular localization and rolling circle replication of peach latent mosaic viroid:

hallmarks of group A viroids. Journal of virology 73:6353-6360.

92. Navarro J-A, Vera A, Flores R. 2000. A chloroplastic RNA polymerase resistant to

tagetitoxin is involved in replication of avocado sunblotch viroid. Virology 268:218-225.

93. Ding B. 2009. The biology of viroid-host interactions. Annual review of phytopathology

47:105-131.

94. Flores R, Hernández C, Alba AEMd, Daròs J-A, Serio FD. 2005. Viroids and viroid-

host interactions. Annu. Rev. Phytopathol. 43:117-139.

95. Gomez G, Pallas V. 2010. Noncoding RNA mediated traffic of foreign mRNA into

chloroplasts reveals a novel signaling mechanism in plants. PLoS One 5:e12269.

96. Gomez G, Pallas V. 2010. Can the import of mRNA into chloroplasts be mediated by a

secondary structure of a small non-coding RNA? Plant signaling & behavior 5:1517-

1519.

97. Hotto AM, Germain A, Stern DB. 2012. Plastid non-coding RNAs: emerging

candidates for gene regulation. Trends in plant science 17:737-744.

98. Hotto AM, Schmitz RJ, Fei Z, Ecker JR, Stern DB. 2011. Unexpected diversity of

chloroplast noncoding RNAs as revealed by deep sequencing of the Arabidopsis

transcriptome. G3: Genes, Genomes, Genetics 1:559-570.

99. Zhelyazkova P, Sharma CM, Förstner KU, Liere K, Vogel J, Börner T. 2012. The

primary transcriptome of barley chloroplasts: numerous noncoding RNAs and the

dominating role of the plastid-encoded RNA polymerase. The Plant Cell 24:123-136.

100. Vothknecht UC, Soll J. 2005. Chloroplast membrane transport: interplay of prokaryotic

and eukaryotic traits. Gene 354:99-109.

101. Buchanan BB, Gruissem W, Jones RL. 2000. Biochemistry & molecular biology of

plants, vol. 40. American Society of Plant Physiologists Rockville, MD.

Page 179: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

160

102. Harris EH, Boynton JE, Gillham NW. 1994. Chloroplast ribosomes and protein

synthesis. Microbiological reviews 58:700.

103. Martin W, Herrmann RG. 1998. Gene transfer from organelles to the nucleus: how

much, what happens, and why? Plant physiology 118:9-17.

104. Stengel A, Soll J, Bölter B. 2007. Protein import into chloroplasts: new aspects of a

well-known topic. Biological chemistry 388:765-772.

105. Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K, Walter P. 2014.

Molecular Biology of the Cell, 6th ed. Garland Science, New York.

106. Kozak M. 1999. Initiation of translation in prokaryotes and eukaryotes. Gene 234:187-

208.

107. Marín-Navarro J, Manuell AL, Wu J, Mayfield SP. 2007. Chloroplast translation

regulation. Photosynthesis Research 94:359-374.

108. Salinas T, Duchêne A-M, Marechal-Drouard L. 2008. Recent advances in tRNA

mitochondrial import. Trends in biochemical sciences 33:320-329.

109. Schneider A, Maréchal-Drouard L. 2000. Mitochondrial tRNA import: are there

distinct mechanisms? Trends in cell biology 10:509-513.

110. Maréchal-Drouard L, Weil J, Dietrich A. 1993. Transfer RNAs and transfer RNA

genes in plants. Annual review of plant biology 44:13-32.

111. Smirnov A, Tarassov I, Mager-Heckel A-M, Letzelter M, Martin RP,

Krasheninnikov IA, Entelis N. 2008. Two distinct structural elements of 5S rRNA are

needed for its import into human mitochondria. Rna 14:749-759.

112. Puranam RS, Attardi G. 2001. The RNase P associated with HeLa cell mitochondria

contains an essential RNA component identical in sequence to that of the nuclear RNase

P. Molecular and cellular biology 21:548-561.

113. Tarassov I, Kamenski P, Kolesnikova O, Karicheva O, Martin RP, Krasheninnikov

IA, Entelis N. 2007. Import of nuclear DNA-encoded RNAs into mitochondria and

mitochondrial translation. Cell Cycle 6:2473-2477.

114. Delage L, Duchêne AM, Zaepfel M, Maréchal‐Drouard L. 2003. The anticodon and

the D‐domain sequences are essential determinants for plant cytosolic tRNAVal import

into mitochondria. The Plant Journal 34:623-633.

115. Salinas T, Schaeffer C, Maréchal-Drouard L, Duchêne A-M. 2005. Sequence

dependence of tRNA Gly import into tobacco mitochondria. Biochimie 87:863-872.

116. Small I, Marechal-Drouard L, Masson J, Pelletier G, Cosset A, Weil J, Dietrich A.

1992. In vivo import of a normal or mutagenized heterologous transfer RNA into the

mitochondria of transgenic plants: towards novel ways of influencing mitochondrial gene

expression? The EMBO journal 11:1291.

117. Delage L, Dietrich A, Cosset A, Maréchal-Drouard L. 2003. In vitro import of a

nuclearly encoded tRNA into mitochondria of Solanum tuberosum. Molecular and

cellular biology 23:4000-4012.

118. Hanley-Bowdoin L, Settlage SB, Orozco BM, Nagar S, Robertson D. 2000.

Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation.

Crit Rev Biochem Mol Biol 35:105-140.

119. Hanley-Bowdoin L, Settlage SB, Robertson D. 2004. Reprogramming plant gene

expression: a prerequisite to geminivirus DNA replication. Mol Plant Pathol 5:149-156.

120. Lazarowitz SG, Beachy RN. 1999. Viral movement proteins as probes for intracellular

and intercellular trafficking in plants. The Plant Cell 11:535-548.

121. Rojas MR, Hagen C, Lucas WJ, Gilbertson RL. 2005. Exploiting chinks in the plant's

armor: evolution and emergence of geminiviruses. Annu. Rev. Phytopathol. 43:361-394.

Page 180: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

161

122. Jeske H. 2007. Replication of geminiviruses and the use of rolling circle amplification

for their diagnosis, p. 141-156, Tomato Yellow Leaf Curl Virus Disease. Springer.

123. Varsani A, Navas-Castillo J, Moriones E, Hernandez-Zepeda C, Idris A, Brown JK,

Murilo Zerbini F, Martin DP. 2014. Establishment of three new genera in the family

Geminiviridae: Becurtovirus, Eragrovirus and Turncurtovirus. Archives of virology

159:2193-2203.

124. Adams M, King A, Carstens E. 2013. Ratification vote on taxonomic proposals to the

International Committee on Taxonomy of Viruses (2013). Archives of virology

158:2023-2030.

125. Amin I, Patil BL, Briddon RW, Mansoor S, Fauquet CM. 2011. Comparison of

phenotypes produced in response to transient expression of genes encoded by four

distinct begomoviruses in Nicotiana benthamiana and their correlation with the levels of

developmental miRNAs. Virol J 8:238.

126. Briddon RW, Stanley J. 2001. Geminiviridae, eLS. John Wiley & Sons, Ltd.

127. Fauquet C, Briddon R, Brown J, Moriones E, Stanley J, Zerbini M, Zhou X. 2008.

Geminivirus strain demarcation and nomenclature. Archives of virology 153:783-821.

128. Hanley-Bowdoin L, Bejarano ER, Robertson D, Mansoor S. 2013. Geminiviruses:

masters at redirecting and reprogramming plant processes. Nature reviews. Microbiology

11:777-788.

129. Idris AM, Shahid MS, Briddon RW, Khan A, Zhu J-K, Brown JK. 2011. An unusual

alphasatellite associated with monopartite begomoviruses attenuates symptoms and

reduces betasatellite accumulation. Journal of General Virology 92:706-717.

130. Bisaro DM. 2006. Silencing suppression by geminivirus proteins. Virology 344:158-168.

131. Vanitharani R, Chellappan P, Fauquet CM. 2005. Geminiviruses and RNA silencing.

Trends in plant science 10:144-151.

132. Sharma P, Ikegami M. 2009. Characterization of signals that dictate nuclear/nucleolar

and cytoplasmic shuttling of the capsid protein of Tomato leaf curl Java virus associated

with DNAβ satellite. Virus research 144:145-153.

133. Hanley-Bowdoin L, Settlage SB, Orozco BM, Nagar S, Robertson D. 1999.

Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation.

Critical Reviews in Plant Sciences 18:71-106.

134. Yadava P, Suyal G, Mukherjee SK. 2010. Begomovirus DNA replication and

pathogenicity. Current Science 98:360-368.

135. Chakravortty D, Poornima Priyadarshini C, Ambika M, Tippeswamy R, Savithri H.

2011. Functional characterization of coat protein and V2 involved in cell to cell

movement of Cotton leaf curl Kokhran virus-Dabawali. PloS one 6:e26929.

136. Zrachya A, Glick E, Levy Y, Arazi T, Citovsky V, Gafni Y. 2007. Suppressor of RNA

silencing encoded by Tomato yellow leaf curl virus-Israel. Virology 358:159-165.

137. Sharma P, Gaur RK, Ikegami M. 2011. Subcellular localization of V2 protein of

Tomato leaf curl Java virus by using green fluorescent protein and yeast hybrid system.

Protoplasma 248:281-288.

138. Nash TE, Dallas MB, Reyes MI, Buhrman GK, Ascencio-Ibañez JT, Hanley-

Bowdoin L. 2011. Functional analysis of a novel motif conserved across geminivirus

Rep proteins. Journal of virology 85:1182-1192.

139. Hanley‐Bowdoin L, Settlage SB, Robertson D. 2004. Reprogramming plant gene

expression: a prerequisite to geminivirus DNA replication. Molecular Plant Pathology

5:149-156.

Page 181: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

162

140. Choudhury NR, Malik PS, Singh DK, Islam MN, Kaliappan K, Mukherjee SK.

2006. The oligomeric Rep protein of Mungbean yellow mosaic India virus (MYMIV) is a

likely replicative helicase. Nucleic acids research 34:6362-6377.

141. Yang X, Baliji S, Buchmann RC, Wang H, Lindbo JA, Sunter G, Bisaro DM. 2007.

Functional modulation of the geminivirus AL2 transcription factor and silencing

suppressor by self-interaction. Journal of virology 81:11972-11981.

142. Gopal P, Kumar PP, Sinilal B, Jose J, Yadunandam AK, Usha R. 2007. Differential

roles of C4 and βC1 in mediating suppression of post-transcriptional gene silencing:

evidence for transactivation by the C2 of Bhendi yellow vein mosaic virus, a monopartite

begomovirus. Virus research 123:9-18.

143. Mubin M, Amin I, Amrao L, Briddon RW, Mansoor S. 2010. The hypersensitive

response induced by the V2 protein of a monopartite begomovirus is countered by the C2

protein. Molecular plant pathology 11:245-254.

144. Hussain M, Mansoor S, Iram S, Zafar Y, Briddon RW. 2007. The hypersensitive

response to tomato leaf curl New Delhi virus nuclear shuttle protein is inhibited by

transcriptional activator protein. Molecular Plant-Microbe Interactions 20:1581-1588.

145. Pedersen TJ, Hanley-Bowdoin L. 1994. Molecular characterization of the AL3 protein

encoded by a bipartite geminivirus. Virology 202:1070-1075.

146. Settlage SB, See RG, Hanley-Bowdoin L. 2005. Geminivirus C3 protein: replication

enhancement and protein interactions. Journal of virology 79:9885-9895.

147. Pasumarthy KK, Mukherjee SK, Choudhury NR. 2011. The presence of tomato leaf

curl Kerala virus AC3 protein enhances viral DNA replication and modulates virus

induced gene-silencing mechanism in tomato plants. Virology journal 8:1-14.

148. Pandey P, Choudhury NR, Mukherjee SK. 2009. A geminiviral amplicon (VA)

derived from Tomato leaf curl virus (ToLCV) can replicate in a wide variety of plant

species and also acts as a VIGS vector. Virol. J 6:152.

149. Vanitharani R, Chellappan P, Pita JS, Fauquet CM. 2004. Differential roles of AC2

and AC4 of cassava geminiviruses in mediating synergism and suppression of

posttranscriptional gene silencing. Journal of virology 78:9487-9498.

150. Amin I, Hussain K, Akbergenov R, Yadav JS, Qazi J, Mansoor S, Hohn T, Fauquet

CM, Briddon RW. 2011. Suppressors of RNA silencing encoded by the components of

the cotton leaf curl begomovirus-betasatellite complex. Molecular plant-microbe

interactions : MPMI 24:973-983.

151. Malik PS, Kumar V, Bagewadi B, Mukherjee SK. 2005. Interaction between coat

protein and replication initiation protein of Mung bean yellow mosaic India virus might

lead to control of viral DNA replication. Virology 337:273-283.

152. Sanderfoot AA, Ingham DJ, Lazarowitz SG. 1996. A Viral Movement Protein as a

Nuclear Shuttle (The Geminivirus BR1 Movement Protein Contains Domains Essential

for Interaction with BL1 and Nuclear Localization). Plant physiology 110:23-33.

153. Krenz B, Jeske H, Kleinow T. 2012. The induction of stromule formation by a plant

DNA-virus in epidermal leaf tissues suggests a novel intra-and intercellular

macromolecular trafficking route. Frontiers in plant science 3.

154. Jeffrey JL, Pooma W, Petty IT. 1996. Genetic requirements for local and systemic

movement of tomato golden mosaic virus in infected plants. Virology 223:208-218.

155. Rojas MR, Jiang H, Salati R, Xoconostle-Cázares B, Sudarshana M, Lucas WJ,

Gilbertson RL. 2001. Functional analysis of proteins involved in movement of the

monopartite begomovirus, Tomato yellow leaf curl virus. Virology 291:110-125.

Page 182: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

163

156. Gafni Y, Epel BL. 2002. The role of host and viral proteins in intra-and inter-cellular

trafficking of geminiviruses. Physiological and Molecular Plant Pathology 60:231-241.

157. Settlage SB, See RG, Hanley-Bowdoin L. 2005. Geminivirus C3 protein: replication

enhancement and protein interactions. Journal of virology 79:9885-9895.

158. Goodin MM, Zaitlin D, Naidu RA, Lommel SA. 2008. Nicotiana benthamiana: its

history and future as a model for plant-pathogen interactions. Molecular plant-microbe

interactions 21:1015-1026.

159. Saeed M, Zafar Y, Randles JW, Rezaian MA. 2007. A monopartite begomovirus-

associated DNA β satellite substitutes for the DNA B of a bipartite begomovirus to

permit systemic infection. Journal of General Virology 88:2881-2889.

160. Ito T, Kimbara J, Sharma P, Ikegami M. 2009. Interaction of tomato yellow leaf curl

virus with diverse betasatellites enhances symptom severity. Archives of virology

154:1233-1239.

161. Waigmann E, Ueki S, Trutnyeva K, Citovsky V. 2004. The ins and outs of

nondestructive cell-to-cell and systemic movement of plant viruses. Critical Reviews in

Plant Sciences 23:195-250.

162. Bisaro DM. 1996. DNA Replication in Eukaryofic Cells :30 Geminivirus DNA

Replication, In DNA replication in eukaryotic cells, Cold Spring Harbor Laboratory press

ed.

163. Fontes EP, Santos AA, Luz DF, Waclawovsky AJ, Chory J. 2004. The geminivirus

nuclear shuttle protein is a virulence factor that suppresses transmembrane receptor

kinase activity. Genes & development 18:2545-2556.

164. Groning BR, Abouzid A, Jeske H. 1987. Single-stranded DNA from abutilon mosaic

virus is present in the plastids of infected Abutilon sellovianum. Proc Natl Acad Sci U S

A 84:8996-9000.

165. Bhattacharyya D, Gnanasekaran P, Kumar RK, Kushwaha NK, Sharma VK, Yusuf

MA, Chakraborty S. 2015. A geminivirus betasatellite damages the structural and

functional integrity of chloroplasts leading to symptom formation and inhibition of

photosynthesis. Journal of experimental botany 66:5881-5895.

166. Wei T, Huang T-S, McNeil J, Laliberté J-F, Hong J, Nelson RS, Wang A. 2010.

Sequential recruitment of the endoplasmic reticulum and chloroplasts for plant potyvirus

replication. Journal of virology 84:799-809.

167. Uhde-Holzem K, Fischer R, Commandeur U. 2007. Genetic stability of recombinant

potato virus X virus vectors presenting foreign epitopes. Arch Virol 152:805-811.

168. Batten JS, Yoshinari S, Hemenway C. 2003. Potato virus X: a model system for virus

replication, movement and gene expression. Mol Plant Pathol 4:125-131.

169. Huisman MJ, Linthorst HJ, Bol JF, Cornelissen JC. 1988. The complete nucleotide

sequence of potato virus X and its homologies at the amino acid level with various plus-

stranded RNA viruses. The Journal of general virology 69 ( Pt 8):1789-1798.

170. Fedorkin O, Solovyev A, Yelina N, Zamyatnin A, Jr., Zinovkin R, Makinen K,

Schiemann J, Yu Morozov S. 2001. Cell-to-cell movement of potato virus X involves

distinct functions of the coat protein. The Journal of general virology 82:449-458.

171. Morozov S, Miroshnichenko NA, Solovyev AG, Fedorkin ON, Zelenina DA,

Lukasheva LI, Karasev AV, Dolja VV, Atabekov JG. 1991. Expression strategy of the

potato virus X triple gene block. The Journal of general virology 72 ( Pt 8):2039-2042.

172. Soll J, Schleiff E. 2004. Protein import into chloroplasts. Nat Rev Mol Cell Biol 5:198-

208.

Page 183: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

164

173. Rochon D, Siegel A. 1984. Chloroplast DNA transcripts are encapsidated by tobacco

mosaic virus coat protein. Proceedings of the National Academy of Sciences of the

United States of America 81:1719-1723.

174. Hefferon KL, Khalilian H, Xu H, AbouHaidar MG. 1997. Expression of the coat

protein of potato virus X from a dicistronic mRNA in transgenic potato plants. The

Journal of general virology 78 ( Pt 11):3051-3059.

175. Qiao Y, Li H, Wong S, Fan Z. 2009. Plastocyanin transit peptide interacts with Potato

virus X coat protein, while silencing of plastocyanin reduces coat protein accumulation in

chloroplasts and symptom severity in host plants. Molecular plant-microbe interactions

22:1523-1534.

176. Schoelz JE, Zaitlin M. 1989. Tobacco mosaic virus RNA enters chloroplasts in vivo.

Proceedings of the National Academy of Sciences of the United States of America

86:4496-4500.

177. Xiang Y, Kakani K, Reade R, Hui E, Rochon D. 2006. A 38-amino-acid sequence

encompassing the arm domain of the cucumber necrosis virus coat protein functions as a

chloroplast transit Peptide in infected plants. Journal of virology 80:7952-7964.

178. Lim HS, Bragg JN, Ganesan U, Ruzin S, Schichnes D, Lee MY, Vaira AM, Ryu KH,

Hammond J, Jackson AO. 2009. Subcellular localization of the barley stripe mosaic

virus triple gene block proteins. Journal of virology 83:9432-9448.

179. Bedard J, Jarvis P. 2005. Recognition and envelope translocation of chloroplast

preproteins. J Exp Bot 56:2287-2320.

180. Erhardt M, Morant M, Ritzenthaler C, Stussi-Garaud C, Guilley H, Richards K,

Jonard G, Bouzoubaa S, Gilmer D. 2000. P42 movement protein of Beet necrotic

yellow vein virus is targeted by the movement proteins P13 and P15 to punctate bodies

associated with plasmodesmata. Mol Plant Microbe Interact 13:520-528.

181. Angell SM, Davies C, Baulcombe DC. 1996. Cell-to-cell movement of potato virus X is

associated with a change in the size-exclusion limit of plasmodesmata in trichome cells

of Nicotiana clevelandii. Virology 216:197-201.

182. Voinnet O, Rivas S, Mestre P, Baulcombe D. 2003. An enhanced transient expression

system in plants based on suppression of gene silencing by the p19 protein of tomato

bushy stunt virus. The Plant journal : for cell and molecular biology 33:949-956.

183. Yang Y, Ding B, Baulcombe DC, Verchot J. 2000. Cell-to-cell movement of the 25K

protein of potato virus X is regulated by three other viral proteins. Mol Plant Microbe

Interact 13:599-605.

184. Lough TJ, Shash K, Xoconostle-Cázares B, Hofstra KR, Beck DL, Balmori E,

Forster RLS, Lucas WJ. 1998. Molecular Dissection of the Mechanism by Which

Potexvirus Triple Gene Block Proteins Mediate Cell-to-Cell Transport of Infectious

RNA. Molecular Plant-Microbe Interactions 11:801-814.

185. Lough TJ, Emerson SJ, Lucas WJ, Forster RL. 2001. Trans-complementation of long-

distance movement of White clover mosaic virus triple gene block (TGB) mutants:

phloem-associated movement of TGBp1. Virology 288:18-28.

186. Cruz SS, Roberts AG, Prior DA, Chapman S, Oparka KJ. 1998. Cell-to-cell and

phloem-mediated transport of potato virus X. The role of virions. Plant Cell 10:495-510.

187. Bolwell GP. 2001. Biochemistry & Molecular Biology of Plants: B.B. Buchanan,

W. Gruissem and R.L. Jones (Eds.), American Society of Plant Physiologists. 2000. 1367

pp. ISBN 0-943088-39-9, $100. Phytochemistry 58:185.

188. Ahlquist P. 2006. Parallels among positive-strand RNA viruses, reverse-transcribing

viruses and double-stranded RNA viruses. Nature reviews. Microbiology 4:371-382.

Page 184: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

165

189. Buck KW. 1999. Replication of tobacco mosaic virus RNA. Philosophical transactions

of the Royal Society of London. Series B, Biological sciences 354:613-627.

190. Hwang YT, McCartney AW, Gidda SK, Mullen RT. 2008. Localization of the

Carnation Italian ringspot virus replication protein p36 to the mitochondrial outer

membrane is mediated by an internal targeting signal and the TOM complex. BMC cell

biology 9:54.

191. Salonen A, Ahola T, Kaariainen L. 2005. Viral RNA replication in association with

cellular membranes. Current topics in microbiology and immunology 285:139-173.

192. Salonen A, Ahola T, Kääriäinen L. 2005. Viral RNA Replication in Association with

Cellular Membranes, p. 139-173. In Marsh M (ed.), Membrane Trafficking in Viral

Replication, vol. 285. Springer Berlin Heidelberg.

193. Schaad MC, Jensen PE, Carrington JC. 1997. Formation of plant RNA virus

replication complexes on membranes: role of an endoplasmic reticulum-targeted viral

protein. The EMBO Journal 16:4049-4059.

194. Carette JE, Stuiver M, Van Lent J, Wellink J, Van Kammen A. 2000. Cowpea

Mosaic Virus Infection Induces a Massive Proliferation of Endoplasmic Reticulum but

Not Golgi Membranes and Is Dependent on De Novo Membrane Synthesis. Journal of

virology 74:6556-6563.

195. Han S, Sanfacon H. 2003. Tomato ringspot virus proteins containing the nucleoside

triphosphate binding domain are transmembrane proteins that associate with the

endoplasmic reticulum and cofractionate with replication complexes. Journal of virology

77:523-534.

196. Bamunusinghe D, Hemenway CL, Nelson RS, Sanderfoot AA, Ye CM, Silva MA,

Payton M, Verchot-Lubicz J. 2009. Analysis of potato virus X replicase and TGBp3

subcellular locations. Virology 393:272-285.

197. Kawakami S, Watanabe Y, Beachy RN. 2004. Tobacco mosaic virus infection spreads

cell to cell as intact replication complexes. Proceedings of the National Academy of

Sciences of the United States of America 101:6291-6296.

198. Nishikiori M, Dohi K, Mori M, Meshi T, Naito S, Ishikawa M. 2006. Membrane-

bound tomato mosaic virus replication proteins participate in RNA synthesis and are

associated with host proteins in a pattern distinct from those that are not membrane

bound. Journal of virology 80:8459-8468.

199. McCartney AW, Greenwood JS, Fabian MR, White KA, Mullen RT. 2005.

Localization of the tomato bushy stunt virus replication protein p33 reveals a

peroxisome-to-endoplasmic reticulum sorting pathway. Plant Cell 17:3513-3531.

200. Mochizuki T, Hirai K, Kanda A, Ohnishi J, Ohki T, Tsuda S. 2009. Induction of

necrosis via mitochondrial targeting of Melon necrotic spot virus replication protein p29

by its second transmembrane domain. Virology 390:239-249.

201. Prod'homme D, Jakubiec A, Tournier V, Drugeon G, Jupin I. 2003. Targeting of the

turnip yellow mosaic virus 66K replication protein to the chloroplast envelope is

mediated by the 140K protein. Journal of virology 77:9124-9135.

202. Wei T, Huang TS, McNeil J, Laliberte JF, Hong J, Nelson RS, Wang A. 2010.

Sequential recruitment of the endoplasmic reticulum and chloroplasts for plant potyvirus

replication. Journal of virology 84:799-809.

203. Laliberte JF, Sanfacon H. 2010. Cellular remodeling during plant virus infection.

Annual review of phytopathology 48:69-91.

Page 185: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

166

204. Otulak K, Chouda M, Bujarski J, Garbaczewska G. 2015. The evidence of Tobacco

rattle virus impact on host plant organelles ultrastructure. Micron (Oxford, England :

1993) 70:7-20.

205. Hefferon KL, Xu J, AbouHaidar MG. 2000. Identification and in vivo expression of a

prokaryotic-like ribosome recognition sequence upstream of the coat protein gene of

potato virus X. Arch Virol 145:945-956.

206. Arruda AS. 2009. Identification of a chloroplastic "RNA tractor" within the genome of

Potato virus X (PVX). Universityof Toronto, Toronto.

207. Gomez G, Pallas V. 2012. Studies on subcellular compartmentalization of plant

pathogenic noncoding RNAs give new insights into the intracellular RNA-traffic

mechanisms. Plant physiology 159:558-564.

208. Nicolai M, Duprat A, Sormani R, Rodriguez C, Roncato MA, Rolland N, Robaglia

C. 2007. Higher plant chloroplasts import the mRNA coding for the eucaryotic

translation initiation factor 4E. FEBS letters 581:3921-3926.

209. Cheng SF, Huang YP, Chen LH, Hsu YH, Tsai CH. 2013. Chloroplast

phosphoglycerate kinase is involved in the targeting of Bamboo mosaic virus to

chloroplasts in Nicotiana benthamiana plants. Plant physiology 163:1598-1608.

210. Kuroda H, Maliga P. 2001. Sequences downstream of the translation initiation codon

are important determinants of translation efficiency in chloroplasts. Plant physiology

125:430-436.

211. Hirose T, Sugiura M. 1996. Cis-acting elements and trans-acting factors for accurate

translation of chloroplast psbA mRNAs: development of an in vitro translation system

from tobacco chloroplasts. The EMBO journal 15:1687-1695.

212. Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular Cloning: A Laboratory Manual,

Cold Spring Harbor, N. Y. Cold Spring Harbor Laboratory.

213. Tzfira T, Jensen C, Wang W, Zuker A, Vinocur B, Altman A, Vainstein A. 1997.

Transgenic Populus tremula: a step-by-step protocol for its Agrobacterium-mediated

transformation. Plant Molecular Biology Reporter 15:219-235.

214. Horsch RB, Fry JE, Hoffman NL, Eichholtz D, Rogers SG, Fraley RT. 1985. A

simple and general method for transferring genes into plants. Science 227:1229+.

215. AbouHaidar M, Xu H, Hefferon K. 1998. Potexvirus Isolation and RNA Extraction, p.

131-143. In Foster G, Taylor S (ed.), Plant Virology Protocols, vol. 81. Humana Press.

216. Bercks R. 1970. Potato virus X, CMI/AAB Descriptions of Plant Viruses No. 4.

217. Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-

time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402-408.

218. Laemmli UK. 1970. Cleavage of Structural Proteins during the Assembly of the Head of

Bacteriophage T4. Nature 227:680-685.

219. Block A, Guo M, Li G, Elowsky C, Clemente TE, Alfano JR. 2010. The Pseudomonas

syringae type III effector HopG1 targets mitochondria, alters plant development and

suppresses plant innate immunity. Cellular Microbiology 12:318-330.

220. Walker NJ. 2002. Tech.Sight. A technique whose time has come. Science 296:557-559.

221. Schmittgen TD, Zakrajsek BA, Mills AG, Gorn V, Singer MJ, Reed MW. 2000.

Quantitative reverse transcription-polymerase chain reaction to study mRNA decay:

comparison of endpoint and real-time methods. Anal Biochem 285:194-204.

222. Kopek BG, Perkins G, Miller DJ, Ellisman MH, Ahlquist P. 2007. Three-dimensional

analysis of a viral RNA replication complex reveals a virus-induced mini-organelle.

PLoS Biol 5:e220.

Page 186: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

167

223. Daros JA, Flores R. 2002. A chloroplast protein binds a viroid RNA in vivo and

facilitates its hammerhead-mediated self-cleavage. The EMBO journal 21:749-759.

224. Yakhnin AV, Yakhnin H, Babitzke P. 2012. Gel mobility shift assays to detect protein-

RNA interactions. Methods in molecular biology (Clifton, N.J.) 905:201-211.

225. Hellman LM, Fried MG. 2007. Electrophoretic mobility shift assay (EMSA) for

detecting protein-nucleic acid interactions. Nature protocols 2:1849-1861.

226. Pelle R, Murphy NB. 1993. In vivo UV-cross-linking hybridization: a powerful

technique for isolating RNA binding proteins. Application to trypanosome mini-exon

derived RNA. Nucleic acids research 21:2453-2458.

227. Luo MJ, Reed R. 2003. Identification of RNA binding proteins by UV cross-linking.

Current protocols in molecular biology / edited by Frederick M. Ausubel ... [et al.]

Chapter 27:Unit 27.22.

228. Nesvizhskii AI. 2007. Protein identification by tandem mass spectrometry and sequence

database searching. Methods in molecular biology (Clifton, N.J.) 367:87-119.

229. Lazarowitz SG, Beachy RN. 1999. Viral movement proteins as probes for intracellular

and intercellular trafficking in plants. Plant Cell 11:535-548.

230. Rojas MR, Hagen C, Lucas WJ, Gilbertson RL. 2005. Exploiting chinks in the plant's

armor: evolution and emergence of geminiviruses. Annual review of phytopathology

43:361-394.

231. Adams MJ, King AM, Carstens EB. 2013. Ratification vote on taxonomic proposals to

the International Committee on Taxonomy of Viruses (2013). Arch Virol 158:2023-2030.

232. Fauquet CM, Briddon RW, Brown JK, Moriones E, Stanley J, Zerbini M, Zhou X.

2008. Geminivirus strain demarcation and nomenclature. Arch Virol 153:783-821.

233. Idris AM, Shahid MS, Briddon RW, Khan AJ, Zhu JK, Brown JK. 2011. An unusual

alphasatellite associated with monopartite begomoviruses attenuates symptoms and

reduces betasatellite accumulation. The Journal of general virology 92:706-717.

234. Selth LA, Randles JW, Rezaian MA. 2004. Host responses to transient expression of

individual genes encoded by Tomato leaf curl virus. Mol Plant Microbe Interact 17:27-

33.

235. Sharma P, Ikegami M. 2010. Tomato leaf curl Java virus V2 protein is a determinant of

virulence, hypersensitive response and suppression of posttranscriptional gene silencing.

Virology 396:85-93.

236. Moffat AS. 1999. Geminiviruses emerge as serious crop threat. Science 286:1835-1835.

237. Varma A, Malathi VG. 2003. Emerging geminivirus problems: A serious threat to crop

production. Annals of Applied Biology 142:145-164.

238. Gutierrez C. 1999. Geminivirus DNA replication. Cell Mol Life Sci 56:313-329.

239. Jeske H. 2009. Geminiviruses. Curr Top Microbiol Immunol 331:185-226.

240. Mansoor S, Briddon RW, Zafar Y, Stanley J. 2003. Geminivirus disease complexes:

an emerging threat. Trends in plant science 8:128-134.

241. Zhang J, Zhang Y, Du Y, Chen S, Tang H. 2011. Dynamic metabonomic responses of

tobacco (Nicotiana tabacum) plants to salt stress. J Proteome Res 10:1904-1914.

242. Sierro N, Battey JN, Ouadi S, Bakaher N, Bovet L, Willig A, Goepfert S, Peitsch

MC, Ivanov NV. 2014. The tobacco genome sequence and its comparison with those of

tomato and potato. Nat Commun 5:3833.

243. Goodin MM, Zaitlin D, Naidu RA, Lommel SA. 2008. Nicotiana benthamiana: its

history and future as a model for plant-pathogen interactions. Mol Plant Microbe Interact

21:1015-1026.

Page 187: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

168

244. Gabriels SH, Takken FL, Vossen JH, de Jong CF, Liu Q, Turk SC, Wachowski LK,

Peters J, Witsenboer HM, de Wit PJ, Joosten MH. 2006. CDNA-AFLP combined

with functional analysis reveals novel genes involved in the hypersensitive response. Mol

Plant Microbe Interact 19:567-576.

245. Kanneganti TD, Bai X, Tsai CW, Win J, Meulia T, Goodin M, Kamoun S,

Hogenhout SA. 2007. A functional genetic assay for nuclear trafficking in plants. The

Plant journal : for cell and molecular biology 50:149-158.

246. Malik PS, Kumar V, Bagewadi B, Mukherjee SK. 2005. Interaction between coat

protein and replication initiation protein of Mung bean yellow mosaic India virus might

lead to control of viral DNA replication. Virology 337:273-283.

247. Rojas MR, Jiang H, Salati R, Xoconostle-Cazares B, Sudarshana MR, Lucas WJ,

Gilbertson RL. 2001. Functional analysis of proteins involved in movement of the

monopartite begomovirus, Tomato yellow leaf curl virus. Virology 291:110-125.

248. Saeed M, Zafar Y, Randles JW, Rezaian MA. 2007. A monopartite begomovirus-

associated DNA beta satellite substitutes for the DNA B of a bipartite begomovirus to

permit systemic infection. The Journal of general virology 88:2881-2889.

249. Sharma P, Gaur RK, Ikegami M. 2011. Subcellular localization of V2 protein of

Tomato leaf curl Java virus by using green fluorescent protein and yeast hybrid system.

Protoplasma 248:281-288.

250. Sharma P, Ikegami M. 2009. Characterization of signals that dictate nuclear/nucleolar

and cytoplasmic shuttling of the capsid protein of Tomato leaf curl Java virus associated

with DNA beta satellite. Virus Res 144:145-153.

251. Bisaro DM. 1996. 30 Geminivirus DNA Replication, In DNA replication in eukaryotic

cells ed, vol. 31. Cold Spring Harbor Laboratory press.

252. Sanderfoot AA, Lazarowitz SG. 1996. Getting it together in plant virus movement:

cooperative interactions between bipartite geminivirus movement proteins. Trends Cell

Biol 6:353-358.

253. Zhou Y, Rojas MR, Park MR, Seo YS, Lucas WJ, Gilbertson RL. 2011. Histone H3

interacts and colocalizes with the nuclear shuttle protein and the movement protein of a

geminivirus. Journal of virology 85:11821-11832.

254. Carvalho CM, Fontenelle MR, Florentino LH, Santos AA, Zerbini FM, Fontes EP.

2008. A novel nucleocytoplasmic traffic GTPase identified as a functional target of the

bipartite geminivirus nuclear shuttle protein. The Plant journal : for cell and molecular

biology 55:869-880.

255. Carvalho CM, Machado JP, Zerbini FM, Fontes EP. 2008. NSP-interacting GTPase:

A cytosolic protein as cofactor for nuclear shuttle proteins. Plant Signal Behav 3:752-

754.

256. Krenz B, Windeisen V, Wege C, Jeske H, Kleinow T. 2010. A plastid-targeted heat

shock cognate 70kDa protein interacts with the Abutilon mosaic virus movement protein.

Virology 401:6-17.

257. Krenz B, Jeske H, Kleinow T. 2012. The induction of stromule formation by a plant

DNA-virus in epidermal leaf tissues suggests a novel intra- and intercellular

macromolecular trafficking route. Frontiers in plant science 3:291.

258. Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small quantities of fresh

leaf tissue. Phytochemical Bulletin 19:11-15.

259. Stein VE, Coutts RHA, Buck KW. 1983. Serological Studies on Tomato Golden

Mosaic Virus, a Geminivirus. Journal of General Virology 64:2493-2498.

Page 188: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

169

260. Swarnalatha P, Mamatha M, Manasa M, Singh RP, Krishnareddy M. 2013.

Molecular identification of Ageratum enation virus (AEV) associated with leaf curl

disease of tomato(Solanum lycopersicum) in India. Australasian Plant Disease Notes

8:67-71.

261. Tahir M, Amin I, Haider MS, Mansoor S, Briddon RW. 2015. Ageratum enation

virus-a begomovirus of weeds with the potential to infect crops. Viruses 7:647-665.

262. Culver JN, Padmanabhan MS. 2007. Virus-induced disease: altering host physiology

one interaction at a time. Annual review of phytopathology 45:221-243.

263. Pallas V, Garcia JA. 2011. How do plant viruses induce disease? Interactions and

interference with host components. The Journal of general virology 92:2691-2705.

264. Kong LJ, Orozco BM, Roe JL, Nagar S, Ou S, Feiler HS, Durfee T, Miller AB,

Gruissem W, Robertson D, Hanley-Bowdoin L. 2000. A geminivirus replication

protein interacts with the retinoblastoma protein through a novel domain to determine

symptoms and tissue specificity of infection in plants. EMBO J 19:3485-3495.

265. McGivern DR, Findlay KC, Montague NP, Boulton MI. 2005. An intact RBR-binding

motif is not required for infectivity of Maize streak virus in cereals, but is required for

invasion of mesophyll cells. The Journal of general virology 86:797-801.

266. Cui X, Tao X, Xie Y, Fauquet CM, Zhou X. 2004. A DNAβ Associated with Tomato

Yellow Leaf Curl China Virus Is Required for Symptom Induction. Journal of virology

78:13966-13974.

267. Saeed M, Behjatnia SA, Mansoor S, Zafar Y, Hasnain S, Rezaian MA. 2005. A

single complementary-sense transcript of a geminiviral DNA beta satellite is determinant

of pathogenicity. Mol Plant Microbe Interact 18:7-14.

268. Saunders K, Norman A, Gucciardo S, Stanley J. 2004. The DNA beta satellite

component associated with ageratum yellow vein disease encodes an essential

pathogenicity protein (betaC1). Virology 324:37-47.

269. Guo W, Yang X, Xie Y, Cui X, Zhou X. 2009. Tomato yellow leaf curl Thailand virus-

[Y72] from Yunnan is a monopartite begomovirus associated with DNAβ. Virus Genes

38:328-333.

270. Amin I, Patil BL, Briddon RW, Mansoor S, Fauquet CM. 2011. A common set of

developmental miRNAs are upregulated in Nicotiana benthamiana by diverse

begomoviruses. Virol J 8:143.

271. Pandey P, Choudhury NR, Mukherjee SK. 2009. A geminiviral amplicon (VA)

derived from Tomato leaf curl virus (ToLCV) can replicate in a wide variety of plant

species and also acts as a VIGS vector. Virol J 6:152.

272. Vanitharani R, Chellappan P, Pita JS, Fauquet CM. 2004. Differential roles of AC2

and AC4 of cassava geminiviruses in mediating synergism and suppression of

posttranscriptional gene silencing. Journal of virology 78:9487-9498.

273. Dogra SC, Eini O, Rezaian MA, Randles JW. 2009. A novel shaggy-like kinase

interacts with the Tomato leaf curl virus pathogenicity determinant C4 protein. Plant Mol

Biol 71:25-38.

274. Piroux N, Saunders K, Page A, Stanley J. 2007. Geminivirus pathogenicity protein C4

interacts with Arabidopsis thaliana shaggy-related protein kinase AtSKeta, a component

of the brassinosteroid signalling pathway. Virology 362:428-440.

275. Akhtar S, Briddon RW, Mansoor S. 2011. Reactions of Nicotiana species to

inoculation with monopartite and bipartite begomoviruses. Virology journal 8:475.

276. Gottula J, Lewis R, Saito S, Fuchs M. 2014. Allopolyploidy and the evolution of plant

virus resistance. BMC evolutionary biology 14:149.

Page 189: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

170

277. Tsuda S, Kubota K, Kanda A, Ohki T, Meshi T. 2007. Pathogenicity of Pepper mild

mottle virus Is Controlled by the RNA Silencing Suppression Activity of Its Replication

Protein but Not the Viral Accumulation. Phytopathology 97:412-420.

278. Sanderfoot AA, Ingham DJ, Lazarowitz SG. 1996. A viral movement protein as a

nuclear shuttle. The geminivirus BR1 movement protein contains domains essential for

interaction with BL1 and nuclear localization. Plant Physiol 110:23-33.

279. Palmer J. 1992. Comparison of Chloroplast and Mitochondrial Genome Evolution in

Plants, p. 99-133. In Herrmann R (ed.), Cell Organelles. Springer Vienna.

280. Verma D, Samson NP, Koya V, Daniell H. 2008. A protocol for expression of foreign

genes in chloroplasts. Nature protocols 3:739-758.

281. Daniell H, Singh ND, Mason H, Streatfield SJ. 2009. Plant-made vaccine antigens and

biopharmaceuticals. Trends in plant science 14:669-679.

282. Floss DM, Falkenburg D, Conrad U. 2007. Production of vaccines and therapeutic

antibodies for veterinary applications in transgenic plants: an overview. Transgenic

research 16:315-332.

283. Koya V, Moayeri M, Leppla SH, Daniell H. 2005. Plant-based vaccine: mice

immunized with chloroplast-derived anthrax protective antigen survive anthrax lethal

toxin challenge. Infection and immunity 73:8266-8274.

284. Rochaix JD. 1996. Post-transcriptional regulation of chloroplast gene expression in

Chlamydomonas reinhardtii. Plant molecular biology 32:327-341.

285. Sugita M, Sugiura M. 1996. Regulation of gene expression in chloroplasts of higher

plants. Plant molecular biology 32:315-326.

286. Danon A. 1997. Translational regulation in the chloroplast. Plant physiology 115:1293-

1298.

287. Bruick RK, Mayfield SP. 1999. Light-activated translation of chloroplast mRNAs.

Trends in plant science 4:190-195.

288. Hess WR, Borner T. 1999. Organellar RNA polymerases of higher plants. International

review of cytology 190:1-59.

289. Gloser J. 1997. Pessarakli, M. (ed.): Handbook of Photosynthesis. Biologia Plantarum

40:638-639.

290. Tohdoh N, Sugiura M. 1982. The complete nucleotide sequence of 16S ribosomal RNA

gene from tobacco chloroplasts. Gene 17:213-218.

291. Kim J, Mullet JE. 1994. Ribosome-binding sites on chloroplast rbcL and psbA mRNAs

and light-induced initiation of D1 translation. Plant molecular biology 25:437-448.

292. Gren EJ. 1984. Recognition of messenger RNA during translational initiation in

Escherichia coli. Biochimie 66:1-29.

293. Schneider TD, Stormo GD, Gold L, Ehrenfeucht A. 1986. Information content of

binding sites on nucleotide sequences. Journal of molecular biology 188:415-431.

294. Van Etten WJ, Janssen GR. 1998. An AUG initiation codon, not codon-anticodon

complementarity, is required for the translation of unleadered mRNA in Escherichia coli.

Molecular microbiology 27:987-1001.

295. O'Donnell SM, Janssen GR. 2001. The initiation codon affects ribosome binding and

translational efficiency in Escherichia coli of cI mRNA with or without the 5'

untranslated leader. Journal of bacteriology 183:1277-1283.

296. Shine J, Dalgarno L. 1974. The 3'-terminal sequence of Escherichia coli 16S ribosomal

RNA: complementarity to nonsense triplets and ribosome binding sites. Proceedings of

the National Academy of Sciences of the United States of America 71:1342-1346.

Page 190: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

171

297. Shultzaberger RK, Bucheimer RE, Rudd KE, Schneider TD. 2001. Anatomy of

Escherichia coli ribosome binding sites. Journal of molecular biology 313:215-228.

298. Stenstrom CM, Isaksson LA. 2002. Influences on translation initiation and early

elongation by the messenger RNA region flanking the initiation codon at the 3' side.

Gene 288:1-8.

299. Tats A, Remm M, Tenson T. 2006. Highly expressed proteins have an increased

frequency of alanine in the second amino acid position. BMC genomics 7:28.

300. Boni IV, Isaeva DM, Musychenko ML, Tzareva NV. 1991. Ribosome-messenger

recognition: mRNA target sites for ribosomal protein S1. Nucleic acids research 19:155-

162.

301. Zhang J, Deutscher MP. 1992. A uridine-rich sequence required for translation of

prokaryotic mRNA. Proceedings of the National Academy of Sciences of the United

States of America 89:2605-2609.

302. Komarova AV, Tchufistova LS, Supina EV, Boni IV. 2002. Protein S1 counteracts the

inhibitory effect of the extended Shine-Dalgarno sequence on translation. RNA (New

York, N.Y.) 8:1137-1147.

303. Qing G, Xia B, Inouye M. 2003. Enhancement of translation initiation by A/T-rich

sequences downstream of the initiation codon in Escherichia coli. Journal of molecular

microbiology and biotechnology 6:133-144.

304. Kitakawa M, Isono K. 1982. An amber mutation in the gene rpsA for ribosomal protein

S1 in Escherichia coli. Molecular & general genetics : MGG 185:445-447.

305. Sorensen MA, Fricke J, Pedersen S. 1998. Ribosomal protein S1 is required for

translation of most, if not all, natural mRNAs in Escherichia coli in vivo. Journal of

molecular biology 280:561-569.

306. Hirose T, Sugiura M. 2004. Functional Shine-Dalgarno-like sequences for translational

initiation of chloroplast mRNAs. Plant & cell physiology 45:114-117.

307. Plader W, Sugiura M. 2003. The Shine-Dalgarno-like sequence is a negative regulatory

element for translation of tobacco chloroplast rps2 mRNA: an additional mechanism for

translational control in chloroplasts. The Plant journal : for cell and molecular biology

34:377-382.

308. Yukawa M, Kuroda H, Sugiura M. 2007. A new in vitro translation system for non-

radioactive assay from tobacco chloroplasts: effect of pre-mRNA processing on

translation in vitro. The Plant journal : for cell and molecular biology 49:367-376.

309. Shinozaki K, Sugiura M. 1982. The nucleotide sequence of the tobacco chloroplast gene

for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Gene 20:91-

102.

310. Reinbothe S, Reinbothe C, Heintzen C, Seidenbecher C, Parthier B. 1993. A methyl

jasmonate-induced shift in the length of the 5' untranslated region impairs translation of

the plastid rbcL transcript in barley. The EMBO journal 12:1505-1512.

311. Allison LA, Simon LD, Maliga P. 1996. Deletion of rpoB reveals a second distinct

transcription system in plastids of higher plants. The EMBO journal 15:2802-2809.

312. Ahmad T, Venkataraman S, Hefferon K, AbouHaidar MG. 2014. Viral and

chloroplastic signals essential for initiation and efficiency of translation in Agrobacterium

tumefaciens. Biochemical and biophysical research communications 452:14-20.

313. Kozak M. 1991. Structural features in eukaryotic mRNAs that modulate the initiation of

translation. The Journal of biological chemistry 266:19867-19870.

Page 191: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

172

314. Staub JM, Maliga P. 1994. Translation of psbA mRNA is regulated by light via the 5'-

untranslated region in tobacco plastids. The Plant journal : for cell and molecular biology

6:547-553.

315. Zou Z, Eibl C, Koop HU. 2003. The stem-loop region of the tobacco psbA 5'UTR is an

important determinant of mRNA stability and translation efficiency. Molecular genetics

and genomics : MGG 269:340-349.

316. Gallie DR. 1998. A tale of two termini: a functional interaction between the termini of an

mRNA is a prerequisite for efficient translation initiation. Gene 216:1-11.

317. Monde RA, Greene JC, Stern DB. 2000. The sequence and secondary structure of the

3'-UTR affect 3'-end maturation, RNA accumulation, and translation in tobacco

chloroplasts. Plant molecular biology 44:529-542.

318. Lindahl L, Hinnebusch A. 1992. Diversity of mechanisms in the regulation of

translation in prokaryotes and lower eukaryotes. Current opinion in genetics &

development 2:720-726.

319. Franch T, Gerdes K. 1996. Programmed cell death in bacteria: translational repression

by mRNA end-pairing. Molecular microbiology 21:1049-1060.

320. Rott R, Levy H, Drager RG, Stern DB, Schuster G. 1998. 3'-Processed mRNA is

preferentially translated in Chlamydomonas reinhardtii chloroplasts. Molecular and

cellular biology 18:4605-4611.

321. Eibl C, Zou Z, Beck a, Kim M, Mullet J, Koop HU. 1999. In vivo analysis of plastid

psbA, rbcL and rpl32 UTR elements by chloroplast transformation: tobacco plastid gene

expression is controlled by modulation of transcript levels and translation efficiency. The

Plant journal : for cell and molecular biology 19:333-345.

322. Katz YS, Danon A. 2002. The 3'-untranslated region of chloroplast psbA mRNA

stabilizes binding of regulatory proteins to the leader of the message. The Journal of

biological chemistry 277:18665-18669.

323. Dron M, Rahire M, Rochaix JD. 1982. Sequence of the chloroplast 16S rRNA gene and

its surrounding regions of Chlamydomonas reinhardii. Nucleic acids research 10:7609-

7620.

324. Steege DA, Graves MC, Spremulli LL. 1982. Euglena gracilis chloroplast small subunit

rRNA. Sequence and base pairing potential of the 3' terminus, cleavage by colicin E3.

The Journal of biological chemistry 257:10430-10439.

325. Maidak BL, Olsen GJ, Larsen N, Overbeek R, McCaughey MJ, Woese CR. 1996.

The Ribosomal Database Project (RDP). Nucleic acids research 24:82-85.

326. Lewin A, Jacob D, Freytag B, Appel B. 1998. Gene Expression in Bacteria Directed by

Plant-specific Regulatory Sequences. Transgenic Res 7:403-411.

327. Pobjecky N, Rosenberg GH, Dinter-Gottlieb G, Kaufer NF. 1990. Expression of the

beta-glucuronidase gene under the control of the CaMV 35s promoter in

Schizosaccharomyces pombe. Molecular & general genetics : MGG 220:314-316.

328. Burke C, Yu XB, Marchitelli L, Davis EA, Ackerman S. 1990. Transcription factor

IIA of wheat and human function similarly with plant and animal viral promoters.

Nucleic acids research 18:3611-3620.

329. Franzetti B, Carol P, Mache R. 1992. Characterization and RNA-binding properties of

a chloroplast S1-like ribosomal protein. The Journal of biological chemistry 267:19075-

19081.

330. Alexander C, Faber N, Klaff P. 1998. Characterization of protein-binding to the spinach

chloroplast psbA mRNA 5' untranslated region. Nucleic acids research 26:2265-2272.

Page 192: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

173

331. Shteiman-Kotler A, Schuster G. 2000. RNA-binding characteristics of the chloroplast

S1-like ribosomal protein CS1. Nucleic acids research 28:3310-3315.

332. Merendino L, Falciatore A, Rochaix J-D. 2003. Expression and RNA binding

properties of the chloroplast ribosomal protein S1 from Chlamydomonas reinhardtii.

Plant molecular biology 53:371-382.

333. Kozak M. 1983. Comparison of initiation of protein synthesis in procaryotes, eucaryotes,

and organelles. Microbiological Reviews 47:1-45.

334. Jobling SA, Gehrke L. 1987. Enhanced translation of chimaeric messenger RNAs

containing a plant viral untranslated leader sequence. Nature 325:622-625.

335. Gallie DR, Sleat DE, Watts JW, Turner PC, Wilson TM. 1987. A comparison of

eukaryotic viral 5'-leader sequences as enhancers of mRNA expression in vivo. Nucleic

acids research 15:8693-8711.

336. Gold L. 1988. Posttranscriptional regulatory mechanisms in Escherichia coli. Annual

review of biochemistry 57:199-233.

337. Vimberg V, Tats A, Remm M, Tenson T. 2007. Translation initiation region sequence

preferences in Escherichia coli. BMC molecular biology 8:100.

338. Shine J, Dalgarno L. 1974. The 3′-Terminal Sequence of Escherichia coli 16S

Ribosomal RNA: Complementarity to Nonsense Triplets and Ribosome Binding Sites.

Proceedings of the National Academy of Sciences of the United States of America

71:1342-1346.

339. Brock JE, Paz RL, Cottle P, Janssen GR. 2007. Naturally occurring adenines within

mRNA coding sequences affect ribosome binding and expression in Escherichia coli.

Journal of bacteriology 189:501-510.

340. Chen H, Bjerknes M, Kumar R, Jay E. 1994. Determination of the optimal aligned

spacing between the Shine-Dalgarno sequence and the translation initiation codon of

Escherichia coli mRNAs. Nucleic acids research 22:4953-4957.

341. Bonham-Smith PC, Bourque DP. 1989. Translation of chloroplast-encoded mRNA:

potential initiation and termination signals. Nucleic acids research 17:2057-2080.

342. Gillham NW, Boynton JE, Hauser CR. 1994. Translational regulation of gene

expression in chloroplasts and mitochondria. Annual review of genetics 28:71-93.

343. Höfgen R, Willmitzer L. 1988. Storage of competent cells for Agrobacterium

transformation. Nucleic acids research 16:9877.

344. AbouHaidar MG, Xu H, Hefferon KL. 1998. Potexvirus Isolation and RNA Extraction,

p. 131-143, vol. 81.

345. Golshani A, Xu J, Kolev V, Abouhaidar MG, Ivanov IG. 2002. Inability of

Agrobacterium tumefaciens ribosomes to translate in vivo mRNAs containing non-Shine-

Dalgarno translational initiators. Zeitschrift fur Naturforschung. C, Journal of biosciences

57:307-312.

346. Maidak BL, Cole JR, Lilburn TG, Parker CT, Saxman PR, Farris RJ, Garrity GM,

Olsen GJ, Schmidt TM, Tiedje JM. 2001. The RDP-II (Ribosomal Database Project).

Nucleic acids research 29:173-174.

347. Sugiura M, Hirose T, Sugita M. 1998. Evolution and mechanism of translation in

chloroplasts. Annual review of genetics 32:437-459.

348. Raynaud C, Loiselay C, Wostrikoff K, Kuras R, Girard-Bascou J, Wollman F-A,

Choquet Y. 2007. Evidence for regulatory function of nucleus-encoded factors on

mRNA stabilization and translation in the chloroplast. Proceedings of the National

Academy of Sciences 104:9093-9098.

Page 193: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

174

349. Wobbe L, Schwarz C, Nickelsen J, Kruse O. 2008. Translational control of

photosynthetic gene expression in phototrophic eukaryotes. Physiologia plantarum

133:507-515.

350. Kim J, Mullet J. 1994. Ribosome-binding sites on chloroplastrbcL andpsbA mRNAs

and light-induced initiation of D1 translation. Plant molecular biology 25:437-448.

351. Miyagi T, Kapoor S, Sugita M, Sugiura M. 1998. Transcript analysis of the tobacco

plastid operon rps2/atpI/H/F/A reveals the existence of a non-consensus type II (NCII)

promoter upstream of the atpI coding sequence. Molecular & general genetics : MGG

257:299-307.

352. Baecker JJ, Sneddon JC, Hollingsworth MJ. 2009. Efficient translation in chloroplasts

requires element(s) upstream of the putative ribosome binding site from atpI. American

journal of botany 96:627-636.

353. Dolja VV, Grama DP, Morozov SY, Atabekov JG. 1987. Potato virus X-related single-

and double-stranded RNAs: Characterization and identification of terminal structures.

FEBS Letters 214:308-312.

354. Ricciardi RP, Goodman RM, Gottlieb D. 1978. Translation of PVX RNA in vitro by

wheat germ I. Characterization of the reaction and product size. Virology 85:310-314.

355. Morozov SY, Miroshnichenko NA, Zelenina DA, Fedorkin ON, Solovijev AG,

Lukasheva LI, Atabekov JC. 1990. Expression of RNA transcripts of potato virus X

full-length and subgenomic cDNAs. Biochimie 72:677-684.

356. Bendena WG, Abouhaidar M, Mackie GA. 1985. Synthesis in vitro of the coat protein

of papaya mosaic virus. Virology 140:257-268.

357. Bendena WG, Bancroft JB, Mackie GA. 1987. Molecular cloning of clover yellow

mosaic virus RNA: identification of coat protein coding sequences in vivo and in vitro.

Virology 157:276-284.

358. Bendena WG, Mackie GA. 1986. Translational strategies in potexviruses: products

encoded by clover yellow mosaic virus, foxtail mosaic virus, and viola mottle virus

RNAs in vitro. Virology 153:220-229.

359. White KA, Mackie GA. 1990. Control and expression of 3' open reading frames in

clover yellow mosaic virus. Virology 179:576-584.

360. Mackie GA, Bancroft JB. 1986. The longer RNA species in narcissus mosaic virus

encodes all viral functions. Virology 153:215-219.

361. Kozak M. 1986. Influences of mRNA secondary structure on initiation by eukaryotic

ribosomes. Proceedings of the National Academy of Sciences of the United States of

America 83:2850-2854.

362. Kozak M. 1989. Circumstances and mechanisms of inhibition of translation by

secondary structure in eucaryotic mRNAs. Molecular and cellular biology 9:5134-5142.

363. Kozak M. 1994. Features in the 5' non-coding sequences of rabbit alpha and beta-globin

mRNAs that affect translational efficiency. Journal of molecular biology 235:95-110.

364. Baim SB, Sherman F. 1988. mRNA structures influencing translation in the yeast

Saccharomyces cerevisiae. Molecular and cellular biology 8:1591-1601.

365. Futterer J, Hohn T. 1996. Translation in plants--rules and exceptions. Plant molecular

biology 32:159-189.

366. Lin CG, Lo SJ. 1992. Evidence for involvement of a ribosomal leaky scanning

mechanism in the translation of the hepatitis B virus pol gene from the viral pregenome

RNA. Virology 188:342-352.

Page 194: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

175

367. Hwang WL, Su TS. 1998. Translational regulation of hepatitis B virus polymerase gene

by termination-reinitiation of an upstream minicistron in a length-dependent manner. The

Journal of general virology 79 ( Pt 9):2181-2189.

368. Fouillot N, Tlouzeau S, Rossignol JM, Jean-Jean O. 1993. Translation of the hepatitis

B virus P gene by ribosomal scanning as an alternative to internal initiation. Journal of

virology 67:4886-4895.

369. McCormick CJ, Salim O, Lambden PR, Clarke IN. 2008. Translation termination

reinitiation between open reading frame 1 (ORF1) and ORF2 enables capsid expression

in a bovine norovirus without the need for production of viral subgenomic RNA. Journal

of virology 82:8917-8921.

370. Dhakar K, Gupta V, Rathore M, Gaur R. 2010. Virus resistance and gene silencing in

plants infected with begomovirus. Journal of Applied Sciences 10:1787-1791.

371. Aragão FJ, Faria JC. 2009. First transgenic geminivirus-resistant plant in the field.

Nature Biotechnology 27:1086-1088.

372. Noris E, Lucioli A, Tavazza R, Caciagli P, Accotto GP, Tavazza M. 2004. Tomato

yellow leaf curl Sardinia virus can overcome transgene-mediated RNA silencing of two

essential viral genes. Journal of general virology 85:1745-1749.

373. Vanderschuren H, Alder A, Zhang P, Gruissem W. 2009. Dose-dependent RNAi-

mediated geminivirus resistance in the tropical root crop cassava. Plant molecular biology

70:265-272.

374. Zrachya A, Kumar PP, Ramakrishnan U, Levy Y, Loyter A, Arazi T, Lapidot M,

Gafni Y. 2007. Production of siRNA targeted against TYLCV coat protein transcripts

leads to silencing of its expression and resistance to the virus. Transgenic research

16:385-398.

375. Ledere D, AbouHaidar M. 1995. Transgenic tobacco plants expressing a truncated form

of the PAMV capsid protein (CP) gene show CP-mediated resistance to potato aucuba

mosaic virus.

376. Mansoor S, Briddon RW, Zafar Y, Stanley J. 2003. Geminivirus disease complexes:

an emerging threat. Trends in plant science 8:128-134.

377. Turnage MA, Muangsan N, Peele CG, Robertson D. 2002. Geminivirus‐based vectors

for gene silencing in Arabidopsis. The Plant Journal 30:107-114.

378. Voinnet O. 2001. RNA silencing as a plant immune system against viruses. TRENDS in

Genetics 17:449-459.

379. Chen Y-K, Lohuis D, Goldbach R, Prins M. 2004. High frequency induction of RNA-

mediated resistance against Cucumber mosaic virus using inverted repeat constructs.

Molecular Breeding 14:215-226.

380. Pandolfini T, Molesini B, Avesani L, Spena A, Polverari A. 2003. Expression of self-

complementary hairpin RNA under the control of the rolC promoter confers systemic

disease resistance to plum pox virus without preventing local infection. BMC

biotechnology 3:7.

381. Wang MB, Abbott DC, Waterhouse PM. 2000. A single copy of a virus‐derived

transgene encoding hairpin RNA gives immunity to barley yellow dwarf virus. Molecular

plant pathology 1:347-356.

382. Kalantidis K, Psaradakis S, Tabler M, Tsagris M. 2002. The occurrence of CMV-

specific short RNAs in transgenic tobacco expressing virus-derived double-stranded

RNA is indicative of resistance to the virus. Molecular Plant-Microbe Interactions

15:826-833.

Page 195: TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA IN PLANTS · 2016-07-08 · ii TRANSLOCATION OF VIRUS-DERIVED NUCLEIC ACIDS TO CHLOROPLASTS AND MITOCHONDRIA

176

383. Smith NA, Singh SP, Wang M-B, Stoutjesdijk PA, Green AG, Waterhouse PM.

2000. Gene expression: total silencing by intron-spliced hairpin RNAs. Nature 407:319-

320.

384. Mette M, Aufsatz W, Van der Winden J, Matzke M, Matzke A. 2000. Transcriptional

silencing and promoter methylation triggered by double‐stranded RNA. The EMBO

Journal 19:5194-5201.

385. Sijen T, Vijn I, Rebocho A, van Blokland R, Roelofs D, Mol JN, Kooter JM. 2001.

Transcriptional and posttranscriptional gene silencing are mechanistically related.

Current Biology 11:436-440.

386. Fojtova M, Van Houdt H, Depicker A, Kovarik A. 2003. Epigenetic switch from

posttranscriptional to transcriptional silencing is correlated with promoter

hypermethylation. Plant Physiology 133:1240-1250.

387. Francki R, Hatta T, Boccardo G, Randles J. 1980. The composition of chloris striate

mosaic virus, a geminivirus. Virology 101:233-241.

388. Briddon RW, Stanley J. 2006. Subviral agents associated with plant single-stranded

DNA viruses. Virology 344:198-210.

389. Wesley SV, Helliwell CA, Smith NA, Wang M, Rouse DT, Liu Q, Gooding PS, Singh

SP, Abbott D, Stoutjesdijk PA. 2001. Construct design for efficient, effective and high‐throughput gene silencing in plants. The Plant Journal 27:581-590.

390. Horsch R, Fry J, Hoffmann N, Eichholtz D, Rogers Sa, Fraley R. 1985. A simple and

general method for transferring genes into plants. Science 227:1229-1231.

391. Kang T-J, Yang M-S. 2004. Rapid and reliable extraction of genomic DNA from

various wild-type and transgenic plants. BMC biotechnology 4:20.

392. Bisaro DM. 1996. Geminivirus DNA replication, p. 833-854, DNA replication in

eukaryotic cells. Cold Spring Harbor Laboratory Press Cold Spring Harbor.

393. Fontes E, Gladfelter HJ, Schaffer RL, Petty I, Hanley-Bowdoin L. 1994. Geminivirus

replication origins have a modular organization. The Plant Cell 6:405-416.

394. Lazarowitz SG, Shepherd R. 1992. Geminiviruses: genome structure and gene function.

Critical Reviews in Plant Sciences 11:327-349.

395. Argüello-Astorga G, Guevara-Gonzalez R, Herrera-Estrella L, Rivera-Bustamante

R. 1994. Geminivirus replication origins have a group-specific organization of iterative

elements: a model for replication. Virology 203:90-100.