14
TRANSLOCACION DE SUSTANCIAS El proceso de translocación de materiales en el suelo es muy complejo afectando a muy distintas sustancias (minerales, materia orgánica y complejos órgano - minerales, ya sean como soluciones o suspensiones) y por muy diferentes causas (gravedad, capilaridad, evaporación, actividad biótica, o como consecuencia del hinchamiento y contracción de la masa del suelo). Procesos específicos de translocación En general, la translocación se realiza por la acción del agua que se desplaza a través del suelo. Normalmente, el movimiento es vertical descendente, pero en relieves montañosos el desplazamiento lateral u oblicuo adquiere una extraordinaria importancia. Por otra parte, en los ambientes más o menos áridos los movimientos verticales ascendentes toman particular interés. En general, es válido suponer que el agua de precipitación se desplaza desde la superficie, a través de los poros del suelo, a horizontes cada vez más profundos debido a la acción de la gravedad. En este desplazamiento el agua arrastra diversos materiales, preferentemente los más móviles, con lo cual se producen importantes pérdidas de materiales en los horizontes superiores, que pueden ser o no acumulados en los horizontes inferiores.

TRANSLOCACION DE SUSTANCIAS

Embed Size (px)

Citation preview

Page 1: TRANSLOCACION DE SUSTANCIAS

TRANSLOCACION DE SUSTANCIAS

El proceso de translocación de materiales en el suelo es muy complejo afectando a muy distintas sustancias (minerales, materia orgánica y complejos órgano - minerales, ya sean como soluciones o suspensiones) y por muy diferentes causas (gravedad, capilaridad, evaporación, actividad biótica, o como consecuencia del hinchamiento y contracción de la masa del suelo).

Procesos específicos de translocación

En general, la translocación se realiza por la acción del agua que se desplaza a través del suelo. Normalmente, el movimiento es vertical descendente, pero en relieves montañosos el desplazamiento lateral u oblicuo adquiere una extraordinaria importancia. Por otra parte, en los ambientes más o menos áridos los movimientos verticales ascendentes toman particular interés.

En general, es válido suponer que el agua de precipitación se desplaza desde la superficie, a través de los poros del suelo, a horizontes cada vez más profundos debido a la acción de la gravedad.

En este desplazamiento el agua arrastra diversos materiales, preferentemente los más móviles, con lo cual se producen importantes pérdidas de materiales en los horizontes superiores, que pueden ser o no acumulados en los horizontes inferiores.

Por tanto, en los procesos de translocación se distinguen dos fases distintos: una inicial de movilización, transporte y pérdida de materiales que se llama eluviación (que se

Page 2: TRANSLOCACION DE SUSTANCIAS

presenta en los horizontes superiores, sobre todo en los horizontes E, pero también en los A) y un segundo proceso que representa la inmovilización y acumulación, o sea de ganancia o enriquecimiento de sustancias que se llama iluviación (se forman los horizontes subsuperficiales, horizontes B), siendo siempre el agua el medio de transporte.

Los conceptos de eluviación - iluviación son sinónimos de emigración-inmigración. Como es lógico, el proceso de iluviación requiere necesariamente del paso previo de la eluviación, ahora bien, la eluviación se puede producir seguida o no del proceso iluvial, así habrá suelos en los que se produzca solo la pérdida de los materiales lixiviados sin que lleguen a acumularse en ningún horizonte del suelo.

Las sustancias que se pueden translocar por la acción del agua son muy diversas y lo pueden hacer bajo muy diferentes formas, por lo que existe cierta confusión en su terminología. Las sustancias que se pueden eluviar lo hacen básicamente bajo tres formas distintas: como iones disueltos (lixiviación), en forma seudosoluble formando complejos organometálicos (queluviación), y en suspensión (iluviación de arcilla).

El hecho de que una sustancia migre bajo la forma de solución, suspensión o formando complejos va a depender fundamentalmente de su estabilidad, solubilidad y facilidad para la complejación. Veamos a continuación los procesos especificos más comunes.

En cuanto a los procesos edafogenéticos especificos en los que predomine una determinada translocación pueden ser los siguientes:

Lavado

Se trata de un arrastre y eliminación de los iones disueltos en la solución del suelo. Constituye un proceso que se desarrolla con mayor o menor intensidad en todos los suelos, especialmente importante en los suelos de climas húmedos.

  Desbasificación

Representa una consecuencia de la intensificación del proceso anterior, produciéndose el arrastre y eliminación de los iones adsorbidos en el complejo de cambio del suelo. Es decir que el complejo adsorbente se desatura (en las posiciones de cambio las bases de cambio, como el Ca, Mg, Na y K son sustituidos por hidrogeniones de cambio. Proceso igualmente especialmente representativo de los suelos de climas húmedos

Page 3: TRANSLOCACION DE SUSTANCIAS

  Salinización

Es el resultado de la acumulación de sales solubles en el suelo (más solubles que el yeso; por ejemplo el NaCl o sal común). Se desarrolla típicamente en las regiones áridas y semiáridas, con regímenes de humedad del suelo deficitarios de agua, ya que dada la movilidad de estas sales en regímenes más húmedos tienden a lavarse y ser eliminadas del perfil.

En estas regiones, con intensas evaporaciones, se produce un movimiento ascensional de las soluciones del suelo que ascienden capilarmente por la acción de esta evaporación o por la succión de las raíces, alcanzando, frecuentemente, estas soluciones la superficie del suelo y al evaporarse el agua se depositan las sales recubriendo la superficie con unas eflorescencias blanquecinas muy características.

La alta concentración en sales de la solución del suelo es un factor fuertemente limitante para el desarrollo normal de la vegetación, siendo esta escasa y especializada (plantas halofíticas).

  Gypsificación

Es el proceso responsable de la acumulación de yeso (CaSO4.2H2O). Forma acumulaciones blancas, parecidas a las de los carbonatos pero fácilmente distinguible en el microscopio. Los cristales de yeso presentan formas rombales, con colores de interferencia grises (en la microfotorafía adjunta los cristales de yeso se encuentran incluídos en una matriz de carbonatos microcristalinos y de color amarillo/marrón).

El yeso es más soluble que los carbonatos por lo que es muy móvil en el suelo.

Es típico de las regiones más o menos áridas.

 

Decarbonatación / carbonatación

En los suelos carbonatados se produce una lixiviación particular que se llama decarbonatación.

Page 4: TRANSLOCACION DE SUSTANCIAS

El proceso de decarbonatación representa la movilización de los carbonatos, que se disuelven bajo la forma de bicarbonatos solubles y migran con las aguas de percolación. La carbonatación se produce cuando los bicarbonatos pasan nuevamente a carbonatos insolubles y se acumulan. La disolución de los carbonatos se realiza por la acción de CO2 disuelto en el agua, según la siguiente ecuación:

 

------------------DECARBONATACION--------------->

Ca CO3  +  CO2  +  H2O  <----->  Ca++  +  2HCO3-

<------------------CARBONATACION------------------

 

De esta ecuación se deduce que la solubilidad de los Ca CO3 depende de la cantidad de agua que infiltre y de la cantidad de CO2 que esta lleve disuelto. Al aumentar cualquiera de ellos aumenta la cantidad de carbonatos disueltos.

Por otra parte, la carbonatación secundaria ocurre cuando se produce la precipitación de los CO3 al variar cualquier condición que rompa el equilibrio y hace que la ecuación anteriormente citada se desplace hacia la izquierda. Esta situación se puede provocar por una disolución del contenido de CO2 disuelto, aumento de pH, aumento de la temperatura, disminución de la humedad por evapotranspiración, o por causas físicas que impidan la circulación del agua a través del suelo. La acumulación de los CO3 secundarios se produce a una determinada profundidad, de manera que el suelo se encuentra sin carbonatos en los horizontes superiores y con carbonatos en los horizontes inferiores (típicamente en el C).

El proceso de carbonatación es típico de las regiones áridas, semiáridas y subhúmedas, con una suficiente escasez de agua como para que los CO3 puedan acumularse en el suelo. Como resultado de este proceso, se forman horizontes cálcicos.

Las pruebas de que este doble proceso de disolución y reprecipitación de los carbonatos, las tenemos tanto en la morfología de los perfiles como en la propia morfología de los carbonatos. En efecto, en los suelos de las regiones mediterráneas desarrollados sobre materiales calcáreos es sintomático el encontrar los horizontes superiores descarbonatados y a una determinada profundidad se encuentran niveles altamente calcáreos. Además, la profundidad a que se encuentran estos horizontes cálcicos, está relacionada con la intensidad de las precipitaciones atmosféricas de las zonas en donde se encuentran.

Page 5: TRANSLOCACION DE SUSTANCIAS

Por otra parte, la propia morfología de las acumulaciones de carbonatos es una clara manifestación de su movilidad. Por ejemplo su distribución localizada en grietas y poros del suelo, también en nódulos blandos pulverulentos y de borde difuso, es decir, que se integran paulatinamente en el suelo, y la existencia de revestimientos en los agregados, así como otras veces localizadas en la parte inferior de las gravas.

Es interesante constatar que el desarrollo de un horizonte fuertemente calcáreo produce la destrucción o el arrastre y la expulsión a otros lugares de la gran mayoría de las partículas que originariamente conformaban el horizonte antes de que llegaran los carbonatos.

Un aspecto también muy interesante, sobre el que se ha debatido ampliamente y aún no resuelto en muchas ocasiones, es la procedencia de los carbonatos presentes en un horizonte cálcico.

Los carbonatos en muchos casos proceden del material original; bien porque ya estaban presentes en él, que es el caso más frecuente, o bien porque no estando físicamente presentes en la roca se han neoformado en el suelo a partir de la alteración de los minerales primitivos, como puede ser el caso para las plagioclasas, los piroxenos y los anfiboles.

También puede ocurrir que los carbonatos no guarden ninguna relación genética con el material original, en estos casos habrán tenido que llegar por la vía de algún aporte externo. Esto puede haberse realizado utilizando como vía de transporte el agua, ya sea por contaminación de un manto freático regional o debido a las escorrentías locales tan importantes en las zonas montañosas. Finalmente, en algunas ocasiones, sobre todo en las regiones áridas, los carbonatos de un determinado suelo pueden proceder de un origen eólico.

Page 6: TRANSLOCACION DE SUSTANCIAS

En cualquier caso, independientemente de su procedencia, en la fase final de acumulación de los CO3 interviene de una manera decisiva las condiciones hídricas del perfil.

Iluviación de arcilla

El proceso de ILUVIACIÓN DE ARCILLA o ILIMERIZACION representa la migración mecánica de la arcilla de los horizontes superficiales a los horizontes profundos del perfil.

Este proceso se puso de manifiesto al analizar la distribución de los contenidos en arcilla de los suelos en función de la profundidad. Se comprobó que en numerosos suelos se producía un fuerte incremento de los porcentajes de arcilla en los horizontes subsuperficiales. Hoy día esta distribución se justifica prioritariamente por la acción de las aguas de infiltración que arrastran parte de la arcilla de los horizontes superiores y la depositan en las zonas más profundas.

El proceso de eluviación - iluviación de arcilla, aunque muy complejo y no totalmente conocido, se puede explicar básicamente de una manera muy simple. El agua de las precipitaciones atmosféricas moviliza a la arcilla de los horizontes superiores, la cual al dispersarse pasa a la solución del suelo en forma de suspensión. Por la acción de la gravedad, las suspensiones se infiltran por el suelo a través de los macroporos. Al alcanzar estas suspensiones horizontes profundos en los que el suelo se encuentra seco (imagen A de la siguiente figura), el agua de las suspensiones que migran por los macroporos es succionada por los microporos de las zonas circundantes (imagen B; el agua pasa a estos microporos por presentar fuerzas de succión mucho mayores que las existentes en los macroporos). Las paredes de los macroporos actuan como filtros, ya que las partículas de arcilla no pueden pasar a través de los microporos y son retenidos y se concentran formando delgadas películas acuosas que rodean las paredes de los macroporos (imagen C). Finalmente al ser succionada la totalidad del agua del macroporo, las partículas quedan materialmente aplastadas sobre sus paredes y forman unas finas películas de arcilla con sus partículas dispuestas paralelamente entre si y a su vez paralelas a las paredes del poro, quedando fuertemente retenidas (imagen D).

Luego, en la siguiente fase húmeda, el proceso se repite y se forman de esta manera periódica unas películas de arcilla orientadas, cada vez más espesas y que muestran fuerte brillo. Estas películas se denominan clay-skins, o revestimientos o cutanes de arcilla, o arcilanes.

Page 7: TRANSLOCACION DE SUSTANCIAS

De igual manera, al entrar el agua de las suspensiones en el interior de los agregados edáficos va depositando sobre la superficie de estos a las partículas de arcilla, formando también arcilanes de iluviación que recubren los agregados.

El clima tiene una influencia decisiva en el proceso de iluviación. Así de la propia génesis de este proceso se deduce que para que tenga lugar es absolutamente imprescindible que el suelo pase por unas fases húmedas los suficientemente intensas como para que haya un exceso de agua de gravedad que se infiltre a través del suelo, ya que de no ser así no se produciría el arrastre de la arcilla. Además usualmente es necesario que el suelo pase por períodos de sequedad lo suficientemente largos e intensos como para que se produzca la total desecación de los macroporos de los horizontes inferiores del suelo. Un clima mediterráneo, sobre todo si es húmedo o subhúmedo, se considera como el más favorable para el desarrollo de la iluviación de arcilla.

En cuanto a las características favorables de los otros factores formadores, destacamos:

Roca madre. Permeable y con arcillas (o con minerales inestables que por alteración originen arcillas en suficientes cantidades). Relieve. Llano o suavemente inclinado. Tiempo. Como es un proceso intermitente y recurrente en el tiempo, necesita tiempos largos para manifetarse con suficiente intensidad. Típicamente en superficies muy estables.

Page 8: TRANSLOCACION DE SUSTANCIAS

El arrastre de las partículas de arcilla de los horizontes superficiales y su acumulación a una determinada profundidad, origina cambios visibles de coloración, textura, estructura y consistencia.

Desde un punto de vista macromorfológico, la translocación de las partículas de arcilla de un punto a otro, produce importantes efectos en el suelo, que podemos considerar a nivel macroscópico y microscópico. Su manifestación macromorfológica más significativa es la de producir un fuerte cambio textural en el perfil, apareciendo un horizonte superior empobrecido en partículas finas, de textura gruesa (es el horizonte eluvial u horizonte E) y un horizonte subsuperficial donde se acumula la arcilla iluvial, por tanto de textura fina (horizonte iluvial, Bt o árgico).

La deposición de la arcilla iluvial concentrada en determinadas zonas, da lugar a los revestimientos de arcilla (clay-skins o cutanes), que recubren las paredes de los macroporos o la superficie de los agregados.

 Así, un perfil en el que la iluviación de arcilla ha sido muy intensa muestra una secuencia típica de horizontes A, E y Bt. El horizonte eluvial E se presenta decolorado, a veces de color blanco neto, de textura arenosa y estructuras poco desarrolladas. Por el contrario, el horizonte iluvial, presenta coloración parda o roja de altos cromas, su textura es arcillosa y presenta un fuerte desarrollo de la estructura, con amplias y numerosas grietas, de tipo en bloques angulares gruesos o prismática. Pero desgraciadamente, muy frecuentemente el perfil de un suelo ilimerizado no es tan demostrativo y es muy normal que el suelo carezca de horizonte E, bien porque no haya sido la iluviación de arcilla lo suficientemente intensa como para diferenciar al horizonte E del horizonte A, o porque al ser un horizonte superficial y de estructura poco desarrollada tiene gran tendencia a erosionarse, o muy frecuentemente debido simplemente a su mezcla con los horizontes adyacentes por el arado.

El estudio del suelo en el microscopio (micromorfología) constituye, a nuestra manera de ver, la técnica más eficaz para el reconocimiento de la arcilla iluvial, pues en lámina delgada es donde los revestimientos de arcilla muestran el conjunto de sus características, y tras un detenido estudio de su naturaleza, morfología, localización y contextura, es generalmente posible diferenciarlos de los cutanes de arcilla de presión . Debido a su hábito laminar, las partículas de arcilla tienden a orientarse paralelamente. El resultado es que al atravesarlas la luz polarizada, los fenómenos ópticos de cada partícula individual se suman a los de las partículas vecinas, comportándose el dominio arcillosos orientado como si se tratara de un único cristal, mostrando propiedades ópticas distintivas: color de interferencia, fenómenos de extinción (el modelo de extinción es una medida del grado de orientación), continuidad óptica, etc., que permiten hacer interpretaciones acerca del ambiente en el cual la partículas se han distribuido, así como la forma de acumularse.

Las características por las cuales se reconoce el origen iluvial de la arcilla en lámina delgada son: continuidad óptica, fuerte orientación preferida, intenso color de interferencia, existencia de laminaciones, contraste textural con la matriz adyacente,

Page 9: TRANSLOCACION DE SUSTANCIAS

límite abrupto, color natural propio (amarillo o rojizo, dependiendo del Fe que las acompaña) y localización siempre recubriendo las paredes de los macroporos o las superficies de los agregados.

Las dificultades en el reconocimiento de los arcilanes iluviales mediante el microscopio petrográfico son debidas a dos situaciones distintas. Por un lado tenemos la propia estabilidad de las películas, que regulará su permanencia (los arcilanes al cabo del tiempo se destruyen desapareciendo totalmente) y por otra parte pueden existir problemas de confusión con otros arcilanes y dominios arcillosos de muy distintos orígenes (en general con orientaciones menos marcadas, de borde difusos, etc).

En resumen, en el perfil puede detectarse la iluviación por la presencia de un sequm E-Bt o por la existencia de clay-skins. A los clay-skins se les reconoce un importante papel diagnóstico. No obstante en algunas ocasiones, sobre todo en los suelos arcillosos, pueden confundirse con los cutanes formados por orientaciones de las partículas de arcilla por efecto de la presión, por lo que resulta muy recomendable su estudio en el microscopio.

El correcto reconocimiento del proceso iluvial es un hecho muy importante y su erróneo diagnóstico es la causa más frecuente de interpretaciones equivocadas en los estudios de suelos.

Podzolización

La podzolización engloba la queluviación de Al y Fe, junto con materia orgánica, de las zonas superficiales y su acumulación en las zonas profundas del perfil.

Las mejores condiciones para que se desarrolle la podzolización son un medio fuertemente ácido, un clima húmedo y frío y una roca permeable.

Bajo estas condiciones, la intensa percolación de agua producirá un desarrollo extremo del lavado y de la desbasificación. El complejo adsorbente se desatura, los carbonatos si están presentes en el material original son lavados fuera del perfil y el medio se vuelve cada vez más ácido. La fuerte acidez provoca una serie de consecuencias muy importantes que condicionan la evolución del suelo. En primer lugar, bajo estas condiciones, la materia orgánica evoluciona lentamente debido a la débil actividad microbiana de estos medios y libera abundantes compuestos orgánicos de carácter ácido.

En lo referente a la fracción mineral, la intensa acidez produce la inestabilidad mineral. Los minerales muy resistentes se acumulan, como el cuarzo, pero en general, los minerales sufren una extrema alteración liberando abundantes elementos que son lixiviados por las aguas de drenaje, mientras que el medio se va enriqueciendo en

Page 10: TRANSLOCACION DE SUSTANCIAS

elementos insolubles, como el Fe y el Al, que van siendo queluviados por los compuestos orgánicos hacia horizontes más profundos. En definitiva en superficie se forma un horizonte eluvial con intensas pérdidas de sustancias.

En cuanto a la inmovilización de los complejos organometálicos existen una serie de teorías que tratan de justificarla, pero la más aceptada es que la inmovilización ocurre por una adquisición progresiva de cationes metálicos por parte del complejo organomineral al ir descendiendo por el suelo. Cuando la razón ión metálico a ácido orgánico es baja el complejo es soluble y puede migrar, pero cuando se rebasa cierto valor crítico se produce su inmovilización, acumulándose y originando el horizonte Bh y Bs de los podzoles, quedando en definitiva un perfil muy diferenciado con una consecuencia de horizontes muy completa y muy destacados: O/A/E/Bh/Bs.

En algunas ocasiones, el proceso de podzolización da un perfil menos evolucionado, con formación de un horizonte Bh sin Bs y en otras ocasiones, ocurre al revés, que se forma el Bs pero no el Bh.

Las pruebas de que se ha desarrollado el proceso de podzolización en un suelo las tenemos reflejadas en la espectacular morfología del perfil, aunque a veces los horizontes no son tan patentes y entonces se hace absolutamente necesario analizar la distribución de la materia orgánica, del Fe y del Al en función de la profundidad y recurrir a la micromorfología, para buscar las recubiertas cutánicas de materia orgánica de los granos de arena del horizonte Bh.

Arcilloturbación

Un proceso también de translocación de materiales pero referido ahora a todos los materiales del suelo en conjunto es el proceso denominado unas veces como arcilloturbación y otras como edafoturbación pero que podríamos también llamar vertisolación, dado el tipo de suelos que origina. Este proceso provoca ahora la mezcla de los materiales del suelo (al contrario que los anteriores que producían la diferenciación del perfil) y conduce a la formación de suelos muy homogéneos, sin cambios importantes de las propiedades y de los constituyentes con la profundidad. Se debe a la

capacidad de hinchamiento y contracción que tienen determinadas arcillas de los suelos. En los períodos húmedos, se hidratan y aumentan de volumen, mientras que durante los períodos secos se deshidratan y disminuyen de volumen y desarrollan un amplio sistema de anchas grietas.

Estos cambios de volumen producen unas fuertes presiones dentro de los horizontes del suelo que obligan a los materiales a desplazarse.

Page 11: TRANSLOCACION DE SUSTANCIAS

Las pruebas de estas presiones las tenemos en esas superficies lisas y brillantes y frecuentemente estriadas llamadas slickensides tan representativas de los suelos en los que se desarrolla este proceso (las partículas de arcilla son obligadas a orientarse, aplastandose unas a otras por efecto de la presión debida al hinchamiento de las arcillas y al deslizarse unas masas sobre otras, los granos de arena se clavan y dejan estrias de deslizamiento).

El proceso sería el siguiente, durante la fase seca, las arcillas del suelo contraen y producen unas anchas y profundas grietas que atraviesan el suelo hasta la superficie.

Luego, estas grietas al permanecer abiertas durante todo el período seco se van rellenando de diversos materiales que caen desde las paredes superiores y desde la superficie del suelo, fundamentalmente debidas a las acciones de los animales, del viento y de la propia desecación progresiva. Las grietas quedan así parcialmente rellenadas, especialmente en profundidad, y al llegar el período húmedo, las arcillas hinchan, aumentan de volumen, pero no pueden ocupar el espacio que ocupaban inicialmente debido a estar ahora ocupado por los materiales allí caídos; hay en definitiva un exceso de material que produce unas fuertes presiones que voltean al material sobrante a la superficie del suelo, produciendo unos montículos muy característicos llamados gilgai. Como resultado de esta mezcla periódica, de materiales que suben y bajan, se origina un suelo muy homogéneo.

De la génesis expuesta se deduce que para que se desarrolle este proceso se requiere que el suelo disponga de un alto contenido de arcillas hinchables e igualmente se necesita de un clima contrastado que facilite las fases periódicas de hinchamiento y contracción.

 

Cementación

En ocasiones, al acumularse los materiales en un horizonte, sobre todo cuando lo hacen en gran cantidad, originan un cemento que engloba a los demás materiales del suelo produciendo el endurecimiento del horizonte. Se forma lo que se llaman costras. Frecuentemente el agente de encostramiento son los carbonatos, pero también el yeso, y en ocasiones sílice o compuestos de hierro.

Page 12: TRANSLOCACION DE SUSTANCIAS

 Carácter dinámico del suelo

Para finalizar diremos que generalmente en un mismo suelo se desarrollan varios de estos procesos edafogenéticos, que pueden actuar simultáneamente, pero muy frecuentemente se presentan de una manera escalonada actuando en etapas sucesivas, de manera que el desarrollo de un determinado proceso prepara el terreno para la actuación del proceso siguiente y como resultado el suelo va evolucionando progresivamente, por lo que en los estudios edafogenéticos los suelos de una determinada región se agrupan en secuencias evolutivas como la que mostramos en esta última figura en la que se idealiza una clásica secuencia evolutiva para suelos desarrollados sobre un material original de carácter ácido.