162
Page 1 of 162 Discussion paper Transition to lowemission HVAC&R: Issues and solutions Prepared by: The Australian Institute of Refrigeration Air Conditioning and Heating AIRAH Strategic aim #1 Claim the sustainability space March 2013

Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

Transition  to  low  emission  HVAC&R:  Issues  and  solutions|  March  2013  

Page  1  of  162    

 

   

   

     Discussion  paper  

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions    

                                 

 

Prepared  by:  

The  Australian  Institute  of  Refrigeration  Air  Conditioning  and  Heating  

 

AIRAH  Strategic  aim  #1  -­‐  Claim  the  sustainability  space    

March  2013  

           

Page 2: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  2  of  162  

Prepared  and  Co-­‐ordinated  by  

Vincent  Aherne  M.AIRAH  

Australian  Institute  of  Refrigeration  Air  Conditioning  and  Heating  (AIRAH)  

Level  3/1  Elizabeth  Street,  Melbourne,  VIC  3000  

Tel:  03  8623  3000  |  www.airah.org.au  |  email:  [email protected]  

 

 

About  AIRAH  

AIRAH  is  the  recognised  voice  of  the  Australian  air  conditioning,  refrigeration  and  heating  industry.  We  aim  to  minimise  the  environmental  footprint  of  our  vital  sector  through  communication,  education  and  encouraging  best  practice.  

 

 

AIRAH  –  Strategic  Aims  

Claim  the  sustainability  space  Through  its  conferences,  publications,  manuals  and  training,  AIRAH  will  educate  and  motivate  the  HVAC&R  industry  and  related  fields  about  achieving  sustainability.  Many  organisations  talk  about  sustainability  as  a  concept.  Our  aim  is  to  be  the  HVAC&R  organisation  whose  values  are  aligned  with  sustainability  in  a  practical  sense  

Close  the  skills  gaps  At  a  time  of  rapid  change  of  new  technology  and  standards  and  a  shifting  regulatory  landscape,  AIRAH  will  provide  appropriate  and  relevant  professional  development  for  HVAC&R  industry  personnel,  and  work  alongside  government  and  other  providers  to  ensure  the  voids,  where  they  exist  in  formal  training,  are  filled.  

Inform  regulation  and  policy  decisions  As  the  key  industry  organisation  representing  HVAC&R  in  Australia,  it  is  essential  AIRAH  collaborate  with  government  at  both  the  state  and  federal  levels.  In  this  way  the  collective  skills  and  specialist  knowledge  contained  with  the  Institute  can  better  inform  the  decisions  that  affect  society  in  general  and  the  HVAC&R  industry  in  particular.    Build  and  engage  membership  AIRAH  will  become  the  institute  of  choice  for  HVAC&R  professionals  in  Australia.  This  means  ensuring  that  formal  connection  with  AIRAH  provides  benefits  –  actual  and  intangible  –  that  are  valuable,  worthwhile  and  attractive  to  our  members  throughout  their  professional  lives.  

Page 3: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  3  of  162  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Disclaimer  

Information  contained  in  this  discussion  paper  may  be  copied  or  reproduced  for  study,  research,  information  or  educational  purposes,  subject  to  inclusion  of  an  acknowledgment  of  the  source.  

While  reasonable  efforts  have  been  made  to  ensure  that  as  many  opinions  and  solutions  have  been  canvassed  AIRAH  does  not  accept  responsibility  for  the  accuracy  or  completeness  of  the  contents,  and  shall  not  be  liable  for  any  loss  or  damage  that  may  be  occasioned  directly  or  indirectly  through  the  use  of,  or  reliance  on,  the  contents  of  this  publication.  

©  AIRAH  2013    

Page 4: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  4  of  162  

Acknowledgements  

AIRAH  has  not  completed  this  work  alone.  All  relevant  government,  industry,  education  and  end-­‐user  stakeholders  in  Australia  were  identified  and  invited  to  contribute  to  the  discussion  paper.  AIRAH  also  engaged  via  its  international  networks  such  as  the  United  Nations  Environment  Program  (UNEP);  International  Institute  of  Refrigeration  (IIR);  American  Society  of  Heating,  Refrigeration  and  Air  conditioning  engineers  (ASHRAE).  Refer  to  Appendix  A  for  the  full  list  of  stakeholders  and  supporters.    AIRAH  would  like  to  specifically  thank  the  following  people  and  organisations  who  have  contributed  to  the  development  of  this  discussion  paper  at  one  or  more  stages:      

Vince  Aherne,  M.AIRAH  –  AIRAH  Dr  Ghulam  Q.  Amur  –  NSW  Department  of  Premier  and  Cabinet  -­‐  Office  of  Environment  and  Heritage  Steve  Anderson  –  Refrigerants  Australia,  AREMA  Steve  Atherton,  M.AIRAH  –  Air  Change  Australia  Greg  Atkinson,  M.AIRAH  –  Tri  Tech  Refrigeration  Australia  Maria  Atkinson  –  XOCO  Bruce  Badger  –  International  Institute  of  Ammonia  Refrigeration  Leigh  Baker  –  Balance3  

Dr  Paul  Bannister,  M.AIRAH  –  Exergy  Australia  Michael  Bennett  –  Refrigerant  Reclaim  Australia  Graham  Boyle,  M.AIRAH  –  Polytechnic  West  Martin  Bruekers,  M.AIRAH  –  Department  of  Lands,  Planning  and  Environment,  NT  Shane  Carmichael,  M.AIRAH  –  Air  Change  Australia  Graham  Carter,  M.AIRAH  –  Lend  lease  Prof.  Florea  Chiriac–  Romanian  Association  for  Refrigeration  and  Cryogenics  Mark  Christoffersen  –  Gordon  Brothers  Industries  John  W  Clark  –  HyChill  Australia  Don  Cleland,  HM.AIRAH  –  Massey  University,  NZ  Neil  Cox  –  AIRAH  David  Crossley  –  Australian  Industry  Group  Jonathan  Dalton  –  Viridis  

Carolyn  Davis  -­‐  Australian  Chamber  of  Commerce  and  Industry  Michael  Deru  –  National  Renewable  Energy  Laboratory  (USA)  Cornelis  De  Groot  –  Gas  Technical  Regulators  Council  Frouke  de  Reuver  –  NSW  Department  of  Premier  and  Cabinet  -­‐  Office  of  Environment  and  Heritage  Sven  Denton  ,  M.AIRAH  –  AquaKlar  Analytical  Services  Sabina  Douglas-­‐Hill  –  DMITRE,  SA  Glenne  Drover  –  Department  of  Business  and  Innovation,  Victoria  Rick  Duynhoven  –  TAFE  NSW  –  Sydney  Institute  Tim  Edwards  –  Australian  Refrigeration  Association  Jay  Eldridge  –  Daikin  McQuay  (USA)  Kim  Fare  –  National  Occupational  Licensing  Authority  Kylie  Farrelley  –  Arkema  Phillip  Farrell  –  City  West  Water  John  Fawcett  –  City  West  Water  Dario  Ferlin  –  Woolworths  Jonathon  Fryer,  M.AIRAH  –  ISECO  Engineering  Services  Fred  Glavimans,  M.AIRAH  –  King  Air  Paul  Graham,  M.AIRAH  –  Paul  Graham  and  associates  Sean  Hanrahan  –  City  West  Water  Gerard  Healey,  Affil.AIRAH  –  ARUP  

Page 5: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  5  of  162  

Mark  Henderson,  M.AIRAH  –  SEiD  Dr  Dominique  Hes,  M.AIRAH  –  University  of  Melbourne  Gabor  Hilton,  M.AIRAH  –  Refrigerated  Warehouse  &  Transport  Association  of  Australia  Simon  Ho,  M.AIRAH  –  Ingersoll  Rand  Climate  Solutions  Jessica  Holz,  M.AIRAH  –  Umow  Lai  Noel  Irwin  –  Moreland  City  Council  Des  Jackson,  M.AIRAH  –  Ergon  Energy  Stefan  Jensen,  F.AIRAH  –  Scantec  Refrigeration  Peter  Kikos  –  MPMSAA  Peter  Kinsella  –  AE  Smith  Shayne  La  Combre  –  Plumbing  Industry  Climate  Action  Centre  Lasath  Lecamwasam,  M.AIRAH  –  GHD  Kevin  Lee,  M.AIRAH  –  Heatcraft  Australia  Dan  Linsell  –  CSIRO  Jürgen  M  Lobert  –  Entegris  (USA)  Terry  Mahoney  –  Australian  Institute  for  Building  Performance  Research  Carolyn  Marshall  –  Building  Research  and  Technical  Services,  Department  of  Finance  WA  Michael  McCann  –  Thinkwell  Mark  M  MacCracken  –  CALMAC  Manufacturing  Corporation  (USA)  Ian  McNicol  –  Sustainability  Victoria  Mark  Mitchell  –  VASA  Kevin  Moon,  M.AIRAH  –  Luxira  Richard  Mulcahy,  M.AIRAH  –  AUSVEG  Noel  Munkman  –  E-­‐Oz  Energy  Skills  Australia  Ashak  Nathwani  –  The  University  of  Sydney  Stuart  Nesbitt  –  Moreland  City  Council  Angeline  Nicholas  –  Supplier  Advocates  Program,  DIISRTE  Sumit  Oberoi  –  Air  Conditioning  and  Mechanical  Contractors'  Association  Alan  Obrart,  M.AIRAH  –  Obrart  and  Co  Graham  Palmer  –  Australian  Duct  Manufacturer's  Alliance  

David  Parken  –  Australian  Institute  of  Architects  Bob  Paton  –  Manufacturing  Skills  Australia  (MSA)  Ian  Paul  –  RACCA  Alan  Pears  –  Consultant  Bryon  Price,  M.AIRAH  –  A  G  Coombs  Amir  Radfar  –  United  Nations  Environment  Program  Brian  Rees  –  McAlpine  Hussmann  Louise  Rhodes  –  Metcash  Trading  Monica  Richter  –  Australian  Conservation  Foundation  Craig  Roussac  –  Buildings  Alive  Keith  Sanders  –  Pump  Industry  Australia  Neil  Sheehan,  M.AIRAH  –  DMITRE,  SA  Tina  Shilleto  –  Reform  &  Legislative  Services  Building  Codes  Queensland  Robin  Shreeve  –  Australian  Workforce  and  Productivity  Agency  R.V.Simha  –  HVAC  Consultant,  India  Belinda  Strickland  –  Australian  Institute  of  Architects  -­‐  Victorian  Chapter  Roger  Stringer,  Ass.AIRAH  –  Actrol  Ken  Thomson,  M.AIRAH  –  Crone  Partners  Thinh  Tran  –  Plumbing  Industry  Commission  Tristram  Travers  -­‐  Enterprise  Connect,  DIISRTE  Matthew  Trigg  –  Facility  Management  Association  of  Australia  Ian  Tuena,  M.AIRAH  –  CA  group  services  Jason  Van  Ballegooyen  –  DIISRTE  Sietze  van  der  Sluis  –  IEA  Heat  Pump  Centre  Ché  Wall  –  XOCO  Dr  Josh  Wall,  M.AIRAH  –  CSIRO  Lyndon  Watson  –  Don  Watson  Transport  &  Coldstores  Dr  Stephen  White,  M.AIRAH  –  CSIRO  Peter  Whittle  –  City  of  Yarra  Jock  Wigan  –  ALDI  Stores  Phil  Wilkinson,  M.AIRAH  –  AIRAH  Robert  Wilson  –  Ergon  Energy  Paul  Wiszniak  –  Wattwatcher

Page 6: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  6  of  162  

 

 TRANSITION  TO  LOW-­‐EMISSION  HVAC&R  

ISSUES  AND  SOLUTIONS  

TABLE  OF  CONTENTS  EXECUTIVE  SUMMARY  .................................................................................................................  14  

1  -­‐  SCOPE  ......................................................................................................................................  19  1.1.   INTRODUCTION  ..........................................................................................................................  19  1.2.   NEED  .......................................................................................................................................  19  1.3.   PURPOSE  ..................................................................................................................................  21  1.4.   PROJECT  OBJECTIVES  ..................................................................................................................  21  1.5.   APPROACH  ...............................................................................................................................  22  1.5.1.   Consultation  process  ......................................................................................................  22  1.5.2.   Structure  of  the  paper  ....................................................................................................  22  1.5.3.   Assessment  of  solutions  .................................................................................................  23  

2.   INDUSTRY  CONTEXT  ..............................................................................................................  24  2.1.   THE  HVAC&R  INDUSTRY  ............................................................................................................  24  2.2.   PUBLIC  PERCEPTION  ...................................................................................................................  24  2.3.   REGULATORY  ENVIRONMENT  .......................................................................................................  25  2.4.   GOVERNMENT  POLICY,  ENERGY  EFFICIENCY  AND  HVAC&R  ...............................................................  25  2.4.1.   National  Construction  Code  (NCC)  .................................................................................  26  2.4.2.   HVAC  HESS  .....................................................................................................................  26  2.4.3.   Refrigeration  –  In  from  the  Cold  .....................................................................................  27  2.4.4.   Minimum  Energy  Performance  Standards  (MEPS)  .........................................................  27  2.4.5.   Energy  rating  labels  ........................................................................................................  28  2.4.6.   Other  government  energy  efficiency  policy  drivers  ........................................................  28  

2.5.   GOVERNMENT  INCENTIVES  ..........................................................................................................  29  2.6.   SPLIT  INCENTIVES  .......................................................................................................................  30  2.7.   FINANCING  ENERGY-­‐EFFICIENCY  INTERVENTIONS  ..............................................................................  30  2.7.1.   Financing  interventions  ..................................................................................................  30  2.7.2.   Quantifying  costs  and  benefits  .......................................................................................  31  2.7.3.   CTIP  funding  ...................................................................................................................  31  

2.8.   GREEN  BUILDING  .......................................................................................................................  31  

 

Page 7: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  7  of  162  

2.9.   COMMERCIAL  LEASING  ................................................................................................................  32  2.10.   PASSIVE  DESIGN  .......................................................................................................................  32  2.11.   THE  NEED  FOR  HVAC&R  ..........................................................................................................  33  2.12.   INTEGRATING  HVAC&R  DESIGN  INTO  THE  BUILDING  DESIGN  PROCESS  ..............................................  34  2.13.   CONTRACTS  ............................................................................................................................  34  2.14.   HVAC&R  DESIGN  CONDITIONS  ..................................................................................................  35  2.15.   DESIGN  AND  CONTROL  STRATEGIES  .............................................................................................  35  2.16.   SYSTEM  AND  BUILDING  COMMISSIONING  .....................................................................................  36  2.17.   BUILDING  MANAGEMENT  AND  CONTROL  SYSTEMS  .........................................................................  36  2.18.   BUILDING  INFORMATION  MODELLING/MANAGEMENT  ....................................................................  37  2.19.   INTERNATIONAL  DEVELOPMENTS  IN  REFRIGERATION  .......................................................................  37  2.19.1.   Refrigerant  leakage  .....................................................................................................  38  2.19.2.   HFC  Bans/Restrictions  ..................................................................................................  38  2.19.3.   Tools  .............................................................................................................................  38  2.19.4.   Refrigerant  and  equipment  manufacture  ....................................................................  38  

2.20.   ENERGY  PRICES  AND  PRICING  POLICY  ...........................................................................................  39  2.21.   CARBON  INTENSITY  OF  THE  “GRID”  .............................................................................................  40  2.22.   HVAC&R  INTERACTIONS  WITH  THE  “GRID”  ..................................................................................  41  2.22.1.   Demand  management  .................................................................................................  41  2.22.2.   Co-­‐generation  and  tri-­‐generation  systems  ..................................................................  41  2.22.3.   Energy  storage  .............................................................................................................  42  2.22.4.   Phase-­‐change  materials  ...............................................................................................  42  2.22.5.   Alternative  technologies  ..............................................................................................  42  

3.   THE  HEADLINE  ISSUES  ............................................................................................................  44  3.1.   SECTION  INTRODUCTION  .............................................................................................................  44  3.2.   REFRIGERATION  SAFETY  ISSUES  .....................................................................................................  44  3.2.1.   Refrigerant  classification  ................................................................................................  44  3.2.2.   Design  safety  standard  ...................................................................................................  45  3.2.3.   Product  standards  ..........................................................................................................  46  3.2.4.   Gas  regulations  ..............................................................................................................  46  3.2.5.   Industry  Code  of  Practice  ...............................................................................................  46  3.2.6.   Refrigerant  trade-­‐offs  ....................................................................................................  47  

3.3.   ENVIRONMENTAL  ISSUES  .............................................................................................................  47  3.3.1.   Emissions  versus  energy  efficiency  .................................................................................  47  3.3.2.   Energy  efficiency  versus  energy  consumption  ................................................................  48  3.3.3.   ODP  versus  GWP  ............................................................................................................  48  3.3.4.   Environmental  degradation/impact  ...............................................................................  48  3.3.5.   Environmental  performance  ..........................................................................................  49  

3.4.   ENERGY  EFFICIENCY  DESIGN  ISSUES  ................................................................................................  50  3.4.1.   Energy  intensity  ..............................................................................................................  50  3.4.2.   Rating  .............................................................................................................................  50  3.4.3.   System  capacity  ..............................................................................................................  51  

Page 8: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  8  of  162  

3.4.4.   System  design  .................................................................................................................  52  3.4.5.   Heat  rejection  .................................................................................................................  52  3.4.6.   Heat  recovery  .................................................................................................................  53  3.4.7.   System  installation  .........................................................................................................  54  3.4.8.   Infiltration  and  building  sealing  .....................................................................................  54  

3.5.   ENERGY  EFFICIENCY  OPERATIONAL  ISSUES  .......................................................................................  54  3.5.1.   Operation  .......................................................................................................................  54  3.5.2.   System  control  ................................................................................................................  55  3.5.3.   System  documentation  ...................................................................................................  55  3.5.4.   Monitoring  .....................................................................................................................  56  3.5.5.   Maintenance  ..................................................................................................................  56  3.5.6.   Upgrade  or  replacement  ................................................................................................  58  

3.6.   LOW-­‐GWP  REFRIGERANTS  ..........................................................................................................  59  3.6.1.   What  are  low-­‐GWP  refrigerants  ....................................................................................  59  3.6.2.   Barriers  to  low-­‐GWP  refrigerants  ...................................................................................  59  

3.7.   REFRIGERANT  CONTAINMENT  ISSUES  .............................................................................................  60  3.7.1.   Construction  standards  ..................................................................................................  61  3.7.2.   Leak-­‐containment  technologies  .....................................................................................  62  3.7.3.   Leak-­‐management  practices  ..........................................................................................  63  3.7.4.   Automatic  leak  detection  ...............................................................................................  63  3.7.5.   Charge  reduction  ............................................................................................................  64  3.7.6.   Tracking  refrigerant  emissions  .......................................................................................  64  

3.8.   PRODUCT  STEWARDSHIP  .............................................................................................................  64  3.8.1.   Refrigerants  ....................................................................................................................  64  3.8.2.   Plant  and  equipment  ......................................................................................................  66  

3.9.   RESEARCH,  DEVELOPMENT,  INNOVATION  AND  COMMERCIALISATION  ...................................................  66  3.10.   WORKFORCE  DEVELOPMENT  ......................................................................................................  66  3.11.   SKILLS  AND  TRAINING  ISSUES  ......................................................................................................  67  3.11.1.   University  training  ........................................................................................................  68  3.11.2.   VET/TAFE  trade  training  ..............................................................................................  68  3.11.3.   Continuing  professional  development/skills  maintenance  ..........................................  70  3.11.4.   Design  training  .............................................................................................................  70  3.11.5.   Energy  efficiency  training  .............................................................................................  71  3.11.6.   Installation  training  ......................................................................................................  71  3.11.7.   Commissioning  training  ...............................................................................................  71  3.11.8.   Operational  training  ....................................................................................................  72  3.11.9.   Maintenance  training  ..................................................................................................  72  3.11.10.   Decommissioning  .......................................................................................................  72  3.11.11.   Current  developments  in  skills  and  training  ...............................................................  72  

3.12.   LICENSING  AND  REGISTRATION  ...................................................................................................  73  3.12.1.   Technician  licensing  .....................................................................................................  73  3.12.2.   Professional  registration  ..............................................................................................  74  

Page 9: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  9  of  162  

4.   THE  MAJOR  SECTORS  .............................................................................................................  75  4.1.   SECTION  INTRODUCTION  .............................................................................................................  75  4.2.   COMMERCIAL  AIR  CONDITIONING  .................................................................................................  75  4.2.1.   Energy  intensity  ..............................................................................................................  75  4.2.2.   Energy  efficiency  ............................................................................................................  76  4.2.3.   Refrigerant  leakage  ........................................................................................................  77  4.2.4.   Maintenance  ..................................................................................................................  77  4.2.5.   Building  tuning,  recommissioning  and  retrocommissioning  ..........................................  77  4.2.6.   Fault  detection  and  diagnostics  (FDD)  ...........................................................................  78  

4.3.   RESIDENTIAL  AIR  CONDITIONING  ...................................................................................................  79  4.3.1.   Energy  intensity  ..............................................................................................................  79  4.3.2.   Energy  efficiency  ............................................................................................................  80  4.3.3.   Operation  .......................................................................................................................  81  4.3.4.   Refrigerant  leakage  ........................................................................................................  81  4.3.5.   Maintenance  ..................................................................................................................  81  4.3.6.   Low-­‐GWP  refrigerants  ....................................................................................................  82  4.3.7.   Training  and  licensing  ....................................................................................................  82  4.3.8.   Strata  title  residential  buildings  .....................................................................................  82  

4.4.   VEHICLE  AIR  CONDITIONING  .........................................................................................................  82  4.4.1.   Design  safety  standards  .................................................................................................  84  4.4.2.   Energy  intensity  ..............................................................................................................  84  4.4.3.   Energy  efficiency  ............................................................................................................  84  4.4.4.   Refrigerant  leakage  ........................................................................................................  84  4.4.5.   Maintenance  ..................................................................................................................  85  

4.5.   COMMERCIAL  REFRIGERATION  ......................................................................................................  85  4.5.1.   Supermarket  and  displays  ..............................................................................................  85  4.5.2.   Low-­‐GWP  refrigerant  solutions  ......................................................................................  87  4.5.3.   The  total-­‐system  approach  to  design  .............................................................................  87  4.5.4.   Refrigerated  warehouse/storage  facilities  .....................................................................  88  4.5.5.   Cold  rooms/freezer  rooms  ..............................................................................................  91  

4.6.   INDUSTRIAL  REFRIGERATION  .........................................................................................................  92  4.7.   REFRIGERATED  TRANSPORT  ..........................................................................................................  94  4.7.1.   Refrigerant  .....................................................................................................................  94  4.7.2.   Energy  intensity  ..............................................................................................................  95  

4.8.   OTHER  SECTORS  .........................................................................................................................  96  4.8.1.   Residential  refrigeration  .................................................................................................  96  4.8.2.   H  is  for  Heating  ..............................................................................................................  97  4.8.3.   Hot  water  heat  pumps  ...................................................................................................  98  

5.   PROPOSED  SOLUTIONS  ..........................................................................................................  99  5.1.   SECTION  INTRODUCTION  .............................................................................................................  99  5.2.   PROFESSIONALISM  .....................................................................................................................  99  5.2.1.   An  HVAC&R  industry  council  ..........................................................................................  99  

Page 10: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  10  of  162  

5.2.2.   Objectives  of  low-­‐emission  HVAC&R  Roadmap  ..............................................................  99  5.2.3.   Funding  and  resources  .................................................................................................  100  5.2.4.   Industry  data  ................................................................................................................  101  5.2.5.   Sharing  data  and  collaboration  ....................................................................................  102  5.2.6.   International  experience  ..............................................................................................  102  5.2.7.   Low-­‐emission  HVAC&R  defined  ....................................................................................  102  5.2.8.   Fee  structures  ...............................................................................................................  103  5.2.9.   Design  engagement  and  feedback  ...............................................................................  103  5.2.10.   Trade  training  ............................................................................................................  103  5.2.11.   University  training  ......................................................................................................  105  5.2.12.   CPD  training  ...............................................................................................................  106  5.2.13.   Trade  licensing  ...........................................................................................................  106  5.2.14.   Professional  registration  ............................................................................................  106  

5.3.   REGULATIONS,  STANDARDS  AND  GOVERNMENT  PROGRAMS  ............................................................  107  5.3.1.   Measuring  success  .......................................................................................................  107  5.3.2.   Intellectual  property  .....................................................................................................  107  5.3.3.   National  Construction  Code  .........................................................................................  107  5.3.4.   Mandatory  commissioning  ...........................................................................................  108  5.3.5.   Mandatory  submetering  and  monitoring  .....................................................................  108  5.3.6.   Mandatory  energy  efficiency  maintenance  ..................................................................  108  5.3.7.   Building  air  tightness  ....................................................................................................  108  5.3.8.   Upgrades  and  minor  works  ..........................................................................................  109  5.3.9.   Documentation  standards  ............................................................................................  109  5.3.10.   Facilities  for  maintenance  ..........................................................................................  110  5.3.11.   CTIP  finance  ...............................................................................................................  110  5.3.12.   Refrigeration  safety  standards  ...................................................................................  110  5.3.13.   CoP  for  flammable  refrigerants  ..................................................................................  111  5.3.14.   CoP  for  HFC  refrigerants  ............................................................................................  111  5.3.15.   Refrigerant  handling  ..................................................................................................  112  5.3.16.   System  age  .................................................................................................................  112  5.3.17.   Government  programs  –  MEPS  ..................................................................................  112  5.3.18.   Government  programs  –  HVAC  HESS  .........................................................................  113  5.3.19.   Government  programs  –  In  from  the  Cold  .................................................................  113  5.3.20.   Government  programs  –  Mandatory  disclosure  ........................................................  114  5.3.21.   Government  programs  –  NGER  scheme  .....................................................................  114  5.3.22.   HVAC&R  design  standards  .........................................................................................  114  5.3.23.   Cool/Cold  rooms  design  standard  ..............................................................................  115  5.3.24.   Commercial  HVAC&R  demand  management  .............................................................  115  5.3.25.   Residential  air  conditioning  design  and  installation  standard  ...................................  115  5.3.26.   Residential  air  conditioning  demand  management  ...................................................  115  

5.4.   INFORMATION  .........................................................................................................................  115  5.4.1.   Industry  information  and  online  repository  ..................................................................  115  

Page 11: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  11  of  162  

5.4.2.   The  value  of  HVAC&R  ...................................................................................................  116  5.4.3.   Grants  and  incentives  ...................................................................................................  116  5.4.4.   Fee  structures  ...............................................................................................................  116  5.4.5.   HVAC&R  design  data  ....................................................................................................  117  5.4.6.   Internal  design/comfort  conditions  ..............................................................................  117  5.4.7.   Air-­‐cooled/water-­‐cooled  cost  analysis  .........................................................................  118  5.4.8.   Commercial  refrigeration  design  approach  ..................................................................  118  5.4.9.   Co-­‐generation/Tri-­‐generation  ......................................................................................  118  5.4.10.   Alternative  technologies  and  practices  ......................................................................  119  5.4.11.   CPD  training  ...............................................................................................................  119  5.4.12.   End  user  information  and  awareness  ........................................................................  121  5.4.13.   myHVAC&Rsystem.com.au  ........................................................................................  122  5.4.14.   Natural  refrigerants  ...................................................................................................  122  5.4.15.   Ammonia  refrigerants  ................................................................................................  123  5.4.16.   Passive  design  ............................................................................................................  123  5.4.17.   Best-­‐practice  HVAC&R  installation  ............................................................................  123  5.4.18.   Building  tuning  and  recommissioning  ........................................................................  124  5.4.19.   Commercial  refrigeration  ...........................................................................................  124  5.4.20.   System  age  .................................................................................................................  124  5.4.21.   Optimising  and  maintaining  efficiency  ......................................................................  124  5.4.22.   Maintenance  for  energy  efficiency  .............................................................................  124  5.4.23.   Residential  air  conditioning  design  and  installation  standard  ...................................  126  5.4.24.   Residential  air  conditioning  demand  management  ...................................................  126  5.4.25.   Residential  maintenance  ............................................................................................  126  

5.5.   MEASUREMENT  .......................................................................................................................  126  5.5.1.   HVAC  system  rating  ......................................................................................................  126  5.5.2.   Refrigeration  system  rating  ..........................................................................................  127  5.5.3.   Water  rating  .................................................................................................................  128  5.5.4.   Validation  of  product  claims  ........................................................................................  128  5.5.5.   Technology  comparison  tool  ........................................................................................  128  5.5.6.   Benchmarking  existing  systems  ...................................................................................  129  5.5.7.   Metering  and  monitoring  .............................................................................................  129  5.5.8.   Maintenance  records  ...................................................................................................  130  5.5.9.   Fault  detection  and  diagnosis  ......................................................................................  130  5.5.10.   Cool/cold  rooms  design  standard  ..............................................................................  130  5.5.11.   Benchmarking  electricity  use  .....................................................................................  131  5.5.12.   Managing  consumption  .............................................................................................  131  

5.6.   EMISSION  ABATEMENT  ..............................................................................................................  131  5.6.1.   Product  stewardship  ....................................................................................................  131  5.6.2.   Quality/design  assurance  .............................................................................................  132  5.6.3.   Research,  development,  innovation  and  commercialisation  ........................................  132  5.6.4.   Innovation  showcase  ....................................................................................................  133  

Page 12: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  12  of  162  

5.6.5.   Incentive  schemes/trials  for  new  technologies  ............................................................  133  5.6.6.   Targeting  implementation  of  innovative  technologies  ................................................  134  5.6.7.   Government  procurement  ............................................................................................  134  5.6.8.   Commercial  refrigeration  design  approach  ..................................................................  134  5.6.9.   Best-­‐practice  HVAC&R  installation  ...............................................................................  135  5.6.10.   Commissioning  Guarantee  scheme  ............................................................................  135  5.6.11.   Residential  air  conditioning  design  and  installation  register  .....................................  135  5.6.12.   Residential  installers  guarantee  scheme  ....................................................................  135  5.6.13.   Co-­‐generation/tri-­‐generation  ....................................................................................  135  5.6.14.   Commercial  refrigeration  ...........................................................................................  136  5.6.15.   Existing  systems  in  existing  buildings  .........................................................................  136  5.6.16.   Incentivising  energy-­‐efficiency  interventions  in  existing  buildings  .............................  137  5.6.17.   Incentives  for  commercial  maintenance  ....................................................................  137  5.6.18.   Residential  Maintenance  ...........................................................................................  137  5.6.19.   Incentives  for  replacing  inefficient  residential  systems  ..............................................  137  5.6.20.   Direct  refrigerant  leakage  ..........................................................................................  138  5.6.21.   Leakage  monitoring  ...................................................................................................  139  5.6.22.   Leakage  testing  ..........................................................................................................  139  5.6.23.   Refrigerant  containment  ............................................................................................  139  5.6.24.   Maintenance  for  leak  minimisation  ...........................................................................  140  5.6.25.   Refrigerant  logging  ....................................................................................................  140  5.6.26.   Refrigerant  reclamation  and  recycling  .......................................................................  140  5.6.27.   Refrigerant  leakage  ...................................................................................................  141  5.6.28.   End-­‐of-­‐lifeleakage  ......................................................................................................  141  5.6.29.   Commercial  leasing  ....................................................................................................  141  5.6.30.   Evaporative  air  cooling  ..............................................................................................  142  5.6.31.   Hot  water  heat  pumps  ...............................................................................................  142  5.6.32.   Residential  refrigeration  upgrade  and  replacement  ..................................................  142  

5.7.   OTHER  SECTOR  SOLUTIONS  NOT  INCLUDED  IN  THE  ROADMAP  ...........................................................  142  5.7.1.   Vehicle  air  conditioning  ................................................................................................  142  5.7.2.   Transport  refrigeration  ................................................................................................  143  

5.8.   COMPLEMENTARY  ACTIONS  .......................................................................................................  143  5.8.1.   Workforce  development  ...............................................................................................  143  5.8.2.   The  Clean  Technologies  Supplier  Advocate  ..................................................................  143  5.8.3.   Building  information  modelling  ....................................................................................  144  5.8.4.   Harmonisation  ..............................................................................................................  144  

6.   MANAGING  THE  TRANSITION  ..............................................................................................  146  6.1.   WORKING  WITH  GOVERNMENT/  INDUSTRY  STAKEHOLDERS  .............................................................  146  6.2.   CURRENT  TOOLS  ......................................................................................................................  146  6.3.   PSYCHOLOGICAL  AND  SOCIOLOGICAL  FACTORS  ..............................................................................  146  6.4.   CHANGING  ENTRENCHED  INDUSTRY  ATTITUDES  .............................................................................  147  6.5.   LESSONS  LEARNED  FROM  OVERSEAS  EXPERIENCES  ..........................................................................  147  

Page 13: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  13  of  162  

6.6.   OPPORTUNITIES  FOR  THE  HVAC&R  INDUSTRY  ..............................................................................  147  6.6.1.   Low-­‐carbon  consultants  ...............................................................................................  147  6.6.2.   Maintenance  for  energy  efficiency  ...............................................................................  148  6.6.3.   Maintenance  for  leak  minimisation  .............................................................................  148  6.6.4.   System  upgrades  for  energy  efficiency  .........................................................................  148  6.6.5.   System  retrofitting  for  low-­‐GWP  refrigerants  ..............................................................  148  6.6.6.   Identifying  incentives  and  finance  opportunities  .........................................................  148  

6.7.   DEMAND  AND  SUPPLY  AND  DEMAND  ...........................................................................................  148  6.8.   INTELLECTUAL  PROPERTY  AND  KNOWLEDGE  TRANSFER  ....................................................................  149  6.9.   SMALL  AND  MEDIUM  ENTERPRISES  SMES  .....................................................................................  149  6.9.1.   SME  end  users  ..............................................................................................................  149  6.9.2.   SME  technical  service  providers  ...................................................................................  150  

7.   INDUSTRY  TRANSITION  ACTION  ROADMAPS  .......................................................................  151  7.1.   SECTION  INTRODUCTION  ...........................................................................................................  151  7.2.   ROADMAP  ..............................................................................................................................  152  7.3.   PROFESSIONALISM  SOLUTIONS  ...................................................................................................  153  7.4.   REGULATORY  SOLUTIONS  ...........................................................................................................  154  7.5.   INFORMATION  SOLUTIONS  .........................................................................................................  155  7.6.   MEASUREMENT  SOLUTIONS  .......................................................................................................  156  7.7.   EMISSION  REDUCTION  SOLUTIONS  ...............................................................................................  157  7.8.   COMPLEMENTARY  SOLUTIONS  ....................................................................................................  158  

 

 

Page 14: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  14  of  162  

EXECUTIVE  SUMMARY  AIRAH  undertook  this  project  on  behalf  of  the  whole  of  industry  to  provide  a  forum  or  mechanism  whereby  the  transition  to  low-­‐emission  HVAC&R  practices  and  technologies  could  be  discussed  openly  and  transparently.  The  topic  is  broad  and  the  views  are  varied  and  often  conflicting.  The  content  of  this  paper  is  based  on  submissions  received  from  industry  stakeholders.  Hence,  many  statements  and  conclusions  are  not  referenced  to  published  documents.  This  is  neither  a  research  paper  nor  a  definitive  situational  analysis;  this  paper  simply  documents  an  industry  discussion.  

Some  criticisms  have  suggested  the  industry  cannot  have  this  discussion  until  all  of  the  data  relating  to  the  situation  is  defined  and  known.  However,  others  have  noted  the  idiom,  “When  is  the  best  time  to  plant  a  commercial  forest?  Twenty  years  ago.  But  if  you  haven't  done  it  yet:  now!”    

In  a  way  the  industry  is  trying  to  rebuild  or  modify  the  aeroplane  while  flying  it  –  not  an  ideal  situation  but  really  the  only  practical  approach,  particularly  if  the  aeroplane  is  not  allowed  to  land.    

Another  criticism  is  that  the  project  is  very  large  –  too  large  –  and  the  scope  needs  to  be  reduced,  and  the  project  broken  down  into  much  smaller  steps.  Again  an  idiom  is  offered,  “How  do  you  eat  an  elephant?  One  bite  at  a  time.”  That  has  been  the  approach  taken  by  AIRAH:  one  step  at  a  time.  

The  AIRAH-­‐proposed  roadmap  consists  of  five  pillars  underpinning  the  transition:  Professionalism,  Regulation,  Information,  Measurement,  and  Emission  abatement  (PRIME).  Each  represents  a  different  pathway,  and  all  of  the  eventual  industry-­‐endorsed  solutions  can  be  listed  in  one  of  those  categories.    

The  pathways  that  have  emerged  are  presented  as  follows:  

Professionalism  –  The  things  that  help  to  set  the  industry  objectives  and  process  for  transition,  including  funding  and  engagement;  strategy  and  policy;  compiling  and  sharing  data;  and  professionalising  the  industry  through  skills,  training,  licensing  and  registration.  

Regulating  –  The  things  that  relate  to  helping  the  HVAC&R  industry  to  inform  government  policy  and  regulations,  industry  Codes,  Australian  Standards,  and  government  programs.  

Information  –  The  things  that  relate  to  the  information  that  can  be  provided  to  educate  and  inform  end  users  and  technical  service  providers  about  skills  relating  to  energy  efficiency  and  reducing  emissions,  knowledge,  technologies,  fee  structures,  design  practices,  and  maintenance  imperatives.  

Measurement  –  The  things  that  relate  to  helping  industry  and  end  users  monitor,  measure,  rate,  and  benchmark  HVAC&R  performance,  validate  efficiency  claims,  and  compare  technology  solutions,  

Emission  abatement  –  The  practical  things  that  are  done  to  reduce  emissions.  These  include  product  stewardship,  incentives  for  new  technology  and  innovation,  system  procurement,  good/best-­‐  practice  accreditation,  incentivising  low-­‐emission  interventions,  maintenance  for  energy  efficiency,  and  refrigerant  containment.  

Page 15: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  15  of  162  

All  of  these  pathways  and  many  of  the  proposed  solutions  are  interrelated.  Some  will  only  be  possible  if  others  are  accepted.  

PRIME:  One  of  the  meanings  of  the  word  “prime”  is  to  prepare,  to  get  ready,  to  brief,  to  train  and  

to  prepare  something  for  operation.  It  is  also  used  to  designate  importance.  In  the  context  of  the  industry  roadmap  the  word  “prime”  seems  an  appropriate  term  to  use.  PRIME  means  putting  in  the  right  effort  and  groundwork  before  you  start  to  ensure  you  get  a  good  outcome.    

Therefore  the  Draft  HVAC&R  Industry  Roadmap  looks  something  like  this:  

DRAFT  ROADMAP  –  Transition  to  low-­‐emission  HVAC&R  

Overall  objective  or  

Vision  A  highly  skilled  and  professional  Australian  HVAC&R  industry  that  is  safe,  cost-­‐effective  and  environmentally  effective.  

Pathways  –  to  low-­‐emission  HVAC&R  

Professionalism   Skills  and  training,  licensing,  professional  registration,  tertiary  education  and  an  industry  council  or  forum  to  consider  strategy,  policy,  information  sharing,  and  industry  practices.  

Regulating   Inform  government  policy  and  regulations,  industry  Codes  and  Australian  Standards,  including  validation,  regulatory  data,  and  enforcement.  

Information   Educate  and  inform  end  users,  disseminate  low-­‐emission  skills  and  knowledge,  technologies,  design  practices,  convert  data  to  information.  

Measurement   Measure  and  benchmark  HVAC&R  performance  using  system  rating  tools,  industry  metrics,  building  tuning,  system  optimisation,  validated  efficiency  claims,  and  technology-­‐comparison  tools.  

Emission  abatement   Product  stewardship,  new  technologies,  work-­‐practice  accreditation,  incentivising  low-­‐emission  interventions,  maintenance  for  energy  efficiency,  and  refrigerant  containment.  

 

Page 16: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  16  of  162  

This  discussion  paper  is  a  report  on  the  industry  views  on  low-­‐emission  HVAC&R,  at  least  to  the  extent  that  AIRAH  has  been  able  to  define  them.  The  paper  has  been  developed  as  an  open-­‐source  document,  with  extensive  consultation  with  industry  stakeholders,  including  government  and  end  users.    

At  each  iteration  invitations  were  sent  out  to  comment  and  provide  feedback  about  the  draft  document.  AIRAH  thanks  the  authors  –  the  many  individuals  and  organisations  that  have  been  able  to  participate  in  this  process.  

The  primary  purpose  is  to  facilitate  the  low-­‐emission  discussion  and  to  tease  out  of  industry  stakeholders  their  views  on  the  solutions  and  actions  that  need  to  be  implemented  to  assist  the  transition.  There  are  several  recurring  themes:  interaction  with  government,  skills  and  training,  licensing  and  registration,  measurement  and  benchmarking,  information  validation  and  sharing.  It’s  generally  agreed  that  professionalising  the  sector  will  improve  the  sector’s  performance  in  terms  of  both  economic,  environmental  sustainability  and  professional  satisfaction.  

There  is  a  consensus  that  the  HVAC&R  industry  could  improve  the  pathways  for  emerging  technologies.  There  are  solutions  proposed  for  new  technology,  but  the  industry  also  needs  to  address  getting  the  most  out  of  existing  technologies,  whether  already  installed,  or  for  new  projects.  A  validation  of  efficiency  claims  and  comparison  tools  for  new  and  existing  technology  are  proposed.  

System  measurement,  rating  and  benchmarking  are  heavily  supported  in  the  proposed  solutions.  Industry  needs  to  use  common  (but  sector-­‐specific)  measurement  and  performance  rating  tools  and  metrics  so  that  designers  and  end  users  are  able  to  compare  system  alternatives.  Ratings  need  to  be  based  on  life-­‐cycle  assessments  where  practical.  Better  tools  based  on  research  and  proven  models  will  help  position  the  industry  as  both  forward-­‐thinking  and  science-­‐based.    

Providing  information  to  end  users,  HVAC&R  technical  service  providers  and  related  building  trades  and  professionals  is  also  the  basis  of  many  of  the  solutions  proposed.  

There  is  a  significant  role  for  government  in  developing  evidence-­‐based  regulations  and  incentives.  However,  industry  cautions  that  any  government  intervention  must  be  evaluated  and  justified  after  its  implementation.  Licensing  for  trades  and  professional  registration  for  engineers  is  also  proposed  as  a  pathway  for  professionalising  the  industry.  

Many  solutions  suggest  a  need  for  improved  formal  training  for  new  industry  entrants  (at  both  TAFE/VET  and  university  level)  plus  specific,  technology-­‐focused  courses  provided  by  industry,  possibly  with  government  support,  for  existing  workers.  Subsidised  energy  efficiency  up-­‐skilling,  for  professionals  and  technicians,  must  be  delivered  to  industry.  This  up-­‐skilling  should  be  based  on  open-­‐access  competencies  that  focus  on  the  energy  efficiency  of  HVAC&R  services.  

The  training  system  responds  to  several  market  pressures,  including  perceived  demand  and  available  incentives.  The  demand  for  training  must  exist  in  order  to  justify  supply.  There  is  a  strong  role  seen  for  industry  bodies  to  provide  training  and  continuing  professional  development.  Industry-­‐provided  educational  information  and  training  through  industry  bodies,  manufacturers  and  suppliers,  training  

Page 17: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  17  of  162  

websites,  collaboration  with  RTOs,  as  well  as  the  development  of  “applications”,  computer  software  and  other  helpful  tools  are  all  seen  as  potential  paths  for  industry  participation  in  the  training  and  education  issue.  

AIRAH  has  listed  all  of  the  suggested  solutions  within  Section  5,  and  with  something  in  excess  of  200  individual  solutions,  some  rationalisation  is  required.  The  next  step  in  this  project  is  to  ask  key  industry  stakeholders  to  assess  and  prioritise  individual  solutions  so  that  the  hard  work  of  development  and  implementation  can  begin.    

Perhaps  the  most  important  consideration  will  be  the  resourcing  of  any  new  initiatives.  Ultimately,  each  endorsed  solution  needs  to  be  turned  into  a  project  plan,  with  resources,  costs  and  timelines  estimated.  

 

Vince  Aherne,  M.AIRAH  

Project  manager  and  technical  editor  

   

Page 18: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  18  of  162  

 

ACRONYMS  used  in  this  document:    AHRI  Air  Conditioning,  Heating  and  Refrigeration  Institute  BCA  Building  Code  of  Australia  CEF  Clean  Energy  Future  CFC  Chlorofluorocarbon  COAG  Council  of  Australian  Governments  CoP  Code  of  practice  COP  Coefficient  of  performance  CPD  Continuing  professional  development    CPI  Consumer  price  index  CTIP  Clean  Technology  Investment  Program  DCCEE  Department  of  Climate  Change  and  Energy  Efficiency  DRED  Demand-­‐response-­‐enabling  devices  DSEWPaC  Department  of  Sustainability,  Environment,  Water,  Population  and  Community  EER  Energy  efficiency  ratio  ESD  Environmentally  sustainable  design  EUA  Environmental  upgrade  agreement  GDP  Gross  domestic  product  GWP  Global  warming  potential  HC  Hydrocarbon  HCFC  Hydrochlorofluorocarbon  HFC  Hydrofluorocarbon  HFO  Hydrofluoro-­‐olefin  HVAC&R  Heating,  ventilation,  air  conditioning  and  refrigeration  HVAC  HESS  Heating,  Ventilation  and  Air  Conditioning  High  Efficiency  Systems  Strategy  IPLV  Integrated  part-­‐load  value  IEER  Integrated  energy  efficiency  ratio  IRR  Internal  rate  of  return  LCA  Life-­‐cycle  analysis  LCC  Life-­‐cycle  costing  LEL  Lower  explosive  limit  MEPS  Minimum  Energy  Performance  Standards  NABERS  National  Australian  Built  Environment  Rating  Scheme  NCC  National  Construction  Code  NEBB  National  Environmental  Balancing  Bureau  NFEE  National  Framework  on  Energy  Efficiency  

NSEE  National  Strategy  on  Energy  efficiency  NGER  National  Greenhouse  and  Energy  Reporting  NGO  Non-­‐government  organisation  NPV  Net  present  value  ODP  Ozone-­‐depletion  potential  OEH  Office  of  Environment  and  Heritage  (NSW)  OEM  Original  equipment  manufacturer  PV  Photovoltaic  R&D  Research  and  development  ROI  Return  on  investment  RTO  Registered  training  organisation  SGG  Synthetic  greenhouse  gas  SME  Small  or  medium  enterprise  VEET  Victorian  Energy  Efficiency  Target  (Vic)  TAFE  Technical  and  further  education  VET  Vocational  education  and  training    

Page 19: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  19  of  162  

1  -­‐  Scope  

1.1. Introduction  This  paper  has  been  prepared  to  facilitate  industry  discussions  about  the  steps  that  need  to  be  taken  to  help  transition  the  Australian  heating,  ventilation,  air  conditioning  and  refrigeration  (HVAC&R)  industry  to  a  low-­‐emission  future.  

Emissions  from  HVAC&R  include  both  the  direct  and  indirect  components  associated  with  energy  consumption,  refrigerant  escape  to  atmosphere  and  energy  embodied  in  the  system.  When  we  talk  about  emissions  we  are  talking  about  carbon  dioxide  (CO2)  emissions  or  CO2  equivalent  (CO2-­‐e)  emissions.  The  two  broad  categories  of  “emissions”  from  HVAC&R  systems  are:  

• Direct  emissions  –  This  is  the  mass  of  CO2  emitted  or  CO2-­‐e  arising  from  emissions  of  refrigerant  or  any  other  greenhouse  gas  from  the  HVAC&R  equipment,  over  its  lifetime  (Units:  kg  CO2,  Scope  1  emissions).  

• Indirect  emissions  –  This  is  the  mass  of  CO2  or  CO2-­‐e  emitted  by  the  power  generator  per  kWh  of  electrical  energy  supplied  to  HVAC&R  equipment  taking  into  account  efficiency  losses  in  generation  and  distribution  including  the  embodied  emissions  in  the  fuel  (Units:  kg  CO2/kWh,  Scope  2  emissions).  Some  life-­‐cycle  calculations  include  the  energy  consumption/emissions  and  embodied  energy  associated  with  the  manufacture,  transport  and  installation  of  components  and  working  fluids  (Scope  3  emissions).  

Given  the  national  and  international  concern  regarding  CO2  and  CO2-­‐e  emissions  and  the  resulting  atmospheric  effects,  there  is  growing  regulatory,  financial  and  community  pressure  for  the  HVAC&R  industry  to  reduce  its  emissions,  from  both  direct  and  indirect  sources.  In  the  context  of  increasing  energy  prices  and  increasing  refrigerant  prices,  “transition”  means  a  highly  skilled  and  professional  HVAC&R  industry  that  is  both  cost-­‐effective  and  environmentally  effective.  

There  are  essentially  three  main  factors  that  affect  indirect  emissions  from  HVAC&R  systems:  • System  efficiency  –  influenced  by  design,  installation,  operation  and  maintenance.  • System  load  and  energy  consumption  –  influenced  by  architectural  design  (R-­‐value  of  walls,  

floors  and  walls,  and,  solar  gain),  system  design,  characteristics  of  installed  equipment,  any  local  microclimate  effects,  air  and  moisture  sealing,  process  efficiency,  comfort  preferences,  time  of  use,  and  the  modes  and  methods  of  operation  and  control.  

• Carbon  intensity  of  energy  source  –  influenced  by  fuel  source  for  electricity  generation  (solar,  coal,  gas,  etc)  and  by  fuel  type  used  on  site  (electricity,  gas).  

Direct  emissions  are  primarily  influenced  by  fugitive  emissions  during  installation  and  maintenance,  catastrophic  leakage  events,  and  emissions  at  end  of  life.  

There  is  scope  for  industry  stakeholders  to  influence  all  of  these  contributors.  

1.2. Need  The  HVAC&R  industry  includes  commercial  air  conditioning,  residential  air  conditioning,  commercial  refrigeration  and  industrial  refrigeration,  vehicle  air  conditioning  and  refrigerated  transport  

Page 20: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  20  of  162  

applications.  Domestic  refrigeration  consumer  appliances  (refrigerators  and  freezers),  non  air  conditioning  space-­‐heating  systems  and  heat  pumps  for  water  heating  and  cooling  could  also  be  considered  part  of  this  sector,  as  could  specialised  and  industrial  ventilation.  

Following  on  from  the  phase-­‐out  of  CFC  and  imminent  phase-­‐out  of  HCFC  refrigerant  gasses,  Australian  government  legislation  has  been  introduced  to  impose  an  equivalent  carbon  price  on  synthetic  greenhouse  gases  (SGG)  controlled  by  the  Kyoto  Protocol  from  1  July  2012.  This  includes  many  synthetic  gases  manufactured  and  applied  as  hydrofluorocarbon  (HFC)  refrigerants.  This  has  imposed  significant  new  charges  on  many  HFC  refrigerants  that  have  high  global  warming  potential  (GWP).  The  phase-­‐out  of  hydrochlorofluorocarbon  (HCFC)  refrigerants  is  also  causing  refrigerant  price  increases.    

These  regulatory  impacts  have  been  exacerbated  by  high  domestic  and  international  demand  for  refrigerant  and  raw  material  shortages,  which  have  all  contributed  to  significant  rises  in  the  cost  of  refrigerants.  At  the  same  time  electricity  costs  are  also  rising  due  to  increasing  demand,  the  rising  costs  of  fuels,  increasing  generation  costs,  increasing  network  costs,  renewable  energy  target  costs,  and  the  effect  of  carbon  pricing.  The  extent  of  penetration  of  low-­‐GWP  refrigerants  into  the  market  has  the  potential  to  reduce  some  of  these  costs.  

It  may  take  some  time  (years)  for  the  HVAC&R  market  to  fully  adapt  to  these  cost  increases.  There  is  also  a  considerable  amount  of  uncertainty  regarding  the  future  status  of  the  SGG  equivalent  carbon  price  in  terms  of  the  potential  for  a  change  in  government  (and  policy)  in  2013  and  in  terms  of  the  planned  move  to  a  market-­‐based  carbon  price  in  2015  under  the  current  legislation.  

The  direct  emissions  component  of  HVAC&R  systems  is  being  addressed  by  ozone  protection  and  SGG  management  legislation  and  the  equivalent  carbon  price  on  refrigerants.  The  indirect  emissions  of  HVAC&R  systems  are  being  addressed  by  encouraging  improved  energy  efficiency  and  reduced  electricity  use  through  carbon  pricing.  In  addition  to  the  rising  costs  of  energy  and  refrigerants  there  are  many  other  drivers  for  low-­‐emission  HVAC&R,  including  the  minimum  energy  efficiency  standards  of  the  NCC,  the  NABERS  Energy  rating  scheme,  mandatory  disclosure,  and  Green  Building  rating  schemes.    

These  changes  in  the  market,  and  the  new  regulatory  environment  ushered  in  with  the  Clean  Energy  Future  (CEF)  legislation  and  the  SGG  equivalent  carbon  price  legislation,  provide  strong  motivation  for  the  industry  to  improve  its  performance  in  regard  to  direct  and  indirect  emissions,  and  to  develop  the  tools,  information  and  pathways  required  to  deliver  lower  emission  services.  

Industry  attitudes,  practices  and  technologies  will  need  to  change.  It  is  the  implementation  of  these  changes  that  we  refer  to  when  using  the  term  “industry  transition”.  This  discussion  paper  and  the  subsequent  industry  summit  and  roadmap  development  process  will  provide  a  format  in  which  these  issues  can  be  explored  by  industry,  and  where  priority  actions  can  be  identified  and  agreed.  Appropriate  “lead”  organisations  and  support  organisations  can  then  work  together  to  achieve  a  cohesive  outcome  for  industry,  government,  the  community  and  the  environment.  

Page 21: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  21  of  162  

1.3. Purpose  Saving  energy  is  recognised  as  one  of  the  biggest  energy  "sources"  of  any  developed  country.  The  HVAC&R  industry  has  a  huge  opportunity  to  take  a  lead  to  promote  energy-­‐saving  practices,  by  educating  end  users  on  the  best  (as  well  as  aggressive)  practices  on  how  to  correctly  utilise  existing  and  new  equipment  to  support  this  effort.  This  could  include  ROI  and  amortisation  estimates,  but  should  also  be  based  on  environmental  concerns.  A  bonus  would  be  to  drive  the  industry  itself  to  provide  more  ecologically  sound  solutions.    

Creating  a  public,  commercial  and  industrial  perception  that  saving  energy  keeps  long-­‐term  costs  down  would  be  a  significant  step  toward  low-­‐emission  HVAC&R.  The  industry  needs  to  make  this  transition  to  low-­‐emission  practices  and  technologies  because  governments  are  demanding  it,  the  environment  needs  it,  and  society  is  expecting  it.  The  sector  is  a  major  consumer  of  energy  and  a  substantial  contributor  to  GHG  emissions.  The  industry  has  an  obligation  to  address  the  guiding  principles  of  sustainability.  

The  purpose  of  this  discussion  paper  is  to  canvass  industry  stakeholders  and  help  build  consensus  on  the  best  ways  to  help  the  industry  make  the  transition  to  low-­‐emission  practices  and  technology.  This  discussion  paper  will  form  the  basis  of  an  industry  summit  to  be  held  to  consider  the  key  issues,  solutions  and  actions  that  need  to  be  taken  to  make  that  transition.  

It  is  not  the  purpose  of  this  discussion  paper  to  immediately  solve  all  of  the  issues  faced  by  the  industry  or  to  mandate  the  essential  steps  that  the  industry  must  take  to  be  environmentally  and  commercially  effective.  The  purpose  of  this  discussion  paper  is  to  provide  industry  stakeholders  with  a  mechanism  within  which  they  can  identify  the  main  issues  faced  by  their  sector,  share  ideas  and  suggest  some  solutions  that  can  be  implemented  to  address  those  issues.  

1.4. Project  objectives  The  strategic  objectives  of  this  project  are  to:  

1. Facilitate  an  industry-­‐  and  government-­‐wide  discussion  on  the  practical  steps  that  need  to  be  taken  to  assist  with  the  transition  to  a  low-­‐emission  HVAC&R  industry.  

2. Help  the  HVAC&R  industry  develop  a  vision  of  what  a  low-­‐emission  future  looks  like  and  develop  a  pathway  to  achieve  that  vision.  

3. Identify  practical  actions  that  can  help  technical  service  providers  and  end  users  transition  to  low-­‐emission  practices.  

4. Identify  the  areas  and  priorities  on  which  industry  can  and  cannot  find  consensus.  5. Secure  a  mandate  from  industry  on  those  areas  and  sectors  of  the  industry  that  require  

significant  reform.    The  project  is  also  intended  to:  

• Consider  direct  and  indirect  emissions  as  part  of  an  HVAC&R  system.  • Prevent  duplication  of  effort  within  industry  and  government,  both  in  Australia  and  

overseas.  • Identify  areas  already  being  addressed  by  existing  programs/actions  and  work  on  ways  to  

raise  awareness  of  these  and  create  linkages.  

Page 22: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  22  of  162  

• Identify  gaps  in  data,  skills  and  knowledge.  • Identify  gaps  where  issues  are  not  being  addressed.  • Identify  sector-­‐specific  issues  and  those  issues  that  impact  across  sectors.  

1.5. Approach  The  approach  to  the  development  of  the  discussion  paper  has  been  open  and  transparent,  encouraging  broad  and  robust  consultation  with  industry,  government  and  end  users.  

1.5.1. Consultation  process  Multiple  industry  stakeholders  were  engaged  with  throughout  the  development  of  this  discussion  paper  in  a  three-­‐stage  consultation  process:  

1. The  industry  was  initially  canvassed  to  identify  priority  issues  and  known  barriers  to  the  transition  to  a  low-­‐emission  HVAC&R  future.  This  resulted  in  a  bare-­‐bones  discussion  paper.  

2. The  bare-­‐bones  discussion  paper  was  formally  issued  to  all  industry  stakeholders  for  review  and  comment.  All  stakeholder  feedback  and  comment  was  considered  and  incorporated  where  possible  in  the  development  of  the  public  review  draft.  

3. This  draft  discussion  paper  was  formally  issued  for  a  public/industry  review  and  comment  process.  Stakeholders,  industry  interests  and  the  public  had  the  opportunity  to  review  the  draft  paper  and  provide  feedback  and  comment.  All  industry  feedback  and  comment  was  considered  for  incorporation  into  the  final  discussion  paper.  

Figure  1  –  Process  to  develop  Roadmap  and  pathways  

 

1.5.2. Structure  of  the  paper  The  discussion  paper  has  been  structured  in  the  following  format:  

Step  1  -­‐  First  draq  –  input  from  HVAC&R  key  stakeholders  

Step  2  -­‐  Bare  bones  issued  to  level  one  stakeholders  

Step  3  -­‐  Discussion  paper  –  public  draq  version  

Step  4  -­‐  Discussion  paper  finalised.  HVAC&R  industry  associakons  to  vote  on  solukons.  

Step  5  -­‐  AIRAH  Summit  –  March  27th  2013  

Step  6  -­‐  Development  of  roadmap  and  pathways  

 

Page 23: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  23  of  162  

• Section  1:    Introduction  and  general  material  • Section  2:    Context  –  background  on  the  environment  in  which  the  industry  operates  • Section  3:  The  headline  issues  –  Including  discussion  points  on  particular  issues  • Section  4:  The  issues  by  sector  –  Including  discussion  points  on  particular  issues  • Section  5:  The  proposed  solutions  grouped  by  pathway  –Actions  on  particular  issues  • Section  6:  Managing  the  transition  –  Including  discussion  points  on  transition  issues  • Section  7:  The  draft  roadmap  –  Including  5  pathways  and  solution  matrices  and  identifying  

complementary  actions  that  are  already  happening  or  by  others.  

In  the  early  stages  of  development  the  discussion  paper  had  many  questions  relating  to  discussion  points  in  Sections  2,  3  and  4  and  few  or  no  recommended  actions  in  Sections  5.  As  the  project  progressed  the  questions  were  removed  and  the  proposed  solutions  were  included  in  Section  5.  Section  6  outlines  some  of  the  issues  associated  with  transition  not  covered  elsewhere.  Section  7  summarises  the  draft  roadmap  and  associated  pathways  for  transition.  The  next  step  is  to  assess  and  approve  solutions  and  prioritise  actions.  

1.5.3. Assessment  of  solutions  Once  a  suite  of  potential  solutions  has  been  identified  the  ambitious  part  of  this  project  begins.  Industry  stakeholders  need  not  only  to  agree  to  collaborate  on  potential  solutions  but  also  need  to  achieve  consensus  on  how  best  to  prioritise  those  solutions,  decide  who  should  implement  them,  and  how  this  implementation  could  be  funded.  

The  final  recommended  solutions  of  the  discussion  paper  are  listed  in  Section  5,  and  will  be  assessed  by  industry  based  on  priority  and  practicality.  Priority  and  practicality  will  be  determined  by  a  survey  of  key  industry  stakeholders.  The  roadmap  will  then  be  discussed,  endorsed  or  revised,  milestones  set  and  responsibilities  for  particular  actions  designated  to  individual  task  groups  of  stakeholders  at  the  AIRAH  Industry  Summit  2013.  

Page 24: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  24  of  162  

2. Industry  context  

2.1. The  HVAC&R  industry  The  HVAC&R  industry  is  essential  for  buildings,  the  cold  chain,  food  production,  health  care,  manufacturing  and  agricultural  industries,  and  industrial  processing.  Refrigeration  and  air  conditioning  systems  are  embedded  into  every  part  of  the  Australian  economy  and  society.  The  Cold  Hard  Facts  report  estimated  that  in  2007  the  HVAC&R  industry  involved  direct  spending  of  more  than  1.7%  of  GDP,  employed  at  least  163,000  people,  consumed  as  much  as  45,000  GWh  of  electricity  and  resulted  in  7%  of  all  Australian  greenhouse  gas  emissions  of  that  year.  http://www.environment.gov.au/atmosphere/ozone/publications/pubs/cold-­‐hard-­‐facts.pdf    

However,  the  industry  is  highly  diverse  and  fragmented,  and  does  not  generally  respond  to  issues  with  a  single  voice  or  a  unified  position.  Views  are  diverse  and  the  industry  is  highly  competitive  and  cost-­‐driven,  and  suffers  from  skills  shortages  in  several  key  areas.  

There  are  also,  however,  many  ways  in  which  the  industry  collaborates  and  coordinates.  The  industry  will  need  to  establish  a  coordinated  strategy  for  the  transition  to  low-­‐emission  practices  in  association  with  the  many  stakeholders,  including  government  at  three  levels,  NGOs,  the  various  industries  served,  educational  and  research  institutions,  as  well  as  the  HVAC&R  industry  workforce  and  the  organisations  and  associations  that  represent  them.  

The  fragmentation  of  the  HVAC&R  industry  results  in  poor  cohesion  and  alignment  among  the  main  representative  bodies  and  industry  organisations.  There  is  no  single  entity  that  can  be  considered  to  provide  the  HVAC&R  industry  consensus  viewpoint.  This  makes  the  industry  difficult  to  deal  with  from  a  government  policy  point  of  view.  

2.2. Public  perception  The  Australian  public  and  governments  generally  have  a  very  low  level  of  awareness  about  the  HVAC&R  sector,  despite  it  being  integrated  into  almost  every  facet  of  daily  life.  Shelter,  food,  safety,  productivity,  medical,  education  –  in  fact  all  of  the  fundamental  requisites  for  modern  life  –  depend  on  the  HVAC&R  industry  to  some  extent.  

Most  end  users  do  not  fully  understand  what  HVAC&R  is  and  does  and  to  what  extent  day-­‐to-­‐day  decisions  and  behavioural  patterns  can  influence  the  environmental  impact  of  the  refrigeration  and  air  conditioning  services  we  all  take  for  granted.  For  example,  commercial  building  lease  agreements  may  specify  very  tight  temperature  control,  unrelated  to  real  comfort  needs.  Similarly,  the  proliferation  of  household  air  conditioning  in  Australia  has  been  considerable.  The  time  has  come  where  growing  demand  for  electricity  is  forcing  a  prioritisation  of  uses  and  forcing  changes  to  access  arrangements.  Mandatory  demand  management  schemes  for  residential  air  conditioners  are  an  example  of  this.  

Energy  shortages  and  rising  energy  costs  may  force  prioritisations  like  these  to  be  taken  more  often.  This  is  an  important  issue  for  stakeholders  to  think  about.  Energy  costs  will  affect  everything  we  do  and  will  impact  on  the  bottom  line  of  many  businesses.  If  government,  HVAC&R  consumers  and  the  

Page 25: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  25  of  162  

general  public  can  be  educated  to  think  about  HVAC&R  in  a  more  holistic  sense  then  the  industry  will  be  more  successful  in  providing  improved  environmental  solutions  which  may  have  higher  capital  costs  but  lower  life-­‐cycle-­‐costs,  including  lower  operating  costs.  

2.3. Regulatory  environment  The  HVAC&R  industry  already  operates  under  a  large  range  of  commonwealth  and  state  regulatory  instruments  including  the  National  Construction  Code  (BCA),  Work  Health  and  Safety,  ozone  protection  and  synthetic  greenhouse  gas  management  legislation  (including  SGG  equivalent  carbon  price),  MEPS,  and  the  like.  

The  interaction  and  sheer  volume  of  these  numerous  regulatory  controls  does  not  support  uniform  and  national  industry  action.  A  review  of  the  regulatory  environment  may  ultimately  be  required  to  remove  conflict,  duplication  and  ease  the  regulatory  load  on  an  industry  facing  a  future  where  flexible  responses  to  a  changed  market  place  will  be  required.  

It  is  also  possible  that  additional  regulations  may  be  imposed  on  an  industry  that  is  seen  by  the  government  as  not  being  in  a  position  to  lead  the  transition.  Industry  stakeholders  strongly  believe  that  they  are  best  placed  to  improve  on  existing  standards  and  introduce  risk-­‐management  practices  that  work.  Industry  stakeholders  should  be  able  to  design  acceptable  technical  solutions  within  the  limits  of  government  policy  and  do  so  at  maximum  benefit  and  minimum  risk  to  the  public.  Industry  and  government  both  have  a  role.  

2.4. Government  policy,  energy  efficiency  and  HVAC&R  There  is  a  range  of  government  policies  and  programs  that  impact  on  the  HVAC&R  industry.  In  general  government  policy  tends  to  be  fairly  wide  ranging  and  covering  broad  sectors;  however,  specific  energy-­‐efficiency  policies  tend  to  be  more  focused  to  target  specific  sectors  where  investment  will  produce  the  most  results.  

Plans  to  address  improving  energy  efficiency  within  the  HVAC&R  industry  are  identified  within  the  nationally  agreed  National  Strategy  for  Energy  Efficiency  (NSEE).  All  state,  territory  and  the  commonwealth  governments  through  the  Council  of  Australian  Governments  (COAG)  agreed  to  improve  minimum  standards  for  energy  efficiency  and  accelerate  the  introduction  of  new  technologies.  This  could  be  achieved  through  improving  regulatory  processes  and  addressing  the  barriers  to  uptake  of  new  energy-­‐efficient  products  and  technologies  in  the  building  and  appliance  sectors.  

The  Department  of  Climate  Change  and  Energy  Efficiency  is  the  lead  commonwealth  agency  working  with  state  and  territory  governments  to  implement  a  number  of  measures  identified  in  the  Strategy.  The  Equipment  Energy  Efficiency  Program  (E3)  and  the  Commercial  Buildings  Committee  have  a  significant  role  in  working  to  implement  energy  efficiency  measures.  These  programs  have  undertaken  considerable  engagement  with  industry  to  date  to  develop  strategies  addressing  energy  efficiency.  For  example,  the  Heating,  Ventilation  and  Air  Conditioning  High  Efficiency  Systems  Strategy  (HVAC  HESS)  is  a  10-­‐year  strategy  focused  on  addressing  energy  efficiency  in  HVAC  systems.    

Page 26: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  26  of  162  

The  non-­‐domestic  refrigeration  sector  has  a  10-­‐year  strategy  in  place  for  Australia  and  New  Zealand  called  In  from  the  Cold.  MEPS  and  the  labelling  program  coordinated  through  the  E3  Program  covers  a  range  of  appliances,  including  air  conditioning  and  refrigeration.  

The  following  is  a  brief  summary  of  some  of  the  government  policy/programs  particularly  relevant  to  energy  efficiency  in  HVAC&R.  

2.4.1. National  Construction  Code  (NCC)  The  primary  building  regulation  relating  to  energy  use  in  new  and  refurbished  buildings  is  the  NCC,  Volume  2  (particularly  Section  3.12)  for  houses  and  Volume  1  (particularly  Section  J)  for  all  other  classes  of  buildings.  Energy  regulation  impacts  on  HVAC&R  through  reducing  the  size  of  equipment  needed.  The  ways  the  building  regulations  are  framed  and  the  manner  in  which  building  designers  adjust  designs  to  comply  affect  the  extent  and  impact  on  HVAC&R.  For  example,  smaller  areas  of  glazing  exposed  to  sun,  advanced  glazing,  improved  insulation,  air  sealing,  etc.,  can  all  change  the  complexity,  controls,  size  and  hours  of  operation  of  equipment.    

On  the  other  hand,  relying  for  compliance  on  on-­‐site  power  generation  may  introduce  demand  for  thermal  HVAC  systems,  or  allow  envelope  design  that  still  creates  very  high  peak  cooling  and  heating  loads.  

http://www.abcb.gov.au/major-­‐initiatives/energy-­‐efficiency    

2.4.2. HVAC  HESS  The  Heating,  Ventilation  and  Air  Conditioning  High  Efficiency  Systems  Strategy  (HVAC  HESS)  is  a  10-­‐year  initiative  under  the  National  Strategy  on  Energy  Efficiency  (NSEE)  that  aims  to  drive  long-­‐term  improvements  in  the  energy  efficiency  of  HVAC  systems  Australia-­‐wide,  including  as  a  driver  for  state  energy-­‐efficiency  policy.  It  takes  a  whole-­‐of-­‐life  perspective  in  targeting  HVAC  efficiency  improvement,  encompassing  the  design,  manufacture,  installation,  operation  and  maintenance  stages  of  the  HVAC  life-­‐cycle.  It  recognises  that  large  efficiency  gains  can  be  achieved  through  the  maintenance  and  operation  of  existing  systems  in  existing  building  stock,  and  seeks  to  establish  national  system  standards  of  documentation  for  design,  installation,  operation  and  maintenance  of  HVAC  equipment/systems.  The  Australian  government  consulted  broadly  with  stakeholders  on  a  range  of  project  proposals  as  part  of  the  implementation  of  HVAC  HESS,  and  the  program  captured  some  of  the  best  solutions  available  at  the  time  to  drive  high-­‐efficiency  systems.  

http://www.climatechange.gov.au/government/initiatives/hvac-­‐hess.aspx.    

Since  2007  HVAC  HESS  has  delivered  the  following  two  projects:  

1. The  Guide  to  Best-­‐practice  Maintenance  &  Operation  of  HVAC  Systems  for  Energy  Efficiency  has  been  published.  

2. The  report  Wireless  Metering  reviews  the  suitability  of  electrical  sub-­‐metering  and  wireless  sensor  technologies  for  retrofit  applications  to  older  HVAC  systems  has  also  been  published.  

Note:  All  projects  under  the  “HVAC  HESS”  strategy  are  subject  to  a  funding  and  prioritisation  review.  

Page 27: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  27  of  162  

2.4.3. Refrigeration  –  In  from  the  Cold  The  “In  from  the  Cold  –  Strategies  to  Increase  Energy  Efficiency  of  Non-­‐Domestic  Refrigeration  in  Australia  and  New  Zealand”  program  is  a  10-­‐year  government  strategy  that  addresses  energy  efficiency  within  the  commercial  refrigeration  sector.  The  Australian  government  consulted  broadly  with  stakeholders  on  a  range  of  project  proposals  as  part  of  the  implementation  of  In  from  the  Cold.  The  principal  focus  of  the  current  commercial  refrigeration  energy-­‐efficiency  program  is  developing  MEPS  for  commercial  refrigeration  products.  In  this  regard,  the  process  has  commenced  a  review  of  the  existing  MEPS  for  refrigerated  display  cabinets.  The  progress  of  other  projects  in  the  strategy  is  now  subject  to  review.  Funding  and  resources  required  to  undertake  the  projects  are  limited.  Funding  discussions  with  states  and  territories  are  expected  to  inform  the  priority  order  of  future  projects.  In  from  the  Cold  did  not  consider  emission-­‐reduction  strategies  including  the  direct  emissions  issues,  the  use  of  natural  refrigerants  or  focus  on  systems  design  and  energy  performance  benchmarking.  

http://www.energyrating.com.au/Library/details200912-­‐in-­‐from-­‐the-­‐cold.html  .  

Note:  All  projects  under  the  In  from  the  Cold  strategy  are  subject  to  a  funding  and  prioritisation  review.  

2.4.4. Minimum  Energy  Performance  Standards  (MEPS)  The  aim  of  the  MEPS  program  is  to  increase  the  average  energy  efficiency  of  equipment  sold  in  Australia  by  blocking  market  access  to  inefficient  products,  thereby  increasing  energy  productivity  and  therefore  competitiveness,  reducing  energy  bills  for  consumers,  and  reducing  greenhouse  and  other  environmental  emissions.  MEPS  programs  are  mandatory  in  Australia  and  New  Zealand.    For  the  HVAC&R  industry  MEPS  have  been  introduced  for:  •   Refrigerators  and  freezers  •   Mains-­‐pressure  electric-­‐storage  water  heaters    •   Three-­‐phase  electric  motors  (0.73kW  to  <185kW)    •   Single-­‐phase  air  conditioners  •   Three-­‐phase  air  conditioners  up  to  65kW  cooling  capacity  •   Commercial  refrigeration  •   Commercial  building  chillers  •   Close-­‐control  air  conditioners.  

http://www.energyrating.gov.au/programs/e3-­‐program/meps/about/.  

One  of  the  perverse  outcomes  of  the  MEPS  program  has  been  a  resulting  consumer  and  designer  focus  on  equipment  rather  than  systems.  Energy  efficiency  has  to  focus  on  systems  and  sites  rather  than  individual  components,  although  individual  equipment  efficiency  is  part  of  the  energy  efficiency  puzzle.  

The  level  of  check  testing  applied  within  the  MEPS  program,  and  the  level  of  exemptions  from  the  program,  (many  new  technologies  are  not  catered  for  within  MEPS  test  methods),  have  also  been  highlighted  as  areas  where  this  program  can  be  improved.  

Page 28: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  28  of  162  

In  the  residential  air  conditioner  online  search  tool  there  are  a  very  limited  amount  of  MEPS  qualified  models  available  compared  to  models  available  in  the  market.  Getting more air conditioner models certified is important. The Greenhouse and Minimum Energy Standards (GEMS) program aims to create a national framework for MEPS, which will replace state-based MEPS regulations. Note:  MEPS  for  fans  is  under  development  and  to  be  based  on  the  EU  system  and  ISO  test  standards.  A  product  profile  was  published.  The  MEPS  for  pumps  program  is  in  the  early  stages  of  development.  A  product  profile  is  being  developed.  

2.4.5. Energy  rating  labels  Similar  to  MEPS  but  targeted  at  the  consumer  market  is  the  energy  star  rating  label  program  for  consumer  appliances. Single-­‐phase  non-­‐ducted  air  conditioners  for  household  use  are  required  to  carry  an  energy  label  in  Australia  and  New  Zealand.    

For  air  conditioners,  the  measure  of  energy  efficiency  is  the  energy  efficiency  ratio  (EER)  for  cooling,  and  the  coefficient  of  performance  (COP)  for  heating.  The  EER  and  COP  are  defined  as  the  capacity  output  divided  by  the  power  input  based  upon  the  tested  power  input  and  the  tested  capacity  output  when  tested  in  accordance  with  AS/NZS  3823.  The  rating  system  accounts  for  standby  power  and  crankcase  heating.  Other  products  included  in  the  scheme  are  domestic  refrigerators  and  freezers.  

http://www.energyrating.gov.au/programs/e3-­‐program/energy-­‐rating-­‐labelling/about/.  

2.4.6. Other  government  energy  efficiency  policy  drivers  Energy  Efficiency  in  Government  Operations  (EEGO)  –  is  a  government  policy  that  aims  to  reduce  the  energy  consumption  of  Australian  government  operations,  with  particular  emphasis  on  building  energy  efficiency.  It  is  unclear  to  industry  how  effectively  this  policy  has  met  its  goals.  

Energy  Efficiency  Opportunities  (EEO)  program  –  Is  a  government  program  that  mandates  businesses  that  use  more  than  0.5  petajoules  (PJ)  (0.5  x  1015  joules)  of  energy  per  year  to  improve  their  energy  efficiency.  It  does  this  by  requiring  businesses  to  identify,  evaluate  and  report  publicly  on  cost-­‐effective  energy  savings  opportunities  leading  to:  

• Improved  identification  and  uptake  of  cost-­‐effective  energy  efficiency  opportunities  • Improved  productivity  and  reduced  greenhouse  gas  emissions  • Greater  scrutiny  of  energy  use  by  large  energy  consumers.  

There  are  more  than  220  corporations  (incorporating  around  1,200  subsidiaries)  registered  for  the  Energy  Efficiency  Opportunities  program.  This  program  has  been  effective  at  identifying  opportunities;  however,  it  is  unclear  to  industry  how  effectively  opportunities  have  been  implemented  or  the  coverage  of  HVAC&R  within  the  program.  

Commercial  Building  Disclosure  (CBD)  –  is  a  national  program  delivered  by  the  Australian  government  designed  to  improve  the  energy  efficiency  of  Australia’s  large  office  buildings.  The  CBD  program  was  established  by  the  Building  Energy  Efficiency  Disclosure  Act  2010  under  the  NSEE.  The  governments  will  consider  expanding  the  program  to  cover  other  building  types  (such  as  hotels,  

Page 29: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  29  of  162  

shopping  centres  and  hospitals)  from  2014.  It  is  too  soon  for  industry  to  understand  how  effectively  this  policy  has  met  its  goals.  

Green  leases  –  are  a  leasing  arrangement  developed  specifically  for  government  agencies.  Leases  contain  mutual  obligations  for  tenants  and  owners  of  office  buildings  to  achieve  efficiency  targets.  The  lease  improves  energy  efficiency  by  setting  a  minimum  ongoing  operational  building  energy  performance  standard.  It  is  unclear  to  industry  how  effectively  this  policy  has  met  its  goals.  

National  Greenhouse  and  Energy  Reporting  (NGER)  –  is  a  scheme  that  was  introduced  to  provide  data  and  accounting  in  relation  to  greenhouse  gas  emissions  and  energy  consumption  and  production.  The  scheme’s  legislated  objectives  are  to:  

• Underpin  the  carbon  price  mechanism  • Inform  policy-­‐making  and  the  Australian  public  • Meet  Australia’s  international  reporting  obligations  • Provide  a  single  national  reporting  framework  for  energy  and  emissions  reporting.  

The  NGER  dcheme  is  used  for  tracking  progress  against  Australia's  emissions  targets  under  the  Kyoto  Protocol,  for  both  direct  and  indirect  emissions.  

2.5. Government  incentives  Other  recent  Australian  government  policies  include  incentives  schemes  such  as  the  Green  Building  Fund  and  the  withdrawn  “Tax  Breaks  for  Green  Buildings”  policy.  The  government  also  supports  Low  Carbon  Australia  and  other  low-­‐carbon  initiatives  in  the  building  and  other  sectors.  

For  more  information  on  the  Green  Building  Fund  see:  http://www.ausindustry.gov.au/programs/innovation-­‐rd/gbf/Pages/default.aspx    

The  Clean  Technology  Investment  Program  (CTIP)  is  an  $800  million  competitive,  merit-­‐based  grants  program  to  support  Australian  manufacturers  to  maintain  competitiveness  in  a  carbon-­‐constrained  economy.  This  program  will  provide  grants  for  investments  in  energy-­‐efficient  capital  equipment  and  low-­‐emission  technologies,  processes  and  products.  

For  more  information  on  CTIP  see:  http://www.ausindustry.gov.au/programs/cleantechnology/cleantechnologyinvestment/Pages/default.aspx.  

Government  incentive  for  farmers,  food  processors  and  the  industries  associated  with  the  cold  chain  to  optimise  the  efficiency  of  their  HVAC&R  infrastructure  should  be  sought,  as  it  is  vital  to  a  successful  transition  to  a  low-­‐emission  future.  

State  governent  and  local  government  also  have  policies  or  schemes  in  place  that  impact  on  HVAC&R  including:  

• The  NSW  Office  of  Environment  and  Heritage  (OEH)  Energy  Saver  scheme  • The  NSW  OEH  Energy  Efficiency  Training  Program  • The  Victorian  Energy  Efficiency  Target  (VEET)  scheme  • The  South  Australian  Residential  Energy  Efficiency  Scheme  (REES).  

Page 30: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  30  of  162  

Note:  The  DCCEE  is  examining  the  feasibility  of  implementing  a  national  energy  efficiency  incentives  scheme.  

http://www.climatechange.gov.au/government/initiatives/energy-­‐savings-­‐initiative.aspx    

Many  end  users  of  HVAC&R  have  advised  that  the  greatest  barrier  encumbering  them  from  transitioning  to  low-­‐emission  technology  and  practices  is  the  lack  of  incentives.  In  order  to  bypass  the  issue  of  government  incentives,  providing  end  users  with  solid  and  trusted  cost-­‐benefit  analyses,  proving  the  economic  merit  of  optimising  and  maintaining  system  efficiency,  is  crucial.  

2.6. Split  incentives  A  significant  issue  that  comes  up  in  some  sectors,  particularly  in  the  tenanted  commercial  building  market,  is  the  split-­‐incentive  market  failure  that  commonly  occurs  when  considering  energy-­‐efficiency  interventions.  Who  pays  the  cost  and  who  enjoys  the  benefits?  If  these  two  entities  are  different  then  a  split  incentive  may  occur.  

In  many  scenarios  the  entity  that  pays  the  cost  of  the  intervention  (e.g.  landlord)  is  not  the  entity  that  benefits  from  the  savings  produced  (e.g.  tenant).  As  a  result  there  is  no  or  reduced  incentive  to  undertake  the  work,  and  the  market  fails  to  produce  the  required  outcome.  Some  schemes  have  been  developed  to  help  overcome  these  barriers.  This  market  failure  is  one  reason  for  government  intervention.  

An  emerging  tool  that  has  been  designed  to  address  the  issue  of  split  incentives  is  the  use  of  “environmental  upgrade  agreements”  (EUAs),  which  provide  a  financing  mechanism  that  can  be  used  to  split  the  costs  of  energy-­‐efficiency  upgrades  between  owner  and  tenant.  These  agreements  provide  a  finance  path  to  fund  the  improvements  and  a  mechanism  to  ensure  that  the  energy  savings  generated  by  projects  can  also  be  used  for  funding.  

http://www.lowcarbonaustralia.com.au/business/finance-­‐solutions/environmental-­‐upgrade-­‐agreements.aspx    

2.7. Financing  energy-­‐efficiency  interventions  

2.7.1. Financing  interventions  One  of  the  biggest  barriers  to  energy-­‐efficiency  interventions  in  existing  systems  and  buildings  is  financial.  Some  finance  models  such  as  Low  Carbon  Australia  and  EUAs  are  available;  however,  uptake  is  limited,  possibly  due  to  a  lack  of  awareness  or  to  bureaucratic  obstacles.  If  a  model  can  be  developed  to  provide  easy  access  to  very  low  interest  (below  CPI)  finance  for  energy  efficiency  projects  across  the  board,  then  industry  uptake  would  likely  be  higher.  

The  Green  Building  Fund  was  successful  in  incentivising  energy  efficiency  upgrades  in  buildings  but  the  follow-­‐up  incentive  scheme  “Tax  breaks  for  green  buildings”  didn’t  eventuate.  

Energy  performance  contracts  and/or  Environmental  performance  contracts  are  an  alternative  way  for  owners  to  offset  some  of  the  financial  risks  associated  with  energy  efficiency  upgrades.  The  relatively  small  number  of  contractors  offering  these  services  may  limit  competitiveness.  

Page 31: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  31  of  162  

http://www.ret.gov.au/energy/Documents/best-­‐practice-­‐guides/energy_bpg_energy_performance_contracts.pdf    

2.7.2. Quantifying  costs  and  benefits  In  the  energy  efficiency  intervention  market,  SME  clients  are  reportedly  looking  for  a  simple  payback  period  of  two  to  three  years,  although  this  can  be  extended  if  assistance  funding  is  available.  The  simple  payback  method  of  calculation  is  easily  understood  by  all  parties  and  provides  an  easily  understandable  metric.  However,  the  method  is  simple  and  does  not  take  account  of  issues  such  as  return  on  investment,  the  opportunity  cost  of  capital  investment  alternatives,  and  the  depreciated  value  of  equipment.  In  some  ways  the  simple  payback  calculation  method  may  be  excluding  interventions  that  can  have  a  positive  ROI.  

For  larger  projects  and  more  sophisticated  clients  the  simple  payback  method  may  lack  the  detail  to  provide  realistic  advice,  and  a  true  ROI  calculation  must  be  completed.  In  these  cases  a  more  comprehensive  ROI  calculation  using  net  present  value  (NPV),  internal  rate  of  return  (IRR),  life-­‐cycle  costing  (LCC)  or  life-­‐cycle  analysis  (LCA)  methods  will  provide  more  accurate  financial  guidance.  Evaluations  are  time  consuming,  and  constructing  good  financial  arguments  are  sometimes  outside  of  a  design  engineer’s  comfort  zone.  Case  study  and  pro-­‐forma  information  could  be  made  available.  

2.7.3. CTIP  funding  The  Clean  Technology  Investment  Program  (CTIP)  is  part  of  the  Australian  government's  Clean  Energy  Future  plan.  It  is  an  $800  million  competitive,  merit-­‐based  grants  program  to  support  Australian  manufacturers  to  maintain  competitiveness  in  a  carbon-­‐constrained  economy.  This  program  will  provide  grants  for  investments  in  energy  efficient  capital  equipment  and  low-­‐emission  technologies,  processes  and  products.  Refrigerated  warehouse  and  cold  chain  refrigeration  businesses  are  excluded  from  the  CTIP  program.  

http://www.ausindustry.gov.au/programs/cleantechnology/cleantechnologyinvestment/Pages/default.aspx    

2.8. Green  building  The  Green  Building  Council  of  Australia  launched  the  “Green  Star  environmental  rating  system”  for  buildings  in  2003.  Green  Star  rating  tools  help  the  property  industry  to  reduce  the  environmental  impact  of  buildings,  improve  occupant  health  and  productivity  and  achieve  real  cost  savings,  while  showcasing  innovation  in  sustainable  building  practices.  

Green  Star  rating  tools  are  currently  available,  or  in  development,  for  a  variety  of  sectors  including,  commercial  offices  (design,  construction  and  interior  fit  outs),  retail  centres,  schools  and  universities,  multi-­‐unit  residential  buildings,  industrial  facilities  and  public  buildings  and  communities.  Ratings  tools  include  design  rating,  as-­‐installed  rating  and  an  operational  performance  rating  (which  is  currently  under  development).  

Green  Star  rating  tools  can  result  in  increased  use  of  innovative  technology  and  practices  which  can  create  a  significant  learning  curve  for  designers  and  contractors.  

Page 32: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  32  of  162  

http://www.gbca.org.au/green-­‐star/green-­‐star-­‐overview/    

2.9. Commercial  leasing  Commercial  lease  agreements  often  contain  operating  requirements  that  limit  a  facilities  manager’s  ability  to  fully  address  the  energy-­‐efficient  operation  of  HVAC&R  systems.  

Lease  agreements  often  contain  mandatory  operating  hours  and  temperature  set-­‐points  for  HVAC  systems,  restricting  the  ability  to  incorporate  energy-­‐efficient  control  algorithms  such  as  optimum  start/stop  programming,  or  to  allow  the  widening  of  dead  bands  on  temperature  set-­‐points.  

Leases  that  make  reference  to  specifications  such  as  the  Property  Council  of  Australia  Office  Quality  Matrix,  or  specific  air  conditioning  access  times  or  temperature  set-­‐points  may  inadvertently  limit  the  ability  of  a  building  operator  to  optimise  HVAC  energy  use.  More  flexibility  may  be  required  within  lease  agreements.  

HVAC&R  design  must  also  consider  lease-­‐specific  issues  such  as  how  services  are  supplied  and  billed.  Zoning,  timing,  and  temperature  are  typical  lease-­‐stipulated  conditions,  and  service-­‐specific  clauses  from  the  lease  (or  pre-­‐lease)  can  influence  design  considerations.  

2.10. Passive  design  One  of  the  primary  mechanisms  to  reduce  demand  for  heating  and  cooling  within  all  buildings  and  structures  is  the  role  of  good  passive  design  and  sustainable  engineering  techniques.  The  heating  and  cooling  loads  and  resultant  energy  consumption  of  buildings  can  be  greatly  reduced  through  methods  such  as  increasing  insulation,  mass  and  shading,  decreasing  air  loss,  natural  ventilation,  utilising  green  or  white  roofs  and  walls,  and  a  large  array  of  other  systems  and  approaches.    

Recognising  the  role  that  passive  design  and  technologies  can  play  in  reducing  the  size  and  hence  carbon  emissions  of  an  HVAC  system  is  essential  in  creating  a  holistic  systems  approach.  Further  to  this,  the  recognition  that  HVAC  systems  and  solutions  can  also  incorporate  passive  technologies  will  broaden  the  approach  of  the  industry.  The  role  of  HVAC&R  is  to  support  passive  design  –  not  to  incorporate  it  or  compete  with  it.  

Windows  are  an  important  design  feature  for  controlling  the  amount  of  light  and  thermal  gain  to  a  building.  A  properly  designed  building  will  be  optimised  for  the  climate  and  latitude  to  control  the  thermal  gains  and  maximise  the  beneficial  light,  without  excessive  radiation  and  glare  on  the  occupants.  Harvesting  the  natural  light  and  controlling  electric  lighting  is  very  important  for  minimising  the  cooling  loads.  Methods  for  controlling  and  optimising  natural  and  hybrid  ventilation  is  another  aspect  that  is  often  overlooked  or  underused,  yet  these  approaches  can  have  a  huge  impact  on  building  cooling  and  heating  loads.  

Depending  on  the  sector,  it  is  most  likely  to  be  architects,  ESD  engineers  or  builders  that  are  designing  and  specifying  passive  design  features.  HVAC&R  practitioners  are  ideally  positioned  to  provide  advice  on  passive  design  issues,  but  more  importantly  to  provide  quantitative  design  analysis  on  the  effect  of  passive  design  solutions.    

Page 33: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  33  of  162  

This  evidence-­‐based  validation  of  passive  design  and  passive  technology  solutions  is  what  is  required  for  proper  integration  of  passive  design  techniques  and  for  developing  low-­‐emission  solutions  early  in  the  design  process.  Quantitative  design  analysis  of  proposed  passive  (and  active)  design  solutions  appears  to  be  a  role  well  suited  to  the  HVAC&R  designer.  

There  is  a  split  incentive  in  operation  here  because  HVAC&R  designers’  fees  are  typically  related  to  the  size  and  complexity  of  the  systems.  Changes  that  reduce  the  size  and  complexity  of  HVAC&R  equipment  will  reduce  revenue  for  the  industry.  Fees  for  “low  carbon”  advice  and  analysis  need  to  be  separated  from  HVAC&R  design  activities.  This  is  an  important  issue  to  consider.  If  the  industry  cannot  broaden  the  range  of  revenue  streams,  it  may  attempt  to  block  change,  which  would  increase  pressure  for  regulation.    

Partnerships  with  suppliers  of  high-­‐efficiency  building  products,  materials  and  low-­‐heat-­‐generation  equipment,  energy  storage  and  management  systems  –  as  well  as  development  of  more  advanced  design  capabilities  and  cross-­‐disciplinary  processes  that  can  be  charged  for  –  could  contribute  to  replacing  lost  revenues.  

Passive  design  is  generally  required  to  be  considered  early  in  the  design,  and  may  require  a  longer  payback  for  the  investment.  It  requires  more  education  of  each  participant  in  the  supply  chain,  including  architects,  engineers,  builders,  and  even  building  tenants  (e.g.  the  indoor  temperature  may  fluctuate  compared  to  a  fixed  temperature  in  an  air  conditioning  environment).    

Providing  a  comprehensive  and  accurate  ROI  calculation  method  for  investors  (NPV  or  IRR)  and  providing  education  and  training  to  building  occupants  (e.g.  keeping  air  pathways  unblocked  is  critical  to  make  some  systems  work)  are  important  components  for  successful  outcomes.  

2.11. The  need  for  HVAC&R  Not  all  spaces  need  HVAC&R  services  all  the  time,  and  some  of  the  drivers  for  HVAC&R  can  be  designed  out  of  buildings  and  spaces,  particularly  within  the  residential  and  light  commercial  sectors.  Some  of  the  key  reasons  for  incorporating  HVAC&R  in  a  building  or  process  include:  

• Provision  of  occupant  comfort,  including  temperature,  humidity  and  airflow  • Provision  of  indoor  air  quality  including  ventilation  and  filtration  • Code  compliance  in  terms  of  outdoor  air  ventilation  supply  and  exhaust  of  indoor  air  

contaminants  • Building/occupant  protection  through  smoke  management  and  condensation  control  • Process  and  equipment  cooling,  eg  data  centres,  manufacturing,  agriculture  • Refrigerated  food  storage,  display  and  the  cold  chain.  

Comfort  and  indoor  air  quality  are  linked  to  productivity,  so  HVAC  can  have  a  positive  economic  benefit.  Where  systems  are  designed  for  energy  efficiency  each  component  of  an  HVAC&R  system  is  attempting  to  achieve  optimum  energy  efficiency  so  that  the  overall  system  energy  benefits  can  be  maximised.  Individual  components  include  the  fans,  ducts,  pumps,  pipes,  chillers,  boilers,  filters,  coils,  and  equally  important,  the  control  systems.    

Page 34: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  34  of  162  

Although  individual  component  performances  contribute  to  the  system  carbon  footprint,  it  is  important  to  note  that  it  is  the  selection  and  operation  of  the  overall  type  of  the  HVAC&R  system  that  primarily  determines  the  building’s  energy  consumption  profile.  Inevitably  the  selection  of  the  overall  HVAC&R  system  is  based  on  commercial  factors  or  the  ability  to  achieve  a  targeted  energy  rating.  Comfort  issues  are  often  secondary  considerations  at  the  initial  phase.  

A  balance  needs  to  be  reached  between  the  adoption  of  energy  efficiency  measures  and  the  provision  of  the  required  indoor  environmental  quality  (IEQ)  for  occupied  buildings  or  internal  climate/process  requirements  in  refrigeration  applications.  For  instance,  the  failure  to  satisfy  IEQ  standards  in  occupied  buildings  may  increase  resistance  to  innovative  and  sustainable  buildings  in  an  inherently  conservative  property  development  market.  HVAC&R  cannot  simply  be  wished  away.  

Most  building  sustainability  indices  (NABERS,  Green  Star,  LEED  in  the  USA,  and  BREAM  in  the  UK)  include  a  substantial  number  of  performance  credits  for  IEQ  issues  related  to  passive  or  active  environmental  control,  such  as  thermal  comfort,  temperature,  humidity,  air  movement,  air  quality,  individual  occupant  control,  low  polluting  materials,  etc.  

2.12. Integrating  HVAC&R  design  into  the  building  design  process  It  is  clear  that  HVAC&R  designers  need  to  engage  in  early  consultation  sessions  with  architects,  builders  and  other  designers.  This  integrated  approach  to  design  is  equally  important  in  all  sectors  of  the  industry  but  particularly  commercial  HVAC&R.  For  example,  the  development  and  assessment  of  passive  design  strategies  and  building  fabrics  have  become  necessary  steps  in  the  very  early  stages  of  the  design  process.  

The  typical  “silo”  approach  to  professional  design  leaves  a  lot  to  be  desired  in  terms  of  efficiency  and  sustainability.  Methods  for  integrating  design  teams  are  well  documented;  however,  commercial  and  contractual  barriers  remain  entrenched.  This  is  an  issue  for  all  stakeholders  in  the  industry,  but  it  can  only  primarily  be  driven  by  owners  and  developers  through  contractual  and  financial  arrangements.  

Some  of  the  tools  that  can  improve  the  integration  of  design  include:  

• Building  Information  modelling/management  (BIM)  process  • Integrated  project  delivery  (IPD)  methods  • Advanced  building  performance  simulation  tools  • Best-­‐practice  building  commissioning  procedures.  

2.13. Contracts  Contractual  arrangements  in  building  and  refurbishment  delivery  can  be  a  big  barrier  to  change  in  the  building  industry.  Some  standard  contract  arrangements  are  simply  not  compatible  with  the  integrated  design  process,  best-­‐practice  whole-­‐building  commissioning,  BIM  process,  etc.  Most  owners  want  a  single  point  of  responsibility  and  risk,  and  the  lowest  capital  cost  possible.  These  objectives  are  often  not  compatible  with  an  integrated  and  collaborative  approach  to  project  delivery.  Contractual  arrangements  are  well  embedded  in  the  industry,  and  we  have  no  proposed  

Page 35: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  35  of  162  

solutions  for  unlocking  this  area  or  encouraging  contracts  to  include  for  sustainability,  low-­‐emission  HVAC&R,  whole-­‐building  commissioning  and  tuning  and  the  like.  

2.14. HVAC&R  design  conditions  Heating  and  cooling  load  calculation  methods  need  to  be  updated  to  reflect  the  impacts  of  improved  building  design,  building  fabric  performance,  modern  operation  protocols  and  effect  of  internal  appliances  and  lighting  systems  and  equipment  design,  selection  and  management.  

An  important  aspect  of  HVAC&R  design  and  application  relates  to  the  external  design  conditions  used  for  the  load  calculations.  Design  conditions  need  to  be  based  on  up-­‐to-­‐date  climate  data.  

There  is  also  the  question  of  future  climate  conditions.  An  HVAC&R  system  could  be  expected  to  last  a  minimum  of  20  years  in  operation  in  many  applications.  Should  HVAC&R  design  engineers  be  morphing  climate  data  to  climate  change  scenarios  to  account  for  future  external  design  conditions?  Passive  solutions,  future  operator  and  occupant  behaviour  and  future  comfort  expectations  in  a  warmer  world  with  peak/variable  energy  pricing  all  need  to  be  considered.    

The  future  carbon  intensity  of  the  electricity  grid  should  also  be  taken  into  account.  Internal  cooling  loads  will  be  affected  by  appliances,  both  fixed  and  plugged.  These  appliances  are  continually  becoming  more  efficient.  The  practice  of  oversizing  systems  also  needs  to  be  addressed.  

Computer-­‐based  design,  modelling,  simulation  and  rating  programs  all  need  to  work  from  a  consistent  climate  database.  This  is  an  area  of  ongoing  research  and  development.  

Current  design  guides,  load  estimation  programs  and  building  simulation  programs  do  not  accurately  cover  the  Australian  climate,  internal  heat  loads,  occupant  densities,  and  design  set-­‐points.  Historical  design  rules  need  to  be  revisited  and  revised  into  a  load  estimation  methodology  that  avoids  over  sizing.  Ultimately,  however,  load  estimation  and  system  sizing  are  commercial  decisions.  

2.15. Design  and  control  strategies  There  are  a  range  of  design  strategies  and  tools  available  to  the  HVAC&R  professional  to  reduce  emissions  including  mixed  mode  ventilation,  free  cooling,  pre-­‐cooling,  advanced  control  algorithms,  low-­‐pressure  design,  and  building  management  and  control  systems.  HVAC&R  practitioners  should  have  knowledge  of  and  be  able  to  implement  these  types  of  control  strategies.  

There  are  some  energy-­‐efficient  HVAC  control  strategies  such  as  “adaptive  comfort”  that  can  vary  set-­‐points  in  sympathy  with  outside  temperatures,  providing  energy  benefits.  These  strategies  can  be  used  on  buildings  to  account  for  operable  blinds,  openable  windows,  circulating  fans,  changing  or  seasonal  dress  codes  and  changing  metabolic  rates.  

Shifting  from  centralised  HVAC&R  systems  to  multiple  modular  solutions  could  have  huge  impacts  on  the  industry,  and  on  energy  use.  In  energy-­‐efficient  houses,  each  room  now  can  have  quite  different  cooling  loads  than  other  spaces  at  a  given  time  of  day,  so  the  need  for  local  controls  or  modular  units  is  also  emerging.  On-­‐off  control  and  setbacks  also  suit  multiple  modular  solutions.  

Page 36: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  36  of  162  

The  trend  in  recent  commercial  developments  is  to  have  different  systems  serving  the  perimeter  and  the  interior  zones.  Apart  from  capital  cost  and  energy  efficiency  there  are  various  issues  that  need  to  be  taken  into  account.  They  include  the  impact  on  comfort,  maintenance,  operating  cost,  commissioning  complexities  and  ability  to  meet  tenancy  fit-­‐out  scenarios.  

The  design  guides  available  do  not  comprehensively  cover  the  low-­‐emission  HVAC&R  design  strategies  and  options,  control  options,  current  construction  methods,  nor  do  they  include  evaluation  strategies  for  selecting  different  types  of  low-­‐emission  HVAC&R  system  approaches.  

2.16. System  and  building  commissioning  Commissioning  is  a  comprehensive  process  for  the  planning,  delivery,  and  verification  of  buildings  and  systems.  Commissioning  involves  peer  review,  quality  control  and  risk  management;  it  assures  all  systems  perform  interactively  according  to  the  design,  specification,  and  the  owners’  (and  occupants’)  operational  needs.  Commissioning  means  integration  meetings,  system  surveys  and  tests,  resolving  issues,  documenting  the  process,  and  verifying  and  reporting  at  each  stage.  

Effective  commissioning  requires  the  following  fundamental  principles  to  be  incorporated:  1. Determine  the  project  performance  requirements  2. Plan  the  commissioning  process  3. Complete  commissioning  in  accordance  with  the  plan  4. Document  compliance  and  acceptance.  

 

It  is  generally  recognised  in  the  HVAC&R  industry  that  system  and  building  commissioning  is  often  not  performed  correctly  or  optimally.  There  are  many  reasons  for  this  that  are  widely  acknowledged,  including  lack  of  time,  understanding,  or  empowerment;  an  emerging  skills  gap  in  the  industry;  and  a  poor  transfer  of  system  knowledge  through  the  entire  building  design-­‐construction-­‐handover-­‐operation  process.  Even  when  performed  correctly  buildings  are  often  commissioned  when  empty  (unoccupied)  and  within  a  single  season  before  the  building  has  settled  thermally.  

However,  if  the  HVAC&R  industry  is  to  be  able  to  meet  the  energy  efficiency  and  performance  expectations  of  the  21st  century  this  will  have  to  change.  The  vast  majority  of  the  industry  agrees  that  inadequate  commissioning  of  building  services  is  a  major  barrier  to  optimising  a  building’s  energy  and  water  efficiency.  Legislation  is  seen  by  many  as  the  best  way  to  ensure  a  level  playing  field  for  building/system  commissioning.  Commissioning  certification  or  accreditation  schemes  have  also  been  suggested.  

2.17. Building  management  and  control  systems  Building  management  and  control  systems  (BMCS)  are  a  very  significant  part  of  the  energy  efficiency  picture.  These  systems  contain  the  system  control  protocols  and  operator  interface  but  can  also  provide  feedback  data  for  monitoring  performance,  benchmarking  energy  efficiency,  and  planning  or  scheduling  maintenance.  Although  each  item  of  plant  within  an  HVAC&R  system  should  be  able  to  control  independently,  the  understanding  of  inter-­‐dependencies  and  association  is  key  to  both  the  BMCS  control  efficiency  and  a  building’s  energy  efficiency.  

Page 37: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  37  of  162  

Energy-­‐optimisation  strategies  can  substantially  reduce  energy  use,  but  can  also  create  instability  within  a  system  if  not  implemented  correctly.  The  optimisation  of  control  set-­‐points  and  equipment  schedules  is  typical  of  an  intelligent  system.  When  designing  these  strategies,  the  complete  system  chain  must  be  considered  from  the  source  (e.g.  central  plant)  to  the  destination  (e.g.  occupied  area).  

For  example,  in  a  typical  cooling  system,  the  demand  can  be  influenced  by  the  air  temperature,  (which  is  dictated  by  the  chilled  water  temperature),  and  the  air  volume.  This  system  could  include  a  chilled  water  reset  strategy  and  a  supply  air  temperature  reset  strategy.  Potentially  these  two  control  strategies,  operating  at  the  same  time,  could  introduce  instability  into  the  cooling  system.  Resets  should  be  biased  to  which  equipment  or  condition  has  the  greatest  energy  efficiency  impact,  and  cascaded  to  negate  the  possibility  of  one  cancelling  out  the  other.  

BMCS  provide  opportunities  to  better  balance  energy  efficiency  with  tenant  satisfaction;  however,  it  is  important  to  manage  who  has  access  to  the  BMCS  controls  and  who  has  authorisation  to  make  any  changes.  

2.18. Building  information  modelling/management  Building  information  modelling/management  or  BIM  is  a  process  of  digitising  and  sharing  building  information  throughout  the  life-­‐cycle  of  a  building’s,  design,  construction,  operation  and  refurbishment.  Different  stakeholders  add  information  and  detail  to  a  common  digital  model  or  virtual  building  which  allows  all  stakeholders  in  the  project  to  work  from  the  same  information  in  real  time.  

While  still  in  its  infancy  within  the  Australian  HVAC&R  industry  the  BIM  process  promises  improved  integration  of  the  design/installation  process,  improved  construction  efficiencies  through  new  delivery  methods,  more  complete  and  more  accurate  building  simulations,  and  better  or  more  complete  documentation  and  information  deliverables  at  project  handover  and  throughout  the  operational  life-­‐cycle.  

2.19. International  developments  in  refrigeration  Australia  is  not  the  only  country  addressing  HVAC&R  emissions  issues.  There  is  growing  international  support  for  expanding  and  adapting  the  Montréal  Protocol  on  Substances  that  Deplete  the  Ozone  Layer  to  control  high-­‐GWP  HFC  refrigerant  gases.  The  European  Union  has  announced  that  it  will  introduce  a  phase  down  of  HFCs,  independent  of,  or  in  advance  to,  actions  through  the  Montréal  Protocol.  

Many  European  countries  have  introduced  legislation  to  restrict  high-­‐GWP  HFC  refrigerant  gases.  It  seems  unnecessary  for  the  Australian  HVAC&R  industry  to  try  to  duplicate  efforts  if  there  are  relevant  and  tested  existing  tools  and  methodologies  available  from  overseas  that  could  be  replicated  here.  Many  countries  have  developed  models  or  programs  that  could  be  adapted  for  Australian  use,  including:  

Page 38: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  38  of  162  

2.19.1. Refrigerant  leakage  • EU  –  F  Gas  Regulations  –  mandatory  leak  inspection  and  management.  Contractors  within  

the  EU  are  required  to  comply  with  EN378/ISO5149  and  be  ISO  9001  certified  if  they  deal  with  refrigerants.  EU  has  just  gone  through  a  five  year  period  of  introducing  uniform  rules  throughout  member  countries.  

• Netherlands  –  STEK  –  a  certification  system  for  refrigeration  contractors  enforced  by  legislation.  

• Germany  –  leakage  limit  for  supermarket  applications  of  less  than  3%/annum  (age/size  limits).  

• Real  Zero/Real  Europe  –  A  voluntary  industry-­‐led  initiative  to  reduce  refrigerant  leakage  including  a  series  of  “how  to”  guides,  training  and  certification  programs.  

2.19.2. HFC  Bans/Restrictions  • Denmark  –  HFC  banned  in  new  systems  with  greater  than  10kg  charge  or  less  than  150g,  

plus  high-­‐GWP  refrigerant  tax.  • Norway  –  high-­‐GWP  refrigerants  are  taxed.  • Austria  –  prohibits  the  use  of  HFCs.  (However,  refrigerant  charges  to  100kg  or  1.5kg  per  kW  

cooling  capacity  can  have  limited  use).  • Switzerland  –  makes  mandatory  the  use  of  indirect  (secondary  heat  transfer)  systems  for  

supermarket  refrigeration  systems  with  more  than  80  kW  refrigeration  capacity.  Also  requires  registration  and  leak  control  for  HFC  refrigerants.  Switzerland  has  recently  introduced  HFC  bans  by  sector.  

• Sweden  –  the  maximum  refrigerant  charge  allowed  in  a  supermarket  refrigeration  system  was  restricted  to  20kg  for  medium-­‐temperature  applications  and  30kg  for  low-­‐temperature  applications.  The  refrigerant  charge  for  any  unit  was  not  allowed  to  exceed  200kg.  As  a  result  there  are  many  indirect  refrigeration  systems  installed  in  supermarkets.  

• European  Union  –  proposal  to  phase  down  the  use  of  HFCs.  

2.19.3. Tools  • Denmark  –  IPU  CoolPack  is  a  collection  of  simulation  models  for  refrigeration  systems.  The  

models  each  have  a  specific  purpose  e.g.  cycle  analysis,  dimensioning  of  main  components,  energy  analysis,  and  optimisation.  

• EU  –  ICE–E  –  provides  free  information  and  tools  to  cold  store  operators,  designers  and  users  to  help  them  reduce  energy  consumption  and  carbon  emissions.  

• Real  Europe  –  Guides  and  training  tools  for  leak  minimisation.  • USA  –  Department  of  Energy  –  simulation  models  for  refrigeration  systems.  • USA  –  Air  Conditioning,  Heating  and  Refrigeration  Institute  (AHRI)  –  Life-­‐cycle  Climate  

Performance  Model  for  Residential  Heat  Pump  Systems.  • USA  –  Oak  Ridge  National  Laboratory  (ORNL)  –  A  web-­‐based  life-­‐cycle  climate  performance  

design  tool  calculator  for  supermarket  refrigeration  systems.  

2.19.4. Refrigerant  and  equipment  manufacture  Most  refrigeration  and  air  conditioning  plant  is  imported  into  Australia.  There  are,  however,  some  notable  exceptions  where  manufacturing  is  taking  place  in  Australia.  Due  to  the  relatively  small  size  of  the  Australian  HVAC&R  market,  it  is  unlikely  that  the  international  refrigerant  or  equipment  manufacturers  will  change  their  development  plans  in  response  to  Australian  carbon  pricing  

Page 39: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  39  of  162  

legislation.  In  contrast,  Europe  has  exerted  significant  influence  on  the  market  via  legislation  to  encourage  adoption  of  lower-­‐GWP,  high-­‐efficiency  systems.  Some  sectors  and  countries  are  moving  to  low-­‐GWP  technologies  faster  than  others.  

Low-­‐GWP  solutions  for  many  sectors  are  already  commercialised,  but  many  are  not  available  in  Australia  or  there  is  insufficient  awareness  of  these  options  to  drive  demand.  In  the  overwhelming  majority  of  sectors  that  lack  commercially  available  low-­‐GWP  solutions,  research  and  development  and  commercialisation  of  low-­‐GWP  options  is  already  under  way. Additionally, there  is  considerable  international  technology  development  that  may  drive  the  use  of  low-­‐GWP  solutions  and  new  low-­‐  GWP  refrigerants. The  key  drivers  are  economics  and  legislation.    

In  Australia  the  equivalent  carbon  price  for  high-­‐GWP  refrigerants  and  carbon  pricing  of  energy  consumption  has  increased  the  operational  cost  of  low-­‐efficiency  high-­‐GWP  equipment.  There  is  therefore  renewed  focus  on  energy  efficient  and  low-­‐GWP/ODS  emissions  plant.  In  some  cases  low-­‐GWP  solutions  require  higher  capital  cost,  which  is  a  barrier  to  uptake  despite  the  total  life-­‐cycle  costs  being  lower.  Economies  of  scale  may  act  to  reduce  costs  in  the  future.  

http://www.eia-­‐international.org/wp-­‐content/uploads/EIA_FGas_Report_0412_FINAL_MEDRES_v3.pdf    

Through  its  environment  program,  the  United  Nations  is  actively  assisting  developing  countries  transitioning  from  CFC  and  HCFC  technologies  to  move  directly  to  low-­‐GWP  refrigeration  and  air  conditioning  solutions,  bypassing  high-­‐GWP  refrigerants  entirely.  Low-­‐GWP  refrigeration  solutions  appear  to  have  a  clearer  path  to  market  in  developing  countries  than  in  developed  countries.  There  is  significant  effort  in  China  and  India  to  supply  low-­‐cost  plant  into  the  local  HVAC&R  market-­‐based  on  locally  developed  low-­‐GWP  solutions.  

Most  of  the  low-­‐GWP  refrigeration  and  air  conditioning  technology  research  and  development  is  occurring  overseas.  For  example,  the  development  of  low-­‐GWP  hydrofluoro-­‐olefin  (HFO)  refrigerants  is  being  carried  out  in  Europe  and  the  USA.  A  range  of  low-­‐GWP  natural  refrigerant-­‐based  systems  has  been  developed  in  Europe  and  Asia.  Energy-­‐efficient  components  and  systems  are  being  developed  in  a  range  of  countries.  It  is  unclear  how  much  research  and  development  is  occurring  in  Australia.  However,  there  is  a  growing  need  in  the  Australian  industry  for  a  trusted  mechanism  that  can  be  used  to  validate  the  efficiency,  environmental  and  safety  performance  claims  made  by  refrigeration  and  air  conditioning  technology  providers.  

Improved  “system”  efficiencies  can  be  achieved  by  a  range  of  strategies  involving  selection  of  products,  system  design  and  installation  practices,  as  well  as  measures  that  reduce  the  extremes  of  environmental  conditions  to  which  HVAC&R  equipment  is  exposed,  and  how  it  is  operated.  Much  of  this  is  addressed  locally.  

2.20. Energy  prices  and  pricing  policy  Energy  pricing  is  a  cost  driver  for  emissions  improvements  and  is  used  to  influence  consumer  use  of  HVAC&R.  Time-­‐of-­‐use  pricing  is  being  progressively  introduced,  and  is  a  method  used  by  energy  retailers  to  address  peak  electricity  demand  issues.  Peak  pricing  typically  occurs  at  times  of  the  highest  cooling  and  heating  demand.  

Page 40: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  40  of  162  

Energy  pricing  is  often  a  commercial-­‐in-­‐confidence  agreement  between  owner  and  provider;  however,  this  information  should  be  made  available  to  design  engineers,  as  this  determines  viability  and  life-­‐cycle  costs  (LCC).  More  inclusion  of  HVAC&R  designers  is  required  because:  

• Mechanical  engineers  could  model  system  operational  performance  on  power  pricing  –  not  just  energy  consumption  evaluation.  

• Time-­‐of-­‐use  and  similar  pricing  mechanisms  alter  LCC  analysis  markedly.  • There  are  negotiation  options  within  pricing  schemes  that  design  engineers  can  influence.  

The  models  and  computer  simulation  programs  that  HVAC&R  engineers  use  to  calculate  system  energy  and  running  costs  also  need  to  be  able  to  accommodate  time-­‐of-­‐use  tariffs.  Many  HVAC&R  technical  service  providers  and  end  users  do  not  fully  understand  the  impact  of  time-­‐of-­‐use  tariffs  and  dynamic  peak  pricing  or  how  to  match  their  HVAC&R  system  usage  or  control  settings  with  this  new  electricity  pricing  structure.  Education  and  awareness  campaigns  are  important  as  consumers  will  often  take  the  “easiest”  option  even  if  it  costs  more.  

General  site  energy  use  intensity  is  another  performance  indicator  that  could  be  provided  with  utility  bills  to  raise  awareness  of  energy  use  and  energy  efficiency  opportunities.  

Energy  pricing  will  not  necessarily  be  effective  in  all  sectors.  An  example  is  the  health  industry,  where  energy  costs  typically  represent  less  than  1%  of  the  annual  budget  and  are  therefore  a  low  priority  due  to  lack  of  capital  funding  for  non-­‐clinical  uses  

2.21. Carbon  intensity  of  the  “grid”  When  we  talk  about  the  “grid”  we  are  talking  about  the  national  and  regional  electricity  transmission  and  distribution  network.  The  greening  of  the  grid,  or  reducing  its  carbon  intensity  (grid-­‐related  CO2/CO2-­‐e  emissions),  is  a  societal  and  governmental  responsibility.  

However,  some  HVAC&R  design  decisions  are  influenced  by  the  carbon  intensity  of  the  proposed  energy  supply.  One  aspect  to  consider  is  the  current  and  future  zero  and  low-­‐emission  on-­‐site  energy-­‐generation  systems  and  how  they  can  be  integrated  with  HVAC&R.  As  buildings  get  more  efficient,  heating  and  cooling  loads  reduce,  resulting  in  smaller  HVAC&R  systems.  These  leaner  HVAC&R  systems  may  be  more  compatible  with  on-­‐site  low-­‐emission  energy-­‐generation  systems.  Photovoltaic  (PV)  systems,  increasingly  with  battery  storage  and  smart  controls,  and  other  on-­‐site  generation  solutions  are  beginning  to  enter  the  commercial  and  industrial  markets,  and  are  already  established  in  the  residential  sector.  

The  electricity  grid  is  steadily  reducing  its  carbon  intensity.  At  the  same  time  the  carbon  intensity  of  alternative  fuels  and  energy  sources  may  actually  be  increasing.  For  instance,  the  natural  gas  that  is  extracted  from  coal  seam  projects  may  have  a  much  higher  carbon  intensity  than  natural  gas  extracted  from  traditional  sources  due  to  the  extraction  processes  used.  All  fossil  fuels  have  extraction-­‐related  emissions,  and  as  technology  empowers  deeper  extraction  and  alternative  methods  the  embodied  carbon  intensity  of  these  fuels  may  change.  

Page 41: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  41  of  162  

2.22. HVAC&R  interactions  with  the  “grid”  There  are  ways  in  which  the  HVAC&R  industry  can  help  influence  grid  emissions  intensity,  including  through  active  participation  in  demand-­‐side  management;  the  correct  implementation  of  co-­‐generation  (simultaneous  generation  of  power  and  heat)  and  tri-­‐generation  (simultaneous  generation  of  power,  heat  and  cooling)  systems;  the  use  of  thermal  energy-­‐storage  systems;  and  the  use  of  new  materials  such  as  phase-­‐change  materials.    

There  is  also  a  range  of  new  or  alternative  technologies  that  the  industry  might  adopt  in  the  search  for  low-­‐emission  engineering  solutions  for  HVAC&R.  There  will  be  no  single  solution  to  suit  all  situations,  and  a  variety  of  technologies,  design  strategies  and  implementation  techniques  will  make  up  the  eventual  low-­‐emission  HVAC&R  picture.  

2.22.1. Demand  management  Often  demand  management  is  seen  as  a  way  to  manage  capacity  constraints  in  the  grid.  But  a  more  flexible  and  responsive  demand  side  also  helps  grid  operators  to  better  integrate  variable  sources  of  low-­‐carbon  energy  sources  such  as  wind  and  solar,  as  well  as  to  delay  or  avoid  expensive  network  upgrades,  which  can  lead  to  higher  energy  costs  for  consumers.  Demand  response  can  be  an  income  stream  for  a  system/building  owner.  Demand  management  is  not  just  about  avoided  costs.  Sophisticated  demand  management  solutions  typically  require  complex  metering  and  automation  systems,  and  high-­‐quality  design  and  engineering.  

Load  shifting  and  peak  clipping  (or  peak  lopping)  are  the  primary  focus  of  demand  management  programs.  International  and  open  standards  are  beginning  to  emerge  (e.g.  OpenADR,  ZigBee  Smart  Energy),  designed  to  facilitate  demand  response  programs,  events,  feedback  and  reporting  through  the  common  two-­‐way  information  exchange  between  electricity  service  providers,  aggregators,  and  end  users.  

2.22.2. Co-­‐generation  and  tri-­‐generation  systems  Co-­‐generation  and  tri-­‐generation  are  other  ways  that  the  HVAC&R  industry  might  influence  grid  emissions  intensity.  These  systems  generate  power,  heat  and  cooling  from  a  single  energy  source.  These  systems  are  increasingly  being  used  in  buildings  and  in  the  commercial  and  industrial  sectors.  There  are  a  number  of  industry  reports  of  co-­‐generation  and  tri-­‐generation  systems  that  are  incorrectly  sized  or  poorly  implemented.  

The  HVAC&R  industry  needs  better  information  to  provide  co-­‐generation  feasibility  studies  and  to  plan,  design,  install  and  operate  systems  so  that  the  full  benefits  can  be  unlocked.  These  systems  can  be  complex  and  expensive  to  maintain  and  may  have  questionable  long-­‐term  benefits  in  some  applications,  often  only  justified  by  artificial  tariff  structures  or  installed  to  attract  rating  scheme  credits.  On  the  other  hand,  where  existing  electricity  networks  are  particularly  constrained  these  systems  can  offer  considerable  and  immediate  benefits.  

Page 42: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  42  of  162  

The  HVAC&R  industry  can  address  the  design  side  of  the  equation  by  helping  to  identify  and  disseminate  best-­‐practice  design  processes.  The  key  to  any  guideline  would  be  to  identify  the  best  situations  for  their  use  and  avoidance,  as  well  as  the  correct  design  and  maintenance  strategies.  

2.22.3. Energy  storage  The  use  of  thermal  energy  storage  is  a  re-­‐emerging  technology  that  the  HVAC&R  industry  can  apply  to  offset  a  site’s  peak  electricity  demand.  Electricity  and  thermal  demands  can  be  decoupled  and  demands  can  be  balanced  across  the  operating  period.  These  systems  store  chilled  water,  ice,  glycol,  hot  water,  or  specific  phase-­‐change  materials  in  an  insulated  reservoir  for  later  use.  They  are  often  designed  to  use  cheaper-­‐rate  night-­‐time  electricity  or  to  store  energy  from  a  process  (waste  heat)  or  generator  for  later  use.  

Energy-­‐storage  systems  can  shift  demand  away  from  peaks  and  provide  resilience  if  power  failures  occur.  Combining  renewable  or  low-­‐carbon  energy  sources  with  on-­‐site  thermal  storage  systems  can  assist  in  the  overall  energy  management  of  the  base-­‐load  power  requirements  of  a  site.  There  is  some  evidence  that  traditionally,  in  Australia,  energy  storage  solutions  have  not  been  operated  well  into  the  longer  term.  Correct  ongoing  operation  and  maintenance  protocols  are  critical  to  the  long-­‐term  success  of  these  systems.  System  owners  and  operators  need  to  understand  this.  System  designers  and  installers  need  to  facilitate  it.  

2.22.4. Phase-­‐change  materials  Phase-­‐change  materials  are  substances  with  high  latent  heat  of  fusion  properties  that  are  capable  of  storing  and  releasing  relatively  large  amounts  of  energy  when  they  melt  or  solidify.  These  phase  changes  can  be  engineered  to  occur  at  specific  temperatures.  Heat  is  absorbed  or  released  during  the  phase  change  and  correctly  applied  these  materials  can  store  that  latent  heat.  

These  materials  can  be  applied  in  a  variety  of  ways  in  buildings  and  HVAC&R  systems  as  passive  energy-­‐storage  systems,  enabling  heating  and  cooling  demands  to  be  balanced  across  the  operational  period.  

2.22.5. Alternative  technologies  In  Australia  conventional  vapour  compression-­‐based  air  conditioning  and  refrigeration  using  synthetic  refrigerants  is  the  most  prevalent  cooling  technology  in  use  across  most  sectors.  The  main  exception  is  for  industrial  refrigeration  where  ammonia  and  hydrocarbon-­‐based  systems  are  also  common.  However,  there  are  new  and  alternative  cooling  and  heating  technologies  being  developed  and  existing  technologies  being  revisited,  some  of  which  do  not  use  refrigerants  and  some  that  use  refrigerants  in  different  ways.  These  include:  

• Solar  and  hybrid  solar  cooling  technologies  • Absorption  and  adsorption-­‐based  systems  • Magnetic  cooling,  thermoelectric  cooling  • Refrigeration  systems  driven  by  solar  PV  arrays  • Systems  using  CO2  as  a  primary  refrigerant  or  as  a  secondary  refrigerant  • Systems  using  water  and  slurry  ice  as  refrigerants/secondary  refrigerants  

Page 43: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  43  of  162  

• Ground  source  heat  pumps  • Evaporative  air  cooling  systems  • District  cooling  systems  • Passive  solutions  including  thermal  massing,  white  roofs/walls,  green  roofs/walls,  phase-­‐  

change  materials,  labyrinth  cooling,  radiant  cooling/heating,  natural  and  hybrid  ventilation.  

Some  of  these  technologies  are  commercialised  or  well  advanced  into  commercialisation  while  others  are  just  emerging.  All  of  these  products  and  technologies  need  pathways  to  enter  the  relatively  conservative  and  highly  competitive  HVAC&R  market.  

Some  technologies  and  equipment  being  promoted  within  the  industry  are  being  misrepresented  with  regard  to  their  performance  capabilities  and  emission  profiles.  Some  of  the  plant  and  equipment  being  introduced  to  the  market  are  inefficient,  and  their  inappropriate  use  could  significantly  increase  energy  costs.  Some  are  not  fit  for  purpose.  Many  new  technologies  cannot  be  rated  using  existing  testing  standards  or  MEPS  programs.  Many  of  these  products  are  not  independently  verified  and  many  suppliers  are  traders  rather  than  technical  service  providers  

In  the  highly  litigious,  low-­‐margin  and  low-­‐fee  world  of  HVAC&R,  designers  tend  to  be  risk  averse  and  avoid  systems  with  which  they  are  not  familiar.  The  resistance  to  new  refrigerants  and  new  technologies  is  high,  throughout  the  supply  chain.  Technology  and  innovation  often  needs  to  be  driven  by  the  client,  generally  by  accepting  some  of  the  risk  and  providing  additional  capital  expenditure.  

For  a  variety  of  reasons,  some  HVAC&R  sectors  have  been  slower  than  others  to  adopt  alternative  technologies.  

Page 44: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  44  of  162  

3. The  headline  issues  

3.1. Section  introduction  Some  of  the  issues  that  the  HVAC&R  industry  needs  to  come  to  terms  with  in  the  transition  to  a  low-­‐emission  future  apply  across  all  sectors  of  the  industry  and  some  issues  are  specific  to  individual  sectors  or  portions  of  the  industry.  In  particular  the  “headline”  issues  around  safety,  environment,  energy  efficiency,  refrigerant  leak  management,  low-­‐GWP  alternatives,  product  stewardship,  skills  and  training  and  the  licensing  and  registration  of  industry  practitioners  are  of  critical  importance  across  all  sectors.  

This  section  of  the  discussion  paper  attempts  to  analyse  the  main  headline  issues.  While  these  issues  may  be  common  to  all  sectors,  specific  solutions  may  differ  between  sectors.  

3.2. Refrigeration  safety  issues  

3.2.1. Refrigerant  classification  Refrigerants  are  classified  based  on  their  flammability  (1,  or  2  or  3)  and  toxicity  (A  and  B)  characteristics  in  accordance  with  AS/NZS  1677.1.  This  standard  designates  refrigerant  numbers  and  is  based  on  and  technically  equivalent  to  ISO  817.  The  method  and  parameters  of  classification  are  determined  on  the  basis  of  health  and  safety,  consistent  with  European,  USA  and  International  practice,  primarily  based  on  flammability  and  toxicity.  

Refrigerants  are  classified  into  three  flammability  groups  in  AS/NZS  1677.1:     Group  1—Non  flammable.     Group  2—LEL  ≥  3.5%  volume.     Group  3—LEL  <  3.5%  volume.  LEL  is  the  lower  explosive  limit,  the  minimum  concentration  of  the  refrigerant  that  is  capable  of  propagating  a  flame  through  a  homogeneous  mixture  of  refrigerant  and  air  measured  at  21°C  and  101  kPa.  

Note:  ASHRAE  standards  have  included  an  optional  2L  subclass  to  the  existing  Class  2  flammability  classification,  signifying  class  2  refrigerants  with  a  burning  velocity  less  than  or  equal  to  10cm/s.  

Refrigerants  are  also  classified  into  two  toxicity  groups  in  AS/NZS  1677.1:     Group  A—LC50  ≥  10  000  parts  per  million.     Group  B—LC50  <  10  000  parts  per  million.  LC50  is  the  lethal  concentration  50,  a  calculated  concentration  of  a  substance  in  air,  exposure  to  which,  for  a  four-­‐hour  period  of  time,  is  expected  to  cause  the  death  of  50%  of  the  entire  defined  experimental  (rat)  population.  

Using  this  system  refrigerant  safety  classifications  consist  of  two  alphanumeric  characters  (e.g.  A2  or  B1).  The  capital  letter  indicates  the  toxicity  and  the  numeral  denotes  the  flammability.  

Page 45: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  45  of  162  

The  standard  does  not  classify  refrigerants  on  the  basis  of  their ozone-­‐depleting  potential  (ODP)  and  global  warming  potential  (GWP);  however,  information  on  ODP  and  GWP  is  provided  and  the  standard  states  that  these  effects  are  important  and  makes  their  consideration  mandatory  when  selecting  the  refrigerant  for  a  particular  application.  

Note:  Only  the  “consideration”  of  the  environmental  issues  is  mandatory  and  there  are  no  mandatory  requirements  within  the  standard  relating  to  environmental  impacts.  While  refrigerant  environmental  information  is  provided,  a  mandatory  environmental  classification  system  would  struggle  with  the  changing  terms  of  reference  on  what  levels  of  these  factors  are  ‘benign’  to  the  environment.  For  example,  HFCs  were  supposed  to  be  more  benign  to  the  environment  than  CFCs  and  HCFCs  however,  greenhouse  gas  concerns  now  make  them  look  more  harmful.  

3.2.2. Design  safety  standard  Historically  AS/NZS  1677.2  Refrigeration  Safety  has  been  the  design  safety  standard  that  has  been  applied  to  refrigeration  systems  within  Australia  and  New  Zealand.  This  standard,  whose  current  edition  is  dated  1998,  is  based  on  and  technically  similar  to  ISO  5149:  1993.  

This  standard  is  currently  under  revision.  The  Standards  Australia  committee  responsible  for  the  document  was  intending  to  adopt  the  revised  ISO  5149  with  local  amendments.  However,  the  final  draft  of  the  ISO  standard  was  not  supported  by  the  required  majority  of  ISO  member  countries  and  has  not  been  approved  for  publication.  

AS/NZS  1677.2:1998  remains  the  current  design  safety  standard  applicable  in  Australia.  There  is  considerable  uncertainty  in  industry  about  how  and  in  what  sectors  this  safety  standard  is  regulated  for  use.  End  users  stipulate  that  their  safety  should  be  paramount  when  considering  policy  amendments.  

Significant  safety  concerns  have  been  raised  regarding  the  application  of  flammable  hydrocarbon  refrigerants,  flammable  synthetic  refrigerants,  flammable  blends  of  refrigerants  and  the  products  of  combustion  of  synthetic  refrigerants  when  burnt.  The  design  aspects  of  these  safety  issues  are  all  legitimately  included  under  the  terms  of  reference  of  the  Standards  Australia  Technical  Committee  ME–006,  which  is  responsible  for  the  AS/NZS  1677  series  of  standards.  

Government  gas  regulators  advise  that  using  flammable  refrigerants  means  that  the  HVAC&R  industry  is  moving  into  an  area  and  safety  regime  that  is  already  in  place  for  these  substances.  Skill-­‐  sets  such  as  hazardous  area  engineering  and  risk  management  (among  others)  need  to  be  introduced  to  provide  a  standard  that  it  is  workable,  with  methodologies  that  are  defensible  in  the  courts  and  represent  sound  gas  safety  engineering.  Gas  safety  engineering  considerations  would  need  to  address  pooling,  ignition  opportunities,  and  energy  release  in  case  of  deflagration.  These  risk  mitigation  techniques  require  a  variety  of  skills  that  may  not  be  available  in  the  HVAC&R  field.  For  flammable  refrigerants  in  Groups  2  and  3  there  needs  to  be  a  greater  reliance  on  indirect  systems.  Government  gas  regulators  advise  against  including  a  performance-­‐based  approach  within  AS  1677.2.  

Page 46: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  46  of  162  

The  AS/NZS  1677.1  standard  classifies  refrigerants  and  lists  information  with  regard  to  their  environmental  impacts  including  ODP  and  GWP.  The  AS/NZS  1677.2  design  standard  is  focused  on  safety  and  does  not  consider  environmental  impact  beyond  recommending  that  these  impacts  be  considered  during  system  design.  

3.2.3. Product  standards  Some  refrigeration  and  air  conditioning  equipment  products  are  covered  by  product  standards  which  include  requirements  that  address  safety  issues.  

The  AS/NZS60335  series  of  standards  deals  with  the  safety  of  electrical  appliances.  Standards  relevant  to  air  conditioning  and  refrigeration  include  AS/NZS60335.2.24  (ice-­‐cream  appliances  and  ice-­‐makers),  AS/NZS60335.2.40  (electrical  heat  pumps,  air  conditioners  and  dehumidifiers),  AS/NZS60335.2.75  (commercial  dispensing  appliances  and  vending  machines),  and  AS/NZS60335.2.89  (commercial  refrigerating  appliances  with  an  incorporated  or  remote  refrigerant  condensing  unit  or  compressor).  Compliance  with  these  standards  is  mandatory  under  the  various  state  electrical  regulations.  

3.2.4. Gas  regulations  Gas  safety  standards  and  regulations  are  also  relevant  to  the  application  of  hydrocarbon-­‐based  refrigerants.  If  synthetic  refrigerants  are  flammable  (group  2  or  3)  then  they  too  may  be  subjected  to  similar  criteria.  

Government  gas  regulators  advise  that  the  current  states  and  territory-­‐based  gas  safety  regulations  that  are  in  place  for  flammable  gases  do  not  always  cover  refrigerant  applications.  This  is  because  the  regulators  may  not  have  envisaged  the  use  of  these  flammable  substances  as  refrigerants  at  the  time  regulations  were  promulgated.  Often  the  word  “fuel”  as  a  use  of  flammable  gas  is  added.  Gas  regulators  envisage  that  most  states  will  alter  the  definition  so  that  all  flammable  gas  uses  are  covered.  Queensland  already  has  a  regulatory  regime  in  place  that  covers  flammable  refrigerants.  

3.2.5. Industry  Code  of  Practice  The  handling  and  emergency  management  aspects  of  flammable,  toxic  and  other  hazardous  refrigerants  are  not  covered  by  system  standards  AS/NZS  1677.2  or  by  product  standards.  In  the  case  of  ammonia,  a  toxic  and  mildly  flammable  B2  refrigerant,  these  issues  are  covered  by  an  AIRAH  industry  Code  of  Practice.  In  the  case  of  flammable  refrigerants  (A2  and  A3)  a  national  industry  Code  of  Practice  is  currently  under  development.  

Industry  Codes  of  Practice  are  practical  guides  to  achieving  the  standards  of  health,  safety  and  welfare  required  under  the  model  Work  Health  and  Safety  (WHS)  Act  2011  and  the  model  WHS  Regulations,  as  well  as  any  workplace  health  and  safety  legislation  relevant  to  the  jurisdiction.  An  approved  Code  of  Practice  applies  to  anyone  who  has  a  duty  of  care  in  the  circumstances  described  in  the  Code.  In  most  cases,  following  an  approved  Code  of  Practice  would  achieve  compliance  with  the  health  and  safety  duties  in  the  WHS  Act,  as  well  as  relevant  workplace  health  and  safety  legislation  in  that  jurisdiction,  in  relation  to  the  subject  matter  of  the  Code.  

Page 47: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  47  of  162  

A  Code  of  Practice  for  this  industry  could  cover  the  following  topics:  • Acts  and  regulations  across  Australia  • Safety  requirements  for  design  and  modification  • Retrofitting  protocols  and  practices  for  existing  systems  • Hazard  identification,  risk  assessment  and  controls  • Emergency  planning  • System  maintenance  protocols  • Placarding  (identification)  signage  • Personal  protective  equipment  • Detection  systems  • Storage  and  transport  • Training  • Auditing.  

Like  Regulations,  Codes  of  Practice  deal  with  particular  issues  and  do  not  cover  all  hazards  or  risks  which  may  arise.  Codes  of  Practice  need  to  complement  the  applicable  Australian  Standards  and  State  and  Commonwealth  legislation  and  regulations  in  order  to  provide  a  cohesive,  accessible  and  understandable  regulatory  structure  for  the  HVAC&R  industry.  

For  industry  Codes  of  Practice  for  refrigerants,  the  following  status  applies:  

• Ammonia  (R717,  B2)  –  Published  Code  available  –  Currently  being  updated  for  national  use.  http://www.airah.org.au/Ammonia_COP2011.pdf    

• Flammable  refrigerants  (A2  and  A3)  –  Code  under  development  –  project  not  fully  resourced.  

• CO2  as  a  refrigerant  (R744,  A1)  –  Code  planned  –  project  not  resourced.  

3.2.6. Refrigerant  trade-­‐offs  One  of  the  biggest  issues  not  addressed  in  the  industry  is  the  trade-­‐offs  between  safety,  environmental  impacts  and  economic  considerations.  It  is  widely  recognised  that  there  is  no  perfect  refrigerant,  although  many  have  their  favourites.  The  best  choice  for  a  particular  application  requires  a  consideration  of  the  pros  and  cons  of  each  refrigerant.  Unfortunately  common  metrics  for  all  of  the  safety,  environmental  and  economic  issues  are  difficult  to  develop.    

For  example,  how  would  a  designer  compare  the  risk  associated  with  the  use  of  a  flammable  refrigerant  with  the  economic  and  environmental  benefit  that  may  result  if  it  has  higher  energy  efficiency?  Hence  the  problem  is  often  reduced  to  the  question  “What  level  of  risk  is  acceptable?”  Certainly  no  refrigerant  is  risk  free.  

3.3. Environmental  issues  

3.3.1. Emissions  versus  energy  efficiency  Different  sectors  place  different  emphasis  on  emissions  and  energy  efficiency.  For  instance  the  NCC  minimum  standards  focus  on  energy  efficiency  and  reducing  energy  consumption,  while  Green  Star  tools  and  NABERS  Energy  also  focus  on  the  CO2  generation  associated  with  the  energy  used.  

Page 48: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  48  of  162  

In  some  cases  low-­‐emission  engineering  solutions  are  ruled  out  because  they  have  high  energy  intensity,  i.e.  they  use  a  lot  of  energy  but  the  energy  is  from  a  low-­‐emission  source.  

From  an  environmental  perspective,  emissions  are  the  crucial  factor.  But  from  an  engineering  point  of  view  it  is  often  the  energy  efficiency  that  is  focused  on,  the  carbon  intensity  of  the  energy  source  being  sometimes  seen  as  a  separate  but  related  issue.  

In  pursuing  the  enforcement  of  lower-­‐GWP  refrigerants,  we  should  ensure  that  we  counteract  the  benefits  by  lower  system  efficiencies.  Applying  a  refrigerant  that  has  a  better  direct  emissions  outcome  should  not  increase  the  system’s  lifetime  indirect  emissions.  

3.3.2. Energy  efficiency  versus  energy  consumption  Energy  efficiency  is  bound  up  with  evolving  notions  of  comfort  and  sufficiency.  With  increasing  affluence,  some  of  the  efficiency  gains  are  "spent"  on  larger  homes  or  buildings,  lower  occupancy  rates,  and  increasing  expectations  of  comfort.  These  so  called  "rebound  factors"  can  erode  some  of  the  emission  abatement  achieved  through  improvements  in  technical  efficiency.  

Energy  consumption  is  not  always  about  plant  size.  There  are  examples  where  a  larger  HVAC  plant  size  enables  lower  overall  energy  consumption.  For  example  lower  U  value  glazing  may  increase  peak  cooling  loads  but,  due  to  overnight  heat  release,  actually  reduce  energy  consumed.    

Some  engineers  feel  that  any  design  should  always  be  about  energy  consumption  and  not  about  loads,  other  than  to  meet  instantaneous  load.  Many  HVAC&R  engineers  focus  by  default  on  load  and  plant  efficiency,  which  may  not  always  represent  the  best  way  forward.  Designers  need  to  look  beyond  systems,  and  consider  projects  as  a  whole.  

3.3.3. ODP  versus  GWP  The  Montreal  Protocol  mandates  a  move  to  zero-­‐ODP  refrigerants.  This  has  led  to  the  development  and  application  of  alternative  refrigerants  with  zero  ODP  but  in  some  cases  high-­‐GWP.  Is  there  a  case  to  allow  “near  zero”  ODP  refrigerants  back  onto  the  market,  for  example  with  ODP  ratings  of  less  than  say  0.03?  This  might  allow  some  existing  low-­‐GWP  near-­‐zero  ODP  refrigerants  to  be  used  more.  

If  the  ozone  layer  is  repairing  itself,  or  if  ODP  becomes  less  important  than  GWP,  is  near-­‐zero  ODP  worth  trading  in  order  to  more  rapidly  transition  to  low-­‐GWP  refrigerants?  Is  the  ozone  layer  repairing  itself,  and  is  there  any  international  appetite  for  “near  zero”  ODP  refrigerants?  

In  reality  it  would  most  likely  be  difficult  to  amend  the  Montreal  Protocol  to  remove  some  refrigerants  from  the  phase-­‐out  schedule.  Any  amendment  to  the  Montreal  Protocol  would  require  all  196  parties  to  the  protocol  to  agree  to  less  stringent  control  measures.  

3.3.4. Environmental  degradation/impact  Controls  for  the  direct  environmental  degradation  effects  of  some  refrigerants  have  been  imposed  by  international  and  national  agreements  and  legislation.  

Page 49: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  49  of  162  

There  is  a  range  of  international  and  national  instruments  and  regulations  that  are  applied  to  refrigerants,  including:  Montréal  Protocol  on  Substances  that  Deplete  the  Ozone  Layer,  Kyoto  Protocol  to  the  United  Nations  Framework  Convention  on  Climate  Change,  Australian  ozone  protection  and  synthetic  greenhouse  gas  management  legislation  (which  includes  legislation  relating  to  applying  the  equivalent  carbon  price  for  synthetic  greenhouse  gases  as  part  of  the  government’s  Clean  Energy  Future  policy).    

Environmental  regulations  generally  address  or  limit  direct  emissions  or  refrigerant  leakage  from  HVAC&R  (other  uses  are  also  covered  e.g.  fire  suppression,  blowing  agents,  etc).  

Environmental  degradation  occurs  as  a  result  of  both  direct  and  indirect  emissions.  A  common  estimation  of  the  average  breakdown  of  emissions  in  a  “typical”  or  notional  system  is  85%  from  the  indirect  energy  component  and  15%  from  direct  refrigerant  leakage,  across  its  entire  life-­‐cycle.  The  proportion  of  the  direct  and  indirect  emissions  will  vary  across  sector  types,  system  types,  application  type,  refrigerant  types  and  age  and  efficiency  of  the  system  components. Some  systems  have  very  high  and  persistent  leakage  and  some  do  not.  Those  that  have  high  leakage  introduce  both  an  environmental  issue  and  a  commercial  issue.  

Clearly  the  indirect  emissions  arising  from  the  power  consumption  (the  notional  85%)  also  need  to  be  addressed.  This  is  achieved  primarily  by  addressing  the  energy  efficiency  of  the  system  and  the  environmental  effects  or  carbon  intensity  of  the  energy  source.  

Note:  The  carbon  intensity  of  the  electricity  used  to  power  a  system  is  not  always  in  the  control  of  the  HVAC&R  system  designer.  

3.3.5. Environmental  performance  There  are  at  least  two  published  methods  for  calculating  or  estimating  the  relative  environmental  impact  of  refrigeration  and  air  conditioning  systems.  

TEWI  –  Total  equivalent  warming  impact  –  The  TEWI  methodology  explicitly  seeks  to  identify  both  the  “direct”  effect  of  greenhouse  gas  emissions  from  the  product  (including  end-­‐of-­‐life  losses)  and  the  “indirect”  effect  of  carbon  dioxide  emissions  related  to  the  energy  consumption  of  the  system.  The  TEWI  method  ignores  the  energy  embodied  in  the  system  materials  and  the  greenhouse  gas  emissions  created  during  refrigerant  manufacturing,  refining,  packaging,  transport  and  handling.  

AIRAH  has  published  a  best-­‐practice  guide  to  TEWI  (http://www.airah.org.au/Best_Practice_Tewi_June2012.pdf)  

LCCP  –  Life-­‐cycle  climate  performance  –  The  concept  of  LCCP  is  more  comprehensive  than  the  TEWI  method.  The  LCCP  method  calculates  the  “cradle-­‐to-­‐grave”  climate  impacts  of  the  direct  and  indirect  greenhouse  gas  emissions,  and  includes  the  energy  embodied  in  the  system  materials,  the  greenhouse  gas  emissions  during  refrigerant  manufacturing,  refining,  packaging,  transport  and  handling,  and  the  end-­‐of-­‐life  loss.  

Page 50: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  50  of  162  

Several  LCCP  assessment  tools  have  been  developed  (in  USA)  including  one  for  residential  heat  pumps  (http://www.ahrinet.org/technical+results.aspx)  and  one  for  supermarket  systems  (http://lccp.umd.edu/ornllccp/)  

TEWI,  LCCP  and  other  life-­‐cycle  assessment  methodologies  require  major  assumptions  to  be  made  and  hence  absolute  accuracy  is  not  possible.  The  methods  are  most  usefully  applied  when  comparing  alternative  designs  or  solutions  for  particular  applications.  They  are  typically  applied  for  rating  system  designs  rather  than  operating  systems.  

3.4. Energy  efficiency  design  issues  Which  refrigerant  is  the  most  energy  efficient?  What  type  of  system/equipment/plant/configuration  is  the  most  efficient?  Are  there  too  many  variables  (climate,  application,  design,  charge  size,  implementation,  and  costs)  to  make  meaningful  comparisons?  Due  to  the  many  variables  a  total-­‐system  comparison  needs  to  be  made,  especially  as  incrementally  smaller  gains  in  energy  efficiency  become  more  important.  However,  there  should  also  be  simpler  guides/rules  of  thumb  that  can  be  followed  during  earlier  stages  of  a  project.  

The  consideration  of  the  energy  efficiency  of  a  system  is  a  complex  area  that  covers  the  whole  life-­‐cycle  of  a  system  and  needs  to  be  considered  during  design,  installation,  commissioning,  operation,  and  maintenance.  

3.4.1. Energy  intensity  Most  designers  focus  on  energy  efficiency,  with  only  a  few  considering  how  to  reduce  system  loads  first.  Assessing  buildings  and  systems  with  a  view  to  reducing  heating  and  cooling  loads  prior  to  HVAC&R  design  is  a  key  function  of  the  low-­‐emission  designer.  Identification  of  load-­‐reduction  opportunities  is  particularly  important  during  the  review  and  upgrade  of  existing  buildings,  systems  and  applications  where  non-­‐HVAC&R  energy  interventions  (sealing,  shading,  insulation,  lighting  etc.)  should  be  investigated  prior  to,  or  in  parallel  with,  upgrading  HVAC&R  systems.  

3.4.2. Rating  A  system’s  efficiency  relates  to  the  efficiency  of  it  parts,  i.e.  the  plant,  components,  controls,  construction  quality,  operation  protocols,  maintenance  protocols  and  the  environment  within  which  it  operates.  There  are  various  ways  of  rating  both  systems  and  individual  plant  items.  

TEWI  –  As  above,  TEWI  rates  a  system’s  environmental  performance,  including  its  whole  of  life  energy  use,  but  necessarily  uses  many  assumptions  and  simplifications.  TEWI  does  not  address  embodied  energy.  

Load  estimation  programs  –  There  are  many  software  programs  available  to  estimate  or  model  the  loads  on  a  system.  It  is  unclear  how  up-­‐to-­‐date  the  default  data  in  the  load  estimation  programs  are.  

COP/IPLV/NPLV  –  Coefficient  of  performance  (COP)  and  integrated  part-­‐load  value  (IPLV)  testing  and  rating  of  plant  are  very  useful  energy  efficiency  indicators;  they  are  generally  determined  for  new  plant  in  simulated/laboratory  conditions.  (COP  and  IPLV  are  also  termed  EER  and  IEER).  There  

Page 51: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  51  of  162  

can  be  confusion  between  tested  and  verified  equipment  COP  values  and  eventual  system  COP  outcomes,  which  are  often  very  different.  IPLV,  which  is  a  measure  of  the  efficiency  of  the  equipment  at  part  load,  is  also  not  fully  understood  or  applied  correctly  by  some  engineers  and  building/system  simulators.  If  plant  is  designed  to  operate  at  different  conditions  than  specified  in  IPLV,  including  lower  water  temperatures  or  different  flow  rates,  the  efficiency  is  called  a  NPLV  (non-­‐standard  part-­‐load  value).  

There  are  also  reports  of  misuse  of  the  IPLV  and  IEER  equipment  ratings  to  represent  the  same  as  that  of  a  system  rating.  IPLV  and  IEER  are  descriptors  of  the  standard  part  load  efficiency  for  a  single  piece  of  equipment.  System  efficiency  requires  comprehensive  analysis  of  whole  system  components  such  as  pumps,  fans,  plant  utilisation,  control  strategies,  plant  layout,  climatic  conditions  etc.  IPLV  ratings  are  not  intended  to  be  used  to  estimate  energy  consumption  of  a  plant  or  even  a  piece  of  equipment  for  a  specific  installation.  

MEPS  –  MEPS  Standards  are  regulated  by  product  and  sector;  regulations  target  the  poorest  performing  product.  MEPS  typically  represent  minimum  standards,  not  best  practice,  and  are  applied  to  new  plant  in  simulated/laboratory  conditions.  MEPS  do  not  cover  engineered  solutions  or  custom  designs.  

Energy  labels  –  mandated  testing  rate  appliances  based  on  the  appliance  energy  efficiency  and  consumption.  

Calculating  Cool  –  A  project  under  HVAC  HESS  (under  review)  to  develop  an  independent  metric  or  benchmarking  tool  to  produce  a  generic  HVAC  system  performance  indicator.  

3.4.3. System  capacity  The  fact  that  HVAC&R  systems  tend  to  be  oversized  has  long  been  recognised  as  an  issue  in  many  sectors  of  the  industry,  including  residential  and  commercial  air  conditioning  and  commercial  refrigeration.  Oversizing  often  results  in  an  energy  penalty  as  chillers,  cooling  towers,  condensers,  fans  and  pumps  operate  inefficiently,  systems  are  throttled  (restricted)  with  valves  and  dampers.  Equipment  maintenance  and  failure  rates  are  high.  Oversized  systems  tend  to  result  in  a  higher  energy  consumption,  increased  wear  and  maintenance  and  reduced  service  life.  Oversized  systems  also  tend  to  be  less  effective  at  providing  the  HVAC&R  service  than  a  correctly  sized  system.  

There  are  many  reasons  driving  this  tendency  to  oversize  plant  and  systems  including  the  use  of  sometimes  highly  conservative  “rules  of  thumb”  design  assumptions,  the  excessive  application  of  safety  factors,  insufficient  or  inaccurate  design  information,  a  requirement  for  flexibility  in  future  use  or  future  expansion,  building  grading  systems  that  require  redundancy  in  the  plant,  the  linkage  between  project  value  and  fees  or  profit  margins,  and  the  tendency  to  move  up  in  size  when  selecting  equipment  to  provide  some  level  of  insurance  or  risk  management  with  regard  to  system  capacity.  

End-­‐users  want  systems  to  operate  on  the  hottest  days  and,  in  some  cases,  users’  expectations  may  need  adjusting.HVAC&R  specification  and  design  practices  may  need  to  change  particularly  in  the  

Page 52: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  52  of  162  

light  of  increased  building  thermal  performance  and  sealing  standards,  reduced  loads  from  lighting  systems  and  plug-­‐in  equipment,  reduced  loads  from  system  equipment,  and  the  introduction  of  passive  design  techniques  to  reduce  heating  and  cooling  requirements.  

3.4.4. System  design  Some  designs  are  more  energy  efficient  than  others;  however,  the  question  of  first  cost  versus  LCC  are  rarely  considered  or  if  they  are,  good  LCC  decisions  are  “value  engineered”  out  of  a  project  at  tender/construction  stage,  due  to  high  discounting  of  future  operating  costs  or  split  incentives.  How  do  we  ensure  that  original  designs  actually  get  implemented?  Often  owners  and  developers  are  not  fully  aware  of  the  efficiency  difference  in  the  value  engineered  result  versus  an  original  energy  efficient  design.  Education  is  important.  

Owners  and  developers  control  overall  capital  expenditure  for  HVAC&R.  Within  these  capital  limitations,  designers  and  installers  often  control  the  potential  system  operation  or  life-­‐cycle  costs.  In  many  sectors  the  system  design  and  installation  decisions  are  based  on  purchase  and  installation  cost,  with  little  thought  to  operational  cost  aspects.  In  the  residential  sector  home  owners  and  developers  often  select  based  on  lowest  purchase  cost.  

System  design  decisions  –  Variable  refrigerant  volume/flow-­‐based  systems  have  become  popular  in  commercial  air  conditioning  applications  and  these  systems  tend  to  have  a  high  cumulative  refrigerant  charge.  High-­‐charge  HFC  based  systems  now  contain  significant  financial  and  environmental  risks  due  to  potential  leaks.  In  response,  there  may  now  be  a  move  back  to  central  chillers  using  secondary  coolants  and  so  limiting  all  refrigerant  to  the  plant  room.  Alternatively  the  design  response  may  be  to  use  multiple  small  and  independent  systems  distributed  throughout  a  space.  Multiple  small  systems  can  introduce  control  and  energy  efficiency  issues  if  not  designed  and  implemented  correctly,  and  may  increase  maintenance  logistics.  

Systems  and  components  –  using  a  highly  energy-­‐efficient  component  (compressor  or  chiller)  in  a  poorly  implemented  system  will  still  lead  to  poor  energy-­‐efficiency  outcomes.  Designers  and  installers  must  take  a  holistic  approach  to  system  design  for  true  energy  efficiency  to  be  achieved.  The  focus  should  be  on  constructing  efficient  systems  out  of  efficient  components  and  realising  that  plant  or  equipment  efficiency  rating  is  only  one  component  in  overall  system  efficiency  puzzle.  Other  important  components  include  

• Application  –  thermal  efficiency  of  the  building  or  space,  and  process  and  practices  undertaken  by  occupants  and  operators  

• Distribution  –  leakage  in  ductwork  systems,  unnecessary  resistance  within  distribution  systems,  inefficient  sizing  and  routing  of  distribution  lines  

• Controls  –  system  operating  to  design  intent  and  within  design  parameters.  

3.4.5. Heat  rejection  The  selection  of  the  method  of  heat  rejection  for  HVAC&R  systems  is  an  important  aspect  of  system  design  and  energy  use.  Options  for  heat  rejection  typically  include  wate-­‐cooled,  air-­‐cooled  or  a  hybrid  dry/wet  system.  

Page 53: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  53  of  162  

Historically,  many  of  the  larger  systems  used  evaporative  cooling,  with  water  cooling  towers  and  evaporative  condensers.  However,  in  an  attempt  to  minimise  exposure  to  microbial-­‐based  health  risks  (Legionella  sp.)  and  the  associated  costs  of  managing  those  risks,  there  has  been  a  shift  in  some  sectors  to  air-­‐cooled  systems.    

There  is  generally  an  energy  penalty  for  large  air-­‐cooled  plant  and  a  water  penalty  for  water-­‐cooled  plant,  although  this  can  be  reduced  or  optimised  by  using  hybrid  systems  and  dedicated  control  algorithms.  Alternative  heat-­‐rejection  sinks  include  ground,  lake,  ocean  and  river-­‐based  systems.  

The  micro-­‐climate  within  which  air-­‐cooled  equipment  operates  is  also  a  significant  issue.  Cool  roof  designs  and  shading  systems  can  reduce  the  operating  temperature  and  improve  the  heat  rejection  of  roof-­‐mounted  equipment.  

Water  cooling  towers  and  evaporative  systems  can  become  inefficient  energy  users  in  high-­‐humidity  and  high-­‐temperature  conditions  (when  wet  and  dry  bulb  temperatures  converge  and  the  energy  consumption  of  the  equipment  exceeds  the  heat  rejection  saving.  Cooling  towers  and  the  water  consumption  of  evaporative  cooling  devices  is  increasingly  being  considered  by  Australian  water  authorities  who  are  looking  for  ways  to  reduce  water  consumption.  The  rising  cost  of  water  consumption  also  needs  to  be  considered  by  designers.  

The  relationship  between  energy  and  water  consumption,  also  known  as  the  “water-­‐energy  nexus”’  is  highly  relevant  to  the  HVAC&R  industry.  While  energy  use  and  the  resulting  carbon  emissions  receive  much  of  the  focus,  water  is  also  a  key  input  in  many  systems  and  potable  water  also  requires  energy  for  its  collection  and  distribution.  

The  cost  of  water  and  energy  differ  considerably,  with  energy  being  more  expensive.  Therefore,  cost  should  not  be  the  sole  determining  factor  when  comparing  water-­‐cooled  and  air-­‐cooled  systems.  In  this  circumstance  a  small  energy  use  reduction  from  increased  water  use  will  outperform  a  large  decrease  in  water  use  with  a  small  increase  in  energy  use.    

This  may  be  appropriate  in  some  circumstances;  however,  it  is  important  to  remember  not  to  trade  one  problem  for  another.  Prioritising  energy  use  ahead  of  water  use  due  to  the  associated  carbon  emissions  will  negatively  impact  the  creation  of  holistic  HVAC  systems.  Both  water  and  energy  use  in  HVAC  systems  can  be  reduced  simultaneously,  through  recognising  the  water-­‐energy  nexus  that  exists  within  HVAC  systems  and  researching  and  innovating  accordingly.  

Furthermore,  using  more  energy  downstream  via  an  air-­‐cooled  system  indirectly  increases  the  need  for  water  cooling  at  the  (largely)  thermal  power  stations  producing  energy  upstream.  It  is  important  to  take  a  whole-­‐of-­‐system  approach  when  calculating  the  true  reductions  in  energy  and  water  via  the  installation  of  an  air-­‐cooled  system.  

3.4.6. Heat  recovery  A  related  issue  is  the  potential  of  heat  recovery,  or  making  use  of  the  waste  heat  from  systems.  Technologies  now  exist  that  can  turn  waste  heat  into  useful  energy,  including  cooling  energy.  Waste  heat  is  often  generated  by  motors  and  compressors,  electrical  equipment  and  industrial  processes,  

Page 54: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  54  of  162  

and  can  be  reused  on  site.  Heat  energy  is  rarely  transportable  over  long  distances  but  can  be  stored,  or  converted  to  other  types  of  energy.  

There  are  many  opportunities  for  recovery  and  reuse  of  waste  heat  in  HVAC&R,  particularly  in  large  commercial  and  industrial  refrigeration  systems.  The  HVAC&R  industry  needs  to  up-­‐skill  on  methods  and  technologies  to  ensure  that  this  energy  efficiency  opportunity  is  fully  realised.  

3.4.7. System  installation  The  quality  of  installation  of  the  HVAC&R  system  design  can  also  have  a  significant  impact  on  the  energy  use  and  emission  levels.  There  are  a  range  of  installation  errors  that  can  impact  on  the  system  performance.  An  example  of  poor  quality  installation  methods  impacting  system  performance  is  the  level  of  leakage  from  installed  ductwork.  Industry  reports  that  ductwork  leakage  rates  are  highly  variable  and  are  generally  unknown  until  after  installation  has  been  completed.  Retrofitting  solutions  can  be  complex  and  expensive.  Ductwork  leakage  is  reported  as  a  significant  issue  in  both  new  and  existing  buildings.  

New  standards  and  regulatory  requirements  are  being  introduced  to  address  unacceptable  levels  of  ductwork  leakage.  

3.4.8. Infiltration  and  building  sealing  Infiltration  is  the  uncontrolled  movement  of  outdoor  air  into  a  building,  exfiltration  is  the  uncontrolled  movement  of  internal  air  out  of  a  building.  The  extent  and  effects  of  infiltration  or  exfiltration  is  poorly  understood  or  evaluated  within  the  HVAC&R  industry  and  among  users  of  HVAC&R  services.  Therefore  attitudes  to  this  issue  vary  widely.  There  is  a  significant  variability  in  building  envelope  infiltration  rates  and  the  effects  of  these  rates  are  more  important  in  some  building  types  and  climates  than  others.  

There  is  a  lack  of  understanding  of  how  infiltration  rates  are  affected  by  internal  pressures  from  HVAC  systems  and  by  external  pressures  from  wind  and  solar  energy.  A  lack  of  understanding  generally  means  the  issues  will  be  largely  ignored  or  very  roughly  addressed  in  designs.  

The  way  that  building  infiltration  is  dealt  with  in  building  energy  modelling  and  building/system  performance  simulation  also  needs  to  be  better  addressed.  Different  models  or  protocols  allow  for  different  approaches  to  infiltration  air  and  there  needs  to  be  harmonisation  of  practices.  

3.5. Energy  efficiency  operational  issues  

3.5.1. Operation  We  can’t  talk  about  system  energy  efficiency  without  talking  about  operation.  Who  operates,  for  what  purpose,  and  to  what  environmental  and  safety  standards?  What  about  the  role  of  the  educated  facilities  manager  or  building  engineer?  Facilities  management  involves  the  management,  maintenance  and  operation  of  Australia’s  built  environments.  As  such,  facilities  management  professionals  play  a  central  role  and  responsibility  in  ensuring  HVAC&R  systems  are  maintained  and  operated  effectively.  

Page 55: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  55  of  162  

Occupant  behaviour  is  also  a  big  part  of  the  operation  picture.  Does  education  and  awareness  have  a  role  to  play?  Well  designed  and  installed  systems  are  often  not  operated  to  their  full  potential.  Occupants  should  understand  the  basic  intent  of  the  HVAC&R  system,  even  if  it  is  fully  automatically  controlled,  as  they  can  still  be  affected  by  occupant  behaviour.    

The  majority  of  operational  procedures  and  guidelines  have  traditionally  focused  on  comfort,  but  more  emphasis  on  energy  performance  of  HVAC&R  and  related  building  systems  is  needed  to  ensure  energy  use  is  minimised.  Designs  should  cover  correct  automatic  control,  sensors  and  set-­‐points,  so  the  main  energy  efficiency  aspect  of  operation  is  the  monitoring  and  maintenance  roles.    

Design  is  based  on  many  assumptionsthat  are  usually  made  long  before  a  system  is  ever  turned  on.  Commissioning  attempts  to  deliver  the  intent  of  a  system’s  design.  Providing  the  original  design  has  been  implemented  well  and  the  building  use  is  in  general  accordance  with  the  design,  then  continual  fine  tuning  is  where  the  operational  efficiencies  can  be  maximised.  

3.5.2. System  control  The  issue  of  system  control  is  often  inadequately  considered  in  designs  or  poorly  implemented  in  installation.  Poor  system  control  will  lead  to  poor  energy  efficiency  outcomes.  There  are  sophisticated  control  algorithms  available  enabling  system  feedback  and  control  reset  or  floating  control  points  as  opposed  to  fixed  set-­‐point  control.  

Control  and  operation  interfaces  between  equipment  and  end  users  are  also  very  significant.  A  lack  of  user  friendliness  or  flexibility  in  control  systems  can  undermine  correct  or  efficient  system  management.  

Optimal  supervisory  control  strategies  are  emerging  that  could  provide  the  key  to  significant  energy  savings  and  more  optimised  HVAC&R  systems.  However,  supervisory  control  strategies  are  often  complex,  hard  to  understand  and  even  harder  to  implement.  In  order  for  a  greater  uptake  to  occur  the  industry  needs  practical  guidelines  on  the  supervisory  control  strategies  that  are  available,  the  buildings/systems  they  are  best  suited  to,  and  examples  of  practical  implementations.  

3.5.3. System  documentation  A  constant  complaint  by  building  and  system  operators,  maintainers,  and  auditors  is  the  lack  of  system  documentation  available  for  existing  systems.  As  installed  drawings,  detailed  results  from  commissioning  tests,  design  intent  information,  design  calculations,  system  assets  lists  and  monitoring  of  system  key  performance  indicators  are  all  reported  to  be  poor  within  all  sectors.  

It  is  clear  that  there  is  a  failure  occurring  in  the  system  documentation  chain.  There  is  no  industry  standard  specifying  what  information  should  be  captured  during  the  lifecycle  of  a  building  or  system.  The  impediments  to  the  collection,  management  and  retention  of  this  information  have  not  been  identified  or  resolved.  For  instance  there  is  a  poor  understanding  of:  

• The  role  of  documentation  in  system/building  management  for  energy  efficiency  • What  information  is  needed  • What  is  currently  supplied  

Page 56: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  56  of  162  

• Who  should  be  responsible  • What  represents  a  minimum  standard  or  best  practice.  

Many  buildings  used  to  retain  (if  not  update)  building  information  but  many  managed  buildings  no  longer  keep  the  records  and  nor  do  the  designers  and  contractors.  Legislating  record  retention  by  the  building  owner  and  at  times  of  sale  could  go  a  long  way  to  addressing  this.  Chain  of  custody  for  documentation  and  a  log  book  for  the  building  lifecycle  were  projects  identified  under  the  HVAC  HESS  strategy.  

3.5.4. Monitoring  Energy  management  planning  is  now  a  key  facility  management  tool.  How  systems  are  designed  to  facilitate  these  processes  (usually  metering)  is  of  increasing  importance.  Metering,  sub-­‐metering  and  thermal  metering  are  major  considerations  for  performance  monitoring.  

Monitoring  a  system  is  the  first  step  toward  managing  a  system.  In  terms  of  refrigeration  and  air  conditioning  emissions,  the  most  important  aspects  to  monitor  are  energy  use,  water  use  and  refrigerant  leakage.  In  terms  of  predictive  and  preventative  maintenance  monitoring  there  are  a  range  of  system  key  performance  indicators  that  can  be  monitored  to  ensure  optimum  operation.  

Installing  sub-­‐metering  can  provide  real  time  energy  usage  information,  providing  operators  information  on  how  individual  plant  is  performing.  Linking  these  meters  to  an  automatic  control  and  management  system  enables  the  system  to  automatically  respond  to  energy  use.  

Effective  monitoring  is  fundamental  to  achieving  and  maintaining  energy  efficiency.  Methods  to  cost-­‐effectively  monitor  system  efficiency  should  be  made  available  to  end  user  operators.  In  many  cases  operators  don’t  have  the  technical  ability  to  understand  even  the  basics  of  system  performance  and  operation.    

Measuring,  monitoring  and  adjusting  performance  can  be  complex  and  costly,  and  often  seen  as  an  expense  rather  than  a  cost  saving.  Justifying  the  costs  to  operators  would  be  a  start,  then  simple  easily  accessed  “how  to”  guides  could  be  created  and  made  available.  

3.5.5. Maintenance  The  NCC  contains  mandatory  maintenance  requirements  for  buildings  and  AIRAH  DA19  and  the  HVAC  HESS  Operation  and  Maintenance  Guide  provide  good  practice  and  best-­‐practice  maintenance  information.  In  the  HVAC  field  the  primary  Standards  requiring  system  maintenance  include  AS  1851  (fire  and  smoke  control)  and  AS/NZS  3666  (microbial  control).  

In  the  refrigeration  field  the  Australia  and  New  Zealand  Refrigerant  Handling  Code  of  Practice  sets  a  standard  of  maintenance  for  fluorocarbon  refrigerant-­‐based  systems.  AS/NZS  1677.2:1998  contains  requirements  for  charging  and  discharging  refrigerants,  documentation  of  operating  and  maintenance  protocols  and  the  personal  protective  equipment  that  may  be  required.  It  does  not  cover  maintenance  procedures  per  se.  

Page 57: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  57  of  162  

The  standard  of  maintenance  applied  to  many  existing  air  conditioning  and  refrigeration  systems  is  reported  as  poor,  ranging  from  non-­‐existent  to  minimum  maintenance  regimes.  Maintenance  is  often  not  procured  correctly,  and  there  has  traditionally  been  a  poor  maintenance  culture  within  the  HVAC&R  industry.  

Maintenance  for  energy  efficiency  is  not  typically  practised.  It  is  also  not  a  primary  focus  in  the  delivery  of  TAFE  training.  The  HVAC  HESS  Maintenance  Guide  for  commercial  buildings  was  created  as  a  driver  for  improved  practices  in  this  area  within  the  commercial  building  sector.  Maintenance  for  low-­‐emissions  and  leak  minimisation  has  also  not  historically  been  a  high  priority  for  owners  or  operators.  

The  reasons  for  these  maintenance  failures  are  many,  and  include  reluctance  on  the  part  of  end  users  to  pay  the  cost  of  maintenance  and  a  lack  of  enforcement  of  government  regulations  regarding  regulated  maintenance  for  energy  efficiency  (e.g.  NCC  BCA  Section  I). The definition  of  intentional  refrigerant  leakage  may  be  unclear  to  owners  and  operators.  If  a  system  leaks  a  large  amount  of  refrigerant  over  time  this  can  be  discovered,  documented  and  mitigated.  The  starting  point  is  education  and  enforcement.  

Another  issue  is  that  the  access  and  facilities  provided  for  the  maintenance  of  systems  is  often  inadequate.  Examples  include  coils  and  fans  that  cannot  be  reached,  where  equipment  is  roof  mounted  with  no  safe  or  WHS  compliant  access,  or  where  internal  plant  is  installed  at  high  level  without  access  platforms,  and  where  no  lighting,  power  or  drainage  facilities  are  provided  for  maintenance  activities.  

The  design  trend  for  multiple  distributed  systems  as  opposed  to  central  systems  may  be  driven  by  a  desire  to  reduce  or  diversify  maintenance  responsibilities.  However,  the  effect  of  this  trend  on  overall  site  energy  efficiency  should  also  be  considered  because  a  move  from  central  to  distributed  systems  often  has  an  energy-­‐efficiency  or  energy-­‐use  impact.  

What  does  maintenance  for  energy  efficiency  look  like?  –  Example  activities  include  assessing  actual  refrigerant  charge  against  design  refrigerant  charge,  cleaning  heat-­‐transfer  surfaces,  review  of  the  installation  for  deficiencies,  sealing  of  the  building  envelope  and  system  ductwork,  review  of  design  assumptions  and  calculations  for  validity,  recalibration  of  controls,  logging,  and  ongoing  analysis  of  monitoring  information  (energy  use,  refrigerant  leakage  rate  etc).  Some  trials  undertaken  in  Australia  illustrate  that  a  professional  clean  of  fins  and  coils  of  a  two-­‐year-­‐old  split  system  in  a  commercial  property  improved  energy  efficiency  by  over  30%.  

What  does  maintenance  for  leakage  minimisation  look  like?  Example  activities  would  include  an  audit  and  review  system,  with  follow-­‐up  rectifications  and  the  set  up  of  an  ongoing  monitoring  system  (automatic  or  log  based).  What  should  be  done  to  raise  the  level  of  awareness  and  commitment  of  end  users  to  minimise  leakage?  It  should  be  possible  to  identify  sources  of  high-­‐  volume  leakage  via  contractor  logs.  Is  this  done?  Should  it  be  done,  and  if  so  by  whom?  Should  end  users  be  held  responsible?  

Page 58: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  58  of  162  

The  most  important  aspect  of  operation  is  maintenance  for  performance,  monitoring  the  degradation  over  time  and  ensuring  it  does  not  fall  below  an  industry  benchmark.  Maintenance  for  energy  efficiency  and  leak  minimisation  needs  to  be  better  defined.  The  cost-­‐benefit  outcomes  need  to  be  transparent  and  meaningful.  

3.5.6. Upgrade  or  replacement  The  cost  of  repair  and  maintenance  of  smaller  air  conditioners  using  high-­‐GWP  refrigerants  will  increase  and  it  may  be  more  cost  effective  and  energy  efficient  to  replace  than  repair  these  systems.  Costs  will  depend  on  the  age  and  current  condition  of  the  system  and  the  type  of  refrigerant  used.  

There  are  many  situations  where  retrofitting  makes  sense  but  the  process  requires  standards  and  training.  Even  the  term  “retrofitting”  means  different  things  to  different  people  in  different  sectors.  Retrofitting  offers  a  large  opportunity  for  energy  efficiency,  and  the  industry  needs  to  better  understand  when  and  where  (by  sector)  retrofitting  is  an  appropriate  response.    

Equipment  manufacturers  emphasise  that  because  equipment  is  designed  to  operate  using  a  specific  refrigerant,  such  equipment  should  not  be  converted  to  operate  on  a  different  refrigerant  unless  the  manufacturer  has  approved  the  conversion.  Unauthorised  retrofitting  to  a  different  refrigerant  will  void  equipment  warranties,  but  more  importantly  may  involve  serious  occupational  health  and  safety  risks  if  not  implemented  correctly.  In  many  cases  the  issues  relate  to  concerns  regarding  potential  liability  due  to  an  implied  approval  of  flammable  refrigerant  rather  than  technical  problems  with  the  equipment.  

There  are  quick  payback  times  available  for  energy-­‐efficiency  interventions  in  many  sectors.  While  this  includes  the  so-­‐called  “low  hanging  fruit”  it  also  includes  other  interventions  and  specific  proposals  need  to  be  evaluated  individually.    

In  the  energy  efficiency  intervention  market  SME  clients  are  reportedly  looking  for  a  simple  payback  period  of  two  to  three  years  although  this  can  be  extended  if  assistance  funding  is  available.  For  larger  projects  and  more  informed  clients  the  simple  payback  method  may  be  oversimplified  to  provide  realistic  advice.  A  true  ROI  calculation  based  on  NPV  or  IRR  needs  to  be  completed  to  provide  an  accurate  assessment  of  the  costs  and  benefits.  

The  availability  of  skilled  individuals  and  companies  who  can  audit  a  system,  identify  a  range  of  improvements,  cost  the  implementation  of  each  improvement,  quantify  the  resulting  energy  savings  and  calculate  the  payback  period  or  other  ROI  assessment  is  very  limited.  The  skill  sets  required  for  these  practices  require  both  training  and  practical  experience  with  systems  design  and  installation  as  well  as  an  ability  to  take  a  holistic  view  of  systems  and  sites.  

Replacement  of  old,  inefficient,  or  high-­‐GWP  systems  will  most  likely  be  based  on  a  financial  and  risk  analysis,  with  solutions  developed  suited  to  the  scale  and  risk  of  the  application.  Where  large  commercial  or  industrial  air  conditioning  and  refrigeration  applications  have  leak  detection  and  maintenance  regimes  in  place  and  are  reasonably  energy  efficient,  there  should  be  no  immediate  

Page 59: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  59  of  162  

need  to  upgrade  or  replace  the  system.  Individual  systems  will  need  to  be  assessed  and  the  risks  quantified.  

3.6. Low-­‐GWP  refrigerants  

3.6.1. What  are  low-­‐GWP  refrigerants  What  do  low-­‐GWP  refrigerants  look  like?  There  is  currently  no  internationally  or  nationally  accepted  definition  of  what  low-­‐GWP  means.  Natural  refrigerants  such  as  ammonia  (GWP  of  0)  and  hydrocarbon-­‐based  refrigerants  (GWP  of  3  to  20)  have  low-­‐GWP  numbers;  CO2  (the  GWP  reference)  is  also  used  as  a  refrigerant  and  has  a  GWP  of  1.  There  are  also  some  low  or  reduced-­‐GWP  synthetic  refrigerants  or  blends  of  refrigerants  available.  The  GWP  of  the  synthetic  refrigerants  controlled  under  the  Kyoto  Protocol  range  from  150  to  many  thousands.  

3.6.2. Barriers  to  low-­‐GWP  refrigerants  Low-­‐GWP  refrigerants  not  covered  by  the  ozone  protection  and  synthetic  greenhouse  gas  management  legislation  are  not  subject  to  an  equivalent  carbon  levy  and  so  are  provided  with  a  significant  commercial  advantage.  However,  there  are  many  barriers  that  remain  to  the  adoption  and  acceptance  of  low-­‐GWP  refrigerants  including:  

Concerns  about  safety  –  many  of  the  low  and  reduced-­‐GWP  refrigerants  have  safety  implications  including:  

• Ammonia  (toxicity  and  flammability)  • Hydrocarbons  (flammability)  • CO2  (operating  pressures)  • New-­‐generation  synthetics  (flammability  and  products  of  combustion)  • New  reduced-­‐GWP  synthetic  blends  (flammability  and  products  of  combustion).  

Both  the  trade  and  end  users  have  concerns  regarding  these  safety  issues,  which  need  to  be  fully  addressed  by  the  industry.  For  example,  the  safety  measures  that  have  been  taken  by  industry  in  order  to  raise  the  safety  record  of  ammonia  applications  to  high  levels  need  to  be  communicated  clearly  and  widely.  

Lack  of  industry  knowledge  –  the  industry  has  been  heavily  reliant  on  high-­‐GWP  synthetic  refrigerants  in  many  sectors  for  many  years.  Natural  refrigerants  and  new  low-­‐GWP  synthetics  contain  different  safety  and  handling  issues  or  risks  and  different  technical  application  protocols.  There  are  significant  knowledge  and  understanding  gaps  that  need  to  be  addressed,  as  well  as  changing  attitudes  and  raising  awareness  of  safe  methods  to  use  natural  refrigerants.  Just  knowing  where  to  go  (and  who  to  trust)  to  obtain  information  on  alternatives  can  prove  difficult,  the  information  may  already  be  available,  but  the  potential  client  or  contractor  is  often  unaware  of  its  existence.  There  is  a  lack  of  validation  of  natural  refrigerants  claims  and  a  lack  of  industry  capability  to  provide  such  validation.  

Page 60: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  60  of  162  

Commercial  barriers  –  refrigerant  supply  (for  commercial  and  domestic  HVAC&R)  has  for  decades  originated  from  synthetic  refrigerant  manufacturers.  As  with  any  industry  that  is  dominated  by  a  few  large  players,  the  supply  of  alternative  products  and  information  faces  numerous  practical  and  commercial  barriers,  which  can  slow  the  adoption  rate  of  alternative  solutions.  

Lack  of  consumer  knowledge  –  consumers  often  lack  appreciation  for  the  role  HVAC&R  equipment  plays  in  terms  of  total  energy  consumption  and  environmental  emissions.  Even  if  they  do  appreciate  these  factors  they  are  often  unaware  of  low-­‐GWP  and  energy-­‐efficient  alternatives.  

Work  health  and  safety  conflicts  –  there  is  a  potential  conflict  between  WHS  Acts  and  Regulations  and  the  application  of  some  natural  low-­‐GWP  refrigerant-­‐based  solutions.  

Lack  of  awareness  of  the  energy  efficiency  benefits  –  many  low-­‐GWP  refrigerants  provide  superior  operating  efficiency  (all  other  things  being  equal).  However,  this  is  not  well  understood  or  appreciated  within  the  industry  or  by  the  end  users  who  pay  the  system  operating  costs.  

Regulations  –  local  regulations  also  sometimes  exclude  low-­‐GWP  refrigerant-­‐based  solutions,  (e.g.  ammonia  based  systems  excluded  by  local  government  regulations).  

Capital  cost  –  many  low-­‐GWP  refrigerant-­‐based  solutions  are  more  expensive  from  a  capital  cost  perspective  when  compared  to  traditional  refrigeration  solutions.  Due  to  safety  risk  management  systems  employing  ammonia,  carbon  dioxide  and  hydrocarbons  are  typically  built  to  higher  quality  and  engineering  standards  than  fluorocarbon  based  systems.  Life-­‐cycle  costs  for  these  systems  are  often  lower  than  the  traditional  system  however  high  initial  capital  costs  are  a  barrier  to  adoption  particularly  for  non  owner  procurers  and  small  and  medium  enterprises.  

3.7. Refrigerant  containment  issues  It  is  clear  that  the  traditional  attitude  to  HFC  refrigerant  leakage  within  the  industry  and  by  end  users  is  changing  and  the  equivalent  carbon  levy  should  reinforce  this  culture  change.  Leak  management,  refrigerant  containment  and  refrigerant  handling  protocols  are  an  issue  across  all  refrigerant  types  and  all  sectors.  Preventable  leaks  pose  safety  and  environmental  risks  and  should  be  minimised  for  any  refrigerant.    

The  risks  associated  with  leaks  are  different  for  different  refrigerant  types  and  include  toxicity,  flammability,  asphyxiation,  pressure  rupture  and  environmental  degradation.  The  risks  arising  from  leaks  are  also  different  depending  on  the  category  of  the  occupancy,  (residential,  commercial,  institutional,  industrial)  and  the  context  in  which  the  leak  occurs,  public  or  private,  community  or  occupational,  voluntary  or  involuntary  occupants.  

However,  all  jurisdictions  and  all  sectors  agree  that  leaks  are  bad  –  bad  for  safety,  bad  for  the  environment  and  bad  for  energy  efficiency. Leaks  increase  operational  costs  to  industry.  Intentional  leakage  is  illegal  and  the  fact  that  this  could  include  known  and  predictable  leakage  needs  to  be  recognised  by  owners  and  operators.  

Page 61: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  61  of  162  

Operational  leakage  control  and  end-­‐of-­‐life  plant  leakage  are  fundamental  issues, minimisation  of  direct  refrigerant  emissions  is  essential.  Existing  regulations  are  in  place  and  this  may  simply  be  an  enforcement  issue.  The  increasing  costs  of  many  HFC  refrigerants  should  refocus  owner  and  operator  efforts  in  leak  minimisation  and  this  was  a  stated  intention  of  the  equivalent  carbon  levy.  

3.7.1. Construction  standards  Construction  standards  and  the  quality  of  installation  have  a  significant  impact  on  the  likelihood  of  refrigerant  leakage  from  any  given  system.  Current  standards  of  construction  are  based  on:  

• The  Australia  and  New  Zealand  Refrigerant  Handling  Code  of  Practice  –  which  applies  to  systems  containing  fluorocarbon  refrigerants  (parts  1  and  2).  

• The  Australian  Automotive  Code  of  Practice  –  applies  to  the  control  of  refrigerant  gases  during  manufacture,  installation,  servicing  or  de-­‐commissioning  of  motor  vehicle  air  conditioners.  

• AS/NZS  1677.2  –  covers  the  installation  of  pipework,  joint  standards,  vibration,  liquid  hammer  and  pressure  tests  from  a  safety  perspective.  

Skills,  training,  licensing  and  audit/enforcement  are  all  interlinked  with  the  construction  standard/installation  quality  issue.  No  minimum  or  best-­‐practice  standard  will  be  adhered  to  in  this  cost  driven  industry  if  the  training  is  not  based  on  the  standards  and  the  standards  are  not  enforced  in  the  industry.  

Many  of  the  recommended  design  and  construction  practices  for  leak  minimisation  are  recommendations  only  and  are  not  mandated.  For  example,  in  the  Australia  and  New  Zealand  Refrigerant  Handling  Code  of  Practice  Part  2,  welding,  brazing  or  another  permanent  hermetic  sealing  method  are  recommended  for  joining  refrigerant  pipelines  since  they  offer  increased  resistance  to  pressure,  temperature  and  vibration  stresses.  It  is  recommended  that  flared,  screwed  or  flanged  connections  should  be  avoided.  

Flared  connections,  flexible  hoses  and  Schraeder  valves  are  among  the  typical  components  that  industry  states  are  responsible  for  many  of  the  refrigerant  leaks  that  occur  in  many  systems  (http://www.environment.gov.au/atmosphere/ozone/sgg/equivalentcarbonprice/publications/pubs/refrigerant-­‐emissions.pdf).  

The  following  table  is  taken  from  the  AIRAH  fact  sheet  on  leak  minimisation,  outlining  the  strategies/changes  need  to  be  adopted  by  industry  to  prevent  refrigerant  leakage  

Designers  and  Installation  Contractors   Maintenance  Contractors  

Put  leak  reduction  as  a  high  priority  in  design  and  installation  activities  (minimise  joints  and  fittings)  

Put  leak  reduction  as  a  high  priority  in  maintenance  

Use  recognised  design  standards  and  Codes  of  Practice,  design  to  reduce  refrigerant  charge,  i.e.  

Create  refrigerant  log,  monitor  and  record  leakage,  report  to  system  owner,  set  maximum  leakage  target  

Page 62: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  62  of  162  

shorter  pipe  runs,  high  efficiency  coils,   levels  based  on  system  age/size,  aim  for  zero  leakage.  

Specify  and  install  capped  valves,  including  capped  Schrader  valves  (if  they  are  unavoidable)  

Ensure  technicians  know  how  to  leak  test  effectively  and  provide  appropriate  test  equipment.  

Protect  pipework  from  mechanical  damage  by  appropriate  routing  and  installation.  Use  correct  pressure  rating  for  pipes  and  fittings.  

Calibrate  and  maintain  the  necessary  leak  detection  and  repair  tools.  Routinely  review  systems  for  leaks  and  potential  leak  sites  and  advise  the  owner.  

Only  use  high  standard  welded  or  brazed  joints,  No  flared  connections.  

Help  system  owners  and  operators  understand  the  imperatives  for  leak  management  

Eliminate  vibration  in  the  system,  isolate  pipework  from  plant,  restrict  liquid  hammer,  support  valves  and  fittings  independently  

Be  prepared  to  advise  system  owners  on  potential  system  energy  efficiency  improvements  and  upgrades  including  associated  costs  and  savings.  

Install  leak  detection,  alarms  and  charge  retention  facilities  appropriate  for  the  refrigerant  charge  

Ensure  that  all  system  modifications  comply  with  the  latest  design  standards  and  Codes  of  Practice  

Protect  pipework,  condensers,  evaporators  and  other  system  components  from  corrosion  failure.  

Update  service  contracts  to  include  for  leak  detection  and  refrigerant  management  

Label  the  system  including  refrigerant  type  and  optimum  refrigerant  charge.  Document  “zero”  leakage  practices  in  O&M  manuals  

Be  prepared  to  advise  system  owners  on  low-­‐GWP  upgrade  options  for  existing  HCFC  systems  and  high-­‐GWP  HFC  systems.  

Fully  pressure  test  and  commission  the  refrigeration  system,  insist  on  vacuum  and  pressure  testing,  with  witnessed  sign-­‐off  sheets.  

Monitor  systems  for  leakage  and  energy  efficiency  and  report  results  to  the  owner.  Recommend  sub  meters  and  monitors  to  record  system  energy  usage  

Only  use  licensed  and  qualified  design,  installation,  operation,  maintenance  and  service  personnel  

3.7.2. Leak-­‐containment  technologies  There  are  technology-­‐based  solutions  to  improve  refrigerant  containment  or  reduce  refrigerant  leakage  volumes  in  the  event  of  a  catastrophic  system  rupture,  component  failure  or  other  leak  event.  Typical  solutions  include  solenoids  to  protect  likely  refrigerant  reservoirs  in  the  system,  and  automatic  pump  down  arrangements  where  refrigerant  is  moved  to  and  stored  in  a  designated  area  of  the  system  when  a  leakage  is  detected.  These  systems  can  provide  safety  and  environmental  benefits.  

Not  all  refrigerant  pump-­‐down  systems  work  in  the  same  way,  and  not  all  provide  the  results  that  were  originally  anticipated.  Some  commentators  believe  that  a  refrigerant  alarm  detector,  which  prompts  the  operator  to  call  a  qualified  service  technician  to  investigate,  may  be  more  effective  and  practical  in  a  commercial  environment  than  an  automatic  pump  down  system.  

The  engineering  solutions  to  leakage  need  to  be  specified,  assessed  and  validated,  by  refrigerant  type,  sector,  and  application.  

Page 63: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  63  of  162  

3.7.3. Leak-­‐management  practices  To  date,  responses  to  system  leaks  have  been  largely  reactive.  In  order  for  leak-­‐management  practices  to  improve  they  must  become  more  proactive.  There  is  a  real  need  to  have  owners  “buy  in”  to  good  practice/best-­‐practice  proactive  leak-­‐management  techniques.  The  equivalent  carbon  price  levied  on  high-­‐GWP  refrigerants  is  intended  to  provide  an  incentive  for  improved  leak  management  by  introducing  high  replacement  costs  for  high-­‐GWP  based  refrigerants.  

However,  owners  and  operators  and  service  personnel  all  need  to  understand  what  good  proactive  leak-­‐management  practices  really  mean.  

Leak-­‐management  practices  should  include:  

• Regular  audits  of  the  system  for  leaks  and  potential  leak  sites  –  there  are  no  standardised  procedures  or  guidelines  covering  system  audits  for  this  purpose.  

• Periodic  leak  testing  to  support  the  system  audit  approach  –  suitable  leak  testing  methodologies  exist  but  no  guidance  is  available  on  their  application;  i.e.  what  systems  should  be  tested  and  how  regularly,  what  leakage  test  is  applicable  to  which  application.  

• Maintenance  of  a  refrigerant  log  for  every  system  –  Contractors  are  required  to  maintain  refrigerant  logs  for  SGGs.  

• The  installation  of  permanent  leak  detection  on  some  systems  either  operating  alarms  for  manual  responses  or  activating  automatic  leak-­‐containment  strategies  built  into  the  system.  

System  design  and  installation  practices  mirroring  those  that  are  in  use  in  modern  ammonia  installations  have  the  capacity  to  reduce  annual  refrigerant  leakage  rates  to  <1%.  Adopting  these  design  and  installation  practices  for  high-­‐GWP  synthetic  refrigerants  would  have  the  capacity  to  reduce  average  leakage  rates  in  Australia  to  a  similar  level.  

Owners  will  only  absorb  these  costs  if  they  are  educated  about  the  benefits  of  leak  management  and  the  commercial  and  regulatory  risks  of  not  managing  these  issues.  

Some  sectors  would  need  special  provisions  and  revised  operational  practices  in  order  for  regular  leak  detection  to  be  carried  out  (e.g.  commercial  refrigeration  in  supermarkets).  

3.7.4. Automatic  leak  detection  AS/NZS  1677.2  covers  automatic  leak  detection,  but  typically  only  in  plant  rooms  and  special  machinery  rooms  for  safety  and  alarm  purposes.  Automatic  leak  detection  for  leak-­‐minimisation  purposes  is  not  commonly  practised  throughout  the  industry,  i.e.  it  is  a  best-­‐practice  approach  as  opposed  to  the  industry  norm.  With  the  advent  of  the  equivalent  carbon  price  for  high-­‐GWP  refrigerants  and  intended  market  shift  to  low-­‐GWP  refrigerants,  leak  detection  systems  are  more  likely  to  be  cost  effective  due  to  the  increased  value  of  the  refrigerant  and  for  risk  management  purposes.  

Note:  AS/NZS1677.2  is  not  a  mandatory  requirement  of  the  NCC.  

Page 64: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  64  of  162  

3.7.5. Charge  reduction  There  are  also  opportunities  to  reduce  refrigerant  charges  within  refrigeration  equipment.  These  opportunities  include  new  heat-­‐transfer  technologies,  including  mini-­‐channel  and  micro-­‐channel  applications.  

Some  systems  are  overcharged  by  10%  to  20%  to  improve  the  persistence  of  optimum  performance,  by  accounting  for  some  leakage.  The  intention  of  this  overcharging  is  that  system  performance  may  not  degrade  until  the  system  has  leaked  more  than  say  20  to  30%  of  charge.  After  that  point  further  leakage  rapidly  reduces  system  performance.  

3.7.6. Tracking  refrigerant  emissions  HVAC&R  users  report  that  quantifying  refrigerant  leakage  from  existing  air  conditioning  and  refrigeration  systems  is  problematic.  The  level  of  difficulty  to  measure  or  compile  this  data  by  far  exceeds  the  relative  level  of  emissions  (typically  around  1%).  Estimating  is  one  approach;  measurement  is  another.  Owners  and  operators  typically  do  not  have  the  skills  or  tools  to  accurately  measure  direct  refrigerant  losses.  

End  users  who  are  required  to  track  their  GHG  emissions  would  appreciate  a  standardised  spreadsheet  listing  common  air  conditioning  units,  the  type  of  refrigerant  used,  the  refrigerant  charge  they  hold,  and  their  typical  leakage  rate.  This  information  is  not  currently  included  under  the  NGER  scheme.  

3.8. Product  stewardship  An  associated  issue  with  leak  management  is  the  whole  question  of  product  stewardship  within  the  HVAC&R  industry  supply  chain. Better  control  of  direct  refrigerant  emissions  is  also  required  at  plant  end  of  life.  Where  real  product  stewardship  applies,  refrigerant  emission  avoidance  is  enforced.  

Product stewardship is also not just about end of life. The concept of extended producer responsibility is for whole of life as well as end of life. Product stewardship is through life product management aiming for better environmental and commercial outcomes during production, operation, and eventual disposal.

3.8.1. Refrigerants  Refrigerant  recovery  –  Recovery  of  CFC,  HCFC  and  HFC  is  a  legislated  requirement,  knowingly  venting  these  refrigerants  to  the  atmosphere  is  environmentally  damaging  and  an  offence  under  the  Ozone  Protection  and  Synthetic  Greenhouse  Gas  Management  Act  1989  (the  Act).  The  Ozone  Protection  and  Synthetic  Greenhouse  Gas  Management  Regulations  1995  specify  that  the  refrigerant  recovery  process  must  be  undertaken  by  a  licensed  person  and  the  recovered  refrigerant  can  only  be  recovered,  stored  and  disposed  of  by  an  authorised  business.  

Refrigerant  reuse/recycling  –  With  the  advent  of  restrictions  on  CFC  and  HCFC  import  and  the  imposition  of  the  equivalent  carbon  price  on  high-­‐GWP  HFC  refrigerants  the  reuse  of  refrigerants  is  becoming  more  widespread.  In  many  instance  a  recovered  refrigerant  can  be  recycled  for  reuse  in  another  system.  Rising  prices  should  be  providing  a  significant  incentive  for  this  practice.  However  

Page 65: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  65  of  162  

the  recycled  refrigerant  needs  to  be  free  from  contamination,  i.e.  removal  of  oil,  acid,  water  and  particles  from  the  recovered  refrigerant.  

AHRI  700  –  2012  Specification  for  fluorocarbon  refrigerants  is  the  accepted  global  standard  for  refrigerant  purity.  The  Australian  Code  of  Practice  requires  all  fluorocarbon  refrigerant  sold  to  meet  this  standard,  whether  it  is  newly  manufactured,  recycled,  or  reclaimed.  

Refrigerant  Reclaim  Australia  (RRA)  encourages  contractors  to  recover,  recycle  and  reuse  refrigerant  of  acceptable  quality,  and  to  return  all  unwanted  and  contaminated  refrigerant  for  safe  disposal.  It  provides  rebates  for  collected  ozone  depleting  and  synthetic  greenhouse  gas  refrigerants  and  operates  a  national  collection  service,  which  transports  recovered  refrigerants  to  a  central,  secure  storage  facility  where  they  are  processed  or  destroyed  using  cost  effective,  environmentally  safe  technology.  

Flammable  refrigerants  –  The  advent  of  flammable  refrigerants,  currently  A3  hydrocarbons  but  in  the  future  A2L  refrigerants  such  HFO1234yf  and  HFC32,  will  present  major  challenges  for  the  recovery  infrastructure  currently  in  operation.  

Note:  ASHRAE  standards  have  included  an  optional  2L  subclass  to  the  existing  Class  2  flammability  classification,  signifying  class  2  refrigerants  with  a  burning  velocity  less  than  or  equal  to  10  cm/s.  

Refrigerant  containing  product  at  end-­‐of-­‐life  –  Australia  has  a  world-­‐class  refrigerant  product  stewardship  program  developed  and  managed  by  RRA.  The  recovery  rate  achieved  in  Australia  is  exceeded  only  in  Japan.  There,  the  higher  rate  of  recovery  achieved  is  due  to  legislation  that  requires  the  end-­‐of-­‐life  recovery  and  proper  recycling  of  consumer  durables  such  as  refrigerators,  air  conditioners,  and  motor  vehicles.  These  product  stewardship  programs  are  focused  on  the  equipment  and  the  refrigerant  is  recovered  in  the  process  of  recycling  those  products.  Similar  programs  exist  in  Europe.  

When  air  conditioners  and  refrigeration  appliances  are  retired  at  the  end  of  life  there  needs  to  be  an  incentive  for  (someone  to)  extract  the  refrigerant  contained  within  it  either  before  or  at  the  point  of  recycling.  Refrigerant  emissions  at  end-­‐of-­‐lifeproduct  recycling  stations  (vehicles,  refrigerators,  air  conditioners)  are  not  currently  enforced  in  Australia,  but  they  should  be  to  be  consistent  with  Government  legislation.  

Refrigerant  destruction  –  Refrigerant  that  can  be  reused  or  recycled  should  never  be  destroyed.  Where  refrigerant  is  too  contaminated  for  reuse  it  must  be  safely  destroyed.  Current  destruction  system  capacity  is  sufficient  to  meet  current  and  medium  term  needs  in  Australia.  

The  Australian  government  is  currently  investigating  and  developing  a  Destruction  of  Waste  ODS  and  SGG  Program.  This  is  being  undertaken  in  consultation  with  industry  and  key  stakeholder  groups.  A  consultation  paper  has  been  issued  seeking  comment  on  how  a  government-­‐funded  destruction  incentives  program  might  operate.  Comments  provided  in  response  to  the  paper  will  inform  development  of  the  program.  

http://www.environment.gov.au/atmosphere/ozone/destruction-­‐program/index.html  

Page 66: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  66  of  162  

3.8.2. Plant  and  equipment  Product  stewardship  is  not  just  about  refrigerants,  there  are  other  materials  in  HVAC&R  equipment  that  need  to  be  addressed  in  addition  to  refrigerants,  including  blowing  agents  and  toxic  electronic  components.  

Decommissioned  HVAC&R  equipment  also  contains  valuable  metals  that  can  be  recovered  and  resold  so  there  is  a  business  opportunity  here.  

3.9. Research,  development,  innovation  and  commercialisation  Research,  development  and  innovation  are  all  linked  to  the  higher  education  question.  Good  higher  education  relies  on  a  strong  research  and  development  capacity.  Excellence  in  research  and  development  relies  on  a  strong  education  framework.  Innovation  and  commercialisation  relies  on  both.  All  of  these  areas  are  critical  in  any  transition  to  a  low-­‐emission  HVAC&R  industry.  

Current  research  and  development  activity  within  the  Australian  HVAC&R  field  is  low  although  there  are  some  notable  exceptions.  

3.10. Workforce  development  Workforce  development  generally  covers  the  various  steps  in  the  development  and  delivery  of  a  workforce  that  can  deliver  a  required  outcome.  This  can  be  considered  either  nationally,  across  an  industry  sector  or  within  an  individual  enterprise.  Workforce  development  can  be  characterised  by  the  following  steps:  

1. Business  planning  –  what  are  the  goals  for  the  business?  

2. Workforce  definition  –  what  sort  of  workforce  is  needed  to  meet  those  goals?  

3. Workforce  analysis  –  what  are  the  skills  of  the  workforce  defined  in  2?  

4. Current  skills  held  –  what  are  the  skills  held  by  current  workers?  

5. Identification  of  skills  gaps  –  subtract  4  from  3  

6. Fillings  identified  skills  gaps  –  by  up-­‐skilling  existing  workers,  recruiting  existing  skilled  workers,  or  up-­‐skilling  recruited  workers.  

For  individual  enterprises  and  industry  sectors  careful  implementation  of  this  process  is  needed  to  adequately  and  appropriately  respond  to  workforce  changes.  The  effective  transition  of  any  enterprise  to  low-­‐emission  s  practices  and  technologies  must  involve  consideration  of  the  requisite  skills  and  training  requirements.  

The  National  Workforce  Development  Fund  (NWDF)  is  an  innovative,  industry-­‐driven  model  that  enables  businesses  to  co-­‐invest  with  Government  to  train,  reskill  and  upskill  workers  in  areas  of  skills  needs.  The  NWDF  is  overseen  by  the  Australian  Workforce  and  Productivity  Agency.  

Page 67: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  67  of  162  

3.11. Skills  and  training  issues  Any  effective  transition  must  give  consideration  to  the  requisite  training  requirements.  The  best  way  to  develop  the  necessary  contemporary  competencies  and  to  crystallise,  in  a  permanent  way,  the  sorts  of  behavioural  change  needed,  is  through  focused  well  delivered  training.  

A  common  theme  or  issue,  with  deep  ranging  impacts,  raised  in  all  sectors  of  the  HVAC&R  industry  is  the  lack  of  education  and  training  on  a  range  of  HVAC&R  related  issues.  The  Australian  Government  and  community  are  asking  the  industry  to  deliver  on  emissions  reduction  at  a  time  when  the  industry  is  experiencing  significant  skills  shortages  at  trade  and  tertiary  level  and  when  funding  to  the  TAFE/VET  sector  is  being  reduced  

The  extent  of  education  and  training  programs  in  Australia  targeting  energy  efficiency  and  direct  and  indirect  emissions  reduction  is  poor  but  improving.  New  competencies  have  been  developed  (or  are  in  development)  but  these  is  a  considerable  ‘lag’  period  as  new  training  resources  are  developed  to  match  the  competencies,  courses  are  updated  and  trainees  pass  through  those  courses.  It  is  clear  that  if  the  industry  is  to  make  a  transition  to  low-­‐emission  practices  and  technologies  there  needs  to  be  considerable  up  skilling  of  personnel  at  all  levels  and  in  all  sectors.  Even  with  better  training  courses  for  technical  service  providers  the  incentive  is  often  not  there  as  clients  are  more  often  cost  driven.  Education  activities  need  to  also  be  targeted  outside  the  industry  including  owners,  operators,  end  users  and  occupants.  

The  retention  of  trained  and  knowledgeable  staff  within  the  industry  is  also  a  challenge.  

A  common  complaint  among  stakeholders  is  the  lacking  Australian  industry  skill  set  leading  to:  

• A  general  lack  of  high-­‐quality  design  engineering  in  the  HVAC&R  industry  driven  by  a  lack  of  engineers.  Are  there  enough  degree  qualified  HVAC&R  engineers  in  Australia?  

• Poorly  maintained  plant  and  equipment  (and  consequential  poor  energy  performance  and  excessive  refrigerant  leakage).  Is  maintenance  sufficiently  focused  on  in  training?  

• Equipment  set-­‐point  drift  –  temperature  set-­‐point  or  other  control  modifications  (e.g.  time  schedule  changes)  are  occasionally  the  “corrective”  actions  of  choice  whilst  intrinsic  system  problems  remain  unaddressed,  sometimes  for  years.  Is  this  attributable  to  a  quick  fix  culture  within  the  industry  or  is  this  a  symptom  of  inadequately  trained  technicians  or  apprentices?  

• Skill  set  shortage  –  there  may  simply  be  not  enough  adequately  trained  technicians  in  the  country.  Wages  within  this  sector  are  higher  than  average  (especially  so  for  refrigeration  mechanics)  yet  this  has  failed  to  increase  the  numbers  of  apprentices  entering  the  market.  

The  refrigeration  and  air  conditioning  industry  is  on  the  preferential  skill  set  list  for  migrants.  

A  common  complaint  among  technical  service  providers  is  the  lack  of  enthusiasm  by  end  users  and  clients  to  pay  for  energy  efficiency  services.  If  the  majority  of  stakeholders  are  not  asking  for  skilled  people  or  are  not  prepared  to  pay  for  the  service,  then  the  industry  cannot  afford  to  train  and  develop  such  skills.  Stakeholders  need  to  demand  quality  and  monitor  the  performance  of  service  

Page 68: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  68  of  162  

providers  and  be  prepared  to  pay  for  good  service  which  will  be  cost  beneficial  in  the  long  term.  The  key  here  is  for  service  providers  to  prove  the  benefits  of  the  service  provided.  

The  mandatory  status  of  maintenance  is  also  an  issue.  For  cooling  towers  and  evaporative  condensers  there  are  requirements  to  prove  that  the  system  is  being  maintained  by  a  professional  licensed  service  provider,  but  this  is  not  considered  necessary  for  large  complex  air  conditioning  and  refrigeration  systems  that  can  potentially  use  20-­‐30%  too  much  energy  if  they  are  poorly  maintained.  

The  number  of  apprentices  is  governed  by  the  number  of  employers  willing  to  employ  and  train  them.  Generally  Government  will  fund  apprentice  training,  especially  in  skills  shortage  areas,  so  the  problem  may  not  be  the  funding  of  training  providers  but  rather  the  lack  of  industry/employer  commitment  to  employ  and  train  sufficient  apprentices.  

The  biggest  issue  for  tertiary  training  providers  is  numbers  of  “students”.  

3.11.1. University  training  Currently in Australia there is no undergraduate engineering degree course dedicated to building services/HVAC or refrigeration. Currently engineers undertake electives in the topic under mechanical engineering degrees or learn their sector-specific skills on-the-job. Engineering degree programs in “Building Services” and “Refrigeration “are common in other countries and the Australian HVAC&R industry should engage with university level education providers on the possibility of, and process for, developing undergraduate degrees in these areas. Note: In Western Australia, Polytechnic West has an application for an associate Degree in Engineering (HVAC) which will focus on design.

3.11.2. VET/TAFE  trade  training  Nationally  recognised  vocational  education  and  training,  provided  by  both  public  (TAFE)  and  private  Registered  Training  Organisations,  is  based  on  the  delivery  and  assessment  of  national  Training  Package  qualifications  and  competency  standard  units.  The  national  training  system  is  intended  to  provide  Australians  with  the  skills  needed  to  enter  the  workforce,  re-­‐enter  the  workforce,  retrain  for  a  new  job,  upgrade  skills  for  an  existing  job,  and  to  learn  throughout  their  lives.  The  system  is  based  on  an  Australian  Qualifications  Framework  policy,  a  series  of  industry  developed  Training  Packages,  the  Australian  Skills  Quality  Authority  as  a  regulator  and  the  National  Skills  Standards  Council  (NSSC)  and  Industry  Skills  Councils  who  develop  and  endorse  training  packages.  

There  are  range  of  certificate  and  diploma  courses  aimed  at  the  refrigeration  and  air  conditioning  technician  and  apprentice.  Some  of  these  include:  

• Certificate  II  in  Split  Air  Conditioning  and  Heat  Pump  systems  • Certificate  II,  III  in  Appliance  Servicing  • Certificate  III  in  Electrotechnology  Refrigeration  and  Air  Conditioning  • Certificate  III  in  Engineering  –  Mechanical  Trade  (Refrigeration/Air  Conditioning)  • Certificate  IV  in  Air  Conditioning  and  Refrigeration  Servicing  • Certificate  IV  in  Refrigeration  and  Air  Conditioning  Systems  • Certificate  IV  in  Air  Conditioning  Systems  Energy  Management  and  control  • Diploma  of  Refrigeration  Air  Conditioning  Engineering  

Page 69: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  69  of  162  

• Diploma  in  Mechanical  Services  Drafting  • Advanced  Diploma  of  Refrigeration  And  Air  Conditioning  Engineering  

Having  course  competencies  outlined  at  the  VET  level  does  not  mean  that  there  are  corresponding  detailed  training  technical  materials  (e.g.  trainer/learner  guides)  available  to  assist  course  delivery.  Training  materials  generally  have  to  be  developed  by  the  training  provider  based  on  the  specified  course  competencies,  which  does  not  incentivise  the  delivery  of  these  new  courses.  Resources  need  to  be  allocated  to  review  existing  courses  and  ensure  the  development  of  new  energy  efficiency  based  training  materials  and  subsidised  training  for  both  new  industry  entrants  and  existing  workers.  

These  qualifications  are  not  widely  delivered  by  Registered  Training  Organisations  to  the  HVAC&R  industry  due  to  relatively  low  student  numbers  and  the  lack  of:  

• State/territory  government  funding  for  post  trade  training  delivery.  • Suitably  qualified  and  experienced  teachers  and  trainers.  • Specialised  plant  and  equipment  required.  

However,  these  barriers  could  be  overcome  by:  • Increasing  industry  awareness  of  these  courses.  • Working  with  State/Territory  Industry  Training  Advisory  Boards  and  Training  Authorities  to  

ensure  they  are  placed  on  Skills  Shortage  training  lists  for  delivery  funding.  • Applying  for  National  Workforce  Development  Funds  for  the  delivery  of  the  courses.  • Utilising  industry  experts  as  teachers  or  guests  lecturers  for  specialised  areas.  • Utilising  specialised  plant  and  equipment  in  the  workplace.  

There  is  a  real  tension  between  practical  solutions-­‐based  training  and  in-­‐depth  fundamentals  education  and  a  perception  in  industry  that  many  trade  courses  gloss  over  the  fundamentals.  There  have  been  inadequacies  reported  in  the  VET/TAFE  technician  training  program  in  addressing  emissions  mitigation.  The  focus  tends  to  be  on  fault  finding  with  a  lack  of  focus  on  maintenance  for  energy  efficiency  or  leak  minimisation.  VET/TAFE  courses  need  to  address  energy  efficiency  and  system  optimisation  as  core  training  issues,  not  just  as  elective  subjects.  

Apprenticeships  are  a  combination  of  on  and  off  the  job  training.  All  employers  who  take  on  trade  apprentices  have  to  agree  to  and  sign  a  training  plan  for  the  apprentice.  Their  part  of  the  agreement  is  to  ensure  that  the  apprentice  is  provided  with  the  breadth  and  depth  of  on-­‐the  job  training  to  match  the  competencies  in  the  training  plan.  In  the  end  it  is  the  employer  that  has  to  sign  off  on  the  final  competency  of  the  apprentice  at  the  end  of  the  training  contract  period.  Generally  there  appears  to  be  some  detachment  between  employers,  i.e.  “Industry”  and  the  people  who  put  together  the  training  and  advise  the  ISCs.  

The  apprenticeship  system  will  play  a  key  role  in  providing  the  future  workforce  for  energy  efficiency  and  low-­‐emission  HVAC&R.  This  means  there  is  a  need  for  the  industry  to  identify  ways  to  encourage  greater  take  up  of  training  and  jobs  in  the  sector,  for  instance  in  the  provision  of  career  advice  and  engagement  with  schools  to  promote  apprenticeships  and  other  relevant  education  and  training  opportunities.  

Page 70: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  70  of  162  

Certificate  III  course  curriculums  are  now  full  and  any  additional  units  or  competencies  would  need  to  be  met  by  Certificate  IV  and  above  courses.  

There  are  few  incentives,  in  most  states,  to  encourage  tradespeople  to  undertake  post-­‐trade  or  additional  training.  Generally  employers  don’t  provide  sufficient  incentives  for  their  employees  to  make  this  commitment.  Subsidised  training  delivery  can  assist  take-­‐up.  For  government  funded  training  the  fee  to  the  RTO  is  based  on  the  student  curriculum  hours  and  any  other  additional  fees  and  charges  that  the  RTO  requires.  A  typical  funding  ratio  for  a  Certificate  IV  would  be  approx  16  students,  if  numbers  are  less  then  generally  the  RTO  is  losing  money  or  has  to  reduce  contact  hours  or  engage  more  E  Learning.  

The  Plumbing  Industry  Climate  Action  Centre  (PICAC)  provides  a  range  of  HVAC&R  and  energy  efficiency  training  to  apprentices  and  practitioners.  Most  courses  are  offered  at  no  cost  or  minimal  cost  with  support  from  Government  and  industry.  Examples  of  current  courses  offered  include  “Energy  Efficient  HVAC  Systems”  and  “Geothermal  Heat  Pump  Systems”.  

Any  occupational  licensing  scheme  should  require  training  updates  at  mandatory  regular  intervals.  

3.11.3. Continuing  professional  development/skills  maintenance  Training  never  ends  and  it  is  the  responsibility  of  technical  service  providers  (and  industry  organisations)  at  all  levels  and  in  all  sectors  to  maintain  their  skills  and  update  their  knowledge  as  changes  impact  the  industry.  

Future  workforce  development  needs  are  likely  to  be  impacted  by  emerging  technologies.  It  cannot  be  assumed  that  standard  training  will  address  these  emerging  needs.  Industry  should  engage  with  the   relevant   Industry   Skills   Councils   and   Higher   Education   Providers   to   ensure   training   packages,  courses   and   resources   comprehensively   address   energy   efficiency   and   HVAC&R   optimisation   and  respond   to   changing   industry   requirements.   Skills   sets   can   also   be   important   mechanisms   for  adapting  and  updating  the  skills  and  knowledge  of  those  people  who  gained  qualifications  prior  to  new  technologies  being  introduced.  

The  attitude  to,  and  extent  of,  continuing  professional  development  (CPD)  training  within  the  HVAC&R  industry  is  very  poor.  Licensing  requirements  do  not  require  contractors  or  technicians  to  perform  any  activities  in  skills  maintenance.  Training  providers  who  operate  in  the  CPD  area  report  a  low  demand  for  ongoing  professional  development,  with  the  industry  more  interested  in  compliance  training  than  professional  development  training.  

The  lack  of  a  need  for  professional  registration  to  practice  building  services  engineering  design  and  industrial  and  commercial  refrigeration  engineering  design  is  a  major  issue  with  regards  to  setting  standards  and  raising  the  bar  in  this  area.  

3.11.4. Design  training  There  are  very  few  formal  training  courses  that  cover  the  design  of  refrigeration  and  air  conditioning  systems  either  in  the  residential,  commercial,  industrial  or  transport  sectors.  Where  can  industry  

Page 71: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  71  of  162  

practitioners  learn  the  correct  application  of  AS/NZS  1677.2  and  other  industry  standards,  learn  how  to  design  safe  NH3  based  refrigeration  systems  or  CO2  based  transcritical  refrigeration  systems,  and  learn  how  to  optimise  existing  systems  for  energy  efficiency?  

Trade  courses  include  some  basic  heat  load  and  design  information.  

Limited  design  training  is  provided  by  product  manufacturers  and  suppliers,  and  what  training  is  available  typically  focuses  on  the  manufacturers’  own  products  and  services.  Design  training  and  mentoring  is  also  provided  in-­‐house  by  design  and  contracting  companies.  

3.11.5. Energy  efficiency  training  Due  to  the  various  skills  shortages  within  the  HVAC&R  industry  and  the  migration  of  professionals  and  technicians  from  peripheral  skill  areas  there  are  many  variable  perspectives  as  to  what  HVAC&R  energy  efficiency  actually  is.  Much  of  the  intellectual  property  in  this  area  is  held  by  a  few  of  the  industry  leaders,  large  consultancies  and  contractors  and  specialist  experts  engaged  in  various  sectors.  

Due  to  the  cost  driven  and  highly  competitive  nature  of  the  industry,  firms  and  individuals  are  often  unwilling  to  share  their  intellectual  property,  which  represents  a  market  advantage  to  them  or  their  businesses.  In  addition  many  of  the  government  sponsored  innovation  and  research  projects  tend  to  licence  or  lock  up  intellectual  property  through  commercialisation  ventures.  If  energy  efficiency  knowledge  is  not  transferring  well  in  industry  there  is  a  case  for  a  training  intervention  to  help  distribute  energy  efficiency  knowledge  and  skills  more  widely  in  the  industry.  A  key  question  to  consider  is  where  the  trainers  with  suitable  practical  and  theoretical  knowledge  are  going  to  come  from?  

3.11.6. Installation  training  Many  industry  commentators  believe  that  installation  methods  and  standards  are  not  covered  adequately  by  TAFE  courses.  

3.11.7. Commissioning  training  Many  industry  commentators  believe  that  commissioning  methods  and  standards  are  not  covered  adequately  by  most  TAFE  courses?    

• RMIT  have  a  Cert  IV  Testing,  adjusting  and  balancing  (TAB)  course  • Polytechnic  West  have  a  Cert  IV  in  HVAC  Commissioning,  based  on  national  training  package  • AMCA  deliver  NEBB  Training  on  their  commissioning  standard/procedures  

There  is  a  perceived  lack  of  understanding  of  commissioning  in  industry  and  a  lack  of  verification  of  AIRAH/ASHRAE/CIBSE  process  for  commissioning,  tuning,  handover,  and  post-­‐occupancy  evaluation.  

There  is  not  enough  education  on  the  commissioning  of  energy  efficient  technologies.  Even  basic  principles  of  commissioning  heat  recovery  systems,  free  cooling  cycles  and  inverter  controlled  motors  are  not  fully  understood  by  parts  of  the  industry,  particularly  on  small-­‐medium  projects.  

Page 72: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  72  of  162  

3.11.8. Operational  training  A  big  issue  in  system  efficiency  and  the  extent  of  emissions  is  how  the  equipment  and  systems  are  operated.  Systems  are  often  operated  incorrectly  or  outside  of  their  design  conditions.  There  appears  to  be  very  little  owner/operator  training  provided  or  demanded.  

There  is  a  disconnect  in  the  knowledge  transfer  between  system  designers/builders  and  system  operators.  Knowledge  should  be  transferred  as  part  of  the  commissioning/handover  process  however  this  important  step  is  rarely  well  implemented.  There  is  also  a  disconnect  in  the  feedback  loop  between  system  users/building  occupants  and  system  designers/builders.  Often  designers  are  unaware  of  the  successes  and  failures  of  their  designs  from  an  occupant/user  perspective.  

Occupant  expectations  of  HVAC  are  often  oversold.  Inefficient  occupant  behaviour,  a  tendency  to  quick  fix  in  reaction  to  occupant  complaints  and  excessive  overuse  of  systems  are  all  significant  issues  in  many  sectors.  

The  National  Framework  for  Energy  efficiency  (NFEE)  training  and  skills  committee  funded  the  development  of  a  post  graduate  course  “Energy  Efficiency  for  Facilities  Managers”  in  collaboration  with  industry  (including  FMA  and  AIRAH).  

Commercial  Refrigeration  requires  a  similar  effort  and  NSW  OEH  is  currently  developing  a  training  course  for  this  purpose.  

There  is  a  question  of  the  extent  to  which  owners  of  systems  are  prepared  to  pay  for  training.  

3.11.9. Maintenance  training  Many  industry  commentators  believe  that  predictive,  preventative  and  scheduled  maintenance  methods  and  standards  are  not  covered  adequately  by  existing  TAFE/VET  courses.  

3.11.10. Decommissioning  All  refrigerant  should  be  removed  from  plant  when  it  is  decommissioned,  does  this  actually  happen?  

Many  industry  commentators  believe  that  decommissioning  methods  and  standards  are  not  covered  adequately  by  TAFE  courses    

3.11.11. Current  developments  in  skills  and  training  There  is  considerable  current  activity  within  the  skills  and  training  sectors  including:  

• The  development  by  relevant  ISCs  (CPSISC,  MSA  and  E-­‐Oz)  of  Training  Package  content  and  resources  to  underpin  delivery  of  energy  efficiency  training  to  industry.  This  work  is  currently  underway,  funded  through  the  Clean  Energy  and  other  skills  package.  

• Work  through  the  National  Energy  Efficiency  Skills  Initiative  (NEESI)  under  the  National  Strategy  on  Energy  Efficiency  (NSEE)  to  develop  targeted  training  products  and  qualifications  for  HVAC  and  facilities  managers.  

• The  Australian  government  programs  include  industry’s  Workforce  Development  and  Training;  the  objective  being  to  “Invest  in  training,  apprenticeships  and  adult  language,  literacy  and  numeracy  to  ensure  Australia  has  the  skills  it  needs  to  support  a  growing  

Page 73: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  73  of  162  

economy”  and  the  ‘Building  Australia’s  Future  Workforce’  Package;  the  objective  being  to  “provide  a  new  approach  to  deliver  the  skilled  workers  the  Australian  economy  needs”.  These  provide  funds  for  the  "SkillsConnect"  suite  of  programs,  which  is  a  service  designed  to  help  link  eligible  Australian  enterprises  with  a  range  of  skills  and  workforce  development  programs  and  funding.  The  Funds  under  the  ‘SkillsConnect’  suite  include  the  following  programs:    

National  Workforce  Development  Fund  (NWDF)     Workplace  English  Language  &  Literacy  Fund  (WELL)   Investing  In  Experience  Fund  (IIE)  

• The  Australian  Sustainable  Built  Environment  Council  (ASBEC)  is  planning  to  examine  broader  skills,  standards  and  risks  issues  regarding  sustainability  and  the  built  environment  through  its  Skills  Statement  work.  

• The  Department  of  Industry,  Innovation,  Science,  Research  and  Tertiary  Education  (DIISRTE)  administers  a  range  of  programs  e.g.  the  Clean  Technology  Investment  Program  through  which  enterprises  may  be  able  to  access  funding  to  support  for  low-­‐carbon  and  energy  efficient  HVAC  projects,  including  training  aspects.  

• A  Senate  enquiry  into  skill  shortages  in  engineering  is  also  underway.  • The  NSW  OEH  is  developing  training  for  HVAC  practitioners  and  end  users  and  a  number  of  

other  courses  are  under  development  in  2013  (including  Cogeneration  and  Commercial  Refrigeration).  

• Training materials from NSW OEH Energy Efficiency Training Program are available online. More detailed information is available from http://www.environment.nsw.gov.au/sustainbus/greenskills/eneftraining.htm    

3.12. Licensing  and  registration  

3.12.1. Technician  licensing  Skills  and  training  is  linked  with  licensing  and  enforcement  and  all  aspects  need  to  be  considered  together.  The  skills  and  training  need  to  form  the  basis  of  any  occupational  licensing  system.  The  licensing  system  also  needs  to  be  enforced  to  ensure  compliance,  so  that  operators  or  individuals  who  do  not  follow  the  minimum  industry  standards  can  have  their  licences  revoked.  

There  is  a  national  licensing  scheme  for  fluorocarbon  refrigerants  (the  ARCtick  scheme)  administered  by  the  Australian  Refrigeration  Council  (ARC).  There  are  also  state  based  licensing  systems  in  some  states  focused  towards  consumer  protection  and  health  and  safety.  

A  national  licensing  scheme  for  refrigeration  and  air  conditioning  practitioners  is  currently  being  examined  by  the  Council  of  Australian  Governments  (COAG)  through  the  National  Occupational  Licensing  Authority  (NOLA).  One  option  is  that  all  individuals  handling  any  refrigerant  or  working  on  refrigeration  and  air  conditioning  equipment  are  required  to  hold  an  ARCtick  licence.  Many  industry  stakeholders  have  made  submissions  on  the  Consultation  Regulatory  Impact  Statement  covering  the  proposed  national  occupational  licensing  system  for  the  refrigeration  and  air  conditioning  industry.  It  is  expected  that  the  relationship  between  the  national  occupational  licensing  system  and  the  ARCtick  licence  will  be  a  matter  for  future  consideration  by  NOLA,  the  ARC  and  COAG.  

Page 74: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  74  of  162  

3.12.2. Professional  registration  Currently  there  is  no  requirement  for  building  services  engineers  to  be  registered  to  practise  in  Australia.  There  are  requirements  for  design  certification  in  some  states.  The  same  situation  applies  to  practitioners  involved  in  industrial  and  commercial  refrigeration  engineering  design.  

Page 75: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  75  of  162  

4. The  major  sectors  

4.1. Section  Introduction  This  section  of  the  discussion  paper  looks  at  the  issues  from  an  ‘Industry  sector”  perspective.  The  major  sectors  considered  are  commercial,  residential  and  vehicle  air  conditioning,  commercial  and  industrial  refrigeration  and  refrigerated  transport.  

4.2. Commercial  air  conditioning  Commercial  air  conditioning  is  one  of  the  sectors  that  has  been  most  active  in  the  energy  efficiency  area.  Rating  tools  such  as  NABERS  and  Green  Star  along  with  Australian  Government  legislation/regulation  such  as  the  National  Strategy  on  Energy  Efficiency  (NSEE  COAG  2010)  raising  minimum  building  energy  standards  in  the  National  Construction  Code  (NCC)  and  the  commercial  building  disclosure  (CBD)  program  mandating  disclosure  of  energy  performance  for  some  buildings  have  driven  improvements  in  the  field.  

4.2.1. Energy  intensity  Building  design  and  thermal  characteristics  –  Covered  by  NCC  rules  including  BCA  Section  J,  the  section  specifically  addressing  the  performance  and  deemed  to  satisfy  requirements  for  building  energy  efficiency.  Industry  has  questioned  the  validity  and  practicality  of  some  of  the  BCA  Section  J  rules.  There  are  serious  questions  within  the  sector  about  industry  compliance,  enforcement  and  general  understanding  of  the  requirements  of  NCC  BCA  Section  J.  Several  states  and  territories  have  not  enacted  BCA  section  J  requirements  beyond  the  2009  edition.  NCC  covers  minimum  practice  and  not  necessarily  best  practice.  

There  have  been  some  studies  that  suggest  the  past  cost-­‐benefit  analyses  of  building  regulations  have  been  conservative  and  others  that  say  they  were  excessive.  There  have  been  several  calls  from  industry  for  the  outcomes  of  existing  stringency  measures  to  be  measured  and  validated  before  increasing  stringency  again.  The  legislative  arrangements  of  the  NCC/BCA  Section  J  lack  corresponding  state  legislation  to  assess  or  validate  outcomes  of  the  stringency  measures.  

Alternative  approaches  such  as  setting  maximum  deemed  to  satisfy  building  architectural  cooling  and  heating  loads  for  different  building  classes  may  need  to  be  investigated.  

Building  air  leakage  rates  –  Testing  of  commercial  buildings  in  Australia  has  reportedly  demonstrated  that  many  existing  and  often  new  buildings  are  very  leaky  with  the  consequence  of  oversized  and  overused  HVAC  systems.  Although  some  deemed  to  satisfy  requirements  for  building  sealing  are  included  in  NCC  Section  J  there  is  no  standard  set  for  air  tightness  of  commercial  buildings  hence  design  and  construction  techniques  do  not  focus  on  this  area  

Benchmarks  –  Whole-­‐building  energy  performance  benchmarks  are  provided  by  rating  tools  such  as  NABERS  Energy.  There  is  no  specific  benchmark  or  rating  tool  for  commercial  HVAC  although  these  systems  make  up  a  significant  proportion  of  building  energy  use.  Internal  heat  generation,  air  leakage,  occupancy  etc  can  be  very  variable,  and  there  can  be  very  complex  interactions  between  

Page 76: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  76  of  162  

HVAC  and  other  systems.  Improving  the  capacity  to  monitor  and  diagnose  HVAC  systems  is  certainly  worth  doing,  and  benchmarking  systems  against  real  time  modelling  can  help  to  identify  deviations  from  expected  performance.  A  separate  HVAC  rating  system  within  a  building  could  help  the  industry  target  energy  efficiency  and  emissions  specific  to  these  systems.  

Demand  management  –  methods,  processes  and  tools  are  available  for  applying  demand  management  strategies  to  commercial  building  HVAC&R.  

Energy  source  –  Non-­‐grid  alternatives  are  available  to  the  commercial  building  area  and  these  have  been  introduced  to  the  market  in  response  to  rising  energy  prices,  building  energy  rating  and  disclosure  and  green  building  rating  tools.  Technologies  include  solar  PV,  wind,  co-­‐generation  and  tri-­‐generation,  biomass  boilers  and  many  others  that  can  be  integrated  into  the  building.  

System  size  –  Oversizing  of  components  and  systems  in  commercial  HVAC  is  reported  to  be  widespread.  As  climate  change  occurs  systems  may  be  designed  for  a  warmer  world  which  will  tend  to  increase  system  size  further.  

One  sizing  issue  relates  to  the  accuracy  of  load  estimate  calculations  used  to  determine  sizing.  A  lot  of  load  estimation/calculation  tools  seem  to  be  based  on  historic  rather  than  current  data.  Sizing  is  also  related  to  building  design  issues,  ensuring  no  spaces  have  excessive  cooling  loads,  as  well  as  overall  building  energy  requirements.  Given  that  many  buildings  are  much  leakier  than  expected,  and  that  substitutions  of  equipment  and  other  issues  can  happen  during  construction,  oversizing  is  often  seen  as  a  ‘back-­‐up’  measure  for  failings  in  other  areas.  

Design  strategies  –  Systems  need  to  be  designed  with  adequate  zoning  and  for  future  flexibility.  The  adoption  of  design  strategies  so  that  systems  can  have  their  capacity  upgraded  capacity,  e.g.  modular  HVAC  for  data  centres,  would  reduce  the  pressure  to  design  for  any  future  event.  

Installation  –  It  is  important  that  systems  are  installed  in  accordance  with  their  design  intent  however  installation  also  needs  to  take  into  account  any  changes  to  the  building  occupation  or  use.  

Commissioning  –  Is  a  critical  part  of  the  design  and  installation  process  that  has  traditionally  been  poorly  implemented.  

Systems  –  Efficiency  of  components  versus  whole  system  efficiency.  Also,  given  that  for  most  of  the  time  systems  are  running  nowhere  near  full  load,  design  for  efficient  part  and  variable  load  performance  is  very  important.  

4.2.2. Energy  efficiency  New  buildings:  Covered  by  building  regulations  for  new  buildings  (NCC  BCA  Volume  1)  and  being  addressed  in  other  forums  (Building  framework).  Do  regulations  need  to  incorporate  peak  demand  requirements  as  well  as  energy  performance  requirements?  Do  NCC  regulations  need  to  address  improvements  to  existing  buildings?  

Page 77: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  77  of  162  

New  systems  in  existing  buildings:  Retrofit  practices  targeting  NABERS  ratings,  energy  efficiency  opportunities  (EEO),  environmental  upgrade  agreements  (EUAs),  are  all  designed  to  address  new  systems  in  existing  buildings.  

Existing  systems  in  existing  buildings:  programs  such  as  CBD  and  tenants  seeking  particular  NABERS  Energy  ratings  drive  performance  improvement  in  some  building  grades/classes,  but  not  all.  Retrocommissioning  (commissioning  an  existing  building  that  has  not  been  properly  commissioned  previously)  and  building  tuning  are  pathways  to  improving  building  energy  efficiency  that  are  not  capital  intensive.  Most  buildings,  even  those  recently  constructed  and  correctly  commissioned,  can  benefit  from  building  tuning  for  energy  efficiency.  

Calculating  cool  –  A  proposed  system  for  rating  the  performance  of  building  HVAC&R.  

4.2.3. Refrigerant  leakage  Leakage  rates  are  significant;  5  to  9%  for  chillers  and  direct  expansion  systems  is  the  nominated  typical  rate  in  the  AIRAH  TEWI  Guide.  There  is  capacity  to  improve  leakage  minimisation  through  improved  industry  practices.  

The  most  common  cause  of  refrigerant  leakage  is  a  lack  of  regular  system  maintenance  and  leak  testing.  Likely  points  for  refrigerant  leaks  are  at  the  flared,  flanged,  brazed  or  soldered  joints  in  refrigerant  lines  and  any  changes  in  cross  section  or  direction  of  these  lines.  Joints  can  be  damaged  by  system  vibration.  The  shaft  seal  on  open  drive  compressors,  the  service  valves  and  pipe  or  component  corrosion  are  another  common  leakage  source  as  are  the  pipe  bends  and  connections  associated  with  entry  to  evaporators  and  condensers.  Many  of  these  issues  can  be  addressed  during  design  for  new/replacement  systems,  during  maintenance  for  existing  systems  and  in  connection  with  system  energy  efficiency  upgrades.  

4.2.4. Maintenance  Mandatory  HVAC&R  maintenance  in  commercial  buildings  is  outlined  in  NCC  V1  Section  I  and  includes  essential  services  (essential  safety  measures)  and  systems  containing  microbial  hazards.  NCC  V1  Section  I  also  contains  mandatory  maintenance  requirements  for  energy  efficiency  of  the  plant.  There  are  many  state  and  territory  variations  to  these  requirements  and  they  are  deleted  in  some  jurisdictions.  

All  other  maintenance  is  optional  and  left  to  the  discretion  of  the  owner/operator/service  provider.  

HVAC  HESS  program  has  produced  a  guide  to  best-­‐practice  maintenance  in  the  commercial  building  sector. Guide  to  best-­‐practice  maintenance  and  operation  of  HVAC  systems  for  energy  efficiency    

There  is  reluctance  on  the  part  of  many  owners  and  operators  to  pay  for  system  maintenance.  

4.2.5. Building  tuning,  recommissioning  and  retrocommissioning  Buildings  often  do  not  perform  as  well  in  practice  as  anticipated  during  the  design  stage.  There  are  many  reasons  for  this,  including  improper  equipment  selection  and  installation  errors,  lack  of  

Page 78: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  78  of  162  

rigorous  commissioning,  documentation  and  proper  maintenance,  and  poor  feedback  on  ongoing  performance,  including  energy  performance.  There  is  a  growing  recognition  of  the  need  to  formalise  building  commissioning  procedures  to  ensure  that  building  systems  operate  as  intended.  

There  are  many  guidelines  and  procedures  for  commissioning  and  the  majority  of  the  activity  is  for  new  buildings,  AIRAH,  ASHRAE,  and  CIBSE  have  produced  commissioning  guides.  

Recommissioning  is  a  term  used  to  perform  commissioning  procedures  for  existing  buildings  periodically  during  their  lifetime  as  a  follow-­‐up  to  the  initial  commissioning.  Retrocommissioning  refers  to  a  set  of  procedures,  like  an  extensive  tune-­‐up,  that  are  applied  to  buildings  that  have  been  changed  or  have  never  been  commissioned.  Ongoing  commissioning  refers  to  a  more  automated  commissioning  process  that  is  performed  and  evaluated  on  a  frequent  or  continuous  basis.  

It  is  well  recognised  within  the  industry  that  one  of  the  low  cost  first  steps  in  energy  efficiency  is  to  make  sure  that  the  systems  that  are  installed  are  working  “as  best  they  can”.  In  order  for  this  to  happen  some  form  of  ongoing  system/building  tuning  or  recommissioning  is  required.  This  activity  is  not  widely  practised  in  the  commercial  building  sector  and,  although  there  are  some  drivers  for  it,  tuning  and  recommissioning  is  often  seen  as  a  labour  intensive  process.  Each  building  needs  to  be  examined  as  a  whole  system,  i.e.  not  just  look  at  one  piece  of  equipment,  or  one  aspect  of  the  system.  Building  design  and  construction,  then  system  design,  installation,  controls,  commissioning,  building  operation  and  maintenance  results  in  most  buildings  being,  to  a  lesser  or  greater  extent,  unique.  In  general  the  more  complex  the  building  systems,  the  greater  the  level  of  commissioning  rigor  needed.  

Some  of  the  barriers  to  existing  building  tuning  include  the  adequacy  of  the  HVAC&R  and  building  control  systems,  the  arrangements  for  metering  (water,  power,  and  thermal  energy),  the  lack  of  awareness  of  the  potential  benefits,  and  the  willingness  of  owners  and  operators  to  pay  for  the  services.  It  is  much  harder  to  tune  a  building  if  the  measures  aren’t  in  place  to  actually  “see”  what  is  going  on.  

The  experience  from  the  NSW  OEH  Energy  Saver  program  shows  that  by  using  building  tuning  and  recommissioning  practices,  buildings  can  save  5–10%  of  their  utility  cost  and  simple  payback  is  less  than  2  years,  with  some  less  than  1  year.  

4.2.6. Fault  detection  and  diagnostics  (FDD)  Typically  the  fault  detection  and  diagnostics  required  in  assessing  existing  systems  are  labour  and  skills  intensive  and  this  may  be  one  of  the  main  barriers  to  energy-­‐efficiency  interventions  in  existing  systems.  In  many  cases  existing  digital  control  systems  have  the  capability  to  be  utilised  for  fault  detection  and  system  diagnosis  (for  example  by  recording  and  trending  system  performance  indicators)  but  are  not  utilised  in  that  way.  

Commercially  available  tools  for  automated  FDD  and  ongoing  commissioning  are  beginning  to  emerge  that  could  greatly  assist  in  achieving  low-­‐cost  and  persistent  energy  savings  from  existing  building  stock.  These  tools  attempt  to  identify  when  faults  occur  in  real-­‐time,  diagnose  their  cause  

Page 79: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  79  of  162  

and,  if  they  are  of  sufficient  severity,  communicate  the  fault  to  the  facilities  managers  or  maintenance  personnel.  More  advanced  systems  are  able  to  automatically  correct  or  adjust  for  faults  in  some  circumstances.  This  can  reduce  energy  wastage,  eliminate  scheduled  maintenance  costs,  reduce  diagnostic  labour,  reduce  downtime  and  increase  equipment  life.  

These  systems,  where  applied,  need  to  address  any  systemic  controls  and  commissioning  issues  as  well  as  address  routine  failures  of  equipment  and  components.  Automatic  systems  also  need  to  be  cost  effective,  reliable  and  easily  understood  and  operated  by  end  users.  

4.3. Residential  air  conditioning  

4.3.1. Energy  intensity  Building  design  and  thermal  characteristics  –  Covered  by  NCC  (BCA  Volume  2)  rules  and  software  modelling  systems  such  as  the  Nationwide  House  Energy  Rating  Scheme  (NatHERS)  and  CSIRO’S  AccuRate  programs  and  state  systems  such  as  the  Building  Sustainability  Index  (BASIX)  in  NSW.  The  present  residential  building  regulations  in  cooler  climates  are  heavily  weighted  towards  winter  performance.  Separate  requirements  for  summer  and  winter  would  focus  more  attention  on  each  mode  of  operation.  Peak  demand  is  a  significant  issue  that  is  not  currently  addressed  by  residential  building  regulations.  With  evidence  of  a  growing  trend  in  residential  air  conditioning  demand  regulations  should  address  peak  demand  as  well  as  energy  performance  requirements.  

Residential  building  regulations  only  address  the  building  fabric.  You  can  have  a  6  star  house  and  install  a  1  star  gas  heating  system,  or  an  under/over-­‐sized  ducted  air  conditioning  system,  even  though  the  air  conditioning  appliance  would  comply  with  MEPS.  Regulations  do  not  address  the  volume  of  space  that  potentially  needs  to  be  conditioned.  

There  have  been  some  studies  that  suggest  the  past  cost-­‐benefit  analyses  of  building  regulations  have  been  conservative  and  others  that  say  they  were  excessive.  There  have  been  several  calls  from  industry  for  the  outcomes  of  existing  stringency  measures  to  be  measured  and  validated  before  increasing  stringency  again.  

Building  air  leakage  rates  –  Excessive  leakage  leads  to  increased  infiltration/exfiltration  which  increases  heat  and  cooling  loads  and  leads  to  oversized  and  overused  heating  and  cooling  systems.  Residential  design  and  construction  techniques  do  not  focus  on  this  area  and  measured  leakage  rates  of  Australian  residential  building  stock  is  reported  to  be  high.  There  is  no  standard  for  the  testing  and  measurement  or  rating  of  air  tightness  in  residential  buildings  in  Australia.  

Demand  management  –  Australian  Standard  AS  4755.3.1  is  available  for  residential  air  conditioners  covering  demand  response  enabling  devices  (DRED).  Control  interfacing  is  still  reported  to  be  difficult  with  microprocessor  based  inverter  compressors  and  units  with  limited  OEM  controls.  

AS/NZS  4755.3.1  specifies  a  demand  response  interface  on  an  air  conditioner  and  specifies  a  set  of  operational  instructions  for  that  air  conditioner.  It  defines  a  ‘one-­‐way’  signalling  interface  that  enables  an  air  conditioner  to  enter  into  a  pre-­‐defined  demand  response  mode.  A  related  standard,  

Page 80: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  80  of  162  

namely  AS/NZS  4755.1  specifies  requirements  for  DREDs.  These  standards  do  not  currently  specify  a  more  feature-­‐rich  ‘two-­‐way’  signalling  system  that  could  facilitate  common  information  exchange  between  electricity  service  providers,  aggregators,  and  end  users;  enabling  even  greater  energy  savings  and  demand  reductions  through  the  signalling  of  feedback  and  reporting.  

Consumption  management  –  At  an  individual  level  consumers  are  driven  by  a  desire  to  control  their  energy  bills  of  which  HVAC&R  forms  a  significant  component.  However,  very  few  consumers  have  access  to  real  time  information  about  their  consumption  profile  and  therefore  lack  the  signals  to  help  them  moderate  their  consumption.  

Energy  source  –  Very  few  residential  air  conditioning  systems  would  be  powered  by  non-­‐grid  supplied  electricity.  Standalone  solar  PV  would  typically  not  produce  sufficient  power  to  run  a  typical  or  traditional  residential  air  conditioning  system.  However,  in  very  energy  efficient  houses  it  may  be  possible  to  power  very  efficient  HVAC  systems  by  standalone  PV.  

System  selection  –  The  sales  model  for  residential  air  conditioners  is  increasingly  from  “big  box”  whitegoods  and  hardware  retailers  where  the  residential  customer  selects  on  price  rather  than  selecting  a  unit  based  on  capacity  and  required  heat  load.  Under  this  sales  model  it  is  difficult  to  control  the  quality  of  installation.  

System  size  –  Oversizing  of  components  and  systems  is  reported  to  be  widespread,  inverter  technology  is  masking  some  of  the  issues.  Retail  sales  people  have  a  strong  incentive  to  oversize,  to  make  bigger  profits,  while  designers  prefer  to  err  on  the  ‘high’  side  so  they  don’t  get  complaints  on  hot  days.  

Installation  –  Highly  variable  standards  of  installation  and  commissioning  are  reported  in  the  residential  air  conditioning  sector.  These  impact  the  energy  efficiency  and  the  direct  emissions  associated  with  this  sector.  The  market  is  highly  competitive  with  low  margins  and  systems  are  often  installed  by  poorly  qualified  people  or  by  non  refrigeration  or  air  conditioning  trades.  

4.3.2. Energy  efficiency  New  buildings:  The  energy  efficiency  of  new  buildings  is  covered  by  building  regulations  (NCC  BCA  Volume  2)  and  is  being  addressed  in  many  other  forums.  From  an  HVAC  perspective  the  main  opportunities  are  highly  efficient  and  flexible  air  conditioning  systems,  low-­‐GWP  refrigerant-­‐based  systems  and  the  opportunities  for  heat  recovery  in  home  ventilation  systems.  

In  the  residential  market  the  impact  of  improved  EER  under  MEPS  has  been  useful  but  takes  significant  time  to  take  effect,  turnover  of  already  installed  stock  can  take  many  years.  The  penetration  of  residential  air  conditioning  has  increased  as  well  as  the  saturation  (i.e.  the  number  of  air  conditioning  units  within  a  home).  Even  though  they  may  be  becoming  more  energy  efficient,  the  potential  for  increased  household  energy  use  and  the  negative  impacts  on  peak  demand  are  not  being  mitigated.  

Page 81: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  81  of  162  

Non-­‐compliance  with  the  energy  efficiency  provisions  of  ductwork  remains  a  challenge.  The  updated  AS4254.1–2012,  which  requires  labelling  of  flexible  ductwork,  will  put  a  stronger  burden  of  proof  on  manufacturers  and  contractors.  

New  systems  in  existing  buildings:  Retrofit  practices  targeting  the  potential  upgrade  of  existing  air  conditioning  systems  that  are  low  efficiency  and  potentially  environmentally  degrading  shows  significant  potential  for  delivering  energy  efficiency  improvement  in  existing  buildings.  Homeowner  concerns  over  electricity  price  rises  may  create  an  environment  where  there  may  be  some  incentive  for  upgrade  activity.  The  replacement  of  old  inefficient  and  environmentally  damaging  equipment  needs  to  be  incentivised.  

Note:  Some  state-­‐based  incentive  schemes  (e.g.  Victorian  VEET  scheme)  incentivise  retrofits  of  more  energy  efficient  heating  and  cooling  appliances.  

Existing  systems  in  existing  buildings:  Maintenance  is  the  key  to  making  existing  systems  in  existing  buildings  work  as  well  as  they  are  able.  Maintenance  in  the  residential  sector  is  often  only  carried  out  when  a  system  fails.  This  is  a  broad  issue  affecting  gas  heaters  and  other  equipment  in  the  residential  sector.  It  may  be  that  an  integrated  maintenance  package  is  needed,  and  that  it  be  offered  with  incentives  etc.  

One  disadvantage  of  the  re-­‐scaling  of  the  residential  air  conditioning  energy  label  is  that  many  people  with  pre-­‐2010  units  think  their  air  conditioners  are  as  efficient  as  new  ones,  when  in  reality  they  are  much  worse.  Publicity  and  education  is  needed.  

4.3.3. Operation  Most  owners  are  totally  unaware  of  the  best  way  to  operate  their  systems  for  reduced  energy  costs.  

There  needs  to  be  a  greater  focus  on  consumer  information,  on  the  correct  operation  of  residential  air  conditioning  and  evaporative  air  cooling  equipment.  

4.3.4. Refrigerant  leakage  Leaks  have  direct  and  indirect  emission  effects.  Leakage  if  left  unaddressed  will  significantly  affect  the  energy  efficiency  of  the  system.  This  is  a  significant  problem  in  the  residential  sector  because  financial  payback  from  leak  minimisation  activities  is  poor.  The  problem  is  compounded  by  the  poor  installation  standards  applied  in  the  residential  sector.  Electrical  submetering  for  air  conditioning  is  rare  in  this  sector  so  any  rise  in  energy  demand  from  inefficient  air  conditioning  is  difficult  for  users  to  identify.  

4.3.5. Maintenance  A  very  poor  level  of  maintenance  is  applied  in  this  sector  and  maintenance  for  energy  efficiency  is  rarely  practised.  Service  calls  are  generally  instigated  on  system  failure  only.  

Page 82: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  82  of  162  

4.3.6. Low-­‐GWP  refrigerants  There  is  a  strong  push  nationally  and  internationally  to  expand  the  use  of  hydrocarbon  based  air  conditioning  systems  for  the  residential  sector.  These  refrigerants  are  promoted  as  a  low-­‐GWP  and  energy  efficient  alternative.  Synthetic  refrigerants  with  an  A2L  designation  are  also  being  promoted  as  an  option  for  this  sector.  Both  of  these  options  introduce  risks  associated  with  refrigerant  flammability.  

The  current  charge  limit  of  AS/NZS  1677.2  essentially  limits  the  application  of  HC  refrigerants  to  1.5kg  charge  (1  kg  below  ground)  as  long  as  the  practical  limit  (kg/m3  room  volume)  is  not  exceeded.  Systems  containing  0.25kg  of  refrigerant  or  less  have  no  restrictions  apart  from  addressing  any  local  sources  of  ignition.  The  A2L  designation  is  not  included  within  AS/NZS  1677.1:1998  so  AS/NZS  1677.2:1998  does  not  contain  charge  limits  specific  to  that  designation,  the  A2  limits  apply.  Charge  limits  and  refrigerant  designations  may  be  revised  in  the  current  review  of  the  AS/NZS  1677  series  of  standards.  

4.3.7. Training  and  licensing  Technicians  need  to  be  prepared  for  the  next  generation  of  air  conditioner  refrigerants  including  dealing  with  any  hazards.  Currently  there  are  no  requirements  for  technicians  to  undertake  any  skills  maintenance  or  CPD  activities  or  have  a  licence  to  handle  natural  refrigerants,  with  the  exception  of  Queensland  which  has  requirements  in  place  for  hydrocarbon  refrigerant  use.  

4.3.8. Strata  title  residential  buildings  Strata  title  residential  buildings  dominate  in  cities  and  dense  urban  developments.  NSW  OEH  Energy  Saving  program  partnering  with  City  of  Sydney  has  audited  30  strata  title  buildings  in  Sydney  recently.  The  program  found:  

• The  biggest  energy  consumption  is  ventilation,  such  as  toilet  exhaust  system,  car  park  ventilation  and  other  ventilation  for  common  areas.  

• Other  top  end  energy  uses  are  heating  (domestic  hot  water,  heating  for  air  conditioning,  heating  for  swimming  pool),  lifts,  and  swimming  pools.  Energy  consumption  can  be  significant  for  these  uses  if  not  correctly  managed.  

• There  isn’t  any  benchmark  available  at  the  moment.  • Building  performance  varies  and  it  doesn’t  link  to  the  building  age.  • The  most  dominant  central  air  conditioning  system  is  condensing  water  cooling  system,  

cooling  using  cooled  water  from  cooling  tower.  • Building  management  and  control  systems  are  seldom  installed,  which  means  that  

equipment  is  individually  controlled.  • Energy  savings  in  HVAC  area  can  be  10%  of  the  building  energy  consumption.  • Alternative  energy  sources  include  solar  PV  and  co-­‐generation.  

4.4. Vehicle  air  conditioning  Vehicle  air  conditioning  is  a  very  broad  sector  that  operates  across  a  range  of  industries,  a  range  of  applications  and  a  range  of  geographical  locations.  The  significant  sectors  include:  

Page 83: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  83  of  162  

• Vehicle  air  conditioning/auto  electrical  (passenger  cars)  • Transport  air  conditioning  (trains  and  buses)  • Mining  and  agriculture  (air  conditioning  in  trucks,  tractors  and  shovels)  

These  sectors  are  significantly  different  and  require  separate  technical  skill  sets  depending  on  the  application  and  location.  Differing  geographical  locations  introduce  differing  challenges  for  system  technicians.  The  industry  is  characterised  by  large  numbers  of  small  independent  operators  which  makes  education,  training,  compliance  and  enforcement  activities  particularly  difficult.  

The  issues  around  vehicle  air  conditioning  in  new  vehicles  are  largely  driven  by  international  and  original  equipment  manufacturer  (OEM)  design  standards.  Vehicle  manufacturers  prefer  a  single  global  refrigerant  solution  that  satisfies  regulatory  authorities  in  all  global  markets.  Most  vehicles  use  R134a  although  due  to  new  European  regulations  a  new  synthetic  refrigerant  HFO  1234yf  is  being  commercialised.  The  development  of  HFO  1234yf  was  originally  a  collaborative  effort  between  refrigerant  manufacturers  and  vehicle  manufacturers.  However,  a  disagreement  regarding  product  licensing  and  patent  arrangements  and  concerns  regarding  the  flammability  and  product  of  combustion  of  the  refrigerant  has  caused  some  vehicle  manufacturers  to  move  away  from  the  product.  As  a  consequence,  HFO  1234yf  may  not  be  adopted  by  all  vehicle  manufacturers.  

Hydrocarbon  based  refrigerants  can  be  used  in  vehicle  air  conditioning  and,  while  currently  only  provided  by  one  OEM,  this  refrigerant  is  also  marketed  as  a  retrofit  option  in  Australia.  Both  in  Australia  and  internationally  the  majority  of  OEMs  do  not  support  this  practice  on  safety  grounds.  Safety  and  efficiency  issues  are  debated  and  refuted  by  both  sides  of  the  industry  and  no  consensus  has  been  achieved.  Industry  estimates  that  hydrocarbons  are  used  in  about  10%  of  cars  in  Australia.  Hydrocarbon  suppliers  claim  it  delivers  increased  efficiency  and  it  is  available  as  a  retrofit  option  in  all  states.  Hydrocarbons  are  likely  to  continue  as  a  popular  retrofit  option  on  a  price  basis  and  because  of  increased  efficiency  claims.  Energy  efficiency  claims  have  not  been  validated.  

Hydrocarbons  are  not  endorsed  or  used  by  many  vehicle  or  vehicle  HVAC  component  manufacturers  who  are  concerned  that  hydrocarbons  in  vehicle  air  conditioning  may  compromise  the  safety,  performance,  reliability,  longevity,  serviceability  and  warranty  of  their  vehicle  system.  The  use  and  users  of  hydrocarbons  are  not  regulated  in  most  states  and  are  not  controlled  by  any  standards  or  code  of  practice.  It  is  claimed  that  the  unregulated  use  of  hydrocarbons  is  causing  needless  and  irresponsible  contamination  of  refrigerants  in  both  vehicle  air  conditioning  systems  and  recovered  refrigerant  stocks.  

The  reported  efficiencies  of  hydrocarbon  use  do  not  take  into  account  the  “whole  of  life”  effect  of  hydrocarbon  use  in  a  system  not  designed  for  its  use,  and  have  not  been  verified  by  any  vehicle  manufacturers,  to  substantiate  its  effectiveness.  

CO2  has  been  trialled  as  a  vehicle  air  conditioning  refrigerant,  and  some  manufacturers  are  continuing  developmental  work  on  this  option.  The  Society  of  Automotive  Engineers  (SAE)  has  invited  all  automobile  manufacturers  to  join  in  an  industry  collaborative  effort  to  fully  evaluate  the  technical  aspects  of  the  use  of  CO2  as  an  automotive  air  conditioning  refrigerant.  It  is  likely  that  any  

Page 84: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  84  of  162  

OEM  system  based  on  CO2  or  hydrocarbons  would  be  more  expensive  than  the  existing  R134a  based  systems  due  to  the  increased  safety  and  engineering  requirements.  

There  are  also  some  moves  towards  using  electric  motors  to  drive  car  air  conditioning  units,  and  this  would  reduce  the  need  for  flexible  hoses  and  their  connections,  which  are  a  common  source  of  leaks.  

4.4.1. Design  safety  standards  Standards  Australia  discontinued  a  project  to  develop  a  design  safety  standard  for  refrigerating  systems  in  mobile  applications.  The  scope  of  AS/NZS  1677.2  excludes  non-­‐stationary  systems.  

The  Australian  Automotive  Code  of  Practice  applies  to  the  control  of  fluorocarbon  refrigerant  gases  during  manufacture,  installation,  servicing  or  de-­‐commissioning  of  motor  vehicle  air  conditioners.  http://www.arctick.org/pdf/Automotive_RAC_CoP.pdf    

The  Australia  and  New  Zealand  Refrigerant  Handling  Code  of  Practice  Part  2  includes  for  mobile  applications  within  its  scope.  This  code  does  not  cover  the  use  of  flammable  refrigerants  or  the  use  of  newly  developed  replacements  for  R134a.  http://www.arctick.org/pdf/Stationary_COP_2007_2.pdf    

There  is  no  standard  or  CoP  document  that  covers  the  application  of  flammable  refrigerants  in  automotive  or  mobile  applications.  Current  design  standards  used  are  Society  of  Automotive  Engineers  (SAE)  engineering  standards  which  do  not  include  refrigerant  safety  standards.  Current  SAE  standards  are  based  on  the  assumption  that  R134a  is  the  refrigerant  in  use.  

4.4.2. Energy  intensity  International  OEMs  report  that  a  number  of  measures  have  been  evaluated  to  reduce  heat  loads  on  vehicles  including  using  ventilated  systems,  reflective  paints,  reflective  glass,  and  improved  insulation  of  the  vehicle  body.  Reduced  internal  temperatures  have  been  achieved,  indicating  that  the  better  the  thermal  performance  of  the  vehicle  shell,  the  more  effective  the  comfort  solutions.  

4.4.3. Energy  efficiency  Improvements  to  compressors  and  controls  are  largely  driven  by  international  OEM  companies.  As  the  majority  of  design  and  component  manufacture  for  vehicle  air  conditioning  systems  is  conducted  outside  of  Australia  on  a  global  scale,  the  impact  of  any  locally  introduced  improvements  instigated  within  Australia  will  most  likely  have  little  or  no  impact  on  the  manufactured  vehicles  imported  into  this  country,  and  very  little  impact  on  any  locally  produced  vehicles,  due  to  those  local  manufacturers  operating  from  a  global  platform.  

4.4.4. Refrigerant  leakage  Because  of  the  small  charge  of  refrigerant  typically  used  in  vehicle  air  conditioning  systems  leakage  volumes  per  vehicle  are  small  but,  as  vehicle  numbers  are  high,  collectively  leakage  can  be  significant  from  this  sector.  

Page 85: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  85  of  162  

IEA  have  reported  average  annual  leakage  rates  for  well  designed/maintained  new  vehicles  using  R134A  at  around  10g/year.  

European  regulations  limit  leakage  rates  to  40  to  60  g/year  depending  on  the  system  design.  

A  leak  assessment  test  method  is  reportedly  being  developed  by  manufacturers  to  establish  compliance  of  individual  air  conditioning  systems  with  European  regulations.  

Government  gas  regulators  advise  in  relation  to  hydrocarbon  refrigerants  that  most  of  the  leaks  in  the  car  would  come  from  accidents,  open  drive  compressor  seals  and  faulty  hoses.  From  a  safety  perspective  none  of  these  are  seen  as  critical  safety  risks  for  the  occupants.  

4.4.5. Maintenance  The  majority  of  maintenance  currently  performed  on  vehicle  air  conditioning  systems  is  to  rectify  an  already  under-­‐performing  or  failed  system.  The  design  of  modern  systems  has  resulted  in  more  reliable  systems  which  require  less  maintenance.  By  design,  the  modern  vehicle  air  conditioning  system  requires  a  lower  refrigerant  charge  quantity,  uses  highly  efficient  heat  exchangers  and  is  also  utilising  components  which  are  predominantly  manufactured  of  very  light-­‐weight  aluminium.  

Technical  Standards  for  refrigerant  recovery  and  charging  are  contained  in  the  Automotive  Code  of  Practice  which  also  includes  advice  and  requirements  for  system  leak  detection.  

Retrofitting  of  ozone  depleting  refrigerants  from  mobile  air  conditioning  systems  is  a  practice  which  is  virtually  non-­‐existent  and  no  longer  required.  Retrofitting  came  into  practice  due  to  the  phase  out  of  ozone  depleting  refrigerant  R12.  As  all  vehicles  produced  after  1995,  either  for  import  into  Australia,  or  manufactured  in  Australia,  were  designed  to  use  R134a,  there  remain  very  few  vehicles  in  the  Australian  car  fleet  which  require  retrofitting  away  from  an  ozone  depleting  substance.  The  current  SAE  standard  prohibits  the  retrofit  of  R134a  systems  to  HFO1234yf.  

4.5. Commercial  refrigeration  System  architecture,  refrigerant  charge  and  thus  risks  and  emissions  all  vary  a  great  deal  within  this  sector.  

4.5.1. Supermarket  and  displays  There  has  been  considerable  work  carried  out  in  the  supermarket  and  other  refrigerated  display  applications.  These  building  types  are  historically  very  high  energy  users,  typically  because  of  the  extent  of  the  artificial  lighting,  air  conditioning  and  food  refrigeration  (display  and  storage)  employed.  Large  owners  and  managers  of  supermarkets  have  engaged  energy  efficiency  and  emission  reduction  measures  however,  the  extension  of  these  practices  to  smaller  operators  is  more  economically  challenging.  

The  Consumer  Goods  Forum,  a  CEO  driven  industry  association  of  400  multinational  food  suppliers  and  retailers,  report  significant  progress  and  commitment  to  natural  refrigerant-­‐based  technologies.  The  member  companies  are  taking  action  to  mobilise  resources  within  their  respective  businesses  to  

Page 86: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  86  of  162  

begin  phasing  out  HFC  refrigerants  by  2015  and  replace  them  with  non-­‐HFC  refrigerants  (natural  refrigerant  alternatives  such  as  CO2  and  hydrocarbons)  where  these  are  legally  allowed  and  available.  This  would  largely  be  for  new  purchases  of  point-­‐of-­‐sale  units  and  large  refrigeration  installations.  

Changes  such  as  “virtual”  retailing  (using  images  rather  than  real  products,  then  people  can  pick  them  up  as  they  leave  the  store  or  have  them  delivered)  and  on-­‐line  retailing  may  also  act  to  reduce  the  amount  of  display  refrigeration  needed.  

There  are  a  significant  number  of  small  chiller  cabinets  provided  by  suppliers  of  product  and  intended  to  be  located  at  ends  of  an  aisle  or  at  cash  registers  in  supermarkets  to  encourage  impulse  purchases.  These  units,  by  design,  do  not  have  doors/lids/blinds  to  make  product  easier  to  sell.  These  small  display  units  are  generally  less  energy  efficient  than  bigger  display  units  particularly  when  there  is  no  door/lid/blind.  

Energy  intensity  The  fabric  of  these  buildings  is  covered  by  NCC/Building  Regulations;  however,  system  energy  intensity  is  often  determined  by  other  factors  such  as  the  lighting  arrangements  and  technology,  rate  of  product  throughput,  hours  of  operation,  methods  of  control  and  defrost  and  the  type  of  refrigeration  system  used.  

Most  of  the  larger  supermarket  chains  are  addressing  their  carbon  footprint  which  includes  the  direct  and  indirect  emissions  from  refrigeration  and  air  conditioning  systems.  

Energy  efficiency  Cases  –  retrofitting  lids,  doors  and  blinds  to  previously  unenclosed  refrigerated  cases  can  result  in  significant  savings.  Fitting  doors  to  open  units  is  beginning  to  occur,  while  some  retailers  have  moved  to  top  access  freezer  units.  Blinds  on  open  display  units  are  also  appearing.  Improved  defrost  management  is  also  a  significant  opportunity.  While  marketers  have  resisted  doors  because  they  create  a  barrier  to  purchasers,  some  stores  have  found  that  improved  shopper  comfort  from  doors  offsets  this  concern.  Market  difference  would  be  negated  if  the  entire  industry  shifted  to  doors  at  the  same  time.  

MEPS  –  includes  both  remote  and  self-­‐contained  refrigerated  display  cabinets  primarily  used  in  commercial  applications  for  the  storage  of  frozen  and  unfrozen  food.  Set  out  in  AS  1731.14–2003  as  total  energy  consumption  per  total  display  area  (TEC/TDA)  in  kWh/day/square  metre  for  various  unit  types.  MEPS  standards  also  define  minimum  efficiency  levels  for  “High  Efficiency”  refrigerated  display  cabinets.  Only  products  which  meet  the  specified  efficiency  levels  can  apply  this  term  to  promotional  or  advertising  materials.  

Benchmarks

What  benchmarks  are  available?  

By  measuring  consumption,  setting  goals,  and  tracking  energy  use,  supermarkets  can  gain  control  of  energy  expenses.  Supermarkets  can  use  benchmarks  to  rate  their  energy  performance  relative  to  

Page 87: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  87  of  162  

similar  buildings  nationwide.  There  is  no  specific  benchmark  or  rating  tool  for  commercial  refrigeration  systems  adopted  for  use  in  Australia.  

Note:  The  IEA  Heat  Pump  Centre  has  recognised  this  issue  and  has  started  a  new  Annex  (collaborative  project)  to  cover  it.  Australia  is  not  currently  a  member  of  the  IEA  HPC  program.  

Refrigerant  leakage  Refrigerant  leakage  is  a  significant  issue  for  the  commercial  refrigeration  sector.  Refrigerant  pipe  runs  tend  to  be  long  and  complex  incorporating  many  fittings  as  they  serve  multiple  cabinets.  Pipe  runs  also  tend  to  be  hidden  from  view  and  located  in  difficult  to  access  areas.  

Leak  management  Regular  leak  testing  and  audits  are  difficult  for  this  industry  sector  due  to  storage  space  constraints.  Often  displays  and  cabinets  need  to  be  emptied  to  carry  out  leak  testing  and/or  the  evaporator  fans  need  to  be  turned  off  to  facilitate  the  still  air  needed.  Limited  storage  is  available  and  product  quality  may  be  impacted  by  handling  and  temperature  fluctuations,  special  management  solutions  are  needed.  

Maintenance  Maintenance  is  necessary  but  not  always  implemented  optimally  due  to  the  cost  and  skills  issues  discussed  previously  and  reluctance  by  owners  or  issues  associated  with  the  shutdown  of  systems  (e.g.  display  cases  etc)  due  to  lost  revenue.  

Retro  fit/energy  upgrades  Energy  cost  savings  can  justify  the  replacement  of  some  components  of  the  refrigeration  system.  

4.5.2. Low-­‐GWP  refrigerant  solutions  There  is  an  emerging  trend  of  natural  refrigerant-­‐based  low-­‐GWP  refrigeration  systems  in  the  commercial  supermarket  area.  While  not  well  established  in  Australia  yet  there  is  a  growing  body  of  work  internationally  most  notably  in  Europe  (e.g.  UK  and  Denmark). Both  of  the  two  major  supermarket  chains  in  Australia  have  made  commitments  to  transition  to  natural  refrigerant-­‐based  technologies.  It  is  reported  that  approximately  80  supermarkets  have  implemented  CO2/R134a  cascade  systems  in  Australia.  There  are  also  some  transcritical  CO2  systems  in  place  and  supermarkets  that  have  transitioned  to  hydrocarbon  refrigerants.  

4.5.3. The  total-­‐system  approach  to  design  There  is  an  opportunity  to  apply  a  "total-­‐systems  approach"  in  the  retail  chain.  There  is  a  large  proportion  of  existing  supermarkets  where  air  conditioning  and  retail  refrigeration  are  separate  systems.  

This  separation  tends  to  be  due  to  commercial  issues  and  contract  demarcation  lines.  The  air  conditioning  is  typically  included  in  the  building  enclosure  by  the  developer,  and  the  refrigeration  system  is  typically  included  in  the  fit  out  and  is  the  responsibility  of  the  retailer.  A  central  systems  (total  systems)  approach  can  improve  full  and  part  load  performance  of  the  combined  refrigeration  and  air  conditioning  systems  as  well  as  improve  redundancy.  Environment  control  in  the  shop  can  be  

Page 88: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  88  of  162  

of  great  benefit  to  the  energy  consumption  of  the  combined  refrigeration  and  air  conditioning  systems.  

In  many  refrigeration  systems  waste  heat  is  available  for  recovery  and  reuse  including  simultaneous  heating/cooling  for  environmental  control  or  for  heating  water  services.  For  transcritical  CO2  applications  opportunities  exist  for  using  waste  cold  to  reduce  gas  cooler  temperatures  (concepts  like  these  are  being  explored  in  the  retail  industry).  Very  high  system  COPs  are  possible  with  this  approach.  

4.5.4. Refrigerated  warehouse/storage  facilities  The  “In  from  the  Cold”  10-­‐year  strategy  compiled  by  the  DCCEE  estimated  that  “in  2008,  non-­‐domestic  refrigeration  in  Australia  consumed  approximately  13,377GWh  of  electricity  and  was  responsible  for  greenhouse  emissions  of  13,695  kilo-­‐tons  (kt)  CO2-­‐e,  equivalent  to  4%  of  GHG  emissions  from  all  fuel  combustion  in  Australia’s  energy  sector”.  The  document  estimates  that  the  Cold  Storage  and  Distribution  sector  used  630GWh  of  electricity  for  a  greenhouse  emission  of  634  kt  CO2-­‐e.  

There  are  two  main  groups  in  this  category:  1. Temperature  controlled  storage  and  freezing  facilities  attached  to  food  manufacturers,  

abattoirs,  meat  processors,  frozen  and  chilled  food  distributors,  importers  and  exporters,  supermarket  chains  and  storage  facilities  operated  by  the  pharmaceutical  companies  and  others.  

2. Independent  temperature  controlled  storage  facilities  that  are  not  attached  to  other  businesses  put  provide  services  to  all  of  the  above  and  form  a  critical  link  in  the  cold  chain.  

The  cold  storage  industry  is  very  energy-­‐intensive  and  electricity  is  typically  the  largest  non-­‐labour  expense  in  operating  these  facilities.  The  industry  is  also  capital  intensive  because  the  refrigeration  equipment  has  a  long  service  life  and  is  expensive  to  replace.  Large  cold  stores  tend  to  be  ammonia  (NH3)  based,  however  a  large  number  of  temperature  controlled  facilities  in  both  categories  are  HFC  or  HCFC  based  due  to  the  reduced  capital  investment  and  the  cost  and  lack  of  service  personnel  associated  with  ammonia  refrigeration  plants.    

HFC-­‐based  facilities  are  exposed  to  a  serious  potential  commercial  risk  due  to  the  equivalent  carbon  price  levy  imposed  on  high-­‐GWP  refrigerants.  The  cost  of  refrigerant  replacement  (if  required)  is  now  considerably  higher  due  to  significant  price  increases  for  these  refrigerants.  Cold  stores  and  refrigerated  warehouses  currently  do  not  qualify  for  funding  under  the  Clean  Technology  Investment  Program  (CTIP).  

Due  to  their  significant  energy  use  these  types  of  facilities  have  been  good  candidates  for  energy  reduction  interventions.  New  technologies  such  as  solid  state  LED  lighting,  evaporative  condensers,  variable  speed  drives  for  compressor  capacity  control,  variable  speed  drives  for  evaporator  and  condenser  fans,  voltage  optimisation  and  structural  changes  to  reduce  heat  and  air  infiltration,  make  it  possible  to  make  large  reductions  in  energy  use.  

Page 89: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  89  of  162  

The  cold  storage  industry  can  be  very  seasonal  and  the  electricity  use  can  suddenly  change  depending  on  the  type  of  work  carried  out.  The  amount  of  freezing,  the  rate  of  product  turn-­‐over,  the  amount  of  unused  space  due  to  market  demand,  the  requirement  of  clients  for  chilled  or  low  temperature  storage  all  have  major  influence  on  the  energy  used.  

There  is  a  large  range  in  energy  consumed  by  cold  stores:  • Around  12  to  14  million  m3  of  cold  storage  space  in  Australia  • Large  range  in  efficiencies,  from  30  to  >400  kWh/m3  per  year  

Storage  efficiencies,  measured  by  kWh/m3  per  year,  vary  widely  with  the  most  efficient  stores  using  up  to  75%  less  energy  than  the  least  efficient.  This  is  largely  a  factor  of  store  size;  the  larger  stores  being  more  efficient.  However,  the  type  of  storage  operation  and  the  age  of  the  refrigeration  system  also  influence  energy  use.  Blast  chillers  particularly  increase  energy  consumption.  

The  European  ICE–E  project  showed  a  large  potential  to  reduce  energy  (often  by  up  to  60%).  However  it  is  noted  that  energy-­‐efficiency  interventions  and  options  are  often  specific  to  a  facility  and  not  necessarily  generic  to  the  sector.  Improved  insulation  and  sealing  of  the  refrigerated  space  and  reduced  energy  consumption  when  the  plant  is  not  running  fully  loaded  using  variable  speed  drives  and  appropriate  control  systems  were  common  successful  interventions.  

Energy  intensity  Building  design  and  thermal  characteristics  –  These  types  of  facilities  are  typically  procured  by  an  owner  rather  than  speculatively  developed.  There  are  no  mandated  minimum  standards  for  construction  of  refrigerated  warehouses.  However,  with  increasing  electricity  prices  it  is  in  the  owner’s  best  interest  to  consider  the  life-­‐cycle  costs  of  the  construction  project.  

Use  of  thermal  imaging  cameras  can  identify  thermal  bridging  in  refrigerated  warehouses.  Heat  reflecting  paints  and  special  loading  docks  can  also  cut  energy  use.    

Demand  management  –  Due  to  their  large  thermal  mass  and  inertia,  refrigerated  warehouse  and  cold  storage  facilities  are  prime  candidates  for  demand  management  and  participating  in  demand  response  programmes,  as  they  can  often  ramp  down  or  switch  off  significant  load  for  long  periods  (several  hours)  without  affecting  product  quality  or  safety.  

Energy  source  –  These  facilities  are  typically  grid  supplied.  

System  size  –  Oversizing  of  components  and  systems  is  reported  to  be  widespread.  There  is  often  a  need  for  rapid  cooling/freezing  of  inputs;  this  could  use  a  separate  system.  Smaller  cold  stores  may  have  many  different  tenants  over  their  life  time  each  with  differing  needs,  so  flexibility  is  needed.  The  refrigeration  contractor  has  to  size  based  on  client  information.  The  client  usually  is  unsure  of  their  exact  cooling  requirements.  

Installation  –  Commissioning,  a  critical  part  of  the  design  and  installation  process,  has  traditionally  been  poorly  implemented  in  this  sector.  

Page 90: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  90  of  162  

Energy  efficiency  While  the  larger  businesses  in  the  industry  have  made  significant  improvements  in  energy  efficiency  the  SME  side  of  the  industry  is  not  incentivised  to  improve  energy  efficiency  due  to  a  number  of  reasons  including:  

• Lack  of  operator  understanding  of  plant  operation  and  energy  efficiency.  • Low  profit  margins  and  lack  of  funds  (technological  improvements  are  very  expensive  and  

ROIs  can  be  long).  • Management  is  already  overburdened  with  compliance  and  lacks  resources  to  understand  

energy  efficiency.  • Retrofitting  energy  efficient  plant  can  be  very  disruptive  to  business  adding  to  the  cost.  • Cold  store  operators  may  attempt  to  make  the  HVAC&R  contractor  responsible  for  

consequential  damages  resulting  from  disruptions,  causing  higher  contractor  risk  leading  to  higher  contract  prices  and  poorer  ROIs.  

• Lack  of  government  incentives  (independent  cold  stores  are  unable  to  participate  in  current  Clean  Technology  Investment  Programs).  

• Many  facilities  are  old  and  on  small  sites  and  major  rebuilding  would  be  required  to  make  major  improvements  in  energy  efficiency.  

• The  cost  of  land  has  substantially  increased  over  the  life  of  the  facility  and  it  is  a  better  proposition  to  decommission  the  plant  and  sell  the  land  than  to  make  major  upgrades.  

• Many  facilities  are  leased  and  the  landlord  has  no  incentives  to  make  costly  retrofits.    Some  general  feedback  from  the  ICE–E  program  audits  carried  out  in  Europe:  

• 30–40%  saved  by  optimising  the  performance  of  refrigeration  plants  • Further  savings  of  20–30%  by  reducing  heat  loads  including  that  from  lighting.  • Overall  savings  of  57–72%  • Paybacks  on  investment  less  than  one  year  

Refrigerant  leakage  These  systems  can  contain  significant  charges  of  refrigerant  and  any  HFC  or  HCFC  based  facilities  are  significantly  exposed  to  the  refrigerant  equivalent  carbon  price  should  they  need  to  be  charged  or  re-­‐charged  with  refrigerant  due  to  leakage  from  the  system.  Due  to  the  variance  in  the  quality  of  design  and  installation  refrigerant  leakage  rates  are  reported  to  vary  widely  between  sites.  Annual  leakage  rates  of  between  5%  and  23%  have  been  reported  (AIRAH  TEWI)  and  some  sites  experience  catastrophic  (total)  loss  of  charge  on  a  regular  basis  (annually  or  even  more  frequently).  

Maintenance  Service  providers  are  well  placed  to  provide  increased  energy  efficiency  through  site  surveys  and  energy  efficiency  and  leakage  intervention  proposals  and  advice.  Service  and  maintenance  could  be  applied  to  reduce  emissions  and  identify  possible  retrofitting  and  energy  improvements.  

Page 91: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  91  of  162  

Retro-­‐fit  Energy  cost  savings  alone  can  justify  the  replacement  of  some  components  of  the  refrigeration  system  and  transitioning  to  low-­‐GWP  refrigerant-­‐based  systems  can  provide  significant  efficiency  improvements.  

This  sector  does  not  qualify  for  funding,  either  under  the  Clean  Energy  Future  CTIP  program  or  many  of  the  state-­‐based  incentive  schemes,  because  this  sector  is  not  classed  as  a  “manufacturing”  sector  even  though  manufacturing  and  agriculture  depend  on  these  services.  To  exclude  such  an  extensive  and  energy  intensive  sector  from  the  clean  technology  program  seems  counter  intuitive.  

Training and awareness

The  ICE–E  project  identified  the  following training  and  awareness  needs  for  European  cold  store  operators  and  owners.  They  have  produced  5  e-­‐learning  modules  (tailored,  detailed,  easy  to  obtain  information  for  cold  store  operators):  

• Introduction  to  Refrigeration  –  Basic  rules  of  heat  transfer  and  describe  how  a  refrigeration  system  works  using  two  different  explanations.  The  first  uses  thermodynamics  and  the  second  uses  hardware.  

• Environmental  and  legal  aspects  of  carbon  reduction  –  Informs  about  the  use  of  alternative  and  more  sustainable  refrigeration  technologies  in  the  context  of  the  fight  against  climate  change,  global  warming  and  ozone  depletion.  

• Service  and  maintenance  to  reduce  carbon  –  Understanding  the  quality  and  costs  of  a  refrigeration  system,  reduce  costs  and  improve  reliability  of  the  refrigeration  system,  reduce  the  environmental  impact  of  the  system.  

• Energy  improvements  through  plant  design  and  retrofitting  –  Improve  energy  efficiency  in  medium  to  large  scale  refrigeration  systems  for  cold  stores.  

• Energy  audit  –  The  main  aspects  of  an  energy  audit  and  simple  examples.  

Case  studies  with  Australian  examples  of  energy  saving  measures  could  also  be  used.  Also  needed  is  a  ‘systems’  approach  that  includes  the  building  fabric  and  its  internal  heat  sources,  ventilation,  as  well  as  information  for  the  system  users  and  maintenance  providers.  

4.5.5. Cold  rooms/freezer  rooms  These  rooms  are  common  in  a  range  of  buildings  including  food  retail  shops  (butchers,  bottle  shops),  hotels,  clubs,  pubs,  etc.  

Energy  intensity  There  are  no  standards  to  cover  the  construction  and  performance  of  these  areas  in  Australia.  

The  floors  of  many  walk-­‐in  coolers  on  farms  and  in  grocery  stores  are  simply  concrete  slabs  that  extend  out  of  the  cooled  area.  Accordingly,  a  good  deal  of  cooling  energy  is  lost  to  the  ground  and  adjoining  areas.  Retrofitting  these  with  floor  insulation  can  be  accomplished  inexpensively.  Similarly  the  walls  and  ceiling  materials  need  to  be  specified  for  high  thermal  insulation  and  air/vapour  sealing.  Cooler  door(s)  should  be  designed  or  retrofitted  to  ensure  good  door  operation,  a  tight  seal  when  closed,  and  a  gently  sloping  ramp  to  facilitate  rolling  goods  into  and  out  of  the  cooler.  

Page 92: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  92  of  162  

Also,  a  lot  of  thermal  bridging  occurs  via  door  frames  and  structural  framing.  A  lot  of  the  condensing  units  are  located  in  hot  places/micro  climates  with  limited  ventilation.  

Energy  efficiency  There  are  currently  no  Australian  standards  or  benchmarks  available  to  assess  cold  room  energy  efficiency  against  or  to  allow  the  comparison  of  performance  of  different  cold  rooms.  

Refrigerant  leakage  Poor  leakage  performance  has  been  reported  in  this  sector.  There  are  numerous  anecdotes  about  small  leaks  being  left  unrepaired  in  order  for  the  service  provider  to  generate  income.  The  equivalent  carbon  price  for  high-­‐GWP  HFC  refrigerants  should  inhibit  these  practices,  but  education  of  the  end-­‐users  is  also  required.  Many  end-­‐users  appear  to  be  of  the  misunderstanding  that  refrigerants  are  a  consumable.  End  users  need  to  understand  that  refrigerants  belong  in  the  system  and  if  the  system  leaks  there  is  something  wrong  with  the  system  and  the  service  provider  must  address  it.  

Maintenance  Generally,  the  approach  to  maintenance  is  ad-­‐hoc  or  based  on  a  ‘maintain  on  failure’  strategy.  Maintenance  for  energy  efficiency  is  not  practised.  

Retro-­‐fit  Energy  cost  savings  can  justify  the  replacement  of  some  components  of  the  refrigeration  system.  Improvements  to  room  fabric  (walls  floors  and  ceilings),  doors,  operating  practices,  and  the  like  also  have  the  potential  to  provide  significant  energy  savings  

This  sector  does  not  qualify  for  funding  under  The  Clean  Energy  future  CTIP  program.  

4.6. Industrial  refrigeration  Industrial  refrigeration  is  usually  defined  as  large  systems,  custom  designed  and  built  to  meet  specific  requirements  often  using  refrigerants  such  as  ammonia,  hydrocarbons,  hydrofluorocarbons,  and  carbon  dioxide.  

The  sector  is  closely  linked  with  the  cold  storage  industry  discussed  previously.  Industrial  refrigeration  also  plays  a  significant  role  in  the  materials  processing  functions  that  involve  the  use  of  refrigeration  within  the  manufacturing,  agricultural,  food,  meat,  wine,  beverage,  petrochemicals,  pharmaceuticals,  printing  and  a  wide  variety  of  other  industries..  Industrial  refrigeration  within  some  sectors  has  been  in  decline  as  a  market  for  the  past  30  years,  as  the  Australian  manufacturing  base  has  shrunk  and  as  multinationals  acquired,  consolidated  and  automated  domestic  businesses.  

In  mid  last  century,  the  synthetic  refrigerants  R12,  R22,  and  R507  impacted  greatly  on  the  industrial  refrigeration  sector,  replacing  ammonia  in  many  smaller  to  medium  sized  installations  and  sometimes  in  large  installations.  At  this  time  many  skilled  personnel  left  or  retired  from  the  sector  resulting  in  the  current  shortage  of  engineers  and  tradespeople  with  experience  in  ammonia  based  systems.  

Page 93: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  93  of  162  

Due  to  the  nature  of  the  equipment,  the  critical  aspect  of  refrigeration  in  the  production  processes,  and  the  potential  losses  per  hour  in  downtime,  the  equipment  is  generally  purchased  to  higher  specifications  than  in  some  other  industries,  and  higher  standards  of  preventive  maintenance  are  common.  As  a  result  the  sector  repairs  and  maintains  equipment  rather  than  replacing  it  resulting  in  longevity  of  equipment,  increasing  life-­‐cycle  value  and  reducing  environmental  impact.  

Industrial  refrigeration  companies  in  this  field  generally  have  in-­‐house  engineering,  drafting,  installation,  and  service  personnel.  This  enables  tight  control  over  the  complete  installation  ensuring  a  high  level  of  safety.  Personnel  are  trained  in  house  as  no  external  training  is  available.  Supervised  on  the  job  training  is  critical  to  producing  personnel  competent  in  handling  large  systems  containing  sometimes  up  to  several  tonnes  of  ammonia  or  propane.  

Energy  intensity  The  size  and  range  of  applications  within  the  industrial  refrigeration  sector  makes  it  difficult  to  comment  on  the  energy  intensity  of  these  systems.  Benchmarking  data  is  available  on  US  and  European  cold  storage  facilities  of  varying  pallet  holding  capacities.  Such  data  could  be  used  as  a  guide.  

Energy  efficiency  There  is  great  potential  for  energy-­‐efficiency  interventions  in  industrial  applications.  This  area  has  been  heavily  canvassed  over  the  past  two  years.  Energy  guides  are  well  documented  and  funded  audits  have  been  abundant.  Most  industrial  refrigeration  companies  have  consulted  with  clients  on  methods  to  reduce  energy  consumption.  

Refrigerant  leakage  For  ammonia  based  systems  modern  installation  methods  and  materials  allow  reliable  and  rugged  construction.  Systems  are  usually  fully  welded  such  that  leakage  of  refrigerant  is  a  rare  occurrence.  Ammonia  leakage  response  plans  are  usually  in  place  at  large  sites.  Leakage  rates  for  ammonia  based  systems  are  typically  below  1%  per  year.  

Within  the  oil,  gas  and  chemical  sectors,  systems  are  subject  to  HAZOP  and  other  stringent  reviews  during  the  design  stage,  resulting  in  a  high  intrinsic  level  of  basic  system  integrity.  Safety  planning  and  staff  training  are  both  critical  to  plant  operation,  and  are  well-­‐funded  and  implemented.  

Leakage  of  refrigerant  can  be  significant  on  systems  containing  large  quantities  of  HCFC  or  HFC  based  refrigerants.  These  systems  have  tended  to  be  built  to  a  lesser  construction  standard,  primarily  for  cost  saving  reasons  and  due  to  reduced  safety  risks  associated  with  those  refrigerants.  

Maintenance  The  level  of  maintenance  typically  applied  to  industrial  type  systems  is  variable  and  largely  depends  on  the  system  owner  and  the  criticality  of  the  system  to  the  overall  industrial  process  or  output.  

For  critical  systems  high  standards  of  preventive  maintenance  are  common.  Within  the  oil  and  gas  sector,  where  large  propane  systems  are  common,  leaks  are  simply  not  tolerated.  Maintenance  standards  are  very  high,  principally  because  of  the  huge  cost  of  downtime  which  can  be  tens  or  

Page 94: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  94  of  162  

hundreds  of  thousands  of  dollars  per  hour.  Loss  in  a  production  environment  is  instant  when  the  process  stops,  unlike  a  cold  store  which  may  be  able  to  hold  over  for  many  hours  without  refrigeration,  before  temperatures  rise  to  a  point  where  losses  begin.  

Some  systems  are  maintained  to  a  very  high  level  while  others  are  maintained  at  a  low  or  inadequate  level.  Most  owners  of  ammonia  systems  are  acutely  aware  of  the  ramifications  of  an  ammonia  leak  and  therefore  most  apply  routine  maintenance  at  least  to  a  standard  sufficient  to  avoid  significant  leakage.  

Guidance  Due  to  the  energy  consumption  of  this  sector  and  the  potential  for  energy  efficiency  improvements  there  is  a  considerable  amount  of  design  guidance  available  including:  

• Sustainability  Victoria:  (http://www.resourcesmart.vic.gov.au/documents/BP_Refrigeration_Manual.pdf  )  

• NSW  Office  of  Environment  and  Heritage:  (http://www.savepower.nsw.gov.au/RefrigRprtLowRes.pdf  )  

Companies  within  the  oil,  gas  and  chemical  sector  often  have  extensive  in-­‐house  standards  based  on  years  of  accumulated  experience,  such  as  the  Shell  ‘Design  and  Engineering  Practice’  series.  

4.7. Refrigerated  transport  Transport  refrigeration  is  essential  in  today's  society,  to  preserve  and  protect  food,  perishable  goods,  flowers,  drugs  and  medical  supplies  in  the  cold  chain.  This  sector  includes  transport  of  refrigerated  products  with  reefer  ships,  intermodal  refrigerated  containers,  refrigerated  railcars,  refrigerated  marine  and  air  applications,  and  road  transport  including  trailers,  diesel  trucks  and  small  trucks  and  vans.  

Mobile  refrigeration  equipment  is  required  to  operate  reliably  in  much  harsher  environments  than  stationary  refrigeration  equipment.  Due  to  the  wide  range  of  operating  conditions  and  constraints  imposed  by  available  space  and  weight,  transport  refrigeration  equipment  typically  have  lower  efficiencies  than  stationary  systems.  This,  together  with  increasing  use  of  refrigerated  transport  arising  from  the  much  wider  range  of  transported  goods,  home  delivery  and  greater  quality  expectations  are  placing  considerable  pressures  on  the  industry  to  reduce  the  energy  consumption  of  refrigerated  transport.  The  reduction  in  energy  consumption,  however,  cannot  compromise  the  temperature  control  of  the  transported  food  products  which  is  governed  by  legislation.  

The  two  main  components  effecting  the  relative  emissions  of  refrigerated  transport  solutions  include  the  insulated  body  or  envelope  and  the  refrigeration  unit.  

4.7.1. Refrigerant  HCFCs  and  HFCs  have  traditionally  been  the  refrigerants  most  widely  used  in  refrigerated  transport  applications,  with  the  most  common  refrigerants  for  transport  refrigeration  applications  currently  being  HFC  based.  Ammonia,  hydrocarbons  and  carbon  dioxide  are  also  being  used  to  a  lesser  extent.  

Page 95: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  95  of  162  

Refrigerant  charges  range  from  less  than  1  kg  (refrigerated  vans)  to  several  kilograms  (trucks,  trailers  and  reefer  containers)  to  several  tonnes  on  board  large  fishing  vessels.  

 Leakage  rates  in  this  sector  are  high  and  typically  range  from  15  to  20%  for  road/rail  applications  and  from  20  to  40%  for  marine  applications  (AIRAH  TEWI  Guide).  

The  international  transport  refrigeration  OEMs  state  that  ‘the  use  of  HFCs  in  transport  refrigeration  systems  must  be  complemented  with  responsible  HFC  use.  The  transport  refrigeration  industry  commits  to  providing  products  with  the  best  LCCP  that  is  technically,  and  financially  available.  This  will  differ  across  the  various  products  and  applications,  and  will  continuously  be  evaluated  as  technology  develops.  In  addition  to  significant  operating  efficiency  improvements,  the  industry  has  already  taken  action  to  reduce  refrigerant  emissions  by  designing  leak  tight  equipment,  minimising  system  charge  and  recycling  refrigerants.  

The  industry  actively  promotes  the  following  general  principles  that  should  be  followed  for  all  refrigerants:  

• Use  in  tight  (leak  proof)  systems  that  are  leak  tested  and  then  frequently  monitored  after  installation  to  eliminate  direct  refrigerant  emissions  

• Recovery,  recycling  and  reclaiming  of  all  refrigerants  • Training  of  all  personnel  involved  in  the  refrigerant  handling  • Compliance  with  standards,  which  govern  proper  refrigeration  installation  and  maintenance  • Equipment  sizing  to  match  the  specific  need,  thereby  minimising  the  refrigerant  amount  • Design  and  installation  and  operation  to  optimise  energy  efficiency  • Minimise  number  of  connections  through  which  refrigerant  flows.  

4.7.2. Energy  intensity  Traditionally,  insulated  shipping  containers  are  used  to  transport  foodstuffs  and  other  cold  chain  goods  in  the  refrigerated  container  industry.  Domestic  road  transport  has  utilised  fibreglass  trailer  construction  for  its  improved  insulation  capacity.  Australian  Design  Rules  impose  a  2.5m  width  restriction  on  road  vehicles  which  leads  to  a  slight  reduction  in  our  thermal  efficiency  compared  to  what  can  be  achieved  in  the  US  due  to  their  2.6m  vehicle  width.  

The  majority  of  refrigerated  road  transportation  is  conducted  with  semi-­‐trailer  insulated  rigid  boxes.  Many  factors  are  considered  in  the  design  of  the  envelope  of  a  refrigerated  transportation  unit  including:  

• design  exterior  conditions  (temperatures,  solar  etc)  • design  interior  conditions  (temperature  and  humidity)  • insulation  properties  of  materials  and  methods  of  construction  • envelope  sealing  and  infiltration  of  air  and  moisture  • tradeoffs  between  construction  cost  and  operating  cost  • physical  deterioration  from  shocks  and  vibrations.  

Passive  reflective  coatings  are  available  to  significantly  reduce  the  heat  load  (cooling  load)  when  applied  to  the  external  surface  of  containers.  There  is  also  significant  potential  for  thermal  bridging  through  these  structures.  

Page 96: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  96  of  162  

Energy  efficiency  Very  small  units  are  electronically  driven  off  the  primary  vehicle  motor,  but  most  units  utilise  a  separate  power  source  for  the  refrigeration  equipment.  This  will  typically  be  an  integrated  diesel  motor,  but  is  sometimes  a  standalone  diesel  generator  on  road  and  rail  container  transport  or  an  electronic  motor  driven  off  batteries  that  are  charged  over  night.  

Like  all  diesel  motors,  the  manufactures  have  to  weigh  up  fuel  efficiency  gains  against  the  new  emission  standards  that  typically  reduce  fuel  efficiency.  New  compressor  designs  and  PLC/onboard  computer  programming  have  led  to  many  efficiency  gains.  

Low-­‐GWP  alternatives  

Currently  the  vast  majority  of  refrigerated  transport  applications  are  based  on  HCFC  or  HFC  technologies.  

Container  refrigeration  systems  based  on  CO2  as  a  refrigerant  have  been  developed  in  Germany  and  are  being  trialled  by  four  international  shipping  companies.  It  has  been  reported  that  these  units  offer  a  23%  reduction  in  emissions  when  compared  to  standard  HFC  based  units.  

Flammable  gases  and  ammonia  have  not  been  introduced  because  of  the  wide  variety  of  unskilled  mechanics  working  on  the  equipment  and  the  equipment’s  exposure  to  shock  and  crash  due  to  its  environment.  

Maintenance  The  Australia  and  New  Zealand  Refrigerant  Handling  Code  of  Practice  Part  2  includes  guidance  on  maintenance  for  mobile  applications.  

4.8. Other  sectors  

4.8.1. Residential  refrigeration  Residential  refrigeration  means  the  refrigerators  and  freezers  commonly  found  in  domestic  or  non-­‐commercial  use.  These  are  whitegoods  typically  purchased  from  big  box  retailers.  

Existing  fridges  and  freezers  are  mainly  HFC,  HCFC  and  CFC-­‐based  systems.  The  main  questions  for  these  systems  are  end-­‐of-­‐life  refrigerant  emissions  controls  and  questions  of  product  stewardship.  Programs  to  recycle  the  metals  from  disposed  consumer  goods  are  well  progressed  however  refrigerant  reclamation  is  typically  not  practised.  

New  fridges  and  freezers  are  typically  either  HFC  based  or  hydrocarbon  (HC)  based  systems.  Government  gas  regulators  have  formed  the  opinion  that  because  hydrocarbon-­‐based  systems  are,  fully  sealed,  rarely  leak  and  generally  contain  less  than  150  grams  (often  less  than  100  grams)  of  refrigerant,  these  are  not  a  fire  safety  issue.  End-­‐of-­‐lifeemissions  is  a  safety/materials  handling  issue.  

The  majority  of  refrigerators  and  freezers  commonly  available  in  the  retail  market  are  covered  by  MEPS  and  energy  labelling  programs.  Some  thermoelectric  and  3-­‐way  LPG  fridges  are  not  covered  by  MEPS/energy  label  rating.  Some  high  value  homes  are  beginning  to  install  custom-­‐built  fridges  using  

Page 97: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  97  of  162  

commercial  sector  technology;  these  can  be  very  inefficient  and  are  not  covered  by  MEPS.  Another  issue  for  this  sector  is  the  growth  in  extra  features  that  often  reduce  energy  efficiency  e.g.  ice  makers,  butter  softeners  etc  

4.8.2. H  is  for  Heating  Heating  systems  also  fall  under  the  broad  definition  of  HVAC&R.  

Reverse-­‐cycle  air  conditioning  Air  conditioning,  which  is  considered  in  this  discussion  paper,  includes  heating.  

Issues  relating  to  use  of  reverse-­‐cycle  air  conditioning  in  residential  sector  in  locations  where  overnight  temperatures  are  very  low  need  to  be  better  understood.  Both  efficiency  and  capacity  are  reduced,  while  icing  of  the  condenser  coils  can  also  be  a  problem.  Strategies  such  as  drawing  inlet  air  from  under  houses  with  suspended  floors,  or  using  heat  sources  such  as  tank  water  to  pre-­‐warm  inlet  air  to  the  evaporator  could  be  useful.  Flexibility  and  overall  system  design,  appropriate  sizing  and  controls  are  all  significant.  

Given  climate  change,  improving  building  efficiency  and  much  higher  ownership  of  air  conditioners,  there  is  likely  to  be  a  shift  away  from  separate  gas  heating  to  reverse-­‐cycle  equipment.  In  terms  of  capital  cost,  if  planning  to  install  air  conditioning  for  cooling  anyway,  reverse-­‐cycle  is  much  cheaper  than  gas  heating.  Also,  the  most  efficient  reverse-­‐cycle  air  conditioners  are  lower  emission  and  similar  or  lower  running  cost  to  gas.  

As  customers  in  some  geographic  areas  are  purchasing  reverse-­‐cycle  air  conditioning  as  their  principal  heating  source  in  winter,  and  removing  other  heating  sources  (such  as  gas  heating),  this  adds  demand  on  electricity  distribution  networks.  

Boilers  Other  forms  of  heating  include  boilers  producing  hot  water  for  HVAC  heating  systems  or  other  hydronic  systems  such  as  radiators.  

Boilers  have  been  reported  to  be  poorly  implemented  within  the  Australian  HVAC  industry.  Poor  system  design,  control  and  maintenance  result  in  poor  efficiencies  and  increased  direct  and  indirect  emissions.  Boilers  are  also  used  for  low  and  high  temperature  hot  water  heating  for  domestic  and  commercial  purposes.  Boilers  can  use  gas,  oil,  electricity  or  biomass  as  the  heating  source.  

Hot  air  heaters  Furnaces  (gas  or  oil)  are  also  used  to  provide  heat  for  air-­‐based  heating  systems.  The  safety  aspects  of  gas  based  heating  are  already  covered  in  gas  regulations.  

Electric  resistance  heaters  Whether  duct  mounted  or  standalone  these  systems  are  typically  highly  inefficient  and  emission  intense.  

Page 98: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  98  of  162  

4.8.3. Hot  water  heat  pumps  Heat  pumps  are  also  used  in  other  non  HVAC&R  applications  such  as  domestic  hot  water  heating  and  pool  heating.  

These  units  use  refrigerants;  however,  since  they  are  installed  predominantly  outside,  are  self  contained  and  factory  built  and  commissioned  their  scope  for  leakage  and  or  efficiency  intervention  is  small.  The  superior  efficiency  of  these  systems  over  traditional  electric  water  heaters  is  well  documented.  

Hot  water  production  is  a  major  source  of  energy  consumption  and  there  is  a  very  large  number  of  existing  hot  water  heaters  that  are  energy  inefficient.  One  energy  efficient  alternative  is  to  convert  electrical  resistor  based  systems  to  heat  pump  systems,  where  a  heat  pump  is  either  a  solar  system  or  an  inverter  based  heat  pump  system.  

Strong  growth  is  expected  in  heat  pump  hot  water  services.  These  have  many  advantages  over  solar  hot  water  and  the  best  models  are  equivalent  to  80%  solar  contribution.  A  comparison  with  solar  systems  is  needed  as  that  is  the  main  competing  technology  rather  than  traditional  gas  or  electric  resistance  systems.  Some  units  use  sealed  CO2  refrigerant  compressors  and  circulate  water  between  the  unit  and  the  storage  tank,  so  they  are  easy  to  install.  For  people  with  PV  and  low  feed-­‐in  tariffs,  these  systems  can  run  at  very  low  cost  when  there  is  excess  solar  electricity  available.  

Pool  heat  pumps  could  also  become  a  significant  market,  especially  where  they  run  on  PV.  But  they  would  need  to  be  integrated  with  pool  covers  and  other  energy  efficiency  measures  if  the  system  capital  cost  is  to  be  reasonable.  

Demand  management  –  Australian  Standard  AS  4755.3.3  is  available  for  water  heaters  covering  DRED.  Their  ability  to  be  connected  to  load  control  tariffs  offered  by  electricity  distribution  networks  and  retailers  present  a  significant  demand  management  outcome  and  customer  savings  on  running  costs.  This  should  not  present  a  technical  issue  for  manufacturers  as  most  of  their  products  are  already  suitable  for  such  tariff  connection.  Heat  pumps  for  pool  water  heating  do  need  to  be  managed  appropriately  to  ensure  that  they  have  cooled  appropriately  prior  to  energy  removal  to  eliminate  damage  to  the  unit).  

Page 99: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  99  of  162  

5. Proposed  solutions  

5.1. Section  introduction  Sections  2,  3,  and  4  of  this  paper  all  point  to  a  myriad  of  issues  and  problems  that  exist  or  are  perceived  to  exist  in  the  wide  world  of  HVAC&R  emissions.  

This  section  lists  all  of  the  solutions  that  have  been  suggested  or  implied  by  various  industry  stakeholders.  At  this  stage  no  prioritisation,  costing  or  assessment  of  any  of  these  solutions  has  been  undertaken.  

These  solutions  are  roughly  grouped  into  subject  areas  around  the  five  pillars  underpinning  the  transition;  Professionalism,  Regulation,  Information,  Measurement,  and  Emission  abatement  (PRIME).  In  addition  there  are  some  solutions  that  relate  to  non  stationary  HVAC&R  applications  and  some  solutions  that  relate  to  complementary  actions  and  activities.  

5.2. Professionalism  

5.2.1. An  HVAC&R  industry  council  Solution:  The  industry  should  form  an  umbrella  group  to  help  coordinate  policy  and  concentrate  action.  A  uniting  body  made  up  of  industry  stakeholders  that  can  provide  a  sustained  communications  strategy  and  policy  framework  would  benefit  all  sectors  of  the  industry  

Notes:  A  single  point  of  reference  for  the  HVAC&R  industry  would  assist  with  engagement  with  the  Australian  Government  and  also  assist  in  building  an  improved  public  profile  for  HVAC&R.  If  such  a  council  is  formed  it  should  have  the  charter  to  seek  change  rather  than  oppose  change.  The  industry  also  needs  to  recognise  that  it  will  be  difficult  to  have  a  ‘united  body’  that  represents  all  industry  stakeholders  without  considerable  good  faith  on  all  interests’  part.  Other  industries  achieve  this  and  the  HVAC&R  industry  should  be  able  to.  It  is  possible  for  individual  stakeholders  to  ‘agree  to  disagree’  on  some  issues  however  the  power  of  an  industry  council  would  focus  on  where  consensus  can  be  achieved.  

One  suggestion  is  that  this  group  could  be  a  sub  group  of  an  existing  body  (e.g.  ASBEC).  This  would  give  the  group  an  immediate  presence,  and  their  work  some  credence,  without  the  pain  of  trying  to  establish  itself  and  work  its  way  through  the  various  networks.  

An  alternative  suggestion  is  that,  due  to  the  resources  and  time  that  would  be  required  to  establish  another  formal  representative  group  within  the  industry,  a  less  formal  "coalition  of  industry  stakeholders"  is  formed  whereby  those  existing  industry  organisations  that  are  willing  to  work  towards  the  common  aim  of  delivering  low-­‐emission  HVAC&R  meet  regularly  to  progress  the  project.  A  statement  of  aims  would  be  developed  and  MOUs  developed  and  signed.  

5.2.2. Objectives  of  low-­‐emission  HVAC&R  Roadmap  Solution:  The  industry  needs  to  document  a  vision  and  set  of  objectives  for  the  transition  roadmap.  

Page 100: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  100  of  162  

5.2.3. Funding  and  resources  The  industry  needs  to  consider  how  any  new  initiatives  might  be  funded  or  resourced.  

Funding  the  transition  Solution:  Industry  will  need  to  consider  sources  of  funding  and  resources  for  any  new  initiative.  

Notes:  Any  industry  assistance  or  change  program  will  require  funding  and  the  allocation  of  resources.  Possible  sources  for  funding  include:  

• Australian  government  –  Through  the  return  of  the  equivalent  carbon  price  revenues  to  the  industry,  through  existing  programs,  through  new  programs  and  initiatives.  

• State  and  territory  governments  -­‐  Through  existing  programs,  through  new  programs  and  initiatives.  

• End  users  –  Through  a  levy  charged  on  HVAC&R  imported  equipment.  • Industry  sector  organisations  –  That  may  see  a  return  on  investment  from  these  activities,  

such  as  property,  cold  storage,  supermarket,  retail.  • Industry  –  Through  voluntary  contributions  incentivised  by  tax  deductions  • Individual  –  Through  voluntary  contributions  incentivised  by  tax  deductions  

Chasing  Government  and  other  organisations  for  funding  may  prove  to  be  a  tiresome  and  thankless  task.  

Funding  training  Solution:  Advocate  to  government  for  a  fairer  share  of  education  funding  and  some  decently  funded  and  managed  education  programs  that  recognise  the  HVAC&R  industry  as  a  cornerstone  of  the  economy.  

Note:  The  HVAC&R  industry  provides  more  employment  and  turnover  than  many  other  industries  that  appear  to  have  attracted  more  comprehensive  education  assistance.  

Solution:  Approach  HVAC&R  related  philanthropists  to  bequeath  or  donate  some  scholarship  funds  to  universities  involved  in  HVAC&R  education.  

Solution:  Set  up  an  HVAC&R  industry  training  fund  where  tax  free  donations  can  be  made  to  fund  training  development  and  delivery  priorities.  

Note:  Commentators  suggest  that  training  needs  to  be  commercially  viable.  

Funding  research  Solution:  Set  up  an  HVAC&R  industry  research  fund  where  tax  free  donations  can  be  made  to  fund  research  priorities.  

Notes:  Similar  to  the  Ammonia  Research  Foundation  (ARF)  created  under  the  auspices  of  the  International  Institute  of  Ammonia  Refrigeration  (IIAR).  Proceeds  are  used  to  fund  research  within  ammonia  refrigeration.  Research  projects  are  prioritised  by  the  IIAR  research  committee  and  funding  allocated  by  the  IIAR  Board  based  on  the  committee’s  recommendations.  

Solution:  Negotiate  with  government  to  impose  a  legislated  levy  on  all  imported  HVACR  equipment.  

Page 101: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  101  of  162  

Notes:  This  could  achieve  the  scale  of  funding  required  and  could  underpin  funding  for  policing  of  MEPS  etc.  i.e.  a  user  pays  system  taking  funding  pressure  off  of  government  budgets.  

5.2.4. Industry  data  Solution:  The  HVAC&R  industry  needs  to  collaborate  to  produce  some  hard  evidence-­‐based  data  on  key  performance  data  outlining  the  current  state-­‐of-­‐play  of  the  HVAC&R  industry  in  Australia.  

Notes:  As  the  HVAC&R  industry  is  fond  of  saying  “you  can’t  manage  what  you  don’t  measure,  to  measure  is  to  know”.  However,  we  don’t  practice  what  we  preach  and  there  have  been  many  gaps  highlighted  in  the  available  data  on  the  HVAC&R  industry.  The  HVAC&R  industry  needs  to  know  a  lot  more  data  about  the  current  situation  while  it  addresses  improvements  for  the  future.  Benchmarking  energy  consumption  and  leakage  rates  is  a  way  real  value  can  be  obtained  from  industry  data.  The  following  are  some  suggested  areas  where  current  and  accurate  data  is  required:  

• Direct  and  indirect  GHG  emissions  by  sector.  • Refrigerant  leakage  rates  –  by  sector  and  by  system  type.  • Refrigeration  system  safety  incidents–  frequency  and  type,  by  sector  and  by  system  type.  • HVAC&R  energy  use–  by  sector  and  by  system  type.  • Breakdown  on  quantity  of  imported  bulk  refrigerant,  by  type,  used  for  servicing  needs  as  

opposed  to  new  charge  for  HVAC&R  equipment.  • End-­‐use  submetering  data  for  buildings  e.g.  HVAC,  lighting,  plug  loads.  • Building  infiltration  rates  –  by  class  and  size  of  building.  • Duct  and  system  sealing/leakage  –  how  extensive.  • What  is  the  ratio  of  regulated  (NCC)  building  works  versus  less-­‐regulated  (non-­‐NCC)  building  

works  (i.e.  refurbishments  and  upgrades).  • The  proportion  of  buildings  with  natural  ventilation/hybrid  ventilations  as  opposed  to  100%  

mechanically  ventilated.  • Data  on  fault  types  and  associated  maintenance  costs  found  during  recommissioning,  

building/system  audits  and  tune-­‐ups.  • Research  list,  what  research  and  development  in  HVAC&R  field  is  occurring  in  Australia.  • Industry  training  list,  what  training  is  available  and  where  and  at  what  level.  • Data  on  the  significance  of  maintenance  for  running  costs.  • Data  on  the  existing  design  practices  and  the  extent  that  they  deviate  from  good  practice.  • Review  of  Australian  design  practice  against  world’s  best  practice.  • Data  relating  to  the  relationship  between  water  and  energy  use  in  a  HVAC  system.  • Performance  data  relevant  for  benchmarking  HVAC  systems  across  different  sites.  • List  of  incentive  schemes  for  energy  efficiency  work.  • How  can  the  effectiveness  of  the  SGG  equivalent  carbon  price  be  monitored?  • Existing  data  on  the  effectiveness  of  the  current  government  incentives.  • Data  relating  to  the  relationship  between  water  and  energy  use  in  a  HVAC  system.  • Performance  data  relevant  for  benchmarking  HVAC  systems  across  different  sites  (relates  to  

the  potential  for  NABERS  HVAC  rating).    Note:  The  Department  of  Sustainability,  Environment,  Water,  Population  and  Communities  have  commissioned  a  study  of  the  refrigeration  and  air  conditioning)  industry  in  Australia,  as  a  follow-­‐up  to  previous  studies.  The  report  will  attempt  to  estimate  the  total  economic  activity  within  the  

Page 102: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  102  of  162  

refrigeration  and  air  conditioning  industry  including  the  total  value,  number  of  people  employed,  and  number  of  businesses  involved.  It  will  also  update  earlier  analysis  of  the  installed  equipment  base,  the  total  energy  consumption  of  RAC  equipment,  and  direct  and  indirect  greenhouse  gas  emissions  from  various  equipment  segments  and  trends  in  equipment  and  working  gases.  The  study  will  also  report  by  refrigeration  type  (HCFC,  HFC  and  low-­‐GWP)  and  include  a  chapter  on  low-­‐GWP  alternatives  (natural  and  others)  and  their  current  market  penetration.  The  objective  of  this  project  is  to  ensure  that  the  Australian  Government  has  an  up-­‐to-­‐date  source  of  information  on  the  refrigeration  and  air  conditioning  industry  in  Australia.  The  report  and  data  is  expected  to  be  published  to  the  DSEWPaC  website  in  the  2nd  half  of  2013.  

Solution:  The  HVAC&R  industry  should  encourage  government  to  update  industry  data  (e.g.  Cold  Hard  Facts)  periodically,  every  three  years  has  been  suggested.  

5.2.5. Sharing  data  and  collaboration  Solution:  The  HVAC&R  industry,  property  industry  and  commercial  refrigeration  industry  needs  to  work  on  ways  that  building  and  system  data  can  be  shared  without  breaching  commercial  or  confidential  interests.  

Notes:  There  is  a  lot  of  data  is  out  there  but  it  tends  to  be  hidden  or  protected,  mandatory  or  voluntary  disclosure  of  data  would  be  a  good  thing.  For  example  PCA  used  to  be  a  good  source  of  data  but  now  major  property  owners  tend  to  keep  property  data  confidential.  

Solution:  Introduce  greater  collaboration  in  industry  when  developing  information  materials,  fact  sheets  and  design  guidelines.  Collaboration  encourages  knowledge  and  skill  sharing.  

5.2.6. International  experience  Solution:  It  is  important  for  industry  and  government  to  review  international  experiences  in  order  to  generate  and  share  ideas  for  future  programs.  

Notes:  It  is  important  to  leverage  off  international  experience  and  learn  about  technologies  and  programs  where  industry  groups  have  taken  a  leading  role  in  driving  water  and  energy  efficiency  improvements  overseas.  Building  effective  links  between  industry  and  government  in  order  to  share  experiences  and  generate  ideas  for  future  programs.  

5.2.7. Low-­‐emission  HVAC&R  defined  Solution:  Industry  needs  to  discuss  and  agree  what  low-­‐emission  HVAC&R  really  is  and  what  target  for  emissions  they  would  like  to  achieve.  

Note:  Is  some  form  of  a  definition  needed  based  on  the  current  emission  levels  from  the  industry  and  a  vision  of  what  a  low-­‐emission  HVAC&R  industry  should  actually  look  like  (including  a  statement  of  what  is  in  and  out  of  scope).  A  definition  of  low-­‐emission  HVAC&R  may  need  to  be  discussed  and  defined  at  the  international  level  (IIR,  ASHRAE,  etc).  The  Australian  industry  first  needs  accurate  data  in  terms  of  the  emission  rates  for  refrigerants  by  sector  and  the  energy  use  of  HVAC&R  systems,  also  by  sector.  Quantification  may  be  difficult  given  the  range  of  systems  this  industry  covers  and  their  differing  applications  (different  climate  zones  etc).  

Page 103: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  103  of  162  

5.2.8. Fee  structures  Solution:  Improving  the  fee  structure  to  reward  good  design  outcomes  would  be  a  useful  incentive  for  best-­‐practice  design.  

Note:  Current  design  fees  are  usually  structured  to  relate  to  system  size  not  system  efficiency  which  creates  a  disincentive  for  optimised  design  where  longer  design  time  results  in  smaller  and  less  capital  intensive  systems.  

5.2.9. Design  engagement  and  feedback  Solution:  The  industry  should  consider  how  best  to  provide  feedback  to  designers  on  the  final  outcomes  of  their  designs.  

Notes:  Typically  the  real  level  of  engagement  of  designers  drops  away  after  completion  of  tender  documents.  Designers  will  often  remain  commissioned  for  the  construction  phase;  however  the  flow  of  information  to  designers  is  often  poor  so  there  is  inadequate  feedback  on  the  cost  effectiveness  of  their  strategies,  particularly  innovative  strategies.  The  length  of  the  construction  period,  the  many  unknowns,  and  competitive  fixed  fee  bargaining  creates  a  high  probability  of  low  fee  bidding  on  the  hope  things  will  work  out.  This  can  result  in  tension,  inadequate  communication  and  issue  resolution,  poor  commissioning  attendance,  and  substandard  outcomes  when  things  don’t  work  out.  

5.2.10. Trade  training  

Trade  courses  Solution:  Update  VET/TAFE  course  competencies  and  teaching  resources  to  include  HVAC&R  system  optimisation  and  energy  efficiency  issues  as  core  training  issues,  not  just  as  elective  subjects.  

Note:  System  optimisation  and  energy  efficiency  issues  are  core  concepts  that  are  covered  in  the  competencies  in  the  relevant  Certificate  III  and  IV  qualifications.  

Solution:  Update  VET/TAFE  course  competencies  and  teaching  resources  to  include  HVAC&R  system  maintenance  for  energy  efficiency.  

Note:  While  system  optimisation  and  energy  efficiency  are  embedded  in  existing  units,  the  HVAC&R  advisory   group   recently   identified   a   need   for   new   competency   standard   units   covering   Energy  Efficiency  Assessment  for  residential,  commercial  and  industrial  HVAC&R  applications.  These  will  be  developed  in  the  next  round  of  continuous  improvements.  

Solution:  Update  VET/TAFE  course  competencies  and  teaching  resources  to  include  effective  and  appropriate  use  and  handling  of  alternative  refrigerants  

Solution:  Update  VET/TAFE  course  competencies  and  teaching  resources  to  include  HVAC&R  system  Communication  Skills  with  focus  on  promotion  of  financial  benefits  of  EE  systems.  

Page 104: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  104  of  162  

Note:  The  competency  standards  units  are  primarily  technical   in  nature,  describing  the  “what”  and  the   “how”.   A   competent   trainer   would   emphasise   the   business   and   financial   benefits   of   energy  efficiency  (the  “why”)  as  part  of  the  training  delivery.  

Notes:  To  fit  more  units  into  a  qualification  you  may  have  to  decide  what  to  remove.  A  better  path  might  be  to  have  the  basic  refrigeration  course  for  a  trade  qualification  and  then  have  post  trade  courses  that,  once  achieved,  can  be  shown  on  the  recipient’s  trade  licence  certificate.  This  way  Australia  can  create  specialists  in  certain  fields  and  also  recognise  these  extra  skills  and  competencies.  

Solution:  Subsidise  the  training  delivery  of  the  updated  units  to  improve  take-­‐up.  

Notes:  There  are  a  number  of  opportunities  for  employers  to  seek  subsidised  training  for  post-­‐trade  qualifications,  Certificate  IV  and  above,  such  as  the  National  Workforce  Development  Fund,  Critical  Skills  Investment  Fund  as  well  as  other  State/Territory  funds.  

Solution:  Industry  organisations  should  consider  Group  Training  Schemes,  similar  to  those  operated  by  the  Master  Builders  Association.  

Apprentices  Solution:  Upgrade  the  trade  apprenticeship  to  a  Certificate  IV  rather  than  a  Certificate  III  course.  

Notes:  This  would  enable  more  units  to  be  fitted  into  the  qualification.  There  are  already  examples  where  trade  apprenticeships  have  been  upgraded  to  Certificate  IV,  for  example  the  Electrical/instrumentation  apprenticeship  which  is  a  Cert  IV  in  Western  Australia.  

Solution:  Industry  organisations,  major  companies  and  SMEs  agree  to  and  fund  increased  apprentice  training.  

Notes:  If  industry  can  show  a  commitment  to  increased  apprentice  uptake  government  are  more  likely  to  provide  additional  funds.  

Solution:  Industry  and  Government  collaborate  to  set  up  an  apprenticeship  training  fund  based  on  a  levy  of  the  HVAC&R  industry.  This  is  proposed  as  a  similar  scheme  to  the  Western  Australia  Building  and  Construction  Industry  Training  Fund  which  allows  the  fund  to  give  targeted  incentive  bonuses  to  employers  who  train  apprentices.  

Skills  maintenance  Solution:  Include  minimum  skills  maintenance  requirements  into  ARCtick  and  any  other  occupational  licence  arrangement.  

Notes:  Licence  conditions  should  require  proof  of  ongoing  training  and  skills  development.  This  may  require  amendment  to  the  Ozone  Regulations  if  administered  by  ARC.  Germany  has  a  requirement  that  technicians  must  do  training  every  2  years  to  maintain  their  licensing.  Australia  could  mirror  that  requirement  and  make  it  a  condition  of  National  Occupational  Licensing  that  the  licensee  has  undertaken  update  training  within  the  past  2  years,  prior  to  granting  of  a  license  renewal.  

Page 105: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  105  of  162  

Solution:  Develop  an  internet  based  skills  maintenance  system  that  issues  updates  and  alerts  and  make  licences  holders  of  all  types  undertake  a  professional  development  online  course  every  quarter  to  maintain  licence.  This  could  give  the  Australian  industry  a  world  class  internet  based  compulsory  training  scheme  to  maintain  skills  and  knowledge.  

Notes:  The  following  topics  have  been  suggested  for  skills  maintenance:  • Preventative  maintenance  for  energy  efficiency  • Refrigerant  leakage  –  System  auditing,  issue  identification  and  issue  resolution.  • Working  with  natural  refrigerants  • Passive  design  101  • Emissions  management  

Online  courses  are  not  fraud  proof  so  an  alternative  could  be  for  courses  for  license  retention  to  be  conducted  annually  and  passing  the  final  exams  upon  conclusion  of  the  training  made  a  requirement  for  license  retention.  The  logistics  of  managing  quarterly/annual  licence  retention  exams  would  be  considerable  and  costly.  There  would  be  difficulty  in  providing  access  to  remote  contractors,  people  with  poor  computer  skills  and  people  with  language  or  literacy  issues.  There  may  be  resistance  from  license  holders  to  formal  training.  

Solution:  Develop  an  industry  endorsed  skills  maintenance  or  CPD  activities  list  that  licence  holders  can  undertake  to  meet  minimum  CPD  points  or  credits  for  licence  retention.  

Notes:  This  is  proposed  as  a  similar  scheme  to  ones  currently  operated  by  Engineers  Australia,  Australian  Institute  of  architects  etc. The  professional  development  activities  will  need  to  be  readily  available,  easy  to  access,  inexpensive  or  free,  and  not  time  consuming,  for  example  access  to  on-­‐line  information/resources.  

5.2.11. University  training  Solution: The Australian HVAC&R industry should engage with university level education providers on the possibility of, and process for, developing undergraduate engineering degree program in ‘Building Services and Refrigeration’. Note:  Undergraduate  engineering  degrees  are  common  in  other  countries,  which  may  have  models  and  content  that  could  be  adapted  for  Australian  use.  Engagement  with  CIBSE  and  Massey  University  (NZ)  is  encouraged  for  this  solution.  

Solution:  Existing  University  based  training  in  engineering  and  related  courses  should  include  energy  efficiency  and  emission  reduction  as  a  key  core  component  including  Australian  based  case  studies,  data  and  financial  benefits  of  energy  efficiency.  

Notes:  This  is  relevant  to  commercial  and  residential  building  engineering  courses  and  units,  mechanical  engineering  courses,  including  courses  and  units  for  architects  and  other  building  professionals.  Visiting  professors  from  industry,  international  experts,  Master’s  courses  following  graduation  and  PhD  paths  for  undergraduates  are  all  suggested  methods.  

Solution:  The  Australian  HVAC&R  industry  should  engage  with  university  level  education  providers  on  the  possibility  of,  and  process  for,  developing  a  professorship  and  a  study  facility  in  energy  and  

Page 106: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  106  of  162  

thermodynamics  with  specialisation  options  for  candidates  in  refrigeration,  air  conditioning,  building  services  and  food  technology.  

Solution:  The  value  of  invigilating  basic  units  based  on  HVAC&R  into  end-­‐user  training  courses  (e.g.  agriculture  training  and  the  like)  should  be  assessed.  

Notes: This would distribute required HVAC&R knowledge directly to end users.

5.2.12. CPD  training  Solution:  Develop  Industry  based  training  for  building  professionals  to  assist  in  professional  development.  

Notes:  Industry  needs  flexible,  practical  and  up  to  date  training.  Many  businesses  are  not  overly  concerned  about  formal  qualifications  but  do  want  training  recognised  as  professional  development/skills  maintenance.  Individuals  are  more  interested  in  qualifications.  Cost  is  an  issue,  but  less  so  than  time.  Businesses  need  to  commit  to  implementing  key  actions  and  opportunities  arising  from  training,  otherwise  the  time  and  cost  is  wasted.  Delivery  methods  are  critical  and  the  industry  probably  needs  to  explore  innovative  delivery  vehicles  (e.g.  massive  open  online  courses  (MOOCs))  that  satisfy  the  need.  

5.2.13. Trade  licensing  Solution:  Industry  should  collaborate  and  develop  a  single  agreed  proposal  for  occupational  licensing  for  the  HVAC&R  industry.  

Notes:  Practitioners  should  be  certified  to  prove  that  training  has  been  undertaken.  NOLA  is  currently  investigating  options  for  a  national  licensing  scheme  for  individuals  and  contractors  operating  in  the  refrigeration  and  air  conditioning  fields.  A  Regulatory  impact  statement  was  published  and  individual  industry  stakeholders  made  individual  submissions  on  individual  preferences  to  NOLA.  The  results  of  that  consultation  and  review  process  are  not  currently  available.  

Solution:  Industry  should  promote  a  licensing  system  based  on  or  similar  to  the  Danish  system.  

Notes:  Current  licensing  arrangement  does  not  cover  mechanics  working  with  any  natural  refrigerant  nor  does  it  address  energy  efficiency  issues.  

5.2.14. Professional  registration  Solution:  Industry  should  collaborate  and  develop  a  single  agreed  proposal  for  the  professional  registration  of  building  services  and  refrigeration  engineers  operating  in  the  HVAC&R  industry.  

Notes:  Currently  there  is  no  requirement  for  building  services  engineers  or  commercial/industrial  refrigeration  engineers  to  be  registered  to  practice  in  Australia.  There  are  requirements  for  design  certification  in  some  states.  

Page 107: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  107  of  162  

5.3. Regulations,  standards  and  government  programs  

5.3.1. Measuring  success  Solution:  It  is  important  for  all  levels  of  government  and  industry  to  understand  which  Government  programs  have  been  successful  in  improving  energy  efficiency  and  reducing  emissions.  For  all  government  programs  (including  completed  programs)  the  achievements  or  outcomes  should  be  measured  where  possible  and  the  results  shared  with  the  wider  industry.  

Notes:  This  could  be  achieved  through  publication  of  case  studies,  evidence  of  actual  cost  and  benefits,  evaluation  reporting  etc.  Some  commentators  have  suggested  that  measuring  the  success  of  programs  should  be  the  responsibility  of  the  Productivity  Commission  as  opposed  to  the  Department(s)  managing  the  program  to  avoid  conflict  of  interest  in  publishing  accurate  program  performance  assessments.  An  important  aspect  here  is  ensuring  that  in  the  design  of  any  government  program,  monitoring  and  evaluation  are  built  into  it.  

5.3.2. Intellectual  property  Solution:  Mandate  that  in  all  government  funded  energy  efficiency/HVAC&R  related  work  programs  intellectual  property  is  to  be  publicly  shared  and  disseminated  appropriately  (respectful  of  commercial-­‐in-­‐confidence  requirements).  

Notes:  Some  of  the  Government  sponsored  programs  that  have  been  successful  in  sharing  knowledge  include  Green  Building  Fund  (AusIndustry)  Commercial  Office  Building  Energy  Innovation  Initiative  funding  (Sustainability  Victoria)  and  Energy  Efficiency  Training  Program  (NSW  OEH).  Not  only  did  the  government  fund  or  co-­‐fund  the  activities  but  the  programs  required  knowledge  sharing  through  case  studies  etc.  The  outcomes  and  results  should  be  publically  available  and  disseminated  (i.e.  copyright  in  reports  should  be  handed  over)  but  the  intellectual  property  in  the  innovation  itself  (i.e.  patents)  should  remain  with  the  inventor.  

5.3.3. National  Construction  Code  Solution:  Residential  building  regulations  should  address  peak  demand  as  well  as  energy  performance  requirements.  Regulations  need  to  incorporate  performance  requirements  for  both  heating  and  cooling  for  all  climate  zones.  

Solution:  The  impact  of  minimum  efficiency  standards  and  the  stringency  increases  within  commercial  building  regulations  should  be  quantified  prior  to  significant  additional  increases.  

Notes:  The  actual  outcomes  of  the  previous  increases  in  stringency  (within  Section  J)  have  not  been  quantified  in  terms  of  actual  costs  and  benefits  (and  perverse  outcomes).  If  government  or  industry  doesn’t  know  how  effective  previous  stringency  increases  are,  on  what  basis  can  future  stringency  increases  be  designed?  

Solution:  Passive  design  (insulation,  glazing  and  shading)  for  all  building  works  should  be  better  audited.  

Page 108: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  108  of  162  

Notes:  Under  the  current  system  building  certifiers  need  designers  to  show  them  that  the  design  documentation  complies  with  Section  J.  However,  there  seems  to  be  no  onus  on  certifiers  to  determine  whether  what  is  built/installed  actually  reflects  what  was  documented.  

5.3.4. Mandatory  commissioning  Solution:  Industry  should  collaborate  to  develop  a  Proposal  For  Change  (PFC)  to  propose  minimum  mandatory  building  commissioning  requirements  to  be  included  in  NCC/BCA  V1  for  Class  X  to  Y  buildings.  

Note:  Mandatory  requirements  for  building  commissioning  were  included  in  the  public  comment  draft  of  the  changes  to  BCA  2010  but  were  removed  prior  to  publication.  Industry  believes  commissioning  and  optimising  operations  through  tuning  and  recommissioning  should  be  fully  explored  and  implemented  before  increasing  stringency  standards  for  HVAV&R  systems.  

Solution:  Industry  should  only  support  the  ‘Independent’  commissioning  model,  not  other  models.  

5.3.5. Mandatory  submetering  and  monitoring  Solution:  Introduce  mandatory  requirements  within  the  NCC  that  all  large  refrigeration  and  air  conditioning  systems  (above  XXX  kWr)  should  be  submetered  and  charge  monitored.  

5.3.6. Mandatory  energy  efficiency  maintenance  Solution:  Encourage  the  state  based  regulators  to  mandate  the  energy  efficiency  maintenance  requirements  of  the  NCC.  

Notes:  Mandatory  maintenance  for  energy  efficiency  is  included  within  the  NCC  but  is  not  enforced  in  State/Territory  regulations.  This  may  be  a  matter  that  needs  to  be  discussed  and  resolved  at  the  COAG  level.  National  mandated  requirements  would  drive  demand  for  energy  efficiency  maintenance  skills  in  industry.  Similar  suggestions  include:  

• Develop  and  mandate  installation  of  appropriate  monitoring,  diagnostic  and  shut-­‐down  systems.  

• Mandate  regular  maintenance  to  an  appropriate  standard.  • Develop  and  mandate  smart  monitoring  and  shutdown  systems  to  minimise  safety  risks  and  

leakage.  

5.3.7. Building  air  tightness  Solution:  Adopt  an  international  test  method  for  measuring/validating  air  tightness  of  all  public,  commercial  and  residential  buildings  and  include  minimum  building  air  tightness  requirements  within  building  regulations/National  Construction  Code?  

Notes:  This  solution  is  proposed  for  residential  and  commercial  buildings.  Other  issues  may  need  to  be  addressed  such  as  IEQ,  moisture  and  condensation,  biological  contaminants.  Building  rating  and  simulation  tools  would  also  need  to  align  on  treatment  of  building  air  tightness  and  infiltration/exfiltration  rates.  

Page 109: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  109  of  162  

5.3.8. Upgrades  and  minor  works  Solution:  Create  a  mechanism  for  minor  upgrades  to  comply  with  minimum  NCC  standards  

Notes:  A  lot  of  upgrade  and  refurbishment  work  in  existing  buildings  is  not  covered  by  the  NCC  and  is  therefore  less  regulated  than  new  buildings.  A  minor  upgrade  (definition  varies  by  jurisdiction)  does  not  need  building  approval  so,  although  new  appliances  or  equipment  are  covered  by  MEPS,  many  items  such  as  insulation  levels,  control  requirements,  and  the  like  are  not.  The  extent  of  this  work,  the  implications  (training,  cost)  and  the  benefits  (CO2  reduction)  should  be  considered  with  a  view  to  creating  a  mechanism  for  all  work  to  comply  with  the  minimum  NCC/industry  quality  standards  either  via  regulation  or  an  industry  mechanism.  

The  current  Section  J  energy  efficiency  requirements  do  not  apply  to  refurbishments  of  existing  buildings  unless  the  building  fabric  is  to  be  altered  in  the  refurbishment.  There  is  currently  no  onus  on  the  building  owner  to  improve  the  thermal  performance  of  existing  building  fabric  during  an  upgrade.  

5.3.9. Documentation  standards  Solution:  Introduce  a  “Chain  of  Custody  of  Documentation”  system  or  methodology  for  systems  of  refrigerating  capacity  greater  than  XXX  KWr  or  for  buildings  of  greater  size  than  XXXX  m2.  The  methodology  would  outline  the  minimum  information  that  must  be  provided  and  retained  with  a  building  for  its  lifecycle  (design,  install,  commission,  recommission,  fine  tune,  operate,  maintain,  decommission).  

Notes:  Previously  justified  as  a  HVAC  HESS  project,  the  issue  of  accurate  and  trusted  building  information  being  maintained  through  a  building/system  life-­‐cycle  remains  an  issue  in  the  industry  and  a  barrier  to  energy  efficiency  improvement  and  emission  reductions.  

Solution:  Introduce  a  Building  Log  Book  program  for  commercial  buildings.  

Notes:  Previously  justified  as  a  HVAC  HESS  project,  if  buildings  over  a  certain  size  were  required  to  have  an  on-­‐line  building  log  book,  which  registered  the  maintenance  of  critical  mechanical  services  and  had  to  be  completed  at  least  once  every  6  months  you  would  create  a  data  base  that  identified  size  and  type  of  working  refrigerant  bank,  peak  load  hot  spots  and  cooling  demands,  etc  as  well  as  optimised  energy  efficient  safe  systems.  

Solution:  Introduce  a  mandatory  requirement  in  NCC/State  building  regulations  that  building  or  system  energy  efficiency/emission  controls  should  be  annually  inspected  and  operations  validated.  

Notes:  Similar  to  the  mandatory  requirements  and  existing  arrangements  for  annual  inspections  which  validate  essential  fire  and  smoke  services,  HVAC&R  systems  could  be  inspected  annually  to  ensure  they  are  still  operating  at  the  same  or  better  emissions  level  as  their  original  design.  

Page 110: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  110  of  162  

5.3.10. Facilities  for  maintenance  Solution:  Industry  should  produce/develop  a  new  Code  of  Practice  or  standard  to  specify  the  minimum  access  and  facilities  that  need  to  be  provided  to  HVAC&R  plant  and  equipment  for  the  purposes  of  ongoing  maintenance.  Code  should  clearly  state  the  minimum  WHS  requirements  for  access  for  maintenance  personnel.  

Note:  Current  standards  require  access  to  be  provided  but  do  not  specify  any  minimum  requirements  or  provide  methods  to  determine  compliance.  Access  and  facilities  provided  for  the  maintenance  of  systems  and  plant  is  often  inadequate.  Coils  and  fans  that  cannot  be  reached,  roof  mounted  equipment  with  no  safe  access,  high  level  plant  installed  without  access  platforms,  no  lighting,  power  or  drainage  facilities  for  maintenance  providers.  If  safe  and  adequate  access  is  not  provided  maintenance  is  considered  too  dangerous  or  expensive  and  is  not  carried  out.  Not  providing  adequate  access  may  contravene  new  WHS  laws  and  regulations.  

5.3.11. CTIP  finance  Solution:  the  HVAC&R  industry  should  advocate  to  government  to  allow  refrigeration  related  industries  associated  with  manufacturing,  agriculture  and  cold  chain  food  distribution  and  storage  access  to  the  existing  CTIP  program?  

Notes:  refrigeration  related  industries  associated  with  manufacturing,  agriculture  and  cold  chain  food  distribution  and  storage  are  emission  intensive  HVAC&R  industries  that  should  have  access  to  existing  government  incentive  schemes,  particularly  SME  operators.  

5.3.12. Refrigeration  safety  standards  Solution:  Continue  to  support  the  Standards  Australia  work  to  revise  and  update  AS/NZS  1677  design  safety  standards  and  encourage  greater  dialogue  and  consultation  with  the  broader  industry.  

Note:  Industry  continues  to  support  the  revision  of  AS/NZS  1677.2  and  the  further  development  of  ISO  5149  for  potential  alignment.  Any  changes  should  be  subject  to  industry/public  review  and  comment  and  the  normal  standards  development  processes.  Caution  with  expanding  scope  of  AS  1677  beyond  safety,  other  issues  could  be  covered  in  a  separate  standard  or  guide.  The  update  of  AS/NZS1677  needs  to  cover  those  environment  aspects  that  could  clash  with  safety  aspects.  The  current  edition  of  AS/NZS1677  has  caused  confusion  in  the  industry  as  to  the  legality  of  fusible  plugs,  bursting  disks  and  when  and  where  pressure  relief  valves  are  required.  The  update  should  not  stipulate  the  choice  of  refrigerant  with  respect  to  the  environment  but  should  include  requirements  for  leakage  and  ensuring  pipe  fractures  and  the  like  don’t  occur.  

Solution:  Continue  to  support  the  development  of  a  series  of  industry  derived  Codes  of  Practice  (CoP)  or  Guidelines  to  cover  the  safety  and  legal  requirements  for  refrigerant  handling  and  application.  

Notes:  It  should  also  be  noted  that  a  Safe  Work  Australia  Code  of  Practice  has  specific  legal  status  and  consideration  could  be  given  to  providing  guidelines  as  an  alternative  or  the  industry  can  self  codify  without  it  being  a  SWA  endorsed  Code.  Eventual  coverage  should  include  all  refrigerants  

Page 111: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  111  of  162  

including  new  codes  on  flammable  refrigerants  (A2  and  A3),  CO2,  and  new  generation  synthetic  refrigerants,  as  well  as  revising  existing  codes  on  ammonia,  and  fluorocarbon  refrigerants.  

Solution:  Industry  and  Government  need  to  review  when  and  where  the  AS/NZS  1677  standards  are  required  or  referred  to  for  regulatory  compliance.  What  regulations  and  codes  require  compliance  with  the  standard  in  which  sectors  and  in  which  applications?  

Notes:  These  standards  are  referred  to  in  a  range  of  industry  codes,  standards  and  regulations  and  some  review  and  harmonisation  should  be  undertaken  so  it  is  clear  to  the  industry  technical  service  providers  and  end  users  to  understand  when  and  where  application  of  AS/NZS  1677.2  is  required  by  law.  There  is  general  confusion  and  ignorance  within  the  industry  on  what  regulations  and  standards  are  applicable.  There  is  a  real  need  for  end  users  to  easily  identify  the  compliance  requirements  for  ALL  refrigerant  types.  Codes  of  Practice  are  a  very  good  tool  on  providing  an  overall  ‘map’  of  the  relevant  regulations  and  applicable  standards  across  the  various  jurisdictions.  

Solution:  Industry  and  Government  should  agree  to  make  safety  standards  mandatory.  

Solution:  Industry  and  Government  should  create  a  multi-­‐lateral  working  group  to  rigorously  and  systematically  assess  risks  associated  with  all  refrigerants  and  provide  guides  for  selection  using  a  strong  evidence-­‐based  approach.  

Notes:  The  working  group  should  include  manufacturers,  end-­‐users,  designers,  contractors,  emergency  services,  environmentalists,  economists,  sociologists,  regulators  and  politicians.  

5.3.13. CoP  for  flammable  refrigerants  Solution:  Develop  the  CoP  for  flammable  refrigerants  as  a  high  priority  as  it  may  be  easier  and  quicker  to  deliver  an  interim  CoP  than  a  revised  AS/NZS  1677.2.  

Notes:  There  are  documents  available  overseas  that  may  be  adopted  in  Australia.  There  has  been  research  that  shows  industry/employer  associations  are  the  most  trusted  by  businesses  for  information.  Industry  bodies  have  a  role  here  and  with  collaborative  process  with  regulators  could  have  complementary  support  from  each  jurisdictional  regulator.  

Solution:  Industry  and  Government  should  agree  to  make  compliance  with  CoPs  mandatory  and  a  licence  requirement  for  ARCtick  licence  holders.  

5.3.14. CoP  for  HFC  refrigerants  Solution:  Review  and  revise  the  current  CoP’s  for  HFC  refrigerants  (published  in  2007)  to  include  safety.  

Notes:  Current  CoP’s  only  cover  environmental  aspects  as  related  to  the  ozone  protection  and  synthetic  greenhouse  gas  management  legislation.  They  need  to  be  updated  to  include  safety  and  potentially  be  endorsed  by  WorkSafe  Australia.  The  CoPs  would  then  provide  the  regulatory  roadmap  for  compliance  and  could  reference  AS/NZS1677  (or  its  replacement)  as  well  as  other  

Page 112: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  112  of  162  

applicable  standards.  Revised  Code  should  also  cover  the  new  generation  low-­‐GWP  HFC  synthetic  refrigerants.  

Solution:  Industry  and  Government  should  agree  to  make  compliance  with  CoPs  mandatory  and  a  licence  requirement  for  ARCtick  licence  holders.  

5.3.15. Refrigerant  handling  Solution:  Review  and  revise  the  three  current  refrigerant  handling  Codes  of  Practice.  

Notes:  Specifically  look  at  leak  minimisation,  construction  standards,  refrigerant  containment  systems,  energy  efficiency,  (re)odorising  of  refrigerants  and  the  use  of  the  one-­‐off  cylinders.  

Solution:  Compliance  with  the  three  revised  refrigerant  handling  Codes  of  Practice  should  be  a  condition  of  the  ARCtick  licence.  

5.3.16. System  age  Solution:  Old  (>  10  year)  plants,  particularly  with  small  operators,  need  to  be  identified  and  it  be  made  mandatory  to  have  a  safety  compliance  audit  and  performance  audit  carried  out  at  least  every  2  years.  

Notes:  A  bit  like  a  rego  check  on  old  vehicles.  Should  systems  have  a  fixed  life  span  set  as  there  are  many  old  large  plants  with  leaking  solder  joints  and  work  hardening  of  the  copper  components  resulting  in  leakage  of  refrigerant?  Joint  okay  one  day,  failed  the  next  day.  This  approach  would  need  to  have  an  evidenced-­‐based  case  before  considering  it  as  a  mandatory  requirement.  It  may  not  be  easy  to  find  the  age  of  ‘older’  systems  or  the  date  they  were  installed  for  operation?  

5.3.17. Government  programs  –  MEPS  

Lack  of  part-­‐load  coverage  Solution:  Improve  the  MEPS  scheme  to  more  thoroughly  test  and  report  system  efficiency  under  a  wider  range  of  operating  conditions  (e.g.  more  part-­‐load  test  points).  

Notes:  Recommend  moving  away  from  COPs  and  EERs  as  the  basis  of  rating.  These  full-­‐load  rated  metrics  can  be  misleading  for  equipment  at  part  load  conditions.  This  could  be  covered  by  moving  to  a  true  SEER  type  MEPS  rating  and  should  mirror  the  US  or  European  standards.  Also  recommend  adding  additional  points  in  the  SEER  calculation  and  publishing  all  of  the  points  so  that  others  can  do  their  own  weighting  (i.e.  integration).  

Lack  of  claims  validation  Solution:  MEPS  administrator  should  provide  publicly  available  information  outlining  the  check  test/validation  of  claims  program  as  applied  to  MEPS.  

Notes:  Several  industry  commentators  have  questioned  the  level  of  check  testing  within  the  program.  

Page 113: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  113  of  162  

International  consistency  Solution:  MEPS  should  be  reviewed  to  bring  the  implementation  timelines  into  line  with  European  (EU)  or  USA  practice.  

Optimum  not  minimum  performance  Solution:  The  MEPS  program  should  be  reviewed  to  incorporate  a  focus  on  the  top  performers  as  well  as  the  lowest  performers  and  Japan’s  “Top  Runner”  program  is  suggested  as  an  appropriate  model.  

Notes:  MEPS  test  results  should  be  used  to  identify  and  reward  the  highest  performing  equipment  as  well  as  penalising  the  poorest  performing.  The  ‘Top  Runner’  is  a  government  program  aimed  at  continuous  improvement  across  a  range  of  different  industries.  

Residential  refrigeration  Notes:  To  allow  manufacturers  sufficient  planning  horizons.  

Solution:  Introduce  MEPS  and  energy  labelling  for  thermoelectric  and  3-­‐way  LPG  and  gas  powered  refrigeration  equipment.  

MEPS  for  heat  pump  water  heaters  Solution:  Industry  should  support  introduction  of  MEPS  for  heat  pump  water  heaters  (and  all  other  water  heating  technologies).  

Note:  There  would  need  to  be  separate  MEPS  for  domestic  hot  water  and  pool  heating.  

5.3.18. Government  programs  –  HVAC  HESS  Solution:  Industry  should  re-­‐assess  the  existing  project  list/measures  from  the  HVAC  HESS  scheme  to  determine  which  projects  are  still  viable  or  high  priorities  for  the  industry.  Use  this  assessment  and  its  conclusions  to  inform  the  current  HVAV  HESS  program  review  being  undertaken  by  DCCEE.  

Notes:  Extensive  research,  consultation  and  justification  behind  HVAC  HESS  objectives,  industry  need  to  determine  what  HVAC  HESS  projects,  that  remain  un-­‐delivered,  should  be  pursued  (if  any)  and  why.  

5.3.19. Government  programs  –  In  from  the  Cold    Solution:  Industry  to  review  the  existing  strategy  to  determine  how  it  could  be  better  aligned  with  the  move  to  low-­‐emission/low-­‐GWP  systems  within  this  sector.  Use  this  review  and  its  conclusions  to  inform  the  current  program  review  being  undertaken  by  DCCEE.  

Notes:  Extensive  research,  consultation  and  justification  behind  In  from  the  Cold  objectives,  industry  needs  to  determine  what  projects  should  be  pursued  and  why.  The  Australian  market  size  may  be  too  small  and  diversified  for  industry  to  justify  many  of  the  programs  identified  in  the  ‘In  from  the  Cold’  strategy.  It  may  more  practical  to  adopt  some  of  the  Eco-­‐Design  strategies  from  Europe  when  they  are  fully  developed  and  implemented.  Any  revitalised  program  should  focus  on  benchmarking  performance  rather  than  prescribing  technologies  and  should  also  focus  on  direct  emissions.  

Page 114: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  114  of  162  

5.3.20. Government  programs  –  Mandatory  disclosure  Solution:  Instigate  mandatory  disclosure  of  energy  used  in  all  government  buildings.  

Notes:  This  has  the  potential  to  be  a  major  driver  for  efficient  HVAC  installations  in  a  wide  range  of  building  types  and  system  applications.  This  would  facilitate  MJ  per  m2  per  annum  benchmarking  for  different  public  facilities  and  could  include  mandating  publication  of  energy  use  /performance,  monitoring  mechanisms,  commissioning  and  retrofitting  strategies  that  were  used  to  improve  performance.  This  aligns  with  NSEE  framework  policy  of  Government  leading  the  way  in  energy  efficiency.  

Solution:  Mandate  monitoring  and  publication  of  energy  use  for  all  public  buildings.  

Solution:  Extend  the  CBD  scheme  to  all  other  building  types,  including  residential  and  more  commercial  types  of  buildings.  

Notes:  Government  is  scheduled  to  expand  the  CBD  scheme  from  2014.  

It  is  important  to  encourage  private  building  owners  to  disclose  building  and  system  performance  data  around  water  and  energy  efficiency.  Private  building  owners  are  a  large  percentage  of  the  market  and  they  are  driven  to  minimise  utility  costs  in  order  to  remain  competitive  in  the  market  place.  A  large  number  of  city  office  buildings  are  more  than  30  years  old,  privately  owned,  and  trade  in  floor  spaces  of  less  than  2000  m2  etc.  The  mandatory  disclosure  CBD  scheme  its  current  format  misses  a  lot  of  them.  These  buildings  need  to  be  targeted  somehow,  perhaps  by  mandating  that  every  building’s  energy  consumption  be  disclosed  annually  and  perhaps  also  mandating  minimum  acceptable  levels.  

5.3.21. Government  programs  –  NGER  scheme  Solution:  The  NGER  scheme  should  be  expanded  to  include  more  of  the  HVAC&R  industry.  

Notes:  Currently  some  organisations  within  the  industry  have  to  report  under  NGERS.  Is  it  feasible  to  lower  and/or  expand  the  reporting  threshold  to  include  more  of  the  HVAC&R  industry?  Can  the  current  relevant  information  collected  through  NGERS  be  made  available  to  the  HVAC&R  industry?  

5.3.22. HVAC&R  design  standards  Solution:  Reduce  the  prescriptive  nature  of  requirements  in  current  HVAC&R  standards  in  favour  of  outcomes-­‐based  requirements.  

Notes:  Prescriptive  standards  are  one  way  to  do  things  performance  based  outcomes  is  another  pathway.  Conceptually  performance  based  approaches  sound  good  but  in  reality  they  may  enable  poor  design.  Who  validates  the  performance  compliance?  Who  knows  what  the  right  solution  is?  Who  accepts  the  risks?  State  Electrical  Regulators  insist  on  prescriptive  standards  when  it  comes  to  appliance  design  and  manufacture.  Many  commentators  have  suggested  that  safety  standards  should  never  be  performance  based.  

Page 115: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  115  of  162  

5.3.23. Cool/Cold  rooms  design  standard  Solution:  Industry  should  develop  an  energy  efficiency  design  standard  for  small  cool  rooms  and  cold  stores.  Note:  Currently  no  Australian  energy  efficiency  design  standard  or  guidelines  exist  for  this  application.  There  are  overseas  based  documents  available.  

5.3.24. Commercial  HVAC&R  demand  management  Solution:  The  HVAC&R  industry  should  adopt  emerging  international  standards  and  open  protocols  that  facilitate  the  implementation  of  demand  management  

Notes:  Emerging  international  standards  specify  a  feature-­‐rich  ‘two-­‐way’  signalling  system  for  commercial  air  conditioner  and  refrigeration.  Examples  include  OpenADR  2.0,  and  ZigBee  Smart  Energy  Profile  2.0.  Commentators  suggest  that  there  is  a  clear  need  for  as  single  national  standard  and  that  the  government/COAG  may  need  to  intervene.  

5.3.25. Residential  air  conditioning  design  and  installation  standard  Solution:  Complete  the  residential  air  conditioning  standard  currently  being  developed  (but  stalled)  at  Standards  Australia.  

Notes:  Wide  ranging  and  diverse  industry  support  for  this  standard  to  be  completed.  

5.3.26. Residential  air  conditioning  demand  management  Solution:  Introduce  regulation  to  require  the  manufacturers  or  suppliers  of  air  conditioners  for  sale  in  Australia  to  provide  AS/NZS  4755.3.1  compliant  demand  reduction  interfaces  in  their  products  and  require  electricity  distributors  to  develop  and  offer  demand  response  programs  on  their  networks.  

Notes:  There  is  already  some  current  progress  on  incentives  for  DRED  in  some  residential  markets.  Manufacturers  of  air  conditioners  for  the  residential  market  have  or  are  gearing  up  for  significant  spread  of  AS4755.3.1  compliant  units  across  their  ranges.  Only  one  electricity  distributor  is  taking  advantage  of  this  functionality  to  deliver  demand  management  for  these  units  through  addition  of  a  DRED.  This  impetus  must  not  be  lost  but  needs  to  be  built  upon  to  ensure  that  seamless  demand  management  of  air  conditioners  provides  significant  options  for  electricity  distributors  managing  power  supply  on  their  networks.  

 

5.4. Information  

5.4.1. Industry  information  and  online  repository  Solution:  Create  a  low-­‐emission  HVAC&R  “street  directory”  or  “IP  repository”  website  that  helps  people  find  all  of  the  validated  energy  efficiency  information  that  is  available,  a  one-­‐stop-­‐shop  for  guides  and  tools  and  other  information  related  to  low-­‐emission  HVAC&R.  Information  (branded  or  not)  could  be  deposited  by  a  variety  of  sources  to  a  central  database.  

Page 116: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  116  of  162  

Notes:  Currently  a  lot  of  useful  and  freely  available  information  is  located  in  diverse  locations  on  various  government  and  industry  websites.  A  big  issue  is  who  and  how  information  is  verified.  There  may  be  value  for  both  technical  service  providers  and  end  users/operators  to  provide  a  single  trusted  source  point  for  this  information.  This  solution  could  be  linked  with  training  and  other  information  dissemination  activities.  Problems  with  such  a  central  repository  include  the  resources  required  to  manage  it,  the  logistics  of  it  being  kept  up-­‐to-­‐date  and  possible  legal  implications  of  people  using  information  that  is  later  proven  to  be  flawed.  

5.4.2. The  value  of  HVAC&R  Solution:  The  industry  needs  to  create  some  general  awareness  information  about  the  value  of  the  HVAC&R  product.  Technical  service  providers,  end  users,  government  stakeholders  and  the  general  public  all  need  a  better  awareness  of  how  critical  the  industry  is  and  how  it  underpins  much  of  the  Australian  society  and  economy.  

Note:  Well  put  together  case  studies,  simple  comparisons  (company  X  saved  the  equivalent  of  200  cars....),  news  reports  etc.  The  International  Council  of  Air  conditioning,  Refrigeration,  Heating  manufacturers  Association  (ICARHMA)  has  also  recognised  this  issue  of  lack  of  recognition  of  the  HVAC&R  industry  and  is  working  on  a  draft  document  that  describes  the  value  the  industry  brings.  

5.4.3. Grants  and  incentives  Solution:  The  industry  needs  to  create  some  training  and  awareness  information  about  the  use  of  government  grants  and  incentives  designed  for  HVAC&R.  

Notes:  Many  HVAC&R  technical  service  providers  and  end  users  do  not  know  how  to  correctly  access  the  existing  grants  and  incentive  schemes,  including  completing  applications  and  meeting  program  eligibility  requirements,  leaving  schemes  that  are  underused  and  do  not  meet  their  potential  target  market.  

Solution:  Industry  should  document  all  of  the  alternative  options  or  programs  available  for  low  interest  or  no  interest  finance  for  energy  efficiency  intervention  work.  

Notes:  Document  and  explain  schemes  such  as  Low  Carbon  Australia,  Environmental  Upgrade  Agreements,  Government  incentive  schemes,  energy  performance  contacts,  environmental  performance  contracts  and  any  other  options  available  to  end  users  in  a  single  reference  source.  A  fact  sheet  may  be  an  appropriate  format  to  share  this  information  with  end  users  

5.4.4. Fee  structures  Solution:  HVAC&R  industry  should  develop  a  rigid,  structured  relationship  between  fees  charged  and  the  responsibilities  of  the  designer  for  use  by  end  users.  

Notes:  There  needs  to  be  a  direct  relationship  between  fees  charged  and  the  volume/quality  of  information  provided  to  the  entity  requesting  the  design  in  return  for  the  fees  paid.  There  also  needs  to  be  a  direct  relationship  between  design  information  and  technical  and  legal  responsibilities  by  the  designer  for  the  design  prepared.  There  are  examples  in  other  countries  of  a  rigid,  structured  relationship  between  fees  charged  and  the  responsibilities  of  the  designer.  In  these  countries  the  

Page 117: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  117  of  162  

quality  of  information,  the  level  of  information,  the  responsibilities  relating  to  these  deliverables  and  the  milestones  that  a  project  may  be  divided  into  are  enshrined  in  law.  

Solution:  Industry  needs  to  promote  to  clients,  funding  authorities  and  end  users  that  low-­‐emission  design  requires  additional  work  up  front.  Industry  should  publish  a  range  of  typical  hours  of  professional  work  likely  to  be  required  for  a  certain  low-­‐emission  task,  design,  modelling,  analysis,  research,  validation  and  the  like  by  defining  the  complexity  of  a  typical  task  and  an  estimate  of  the  hours  required  for  the  task.  

Notes:  Low-­‐emission  design  and  installation,  whatever  the  operational  gains  and  returns  on  investment,  requires  additional  effort  and  therefore  fees  up  front.  The  Fire  Engineering  Guidelines  include  estimates  of  hours  for  tasks  of  varying  complexity  for  fire  engineering  alternative  solutions.  A  similar  publication  for  low-­‐emission  HVAC&R  design  and  analysis  may  help  raise  awareness  and  assist  with  reviewing  fee  structures.  

Solution:  Industry  needs  to  promote  energy  performance  contracting  as  an  alternative  to  fixed  fees.  

Solution:  Rather  than  focus  on  fees,  industry  needs  to  build  awareness  of  clients  and  owners  on  the  importance  of  utilising  well  trained  designers  to  analyse  life-­‐cycle  costs  and  TEWI  calculations  rather  than  design/build  to  minimum  initial  cost  arrangements.  

5.4.5. HVAC&R  design  data  Solution:  Develop  a  design  guide  or  handbook  outlining  the  current  HVAC&R  design  rules  and  load  estimation  factors  based  on  current  regulations,  systems  and  practices.  

Notes:  Current  design  guides,  load  estimation  programs  and  building  simulation  programs  may  not  accurately  cover  the  current  Australian  climate,  internal  heat  loads,  occupant  densities,  design  set-­‐points  etc.  Many  existing  design  rules  were  developed  based  on  cost  but  costs  and  focus  have  changed.  Revising  AIRAH  application  manual  DA09  to  include  updated  climate  data  and  internal  and  external  heat  loads  could  be  a  good  vehicle  for  this.  Design  guides  need  to  cover  the  HVAC&R  design  strategies  and  options,  control  options,  current  construction  methods,  etc  and  include  evaluation  strategies  for  selecting  different  types  of  HVAC&R  system/delivery  approaches.  

Load  estimation  calculations  and  system  design  methodologies  need  to  be  updated  to  reflect  contemporary  methods  and  materials  and  a  standardised  set  of  ‘rule  of  thumb’  figures  or  defaults  produced  for  pre-­‐design  calculations  and  design  analysis.  

5.4.6. Internal  design/comfort  conditions  Solution:  Review  and  revise  the  comfort  conditions  that  are  being  used  as  the  basis  for  design  and  operation.  

Notes:  The  HVAC&R  design  process  requires  nominated  internal  comfort  or  design  conditions  so  that  loads  can  be  calculated  and  controls  set  up.  A  21°C/50%  RH  condition  is  not  an  uncommon  specification  however  comfort  can  be  provided  at  higher  temperatures  (with  significant  energy  

Page 118: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  118  of  162  

savings).  The  industry  needs  to  have  a  serious  discussion  about  comfort  conditions  for  design  and  operation.  

Solution:  The  HVAC&R  industry  should  endorse  the  ASHRAE  55  thermal  comfort  Standard  for  use  in  Australia  and  provide  guidelines  to  practitioners  on  how  it  can  be  applied  to  save  energy  while  maintaining  comfort.  

Notes:  The  HVAC&R  design  industry  should  focus  on  increasing  the  flexibility  of  internal  comfort  conditions  beyond  mean  temperature.  There  are  a  number  of  parameters  that  influence  personal  comfort  which  if  utilised  could  contribute  to  a  more  comfortable  and  a  more  water  and  energy  efficient  internal  environment.  

5.4.7. Air-­‐cooled/water-­‐cooled  cost  analysis  Solution:  Carry  out  and  publish  an  energy  efficiency/cost  analysis  of  water-­‐cooled  versus  air-­‐cooled  systems,  in  various  scenarios  (cooling  tower,  evaporative  condenser)  and  sectors  (refrigeration,  air  conditioning),  and  climate  zones  to  help  inform  designers  during  their  decision  making  processes  

Notes:  A  cost  analysis  in  various  scenarios  and  sectors  based  on  plant  size,  configuration,  controls,  location,  cost,  etc  would  be  a  useful  tool  for  increasing  the  awareness  on  whether  an  air-­‐cooled  or  water-­‐cooled  system  can  be  beneficial  for  particular  sites.  Cost  should  not  be  the  sole  determining  factor  when  comparing  water-­‐cooled  and  air-­‐cooled  systems.  Prioritising  energy  use  ahead  of  water  use  due  to  the  associated  carbon  emissions  will  negatively  impact  the  creation  of  holistic  HVAC  systems.  Both  water  and  energy  use  in  HVAC  systems  can  be  reduced  simultaneously.  It  is  important  to  take  a  whole-­‐of-­‐system  approach  when  calculating  the  true  reductions  in  energy  and  water  via  the  installation  of  an  air-­‐cooled  system.  

Solution:  Develop  a  study  quantifying  the  water-­‐energy  nexus  of  various  HVAC  systems  (i.e.  quantifying  the  amount  of  energy  use  associated  with  water  use  and  vice  versa)  to  ensure  the  use  of  both  resources  is  accounted  for  when  considering  upgrades/retrofits.  

Note:  To  encourage  a  holistic  systems  approach  to  HVAC&R  design,  operation  and  management.  

5.4.8. Commercial  refrigeration  design  approach  Solution:  A  total-­‐system  design  approach  for  commercial  air  conditioning  and  refrigeration  should  be  documented  by  the  industry  for  the  commercial  refrigeration  sector.  

Notes:  There  is  a  large  proportion  of  existing  supermarkets  where  air  conditioning  and  retail  refrigeration  are  separate  systems  resulting  in  a  lost  opportunity  for  energy  efficiencies.  

5.4.9. Co-­‐generation/Tri-­‐generation  Solution:  The  industry  should  develop  a  report  on  co-­‐generation/tri-­‐generation  world’s  best  practice.  

Notes:  To  build  awareness  about  methods  of  implementing  these  systems.  

Page 119: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  119  of  162  

5.4.10. Alternative  technologies  and  practices  Solution:  Support  the  development  case  studies  covering  the  successful  and  or  unsuccessful  implementation  of  alternative  technologies  and  practices.  

Note:  Information  is  an  appropriate  response.  Make  available  information  about  alternatives  and  provide  the  information  necessary  to  demonstrate  why/when/how  these  alternatives  are  superior.  The  demonstration  of  superiority  will  rely  on  good  information  about  the  performance  of  properly  implemented  existing  technologies.  

Individual  site  audits/feasibility  studies  and  case  studies  have  been  effective  in  stimulating  change  on  a  site  level.  Individual  businesses  respond  well  to  case  studies  of  similar  sites  that  have  installed  new  technology  with  positive  results.  When  a  new  technology  can  be  demonstrated  as  operating  efficiently  with  tangible  reductions  in  operational  and/or  construction  costs  businesses  are  more  likely  to  consider  it.  Open  dialogue  of  the  pros  and  cons  of  design,  installation  and  operation  issues  allows  fast  tracking  of  new  ideas  with  less  cost  risk  to  the  end  user.  

Traditionally  HVAC&R  case  studies  associated  with  awards  or  high  end  building  projects  tend  to  be  engaging  and  attractive  but  devoid  of  much  in-­‐depth  technical  content,  lessons  learned,  true  costs,  actual  validated  savings,  technical  instruction,  implementation  issues  and  resources  for  use/used.  Convincing  case  studies  need  to  focus  less  on  graphic  design  and  more  on  capturing  and  sharing  technical  information  and  know  how.  Independence  is  important  when  developing  case  study  materials.  

5.4.11. CPD  training  Solution:  Develop  Industry  based  training  for  building  professionals  to  assist  in  professional  development.  

Notes:  industry  needs  flexible,  practical  and  up  to  date  training.  Many  businesses  are  not  overly  concerned  about  formal  qualifications  but  do  want  training  recognised  as  professional  development/skills  maintenance.  Individuals  are  more  interested  in  qualifications.  Cost  is  an  issue,  but  less  so  than  time.  Businesses  need  to  commit  to  implementing  key  actions  and  opportunities  arising  from  training,  otherwise  the  time  and  cost  is  wasted.  Delivery  methods  are  critical  and  the  industry  probably  needs  to  explore  innovative  delivery  vehicles  (e.g.  massive  open  online  courses  (MOOCs))  that  satisfy  the  need.  

Solution:  Develop  training  for  architects,  services  engineers,  designers  and  contractors  so  they  can  incorporate  features  that  complement  energy  efficient  HVAC  solutions.  

Notes:  The  following  are  some  suggested  topics  (typical):  

Back  to  basics  –  A  CPD  course  for  designers,  contractors  and  technicians  to  cover  the  fundamentals  of  HVAC&R;  thermodynamics,  refrigeration  cycles,  heat  flow,  heat  transfer,  comfort,  design  conditions,  load  calculations  and  basic  HVAC&R  system  types  and  characteristics.  

Page 120: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  120  of  162  

Integrated  design,  passive  solutions  and  low-­‐emission  HVAC&R  –  A  CPD  course  for  designers  and  contractors  to  cover  methods  of  collaborating  on  appropriate  building  design  that  minimises  peak  cooling  and  heating  loads,  can  reduce  the  need  for  heat  rejection,  and  the  quantitative  design  analysis  on  the  effect  of  passive  design  solutions,  to  validate  such  designs.  Include  information  on  natural  ventilation  and  detailing  for  building  air  tightness.  

Utilising  Controls  to  diagnose  HVACV&R  for  energy  efficiency  –  A  CPD  course  for  engineers  and  facilities  managers  covering  the  utilisation  of  intelligent  control  networks  in  building  services  to  improve  water  and  energy  efficiency.  Training  could  be  in  the  form  of  a  seminar,  documentation,  or  presentation  on  how  to  utilise  control  and  monitoring  systems,  i.e.  BMCS,EMS  or  data  loggers  as  a  diagnostic  tool  for  analysing  building  energy  use  and  energy  efficiency.  

Co-­‐generation  (power  and  heat)  and  tri-­‐generation  (power,  heat,  cool)  –  A  CPD  course  for  HVAC&R  designers  and  contractors  including  technical  information,  lessons  learned  and  best-­‐practice  management  processes  for  co-­‐generation  and  tri-­‐generation  systems  within  buildings/sites.  Identify  and  resolve  technical  impediments  to  the  optimum  application  of  these  systems  in  buildings.  

Objectives  and  opportunities  of  low-­‐emission  HVAC&R  –  A  CPD  course  for  architects  and  end  users  about  the  objectives  and  opportunities  of  low-­‐emission  HVAC&R.  Could  be  delivered  via  Information  sheets  with  CPD  sessions  (RAIA,  ACA)  offering  additional  information.  

Holistic  HVAC&R  the  systems  approach  –  A  CPD  course  for  HVAC&R  designers  and  installers  and  system  procurers  to  encourage  them  to  take  a  more  holistic  ‘systems’  approach  to  HVAC&R  including  case  studies  and  ‘how’  to’  methodologies.  

Demand  management  and  HVAC&R  –  A  CPD  course  for  HVAC&R  designers  and  installers  outlining  successful  electrical  demand  management  strategies  that  can  be  applied  in  commercial  buildings  including  demand  reduction  devices,  thermal  energy  storage  systems  and  other  solutions.  Also  information  to  allow  them  to  inform  building  owners  and  operators  of  the  cost  savings  and  potential  income  streams  that  can  be  unlocked  by  demand  management  strategies.  Time-­‐of-­‐use  metering  and  the  implications  for  HVAC&R  system  selection  could  also  be  covered.  

Boilers  control  and  optimisation  –  A  CPD  course  for  HVAC&R  designers  and  installers  outlining  successful  hot  water  and  steam  boiler  control  and  optimisation  and  waste  heat  recovery  options.  Information  could  be  disseminated  via  information  sheets  with  CPD  sessions  offering  additional  information.  

Refrigeration  systems  –  best-­‐practice  in  design,  installation  and  maintenance  –  A  CPD  course  for  refrigeration  system  designers  and  installers  outlining  current  best  practices  and  techniques  for  optimum  design  and  installation  of  low-­‐emission  refrigeration  systems  in  commercial  and  industrial  applications.  

Optimising  existing  HVAC&R  systems  for  low-­‐emission  outcomes  –  A  CPD  course  for  HVAC&R  system  designers,  installers  and  technicians,  facilities  managers,  and  end  users  about  methods  to  get  the  best  low-­‐emission  performance  out  of  existing  systems  including  building/system  tuning,  

Page 121: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  121  of  162  

recommissioning,  retrocommissioning,  optimal  supervisory  control  strategies,  fault  detection  and  diagnosis  and  maintenance  approaches.  Also  reducing  GWP  of  existing  refrigeration  plant  including  evaluation  and  refrigerant  replacement.  

5.4.12. End  user  information  and  awareness  There  is  a  strong  role  seen  for  industry  bodies  in  providing  end  user  information  and  awareness.  Industry  provided  educational  information  through  industry  bodies,  manufacturers  and  suppliers,  training  websites,  as  well  as  the  development  of  ‘applications’,  computer  software  and  other  helpful  tools  are  all  seen  as  potential  paths  for  industry  participation  in  end  user  awareness  issues.  

Fact  sheets  –  System  operators  Solution:  Develop  a  series  of  concise  fact  sheets  for  HVAC  system  owners  and  operators,  perhaps  leveraged  off  the  HVAC  HESS  operation  and  maintenance  guide.  

Notes:  Perhaps  existing  documents  are  too  long  and  overly  detailed  for  the  purposes  of  system  operators.  The  use  and  dissemination  of  concise  fact  sheets  (e.g.  ten  top  HVAC  efficiency  tips  or  a  one  page  guide  to  HVAC  system  monitoring)  to  get  the  message  across  to  operators  could  be  useful.  Providing  these  fact  sheets  to  industry  facing  professionals  could  help  disseminate  best-­‐practice  information  to  industry.  

Suggested  topics  (typical)  –  for  owners  and  operators:  

• Ten  top  HVAC  efficiency  tips.  • Benefits  and  practicalities  of  submetering;  getting  systems  installed  and  monitored.  • One  page  guide  to  HVAC  system  monitoring.  • Maintenance  for  energy  efficiency,  Why?  How?  • Flammable  refrigerants,  do’s  and  don’ts.  • Stop  that  refrigerant  leak!  Why  leaks  are  dangerous  and  cost  owners  money.  • Ductwork  leakage,  why  it  wastes  energy  and  money  and  how  it  can  be  stopped.  • Consequences  of  running  refrigeration  plant  outside  of  design  conditions.  • How  systems  are  used  effects  energy  and  water  consumption,  here  is  why.  • Why  I  need  to  responsibly  dispose  of  and  recycle  my  unwanted  system  and  how.  • Best-­‐practice  management  of  heat  transfer  surfaces  within  HVAC&R  (coil  cleaning).  • Time-­‐of-­‐use  electricity  pricing,  demand  reduction  and  HVAC&R.  • How  to  stimulate  low  interest  finance  for  energy  efficiency  upgrades.  • Demand  management,  what  it  means  and  what  it  can  do  for  my  building.  • How  systems  should  be  sized  and  the  energy  impact  of  oversizing.  

Fact  sheets  need  to  incorporate  high-­‐quality  information,  not  just  generalisations,  and  should  be  linked/refer  to  case  studies  where  possible.  

Systems  life-­‐cycle  guide  for  owners  Solution:  Develop  a  comprehensive  guide  providing  step  by  step  easy  to  understand  instructions  on  system  sizing  and  the  relationship  to  through  life  operating  costs  of  smaller  heating  and  cooling  units  in  residential  situation  to  larger  capacity  for  commercial  organisations.  

Page 122: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  122  of  162  

Notes:  A  key  need  for  end-­‐users  is  to  get  investment  decision  makers  to  understand  life-­‐cycle  costing  in  the  context  of  HVAC&R  so  that  lowest  first  costs  solutions  do  not  always  dominate  procurement  decisions.  This  guide  could  increase  awareness  of  sizing,  technology  and  control  issues  and  their  relation  to  ongoing  operation  and  maintenance  costs.  This  knowledge  would  help  put  owners  on  the  right  direction  to  selecting  someone  who  can  help  them  with  their  design.  This  should  be  only  intended  for  increasing  awareness  around  life-­‐cycle  issues  and  should  not  be  treated  as  a  complete  design  guide.  It  is  also  important  that  any  guide  recognise  that  system  size  can  be  reduced  or  even  eliminated  by  utilising  passive  design  in  combination  with  retrofit  activities.  

Cost-­‐benefit  analysis  guide  for  owners  Solution:  Provide  end  users  with  solid  and  trusted  cost-­‐benefit  analyses  proving  the  economic  merit  of  optimising  and  maintaining  system  efficiency  is  crucial.  

Note:  In  the  absence  of  other  incentives  proven  and  documented  cost  benefit  analysis  of  maintenance  is  critical  to  motivate  end  users  to  procure  energy  efficiency  maintenance.  

Return  on  investment  guide  for  owners  Solution:  It  is  appropriate  that  industry  should  document  and  promote  simple  payback  calculation  methods  for  SME  HVAC&R  practitioners/end  users  and  smaller  projects,  but  a  fuller  return  on  investment  calculations(such  as  NPV  or  IRR)  for  larger  projects  and  sophisticated  clients.  

5.4.13. myHVAC&Rsystem.com.au  Solution:  Develop  an  energy  version  or  augmentation  of  mycoolingtower.com.au  to  include  energy  efficiency  calculators,  benchmarks  and  energy  efficiency  audit  information  for  HVAC  systems.  

Notes:  An  online  portal  for  HVAC  &R  energy  efficiency  information,  advice  and  technical  resources  would  be  very  useful  for  building  owners  and  operators,  particularly  the  SMEs  operating  in  the  sector.  Constructing  information  resources  which  are  free  from  complex  legal  and  technical  nomenclature  is  vital  to  end-­‐user  uptake.  

5.4.14. Natural  refrigerants  Solution:  Develop  an  application  guide  for  designers  and  installers  to  improve  their  knowledge,  understanding  and  trust  of  natural  refrigerant  solutions  and  applications.  

Notes:  A  table  of  applications  with  a  traffic  light  signal  to  designate  if  the  application  is  suitable  or  not  for  Hydrocarbon,  Ammonia  and  CO2  based  refrigerants  could  be  a  useful  tool.  Industry  consensus  does  not  appear  to  have  been  achieved  on  the  most  appropriate  application  of  natural  refrigerants.  Overseas  developed  documents  may  be  a  suitable  basis  for  development  of  such  an  application  guide.  

Solution:  Recommend  an  industry  lead  advocacy  campaign  to  building  owners  and  developers  on  the  benefits  of  natural  refrigerants  and  their  suitability.  

Page 123: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  123  of  162  

5.4.15. Ammonia  refrigerants  Solution:  Recommend  industry  develops  a  series  of  fact  sheets  covering  the  successful  use  of  ammonia  overseas  and  in  Australia,  e.g.  Heathrow  terminal.  

Solution:  Recommend  that  ammonia  plant  greater  than  50kg  charge  and  intended  to  be  located  in  suburban  areas  for  residential/commercial  applications  be  provided  with  water  scrubbing  systems  for  system  relief  vents.  

Notes:  Mandating  this  practice  is  not  well  supported;  however,  formalising  this  and  similar  practices  could  remove  one  of  the  barriers  to  the  wider  application  of  systems  based  on  this  natural  refrigerant  in  the  commercial  refrigeration  and  air  conditioning  sectors.  If  this  practice  is  to  be  validated,  it  will  also  be  necessary  to  establish  a  design  standard.  Such  a  standard  does  not  presently  exist,  but  it  is  a  topic  on  the  list  of  research  projects  prepared  by  the  IIAR  research  committee.  Water  efficiency  needs  to  be  a  key  consideration  when  considering  water  scrubbing  systems.  Also  need  to  consider  trade  waste  aspects  as  ammonia  in  sewers  can  be  a  health  and  safety  risk  to  sewer  workers  and  a  nutrient  load  that  must  be  removed  at  sewage  treatment  plants  

There  are  several  other  ways  of  mitigating  the  effects  of  an  ammonia  release.  The  pros  and  cons  are  the  topic  of  the  IIAR  research  project.  This  issue  requires  a  quality  engineering  approach  from  project  to  project  and  should  be  considered  in  concert  with  charge  reduction  techniques.  

5.4.16. Passive  design  Solution:  Develop  a  guide  quantifying  the  impacts  that  passive  design  solutions  can  have  in  terms  of  reducing  the  load  on  HVAC  systems  in  commercial  building  energy  retrofit  opportunities.  

Notes:  Providing  commercial  building  owners  with  a  brief  and  concise  guide  to  passive  design  and  retrofit  opportunities,  particularly  those  opportunities  relevant  to  commercial  office  and  retail  buildings  given  their  extensive  use  of  HVAC  systems.  

Solution:  Develop  a  guide  showing  how  HVAC&R  professionals  should  quantify  the  performance  aspects  of  particular  passive  design  or  alternative  passive  technology  solutions.  

Notes:  Providing  HVAC&R  professionals  with  a  brief  and  concise  guide  to  quantifying  the  performance  aspects  of  passive  design  will  help  them  to  provide  building  designers  with  the  evidence-­‐based  design  advice  that  they  require.  

5.4.17. Best-­‐practice  HVAC&R  installation  Solution:  Develop  a  best-­‐practice  HVAC&R  design  and  installation  guide  focused  on  energy  efficiency.  

Notes: High standards of design, installation and maintenance need to be promoted. This was previously proposed as an HVAC HESS project. Could be used as the basis of an accreditation scheme.

Page 124: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  124  of  162  

5.4.18. Building  tuning  and  recommissioning  Solution:  Greater  emphasis  should  be  placed  on  building  tuning  and  recommissioning  procedures  and  tools,  through  mechanisms  such  as  industry  best-­‐practice  guidelines  and/or  government  policy  (i.e.  solution  5.10.1  XXX)  

Note:  NSW  OEH  is  developing  a  guide  to  HVAC  optimisation.  Most  buildings,  even  those  recently  constructed  and  correctly  commissioned,  can  benefit  from  building  tuning  for  energy  efficiency.  

5.4.19. Commercial  refrigeration  Solution:  Industry  should  ensure  that  end  users,  suppliers,  installers,  as  well  as  maintenance  contractors  are  conversant  with  energy  efficiency  and  optimisation  issues  for  commercial  refrigeration  equipment.  

Notes:  This  could  be  done  through  training,  information  sessions  and  case  studies.  Industry  and  government  could  take  shared  responsibility  for  implementing  this.  

5.4.20. System  age  Solution:  Industry  should  develop  an  education/awareness  program  based  around  energy  efficiency  rather  than  the  risk  of  direct  refrigerant  emission  from  a  leak.  

Notes:  10  year  old  systems,  cool  rooms  and  cabinets  are  going  to  have  major  issues  around  degradation  of  the  insulation,  linted  up  coils,  corrosion  of  fans  and  the  like  that  causes  major  increases  in  energy  consumption.  An  industry  guideline  covering  what  to  look  for  and  how  to  improve  systems  may  be  useful.  

5.4.21. Optimising  and  maintaining  efficiency  Solution:  Industry  should  develop  guidelines  on  the  financial  and  risk  assessment  of  existing  HFC/HCFC  based  systems  for  owners  and  service  providers  to  help  them  decide  priorities  for  system  replacements/upgrades.  

Solution:  Industry  should  develop  guidelines  on  the  best-­‐practice  methods  for  energy-­‐efficiency  interventions  and  system  upgrades.  

Note:  NSW  OEH  is  in  the  process  of  developing  an  Energy  Saver  HVAC  Optimisation  Guide  which  will  be  available  from  mid-­‐2013.  

5.4.22. Maintenance  for  energy  efficiency  

The  value  proposition  for  energy  efficiency  maintenance  Solution:  The  industry  needs  to  build  a  value  proposition  for  the  benefits  of  good  maintenance,  case  studies  and  independent  testing  that  proves,  to  end  users,  the  cost  savings  and  additional  benefits  from  good  maintenance.  

Page 125: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  125  of  162  

Solution:  The  industry  needs  to  promote  submeters  and  benchmark  checking  as  a  means  of  identifying  reducing  performance  and  the  need  for  maintenance.    

Notes:  Case  studies  and  guidelines  should  include  maintenance  for  different  building  classes,  different  types  of  systems  and  different  climate  zones.  

Other  suggested  means  to  increase  maintenance  of  HVAC&R  equipment  include:  • HVAC&R  industry  actively  promoting  maintenance  to  their  clients/community  through  

various  media  avenues,  • Industry  integrating  maintenance  programs  into  their  capital  contracts  as  part  of  the  whole  

package.    

Maintenance  guides  Solution:  Encourage  owners  and  operators  through  industry  awareness  programs  to  procure  energy  efficiency  maintenance  requirements.  

Notes:  Costs  and  benefits  of  energy  efficiency  maintenance  need  to  be  demonstrated  and  documented  to  encourage  better  uptake.  Standard  clauses  could  be  written  for  procurement  guidelines.  

Solution:  Develop  a  short  and  simple  best-­‐practice  guide  on  energy  efficiency  maintenance  for  owners  and  operators  and  a  more  comprehensive  technical  and  practical  guide  for  technicians  and  contractors.  

Notes:  Document  procedures  for  an  initial  audit  and  review,  plus  follow  up  rectifications,  plus  set  up  of  ongoing  monitoring  system.  Maintenance  guides  for  contractors  may  be  required  across  all  sectors.  Guides  should  be  freely  available  to  encourage  use.  Guides  should  leverage  off  existing  published  materials  (HVAC  HESS  GUIDE,  AIRAH  DA19)  and  provide  a  simple  and  clear  summary.  Split  landlord/tenant  incentives  often  apply  in  maintenance  procurement  and  any  guide  should  address  this  directly.  

OEH  Energy  Saver  HVAC  Optimisation  Guide  which  is  in  development  for  a  mid-­‐2013  release  may  also  help  on  this  issue.  

Maintenance  training  Solution:  Create  training  modules  based  on  the  content  of  the  maintenance  guides.  Water  and  energy  efficiency  should  be  part  of  the  training  programs.  

Note:  Training  should  be  developed  and  delivered  by  industry  sector,  e.g.  residential,  commercial,  automotive,  industrial  to  ensure  training  is  relevant  and  affordable.  

Maintenance  accreditation  Solution:  Develop  a  maintenance  contractors  energy  efficiency  based  accreditation  program.  

Note:  Accreditation  program  could  be  based  on  Guides  and  training  resources.  Program  could  be  administered  by  ARC.  Program  would  need  to  be  linked  to  a  policy  framework  and  RTO.  

Page 126: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  126  of  162  

5.4.23. Residential  air  conditioning  design  and  installation  standard  Solution:  Use  the  Residential  air  conditioning  design  and  installation  standard  to  educate  residential  air  conditioning  customer  as  to  minimum  standards  for  an  installation  (what  to  look  for,  questions  to  ask,  how  to  recognise  a  qualified  installer).  

Note:  This  could  be  covered  in  a  fact  sheet  

Solution:  Provide  training  and  promotion  to  consumers  and  contractors  of  appropriate  sizing  for  modern  more  efficient  homes.  

Note:  The  AIRAH  FairAir  website  is  a  good  start,  but  it  needs  to  include  more  options  for  high  efficiency  houses,  such  as  advanced  glazing  and  higher  levels  of  insulation.  Some  of  the  state  and  territory  agencies  may  have  useful  information  on  this  topic.  

5.4.24. Residential  air  conditioning  demand  management  Solution:  Develop  residential  air  conditioning  consumer  awareness  material  to  address  the  questions;  will  my  comfort  be  compromised?  How  often  will  the  units  be  managed?  How  much  will  I  save  on  my  bill  or  be  rewarded  for  having  my  air  conditioning  managed  by  the  electricity  distributor?  

Notes:  Consumer  concerns  remain  a  barrier  to  demand  reduction.  

Solution  Address  manufacturers/supply  side  to  ensure  that  compliance  with  AS4755.3.1  does  not  require  additional  work  at  time  of  installation  (i.e.  PCB  swap  out),  by  managing  consistent  message  through  distribution/sales/installer  channels  regarding  manufacture  and  supply  of  DREDs,  and  logistics  of  getting  DREDs  to  end-­‐user  and  installed.  

Notes:  Technical  logistics  with  DREDs  remain  a  barrier  to  demand  reduction.  

5.4.25. Residential  maintenance  Solution:  Industry  develop  and  deliver  customer  awareness  sheets.  

Notes:  If  customers  can  be  educated  to  understand  that  maintenance  gives  so  many  benefits  (energy  efficiency,  reduced  wear,  prolonged  air  conditioning  life,  healthier  air  delivery,  reduced  noise,  reduced  environmental  impacts  etc.)  and  value  these  in  dollar  terms,  customers  would  at  least  be  mindful  of  the  need  for  maintenance.  

 

5.5. Measurement  

5.5.1. HVAC  system  rating  Solution:  Develop  a  consensus  and  transparent  HVAC  rating  and  benchmarking  tool  to:  

• provide  an  overall  measure  of  HVAC  performance  • provide  separate  ratings  for  heating  and  cooling  systems  

Page 127: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  127  of  162  

• consider  the  direct  and  indirect  water,  energy  and  refrigerant  use  associated  with  each  individual  system  

Notes:  This  will  provide  more  detailed  information  to  building  operators  and  allow  more  targeted  improvements  in  HVAC  system  performance  and  assist  in  the  identification  of  efficient  and  inefficient  systems.  The  ranking  of  systems  also  places  a  building’s  HVAC  system  into  the  context  of  the  wider  industry  and  will  increase  the  recognition  of  systems  requiring  maintenance,  retrofits  and  replacement.    

The  relevance  has  been  questioned  by  some  with  regards  to  buildings  with  current  NABERS  Energy  ratings  but  it  is  supported  in  all  other  sectors.  However,  NABERS  measures  Whole-­‐building  performance  and  does  not  single  out  the  HVAC  systems.  As  such  a  building  that  has  good  NABERS  rating  now  may  have  a  poorly  performing  HVAC  system  that  is  compensated  for  in  other  areas.  Similarly  MEPS,  as  a  rating  tool  focuses  on  a  particular  piece  of  plant  rather  than  the  system  as  a  whole.  

The  rating  tool  could  be  in  the  form  of  an  ‘app’,  a  software  program,  or  a  spreadsheet  based  system.  Perhaps  integrating  a  HVAC  rating  into  the  NABERs  rating  tool  in  order  to  maintain  consistency  and  increase  the  relevance  of  the  HVAC  rating  tool.  

“Calculating  Cool”  is  an  existing  HVAC  HESS  project  with  very  similar  goals.  

5.5.2. Refrigeration  system  rating  Solution:  Develop  a  rating  tool  for  rating  proposed  commercial  refrigeration  systems  based  on  TEWI  or  similar  life-­‐cycle  assessment.  

Notes:  Any  tool  needs  to  be  made  available  in  a  computer  program,  application,  spreadsheet  or  quick  assessment  sheet  and  should  be  ‘open  access’  to  allow  anyone  complete  a  basic  analysis.  A  simplistic  rating  system  for  commercial  refrigeration  products  would  make  the  acquisition  of  efficient  systems  less  problematic  and  may  act  to  increase  competition  between  manufacturers  to  design  more  efficient  systems.  

The  model  would  necessarily  need  to  make  default  assumptions  and  the  resulting  limitations  of  the  model  parameters  must  be  explicit.  May  be  difficult  to  develop  and  implement  given  the  huge  variety  of  systems,  configurations  and  operating  variables.  Perhaps  start  with  a  cool  room  calculator  (linked  with  5.8.16  XXX)  and  expand  from  there.  

Solution:  Develop  a  benchmarking  tool  for  custom-­‐made  commercial  refrigeration  addressing  energy  use  intensity  based  on  useful  product  cooling  so  that  there  is  incentive  to  minimise  standing  losses  and  other  parasitic  loads.  Where  the  primary  system  function  is  storage  only  a  metric  such  as  per  unit  of  product  stored  or  storage  volume  or  similar  would  be  appropriate.  

Notes:  This  tool  would  provide  drivers  for  industry  to  identify  improvements  in  real  terms.  The  tool  would  act  as  an  incentive,  especially  for  the  smaller  end  of  the  market,  to  determine  the  

Page 128: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  128  of  162  

performance  of  systems.  The  tool  should  also  have  the  capacity  to  facilitate  monitoring  of  any  optimisation  measures  implemented.  

End  users  with  existing  HVAC&R  infrastructure  would  require  a  cheap  and  accurate  way  to  obtain  the  measurements  and  information  needed  to  apply  the  tool.  

5.5.3. Water  rating  Solution:  Include  a  water  rating  or  assessment  in  any  rating  tool  developed  to  assess  or  benchmark  HVAC&R  systems.  

Notes:  Quantifying  the  amount  of  energy  associated  with  water  use  and  vice  versa  within  various  HVAC  systems  will  provide  a  basis  for  designing  systems  that  reduce  the  need  for  both  resources.  This  would  contribute  to  a  more  holistic  approach  that  recognises  the  more  complicated  relationships  that  exist  between  energy  consumption  and  HVAC&R  operation.  

Solution:  Government  could  consider  expanding  the  WELS  scheme  to  include  HVAC&R  equipment.  

5.5.4. Validation  of  product  claims  Solution:  Develop  an  Australian  industry  mechanism  that  can  be  used  to  validate  the  efficiency,  environmental  and  safety  performance  claims  made  by  new  technology  providers,  the  design  fraternity,  contractors,  owners  and  the  like.  

Notes:  These  objectives  cannot  be  achieved  through  existing  mechanisms  like  MEPS  based  on  Australian  Standards.  Perhaps  some  sort  of  industry  accreditation  scheme  whereby  an  independent  group  can  review  and  assess  new  technologies  in  partnership  with  the  system  manufacturers/suppliers.  The  big  issue  is  who  and  how  claims  are  verified.  Much  marketing  information  is  technically  light  and  can  give  false  impressions  of  the  true  performance;  trust  is  paramount  in  a  risk  averse  sector.  In  the  USA  for  example  the  Air  conditioning,  Heating  and  Refrigeration  Institute  (AHRI)  undertook  this  role  by  developing  performance  measurement  standards  that  manufacturers  had  to  adhere  to  before  making  claims.  This  could  be  an  extremely  expensive  process  and  the  Australian  Industry  may  be  too  small  to  justify  it.  It  may  be  possible  to  partner  with  organisations  such  as  AHRI  and  make  this  a  more  global  initiative.  There  is  also  a  need  to  get  innovative  products  (e.g.  building  materials)  incorporated  into  rating  schemes  (e.g.  NatHERS).  This  also  requires  testing  and  validation.  

TAFE  or  CSIRO  may  have  currently  unused  facilities  that  could  be  adapted  as  suitable  test  facilities.  It  has  also  been  suggested  that  developing  a  working  relationship  with  and  providing  expert  impartial  industry  information  to  the  ACCC  could  be  an  effective  way  of  implementing  this  solution.  

5.5.5. Technology  comparison  tool  Solution:  Industry  should  assist  in  establishing  comparative  measurement  and  verification  (M&V)  tools  to  demonstrate  relative  energy  efficiency  across  all  cooling  technologies.  

Page 129: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  129  of  162  

Notes:  One  of  the  challenges  of  improving  energy  efficiency  and  emission  in  general  is  to  compare  alternative  solutions.  Providing  a  level  playing  field  for  comparison  would  be  a  priority  from  an  end  user  point  of  view.  There  is  a  need  for  an  unbiased,  vendor-­‐neutral  decision-­‐support  tools  that  can  assist  in  informing  HVAC&R  clients  of  the  feasibility  of  emerging  technologies  and  optimal  technology  investment  options.  Providing  cost  and  implementation  comparisons  between  the  different  emerging  technologies,  and  properly  implemented  existing  technologies,  and  a  checklist  to  know  which  ones  are  best  for  particular  applications  would  be  a  good  start.  A  common  approach  is  to  use  estimation  tools  to  attempt  to  make  comparisons  on  a  fair  and  consistent  basis.  It  can  be  difficult  to  create  a  tool  that  covers  all  possible  situations  that  might  arise.  Comparisons  would  generally  only  be  practical  for  a  specific  set  of  conditions  which  may  not  result  in  the  correct  answer  when  technology  is  implemented  in  different  environments.  Comparisons  need  to  be  careful  to  encompass  whole-­‐of-­‐system  performance  including  maintenance  procedures  and  effective  system  operation.  The  comparison  tool  would  need  to  encompass  energy  and  water  efficiency  when  operating  at  different  loads  (i.e.  not  just  peak  loading).The  expectations  of  accuracy  from  any  such  tool  must  be  realistic  and  should  focus  on  aspects  that  give  large  effects.  Any  comparison  tool  must  be  extensively  verified  against  measured  data  and  have  its  limitations  and  constraints  well  defined.  Development  of  such  a  tool  may  be  expensive  and  this  could  be  taken  on  by  organisations  such  as  AHRI  and  IIR  who  have  much  greater  resources.  There  is  already  a  lot  of  work  going  on  with  respect  to  LCCP  calculators  and  any  Australian  tool(s)  would  need  to  be  internationally  consistent.  

Solution:  Industry  should  develop  an  agreed  technology  pathway  roadmap  for  new  technologies.  

Notes:  Industry  could  build  consensus  on  the  directions  that  should  be  taken  to  change  the  business  as  usual  approach  to  technology.  This  could  then  tie  into  possible  regulatory/  rating  frameworks  rather  than  tying  into  design  practitioners  as  the  path  to  implementation.  

5.5.6. Benchmarking  existing  systems  Solution:  Industry  should  collaborate  to  ensure  that  the  best  available  data  is  available  to  allow  owners  and  operators  benchmark  the  performance  of  existing  HVAC&R  systems.  

Notes:  Benchmarking  the  energy  consumption  and  refrigerant  leakage  rates  of  existing  systems  can  add  value  in  all  sectors  of  the  industry.  Industry  specific  figures  for  kWhr/m2/per  annum  need  to  be  compiled  from  best  available  information.  Where  information  is  not  available  collection  mechanisms  should  be  put  in  place.  

5.5.7. Metering  and  monitoring  Solution:  Develop  an  incentive  scheme  to  provide  free  submeters/check  meters  to  electricity  users  to  facilitate  their  monitoring  of  the  electricity  consumption  of  individual  HVAC  plant  and  systems.  

Notes:  Demonstrating  the  benefits  of  submetering  for  electricity  consumption,  through  case  studies  with  demonstrated  energy  savings  and  operational  benefits  could  greatly  enhance  their  uptake.  Demonstrating  that  access  to  higher  quality,  on  time  system  performance  data  makes  the  operators  job  easier  and  more  effective  would  help  build  the  business  case  for  best-­‐practice  monitoring.  

Page 130: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  130  of  162  

Solution:  The  use  of  building  and  system  submetering  with  upload  to  an  application  such  as  REF  (which  stands  for  Rapid  Efficiency  Feedback),  administered  by  Buildings  Alive,  or  ABER  (which  stands  for  Australian  Building  Energy  Repository),  administered  by  CSIRO,  could  assist  building  owners  in  benchmarking  their  HVAC  systems  against  other  like  buildings.  

Notes:  The  uploading  of  the  building  data  to  an  open  and  transparent  online  register  could  assist  in  disseminating  advice  and  best-­‐practice  between  stakeholders.  

Solution:  The  industry  should  collaborate  to  create  a  comprehensive  Australian  data  base  on  building  energy  use  incorporating  metering  and  monitoring  data  from  applications  such  as  NABERS,  Green  Star,  REF  and  ABER.  

Notes:  Creating  a  large  Australian  database  of  building  energy  data,  with  high  resolution  sub  system  energy  data  such  as  HVAC,  lighting,  plug  loads,  could  be  used  for  generating  or  validating  building  energy  models  as  well  as  quantifying  and  benchmarking  building  energy  use  and  feed  back  into  design  practice.  Data  base  would  ideally  be  administered  by  a  commercially  neutral  trusted  data  custodian,  e.g.  government,  CSIRO,  university.  

Solution:  Build  awareness  of  how  operators  could  use  remote  monitoring  and  web-­‐based  energy  trending  to  create  building  energy  use  profiles  and  provide  training  on  how  to  interpret  the  profiles  to  improve  energy  efficiency.  

Solution:  Build  upon  the  findings  of  the  HVAC  HESS  Wireless  Metering  project  to  further  justify  and  quantify  the  business  case  for  wireless  metering  and  provide  recommendations  to  industry.  

5.5.8. Maintenance  records  Solution:  Create  an  industry  based  online  register  of  refrigeration  system  maintenance.  Owners  of  equipment  with  charges  of  greater  than  XX  kg  in  aggregate  could  be  required  to  keep  a  register  of  all  equipment  and  maintenance  regimes,  charge  type  and  size,  replacement  and  top  up  rates  etc.  

Notes:  Owners  could  outsource  the  establishment  of  the  register  to  their  mechanical  service  contractors  who  could  fill  in  the  proforma  register  provided  via  the  online  service.  Equipment  owner  can  download  in  the  case  of  a  random  inspection  of  the  register  by  government.  

5.5.9. Fault  detection  and  diagnosis  Solution:  Research  projects  to  evaluate  the  feasibility  and  energy  savings  potential  from  automated  fault  detection  and  diagnosis  (FDD)  tools  in  the  Australian  context  should  be  undertaken.  

Note:  Government  sponsorship  should  require  IP  sharing.  

5.5.10. Cool/cold  rooms  design  standard  Solution:  Industry  should  develop  an  energy  efficiency  benchmarking  standard  or  data  base  for  small  cool  rooms  and  cold  stores.  Note:  Currently  no  Australian  benchmarking  information  publically  available.  

Page 131: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  131  of  162  

5.5.11. Benchmarking  electricity  use  Solution:  Energy  retailers  should  investigate  the  possibility  of  including  benchmark  figures  in  electricity  bills  for  commercial  or  industrial  customers.  

Notes:  When  a  commercial  or  industrial  consumer  gets  their  power  bill  it  shows  the  benchmark  figure  and  where  this  consumer  sits  relative  to  it.  

Solution  Electricity  retailers  should  include  general  site  energy  use  intensity  with  utility  bills  as  a  performance  indicator.  

Notes:  The  regular  provision  of  this  information  to  energy  users  could  raise  awareness  of  energy  use  and  help  identify  energy  efficiency  opportunities.  A  best-­‐practice  guide  might  be  able  to  cover  many  of  these  issues.  

5.5.12. Managing  consumption  Solution:  Empower  energy  users  with  tools  to  harvest  real  time  information  on  their  electricity  consumption  so  that  they  can  exercise  some  control  over  their  consumption,  independent  of  electricity  retailers.  

Notes:  Energy  retailers  are  more  interested  in  (maximum)  demand  reduction  rather  than  net  energy  use  reduction  and  consumers  may  need  additional  tools  to  incentivise  reduced  energy  use  if  overall  energy  consumption  is  to  be  targeted.  

 

5.6. Emission  abatement  

5.6.1. Product  stewardship  Solution:  HVAC&R  product  manufacturers  and  suppliers  should  engage  in  discussions  with  product  stewardship  experts  and  government  to  discuss  the  form  and  cost  of  a  possible  Australian  product  stewardship  scheme  for  HVAC&R  products  (including  equipment,  materials  used  for  HVAC&R  systems,  and  refrigerants).  

Notes:  There  should  be  an  industry  wide  discussion  on  this  issue.  Does  Australia  need  HVAC&R  equipment  suppliers  and  manufacturers  to  adopt  a  product  stewardship  scheme?  What  would  such  a  scheme  look  like  and  what  are  the  main  barriers  to  implementation?  How  can  the  recycling  and  reuse  of  HVAC&R  plant  and  equipment  be  incentivised  or  better  managed?  Australia  may  need  to  leverage  what  other  nations  have  implemented  and  learn  from  them.  Equipment  suppliers  suggest  that  any  mandatory  program  should  only  be  undertaken  after  a  detailed  study  of  the  quantum  of  the  problem.  

Solution:  The  industry  should  discuss  the  potential  of  developing  an  endorsement  system  for  suppliers  who  conform  to  stewardship  and  quality/environmental  management  systems.  

Page 132: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  132  of  162  

Solution:  The  industry  should  discuss  the  potential  of  adopting/developing  product  stewardship  principles  for  systems,  i.e.  a  stewardship  position  taken  by  designers,  constructors,  operators  and  maintenance  organisations.  

Notes:  There  is  split  responsibility  across  these  organisations  and  it  would  be  good  to  find:  1)  a  way  that  each  becomes  more  aware  of,  and  takes  greater  responsibility  for,  the  full  system  life-­‐cycle;  and  2)  a  way  to  improve  the  association  of  responsibility  for  individual  system  performance  between  each  of  these  organisations  and  also  the  end  users.  

5.6.2. Quality/design  assurance  Solution:  Industry  should  develop  and  promote  a  voluntary  energy  efficiency  design  assurance  scheme  for  the  designers  and  installers  operating  within  the  refrigeration  industry.  

Notes:  These  types  of  schemes  exist  in  other  countries  and  include  mandatory  requirements  for  quality  and  environmental  management  systems.  Those  who  sign  up  for  the  scheme  receive  a  computer  program  and  training  in  its  use.  The  software  forces  the  designer  to  limit  heat  exchanger  temperature  differences  to  certain  maximum  values,  to  use  compressors  of  a  certain  minimum  efficiency/maximum  compression  ratio  and  to  limit  fan  motor  power  to  a  certain  percentage  of  evaporator/condenser  capacities.  The  intention  is  that  the  design  parameters  used  will  result  in  a  minimum  ‘good  practice’  level  of  energy  performance.  Such  a  scheme  could  also  address  other  issues  such  as  annual  performance  and  system  stewardship.  

5.6.3. Research,  development,  innovation  and  commercialisation  Solution:  Industry  should  develop  a  proposal  for  the  establishment  of  a  cooperative  research  centre  (CRC)  for  research,  development,  and  innovation  in  the  field  of  HVAC&R.  

Notes:  The  industry  should  form  a  view  on  the  need  and  delivery  path  to  attain  a  higher  level  of  research  and  innovation  in  HVAC&R.  The  Australian  HVAC&R  industry  is  a  technology  taker  rather  than  developer.  If  technology  development  received  Government  funding  it  would  most  likely  have  a  constraint  that  manufacture  would  also  have  to  occur  in  Australia.  The  Government  would  have  to  totally  change  its  attitude  towards  Australian  manufacturing  and  funding  to  justify  a  cooperative  research  centre.  As  an  alternative  it  may  be  possible  for  the  industry  to  form  strategic  links  with  an  existing  CRC.  

Solution:  Industry  should  form  an  expert  group  of  academics  that  have  an  interest  in  the  HVAC&R  space  and  leading  industry  experts,  to  develop  up  a  set  of  HVAC&R  research  priorities.  These  priorities  could  then  can  be  proposed  to  Final  year/Masters  students  and  introductions  to  industry  facilitated  to  help  make  the  research  happen.  

Notes:  The  results  of  the  research  projects  conducted  by  master’s  students  should  be  publicly  available  in  order  to  maximise  research  outcomes  and  share  industry  knowledge  (eg.  knowledge  portal).  Significant  effort  needs  to  be  made  to  translate  findings  of  research  into  communication  material  that  can  be  read  and  understood  by  all  stakeholders  in  the  HVAC&R  industry  (e.g.  facilities  managers).  

Page 133: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  133  of  162  

5.6.4. Innovation  showcase  Solution:  There  should  be  a  special  innovations  display  area,  and  arrangements  and  incentives  provided  to  showcase  new  and  innovative  HVAC&R  technologies  at  industry  exhibitions  such  as  ARBS  and  the  like.  

Note:  Independently  assessed  products  would  be  most  powerful.  

5.6.5. Incentive  schemes/trials  for  new  technologies  Solution:  Introduce  incentives  to  encourage  businesses,  end  users  and  technical  service  providers  to  trial  new  technologies.  Learnings  must  be  publically  reported  so  others  can  understand  and  learn.  

Note:  Have  living  labs.  Fund  commercialisation  and  trial  sites  of  technologies  that  have  been  successfully  applied  overseas  due  to  the  much  larger  market  sizes.  Professional  management  and  oversight  and  independent  auditing  is  critical  for  the  success  of  any  technology  trial  program  

Solution:  DCCEE  are  currently  investigating  a  National  Energy  Savings  Initiative  scheme,  a  market-­‐based  tool  for  driving  economy-­‐wide  improvements  in  energy  efficiency.  The  HVAC&R  industry  should  engage  directly  to  help  shape  the  scheme.  

Note:  Incentives  are  an  appropriate  response  where  the  benefits  of  the  technology  are  proven  Energy  efficiency  grant  schemes  will  help  pull  through  new  technology  and  improve  efficiencies.  The  initial  cost  of  emerging  technologies  is  a  barrier  to  adoption.  Once  they  are  proven  costs  reduce  due  to  demand.  Grants  should  only  be  for  emerging  technology  to  promote  early  stage  innovation  and  industry  development.  Large  scale  GHG  emissions  savings  should  use  schemes  that  provide  funding  on  a  more  certain  basis  (eg  tradeable  certificates,  standing  offer  etc)  This  will  dramatically  reduce  the  administrative  burden  and  more  flexibly  fit  funding  processes/  timelines.  Greater  dialogue  is  needed  between  government  and  industry  and  research  to  find  most  cost  effective  assistance  delivery  mechanisms.  The  process  for  accessing  the  grants  does  however  need  to  be  simple  and  efficient  for  business  to  ensure  take-­‐up.  A  national  scheme  is  preferred  to  individual  state  based  schemes.  

The  NSW  ESS  scheme  currently  administers,  and  the  VEET  scheme  is  currently  seeking  public  comment  about,  a  methodology  for  assessing  project  based  assessments  (PBA’s).  PBA’s  are  particularly  relevant  to  a  building  that  is  considering  a  complete  upgrade  of  a  whole  or  part  of  a  HVAC  system.  Certificates  will  be  issued  based  on  the  system  savings  rather  than  individual  equipment  such  as  a  chiller  or  fan.  This  encourages  the  industry  to  take  a  holistic  view  of  HVAC  system  upgrades.  

Solution:  Analyse  whether  schemes  such  as  the  Vic  VEET  and  NSW  ESS  influenced  the  uptake  of  emerging  HVAC&R  technologies  in  the  business  sector.  

Note:  Trials  of  technologies  that  help  to  reduce  the  heating/cooling  load  of  a  building  could  help  quantify  energy  and  subsequent  greenhouse  gas  savings  and  could  form  submissions  for  deemed  activities  under  the  schemes.  These  schemes  are  typically  geared  more  toward  established  

Page 134: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  134  of  162  

technologies  with  proven  economics  rather  than  “emerging”  technologies.  Grant  schemes  are  generally  more  appropriate  for  “emerging”  technologies.  

Note:  The  Essential  Services  Commission  (ESC),  who  is  the  administrator  of  the  VEET  Scheme,  publishes  annual  reports  on  the  performance  of  the  scheme,  including  details  on  what  prescribed  activities  are  taken  up  and  in  what  proportion.  

5.6.6. Targeting  implementation  of  innovative  technologies  Solution:  Assess  the  potential  of  implementing  emerging  or  innovative  technologies  in  the  areas  where  networks  are  particularly  congested.  

5.6.7. Government  procurement  Solution:  Government  should  mandate  life-­‐cycle  considerations  in  all  of  their  HVAC&R  procurement  decisions,  including  maintenance  procurement.  

Notes:  This  aligns  with  NSEE  framework  policy  of  Government  leading  the  way  in  energy  efficiency  procurement.  Procurement  decisions  should  focus  on  long-­‐term  low  TEWI  solutions,  LCA  and  environmental  product  declarations.  Evidence  of  savings  from  the  LCC  approach  would  be  needed  and  some  standard  clauses  could  be  developed  for  Government  to  include  in  tenders.  This  would  apply  in  design  and  operation/maintenance.  

Solution:  Industry  needs  to  work  with  key  government  procurement  organisations  (e.g.  local  government)  to  develop  best-­‐practice  procurement  guidelines  for  HVAC&R  design,  installation  and  maintenance  services.  

Solution:  Offering  discounted  or  free  co-­‐generation/tri-­‐generation  feasibility  studies  via  the  HVAC&R  industry  and  or  government  organisations.  

Notes:  A  preliminary  study  to  estimate  the  number  of  sites  interested  in  and  suitable  for  co-­‐  and  tri-­‐generation  technology  would  be  required.  Ideally  buildings  where  heating/cooling  loads  and  water  and  electricity  consumption  is  already  at  best-­‐practice  levels  before  sizing/implementing  a  system.  Feasibility  studies  also  need  to  be  cognisant  of  the  future  carbon  intensity  of  gas  fuel.  A  significant  number  of  co-­‐generation  and  tri-­‐generation  plants  burn  natural  gas  which  is  a  limited  natural  resource.  

5.6.8. Commercial  refrigeration  design  approach  Solution:  The  Industry  should  engage  with  Mall  developers  and  owners  and  supermarket  operators  to  help  address  the  traditional  tenant/landlord  split  incentives  that  exist  with  the  major  shopping  mall  owners  and  identify  solutions  to  overcome  these  issue.  

Notes:  The  split  incentive  or  market  failure  operating  here  is  that  the  Mall  /Complex  developer  or  builder  provides  the  air  conditioning  service  at  the  time  of  construction,  while  the  tenant  or  supermarket  operator  provides  the  refrigeration  system,  during  the  tenancy  fitout.  

Page 135: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  135  of  162  

5.6.9. Best-­‐practice  HVAC&R  installation  Solution: Develop an energy efficiency accreditation program for HVAC installers to ensure they are adequately conversant with energy efficiency and new technologies. Notes: Scheme could be based on the best-practice design and installation guide.

5.6.10. Commissioning  Guarantee  scheme  Solution:  Industry  collaborates  to  develop  a  best-­‐practice  Commissioning  Guarantee  scheme  for  use  in  Australia.  

Note:  The  Commissioning  Guarantee  scheme  is  proposed  as  an  accreditation  scheme  that  stakeholders  must  pay  to  become  a  member  of.  Members,  including  building  owners,  equipment  suppliers  and  technical  service  providers  agree  to  work  to  a  specified  standard  of  commissioning.  Some  of  the  membership  fee  goes  into  an  “issues  resolution  fund”.  If  there  is  a  commissioning  problem  on  a  scheme  members  job  and  someone  has  to  come  back  and  fix  it  up  the  funding  for  the  fix  up  comes  out  of  the  “issues  resolution  fund”  and  the  member  at  fault  is  counselled  or  removed  from  the  scheme.  The  scheme  would  need  to  include  strong  branding  around  this  to  promote  the  use  of  member  installers.  NEBB  run  a  Commissioning  Guarantee  scheme  for  NEBB  members.  

5.6.11. Residential  air  conditioning  design  and  installation  register  Solution:  Establish  a  registration  program  for  residential  air  conditioning  installers  (like  Master  Electricians)  and  audit  their  work  to  ensure  compliance  to  the  standard  and  for  them  to  remain  as  “registered  installers”.  

Note:  This  could  be  linked  to  the  proposed/draft  standard  on  residential  air  conditioning  and  requirements  covered  in  a  licensing  system.  

5.6.12. Residential  installers  guarantee  scheme  Solution:  Industry  collaborates  to  develop  a  best-­‐practice  Residential  Installers  Guarantee  scheme  for  use  in  Australia.  

Note:  The  proposed  Residential  Installers  Guarantee  scheme  is  an  accreditation  scheme  that  stakeholders  must  pay  to  become  a  member  of.  Members,  including  building  owners,  equipment  suppliers  and  residential  installers  agree  to  work  to  a  specified  standard  of  installation.  Some  of  the  membership  fee  goes  into  an  “issues  resolution  fund”.  If  there  is  an  installation  related  problem  on  a  scheme  members  job  and  someone  has  to  come  back  and  fix  it  up  the  funding  for  the  fix  up  comes  out  of  the  “issues  resolution  fund”  and  the  member  at  fault  is  counselled  or  removed  from  the  scheme.  The  scheme  would  need  to  include  strong  branding  around  this  to  promote  the  use  of  member  installers.  

5.6.13. Co-­‐generation/tri-­‐generation  Solution:  Develop  a  co-­‐generation/tri-­‐generation  accreditation  scheme  allowing  only  accredited  system  designers  who  have  the  required  skills  to  design  these  systems.  

Page 136: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  136  of  162  

Note:  In  this  way  it  is  likely  that  the  misapplication  and  over  sizing  issues  of  these  systems  can  be  significantly  minimised  and  optimum  design  and  operating  conditions  can  be  met  for  a  particular  facility.  

Note:  NSW  OEH  is  in  the  process  developing  a  co-­‐generation  feasibility  guide  that  includes  system  design  guidelines.  

Note:  The  Australian  Government  has  commissioned  E-­‐Oz  Energy  Skills  Australia  to  undertake  the  development  of  training  resources  covering  the  specialist  skills  and  knowledge  required  for  operating  and  maintaining  co-­‐generation  and  trigeneration  systems.  This  project  will  be  undertaken  by  the  NSW  Utilities  &  Electrotechnology  Industry  Training  Advisory  Body.  This  project  is  funded  by  the  Australian  Government  through  the  National  Resources  Sector  Workforce  Strategy.  

5.6.14. Commercial  refrigeration  Solution:  Industry  should  agree  to  voluntarily  ban  open  type  display  cabinets  across  the  industry.  If  all  businesses  agree  to  move  to  closed  display  cabinets  at  the  same  time  then  one  of  the  major  barriers  to  this  initiative  would  be  removed.  

Notes:  The  initial  agreement  could  apply  to  new  units  with  an  agreement  to  move  to  all  units  (i.e.  retrofitting)  within  an  agreed  time  frame.  

Solution:  Industry  should  create  a  ‘display  cabinet  buy-­‐back’  scheme  similar  to  the  ‘Fridge  buy-­‐back’  scheme.  

Solution:  Manufacturers  and  other  stakeholders  could  instigate  a  commercial  solution  similar  to  the  domestic  “Fridge  Buy  Back”  scheme  to  promote  the  removal  of  aged  inefficient  plant  and  equipment  in  favour  of  new  MEPS  approved  solutions.  

5.6.15. Existing  systems  in  existing  buildings  Solution:  Industry  should  promote  the  ways  to  extract  the  best  (low-­‐emission)  performance  out  of  existing  systems  in  existing  buildings.  

Notes:  This  could  include  disseminating  materials  on  retrocommissioning,  optimal  supervisory  control  strategies  and  solutions,  verified  field  performance  related  to  whole  integrated  plants,  retrofit  guides,  and  any  research  or  rules  of  thumb  relating  to  improving  existing  equipment  (roof  top  air-­‐cooled,  split  systems,  water-­‐cooled  heat  pumps,  etc).  

Solution:  Industry  should  promote  the  benchmarking  of  existing  systems  and  use  the  measurement  of  energy  flows  in  particular  applications  as  a  trigger  for  performance  upgrades;  non-­‐compliance  with  a  prescribed  maximum  kWh/m2  would  be  the  trigger.  

Notes:  This  solution  would  not  be  viable  until  benchmarks  for  all  sectors/applications  have  been  established.  

Page 137: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  137  of  162  

5.6.16. Incentivising  energy-­‐efficiency  interventions  in  existing  buildings  Solution:  HVAC&R  end  users  would  respond  well  to  government  or  other  incentives  to  upgrade  the  efficiency  of  existing  systems.  

Solution:  Industry  should  promote  the  concept  of  accelerated  or  ‘Green  Depreciation’  for  energy-­‐efficiency  interventions  in  existing  buildings.  

Notes:  Green  depreciation  involves  the  provision  of  accelerated  depreciation  allowances  for  capital  expenditure  on  refurbishments  that  “Green”  existing  commercial  buildings,  including  upgrades  and  improvements  to  HVAC&R  systems.  Accelerated  depreciation  would  play  a  key  role  allowing  investors  to  defer  tax  payments  in  exchange  for  implementing  energy  efficiency  and  greenhouse  gas  reduction  activities.  

Solution:  Industry  should  promote  the  concept  of  public  funding  of  energy  efficiency  retrofits  for  commercial  and  residential  buildings.  

Notes:  Financial  assistance  mechanisms  including  grants,  subsidies  and  rebates  for  improvements  undertaken  by  building  owners  would  reduce  the  investment  cost  and  close  the  pay  back  gap  providing  significant  incentive  to  invest  in  energy  efficiency.  

5.6.17. Incentives  for  commercial  maintenance  Solution:  “Tax  breaks  for  maintained  buildings”  program.  

Notes:  Cost  is  a  big  barrier  to  maintenance;  could  better  maintenance  be  incentivised  by  tax  breaks?  Infrastructure  maintenance  requires  time  effort  and  economic  investment.  Tax  breaks  for  those  end  users  that  adhere  to  maintenance  schedules  and  protocols  would  increase  the  likelihood  of  industry  adherence  to  Codes  of  Practice  and  safety  standards.  The  alternative  view  is  that  best-­‐practice  maintenance  should  pay  for  itself.  

5.6.18. Residential  Maintenance  Solution:  Manufacturers  and  suppliers  develop  and  deliver  ‘extended  warranty  for  maintenance’  program.  

Notes:  Manufacturers  or  the  supply  chain  need  to  offer  standardised  maintenance  offerings  at  time  of  sale.  Proof  of  following  a  maintenance  schedule  (like  a  car  servicing  book)  would  extend  the  normal  air  conditioning  unit’s  warranty  period  at  no  additional  cost  to  the  customer.  

5.6.19. Incentives  for  replacing  inefficient  residential  systems  Solution:  Create  an  incentive  scheme  for  residential  building  owners  to  upgrade  an  existing  low  efficiency/oversized/poorly  constructed  air  conditioning  system  to  a  new  replacement  high  efficiency/right  sized/well  installed  system.  Use  the  residential  air  conditioning  standard  as  the  compliance  basis.  

Page 138: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  138  of  162  

Notes:  Many  of  the  existing  residential  air  conditioning  systems  are  very  inefficient  due  to  outdated  design,  lack  of  fitness  for  purpose,  age  and  lack  of  maintenance.  Manufacturers/suppliers  and  government  could  liaise  together  to  subsidise  the  cost  of  new  equipment,  electricity  networks  and  electricity  retailers  could  liaise  to  subsidise  the  cost  of  the  installation.  Home  owner  would  need  to  pay  remaining  costs.  This  scheme  could  significantly  improve  home  energy  efficiency,  reduce  energy  intensity,  provide  leak  free  systems,  and  incorporate  demand  reduction  and/or  time-­‐of-­‐use  tariffs.  The  scheme  could  also  assist  in  reducing  the  existing  bank  of  CFC/HCFC  refrigerants  in  this  sector.  

There  would  have  to  be  a  significant  win  for  the  customer  in  terms  of  financial  gain,  i.e.  reduced  energy  bills  and  or  reimbursement  to  cover  any  perceived  unnecessary  cost.  Illustrate  the  savings  in  running  costs  of  a  new  air  conditioning  at  X  Star  Rating  to  that  of  a  comparable  five/seven  year  old  unit.  Any  recovery  value  in  the  removed  air  conditioner  (refrigerant,  precious  metals,  copper  piping,  etc)  could  be  given  back  to  the  customer  as  a  cash-­‐back?  

Solution:  Industry  should  investigate  ways  to  promote  existing  incentive  based  schemes  for  installation  of  high  efficiency  HVAC  systems  

Notes:  There  are  existing  incentive  based  schemes,  such  as  the  VEET  scheme  and  Sustainability  Victoria’s  gas  space  heater  rebate  program.  What  is  the  opportunity  for  industry  to  promote  and/or  leverage  these  programs  to  increase  uptake  of  high  efficiency  systems?  

5.6.20. Direct  refrigerant  leakage  Solution:  Review  and  update  all  codes  and  standards  relating  to  system  construction  standards  to  improve  system  integrity  by  banning  the  common  leakage  sources  including  the  removal  of  mechanical  joints  and  the  phasing  out  open  drive  compressors  in  inappropriate  applications.  

Note:  If  a  fitting  is  known  to  be  leak  prone  it  could  be  argued  that  continued  use  is  an  act  that  may  be  judged  as  negligent.  Open  drive  compressors  are  more  likely  to  leak  than  hermetic  and  semi-­‐hermetic  compressors.  However,  they  are  inherently  more  energy  efficiency  than  hermetic  and  semi-­‐hermetic  compressor  types  which  have  limited  capacity  and  are  less  suitable  for  large  applications.  

Solution:  Adopt/adapt  European  F-­‐gas  leak-­‐management  procedures  for  voluntary  or  contractual  use  in  Australia  and  make  available  to  industry  as  a  standard  leak-­‐management  agreement.  

Note:  Sector-­‐specific  management  procedures  would  need  to  be  developed  before  mandatory  or  contractual  leak  testing  could  be  accepted.  The  use  of  automated  monitoring  units,  linked  to  a  monitored  centre  (like  security  systems  are)  or  else  with  automatic  shutdown  and  alarm,  could  be  a  suitable  alternative  to  inspection  and  testing.  

Solution:  Industry  should  engage  with  Government  to  establish  effective  enforcement  approaches  for  refrigerant  leakage.  

Page 139: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  139  of  162  

Note:  Currently,  preventable  leaks  are  illegal  but  this  ineffective  if  not  enforced.  It  has  been  suggested  that  the  role  of  ARC  should  be  clarified/expanded  to  provide  powers  of  enforcement  including  powers  of  entry  etc  

Solution:  Introduce  a  comprehensive  and  mandatory  protocol  for  the  tracking  of  all  refrigerants.  

Solution:  Develop  a  self  certification  model/mechanism  for  policing  system  leakage  similar  to  what  is  in  place  for  electricians  and  gas  fitters.  

Solution:  Develop  a  series  of  fact  sheets  with  photos  for  owners  to  raise  awareness.  

Solution:  Industry  should  adopt  the  leak-­‐management  techniques  used  by  the  NH3  industry  and  apply  these  to  all  refrigerant-­‐based  systems.  

Notes:  Several  proposed  approaches  to  policing  refrigerant  leakage  ranging  from  mandatory  zero  leakage  to  voluntary  best-­‐practice  leakage.  Many  commentators  believe  that  Zero  Leakage  is  not  practical,  there  will  always  be  some  (low)  level  of  leakage.  

5.6.21. Leakage  monitoring  Solution:  Leak  detection  and  leak  monitoring  systems  need  to  be  validated  in  practice  to  determine  the  practical  limitations  of  their  applications,  characteristics  of  different  technologies  and  the  role  of  maintenance  requirements  etc.  The  results  should  be  used  to  create  an  industry  guideline  to  cover  automatic  leak  detection  and  monitoring  (for  alarm  or  automatic  action)  

Notes:  Leak  detection  and  leak  monitoring  systems  need  to  be  better  understood  by  industry.  Current  F-­‐Gas  regulations  require  leak  monitoring.  There  are  currently  no  specific  standards  on  leak  detection  equipment  and  hence  it  is  very  difficult  to  validate  their  performance.  

Many  HVAC&R  applications  use  ventilation  to  remove  heat/facilitate  the  transfer  of  heat  energy  and  leak  detection  in  these  circumstances  has  questionable  validity.  

5.6.22. Leakage  testing  Solution:  Develop  an  industry  standard  leak  testing  procedure  including  identification  of  equipment  on  the  market  that  is  accurate  and  reliable.  

5.6.23. Refrigerant  containment  Solution:  Engineering  solutions  to  refrigerant  leakage  containment  should  be  assessed  or  validated  so  that  industry  can  develop  endorsed  design  and  specification  standards  for  leak  containment  technologies.  

Notes:  Not  all  leak  containment  systems  work  in  the  same  way  or  provide  the  same  performance  and  industry  stakeholders  need  standard  on  which  they  can  rely.  The  inclusion  of  leak  containment  technologies  could  then  be  easily  mandated  for  certain  types  and  sizes  of  systems  

Page 140: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  140  of  162  

Solution:  Encourage  modular  systems  so  that  the  maximum  amount  of  refrigerant  at  risk  of  leakage  is  limited.  

Notes:  Industry  guidelines  should  ensure  that  low  leakage  risk  design  strategies  do  not  result  in  overall  systems  that  produce  lower  overall  efficiencies  

5.6.24. Maintenance  for  leak  minimisation  Solution:  Quantification  of  efficiency  gains  in  terms  of  kWh/bill  cost  benefits  from  proper  levels  of  refrigerant  and  raising  operator  awareness  of  these  savings  might  be  a  base  that  will  encourage  improved  maintenance  for  leak  management.  

Solution:  Requirements  for  leak  minimisation  should  be  built  into  maintenance  contracts  and  there  is  a  need  for  industry  to  develop  standard  contract  clauses  that  can  be  used  by  clients  and  end  users.    

Notes:  If  operators  are  made  aware  of  how  energy  inefficient  and  costly  systems  become  when  refrigerant  charges  fall  they  may  improve  maintenance  interventions.  

5.6.25. Refrigerant  logging  Solution:  The  industry  should  standardise  the  logging  of  refrigerant  leakage,  how  it  is  done  and  in  what  format  as  a  guideline  with  simple  procedural  steps  and  create  an  on-­‐line  register  in  which  the  data  can  be  entered  and  stored.  

Notes:  Current  refrigerant  logging  is  variable  and  the  data  is  not  being  collated  into  useable  information.  

Solution:  The  industry  should  develop  a  standardised  spreadsheet  listing  common  air  conditioning  units,  the  type  of  refrigerant  used,  the  refrigerant  charge  they  hold,  and  their  typical  leakage  rate.  

Notes:  End  users  that  are  required  to  track  their  GHG  emissions  would  appreciate  a  simple  and  standardised  method  of  assessing  the  contribution  of  their  HVAC&R  systems.  

5.6.26. Refrigerant  reclamation  and  recycling  Solution:  Industry  should  review  the  need  for  refrigerant  reclamation  standards  for  all  refrigerants  and  licensing.  

Note:  The  recycling  of  refrigerants  is  a  major  issue  for  equipment  owners  and  manufacturers  with  equipment  under  warranty.  HFC  refrigerant  blends  pose  particular  issues  with  fractionation  of  the  blend  so  that  the  composition  changes.  To  guard  against  this  and  other  issues  recycling  should  only  be  done  by  facilities  that  can  prove  they  bring  the  refrigerant  back  to  AHRI  700  –  2012  specification.  This  discussion  should  be  informed  by  Australian  Government  policy  currently  under  development.  

Page 141: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  141  of  162  

5.6.27. Refrigerant  leakage  Solution:  Include  a  refrigerant  leak  monitor/detector  on  residential  systems  so  that  if  some  refrigerant  charge  is  lost  it  either  shuts  down  the  system  (preferable,  as  this  will  lead  to  a  service  call  out)  or  provides  a  warning.  

Note:  This  would  likely  need  to  be  retrofitted  for  the  Australian  market  and  monitors  may  require  maintenance.  This  may  not  be  cost-­‐effective  given  the  relatively  small  size  of  the  charge.  If  installation  standards  are  improved  then  this  may  become  redundant  especially  as  if  there  is  significant  leakage  then  loss  or  lack  or  performance  will  be  obvious  without  a  detector.  Refrigerant  leak  monitoring/detection  has  proved  to  be  a  very  difficult  area  for  even  large  commercial  systems  to  achieve.  

5.6.28. End-­‐of-­‐lifeleakage  Solution:  Provide  industry  education  and  awareness  of  end-­‐of-­‐liferefrigerant  emission  issues,  particularly  the  recycling  industry.  Important  to  emphasise  that  once  correct  procedures  are  in  place  recycling  HFC  refrigerants  can  be  an  additional  income  stream,  as  well  as  metals.  

Notes:  Several  countries  have  end-­‐of-­‐liferecovery  programs  in  operation  (e.g.  Japan).  It  should  not  be  possible  for  a  consumer  to  dispose  of  a  refrigerator  or  an  air  conditioner  unless  it  can  be  verified  that  the  refrigerant  has  been  removed  by  a  person  licensed  to  do  so.  The  refrigerant  removal  costs  should  be  built  into  the  equipment  price.  

Solution:  Some  of  the  new  equivalent  carbon  refrigerant  levy  revenue  should  go  to  incentives  for  returning  high-­‐GWP  refrigerants  for  recycling  and  reuse.  Maybe  a  return  deposit  rather  than  a  fee  to  encourage  recycling  or  destruction.  

Notes:  Several  commentators  have  suggested  that  refrigerant  reclamation  should  be  self  funding,  given  the  high  value  of  fluorocarbon  refrigerants.  

5.6.29. Commercial  leasing  Solution:  Facilities  managers  and  technical  service  providers  and  property  owners  and  tenant  bodies  should  be  encouraged  to  discuss  methods  to  overcome  the  limitations  that  prescriptive  lease  based  HVAC&R  operation  requirements  have  on  energy  efficiency  and  power  use.  

Notes:  including  mandatory  operating  times  for  air  conditioning  and  very  tight  temperature  operation  ranges  can  significantly  limit  the  ability  of  the  system  to  achieve  optimum  energy  efficiency.  Air  conditioning  can  be  ‘available’  through  controls  without  necessarily  ‘running’.  NABERS  Energy  rating  protocols  also  need  to  be  reviewed  in  this  regard.  A  best-­‐practice  guide  would  assist  with  stimulating  the  consideration  of  these  issues.  

Solution:  The  HVAC&R  industry  should  develop  best-­‐practice  guides  and  standard  leasing  clauses  dealing  with  the  provision  of  HVAC&R  services.  

Page 142: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  142  of  162  

5.6.30. Evaporative  air  cooling  Solution:  Continue  to  promote  the  water  efficiency  best-­‐practice  guide  for  residential  evaporative  cooling  systems.  

Note:  In  some  climate  locations  evaporative  air  coolers  can  be  used  for  comfort  cooling  at  a  significantly  less  energy  cost  that  traditional  air  conditioning,  however  there  is  a  water  use  penalty.  Guide  is  available  free  from  AIRAH  www.airah.org.au  .  http://www.airah.org.au/Resources/BestPracticeGuides/Residential_evaporative    

5.6.31. Hot  water  heat  pumps  Solution:  Similar  to  the  approach  for  residential  air  conditioning  there  could  be  an  industry  and  government  collaboration  on  an  incentive  scheme  to  help  owners  replace  inefficient  water  heater  models/installations.  

Note:  There  are  reportedly  many  of  these  systems  in  existing  installations  that  are  relatively  inefficient.  This  scheme  could  significantly  improve  home  energy  efficiency,  reduce  energy  intensity,  and  incorporate  demand  reduction  or  time-­‐of-­‐use  tariff  technologies.  Note  there  are  a  number  of  existing  incentive  based  schemes  aimed  at  promoting  the  installation  of  high  efficiency  and  low  greenhouse  water  heaters.  Examples  include  VEET,  Sustainability  Victoria’s  solar  and  gas  hot  water  rebate  program,  the  Australian  Government’s  solar  and  heat  pump  hot  water  rebate  program  and  the  Small  Scale  Renewable  Energy  Target  scheme.  

5.6.32. Residential  refrigeration  upgrade  and  replacement  Solution:  Create  a  fridge  buy-­‐back  scheme  to  incentivise  replacement  and  to  control  disposal.  

Notes:  A  fridge  buy-­‐back  scheme  could  help  address  this  if  there  is  an  operational  model  to  recycle  the  old  fridges,  recovered  refrigerant,  precious  metals,  copper  piping,  etc  have  value,  some  of  which  could  be  passed  back  to  the  customer.  Fridge  buy-­‐back  schemes  are  in  operation  in  some  local  government  areas  of  Australia.  

Solution:  Create  customer  awareness  materials  to  ensure  that  when  customers  do  buy  a  new  fridge  they  purchase  the  most  energy-­‐efficient  one  they  can  afford  (A  comparison  of  the  running  cost  of  a  5,  10  and  15  year  fridge?  star  labelling?)  and  they  do  not  continue  to  use  the  old  fridge  as  a  second  fridge.  

5.7. Other  sector  solutions  not  included  in  the  roadmap  

5.7.1. Vehicle  air  conditioning  Solution:  Review  and  update  the  current  existing  Automotive  Code  of  Practice,  not  only  to  focus  on  leak  minimisation  but  more  importantly  to  address  flammable  refrigerants  in  the  automotive  market  and  the  impending  replacement/s  for  R134a  refrigerant  into  new  vehicle  HVAC  systems.  

Page 143: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  143  of  162  

Note:  Many  of  these  issues  are  not  currently  covered  by  the  Automotive  Code  of  Practice.  Specific  emphasis  should  be  placed  on  leak  minimisation  and  the  risks  of  retrofitting  to  flammable  refrigerants.  This  could  also  be  done  under  a  WorkSafe  Australia  endorsement.    Solution:  Industry  and  Government  could  consider  a  MEPS  approach  to  vehicle  air  conditioning  or  an  overall  energy  efficiency  approach  such  as  in  the  US.  

Note:  The  relative  efficiencies  of  different  design  approaches  and  different  refrigerant  options  are  not  well  understood.  

5.7.2. Transport  refrigeration  Solution:  Increase  the  awareness  of  the  industry  to  passive  reflective  coatings  that  are  available  to  retrofit  onto  vans  and  containers  that  will  significantly  reduce  the  heat  load  (cooling  load)  when  applied  to  the  external  surfaces.  Other  solutions  such  as  minimising  door  opening,  putting  strip  curtains  on  doors  etc  could  also  be  covered.  

Notes:  Possibly  a  fact  sheet  for  the  industry  outlining  the  costs,  benefits  (including  reduced  maintenance  and  management)  and  typical  payback  periods.  

5.8. Complementary  actions  

5.8.1. Workforce  development  There  are  a  number  of  Government  programs  available  to  support  the  development  of  new  training  content  and  to  subsidise  the  up  skilling  of  employees  in  energy  efficiency  and  sustainability  skills.  One  such  program  is  the  National  Workforce  Development  Fund  (NWDF).  This  program  forms  part  of  the  Australian  Government  Skills  Connect  initiative  designed  to  link  industry  to  funding  for  whole  of  workforce  planning  and  development.  The  NWDF  is  a  partnership  between  industry  and  government  to  support  the  training  of  workers  in  areas  of  identified  need  and  is  facilitated  through  the  Industry  Skills  Councils  (ISCs)  network.  The  ISCs  provide  assistance  to  businesses  providing  a  workforce  development  and  planning  approach.  The  NWDF  is  an  innovative,  industry-­‐driven  model  that  enables  businesses  to  co-­‐invest  with  the  Government  to  train,  re-­‐skill  and  up  skill  workers  in  areas  of  skills  need.  

Solution:  The  HVAC&R  industry  should  be  encouraged  to  make  use  of  the  NWDF.  

5.8.2. The  Clean  Technologies  Supplier  Advocate  The  HVAC&R  industry  should  fully  utilise  existing  government  resources  and  work  in  partnership  with  the  Clean  Technologies  Supplier  Advocate  to  help  promote  energy  efficient  technologies  currently  available  in  the  marketplace  to  customer  markets.  The  Clean  Technologies  Supplier  Advocate  is  employed  by  the  Australian  Government  to  assist  Australian  HVAC&R  suppliers  gain  exposure  to  customer  markets.  

Solution:  The  HVAC&R  industry  should  be  encouraged  to  make  use  of  the  Clean  Technologies  Supplier  Advocate.  

Page 144: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  144  of  162  

5.8.3. Building  information  modelling  The  AMCA:  BIM-­‐MEPAUS  Initiative  is  an  industry  initiative  (www.bimmepaus.com.au)  which  seeks  to  effectively  address  the  issues  currently  impeding  the  transition  to  BIM  based  integrated  project  delivery.  The  goal  is  to  achieve  significant  increases  in  productivity  and  a  commercial  framework  for  implementation  of  BIM  through  industry  adopted  software  platforms,  standards  and  services.  During  2012/3,  a  number  of  Australian  projects  will  pilot  specifications,  standards,  models  and  workflows  being  developed  under  the  BIM-­‐MEPAUS  initiative.  

Three  key  principles  underpin  the  development  of  the  initiative:  • vendor  independent,  but  support  vendor  specific  workflows;    • inclusive  /  collaborative;  and    • BIM  customised  to  Australian  industry  standards  and  workflows.  

The  initiative  has  gained  widespread  industry  support  including  in-­‐principle  adoption  by  many  of  Australia’s  largest  developers  and  builders  and  it  is  expected  to  become  the  industry  standard  for  BIM  based  project  delivery  and  supply  chain  integration  within  the  building  services  sector.  

Solution:  The  HVAC&R  industry  should  encourage  Government  to  mandate  BIM  within  their  building  procurement  processes.  

5.8.4. Harmonisation  There  has  been  some  work  carried  out  among  a  number  of  parties  regarding  the  need  to  streamline  the  building  simulation  modelling  protocols  used  in  Australia  to  reduce  unnecessary  rework  when  models  are  used  for  multiple  purposes.  This  harmonisation  work  includes  the  standardisation  of  default  assumptions  for  items  such  as  occupancy,  equipment  schedules  and  other  assumed  inputs  such  as  infiltration.  

Solution:  The  HVAC&R  industry  should  continue  to  support  the  efforts  of  the  three  main  energy  modelling  protocols,  ABCB,  NABERS  and  GBCA  in  their  efforts  to  harmonise  default  inputs  used  in  their  protocols.  

 

 

 

 

 

 

 

 

Page 145: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  145  of  162  

 

 

 

 

 

 

 

 

 

 

 

 

   

Page 146: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  146  of  162  

6. Managing  the  transition  

6.1. Working  with  government/  industry  stakeholders  In  the  future  industry  has  to  ensure  that,  when  working  with  the  Australian  government  and  industry  stakeholders,  any  programs  are  established  with  the  conditions  in  place  that  require:  

• Accountability  of  all  stakeholders  engaged.  • Transparency  within  the  program  management.  • A  viable  industry–Government  forum  with  the  power  to  keep  programs  moving  and  on  

track.  

Collaboration  and  open  communications  are  the  keys  to  relationship  management.  An  HVAC&R  council  or  umbrella  group  would  help  coordinate  policy  and  provide  a  sustained  industry  communications  strategy  and  policy  framework  which  would  be  more  accessible  to  government.  

6.2. Current  tools  There  are  industry  tools  currently  available  which  have  made  significant  steps  towards  an  industry  transition.  Some  of  the  most  effective  of  these  tools  include:  

• Arctick  certification  for  refrigeration  trades.  • MEPS  ratings  for  manufactured  equipment  and  TEWI  calculation  method  for  systems.  • NCC  section  J  and  recent  introduction  of  mandatory  electrical  sub-­‐metering  for  large  

commercial  premises.  • Australian  and  New  Zealand  Refrigerant  handling  Code  of  Practice.  • NABERS  Energy  ratings  and  commercial  building  disclosure  (CBD)  of  the  rating  result  to  the  

wider  property  market.  • Green  building  ratings  and  tools.  • Building  and  system  modelling,  simulation  and  rating  tools.  • Refrigerant  Reclaim  Australia.  • Publications  such  as  “In  from  the  Cold”  and  the  UK  Carbon  Trust’s  “Refrigeration  Road  Map”  

which  have  the  potential  to  provoke  mindset  changes  in  the  industry.  

The  most  successful  tools  are  typically  the  ones  that  are  developed  and  implemented  through  effective  industry  collaboration  with  all  stakeholders.  MEPS,  NABERS,  Green  Star  are  all  examples  of  tools  that  have  been  developed  collaboratively.  The  less  successful  tools  and  programs  tend  to  be  developed  and  implemented  through  a  top  down  approach.  

6.3. Psychological  and  sociological  factors  Transition  and  innovation  is  about  humans  and  behaviour  change.  Change  can  create  uncertainty  and  uncertainty  brings  fear  and  other  emotions.  There  are  a  range  of  psychological  and  sociological  factors  that  also  need  to  be  considered  as  the  industry  transitions  to  a  low-­‐emission  future.  Some  of  these  factors  include:  

• Resistance  to  changing  the  way  of  doing  things,  e.g.  comfort  conditions  and  dress  codes.  • Lack  of  skills  and  training  and  confidence  in  new  methods.  • The  perception  of  the  speed  of  change  (incremental  or  radical  change).  • The  perception  of  the  difficulty  of  change  (incremental  or  radical  change).  

Page 147: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  147  of  162  

• Generational  and  cultural  differences.  

6.4. Changing  entrenched  industry  attitudes  To  change  industry  attitudes  it  will  be  essential  to  change  the  attitudes  and  priorities  of  clients,  regulatory  authorities  and  end  users  as  well  as  the  technical  service  providers.  This  document  provides  a  pathway  to  distil  the  key  messages  and  pass  them  up  and  down  the  supply  chain.  

There  are  some  core  concepts  that  can  be  useful  to  describe  an  effective  approach  to  change  management  including:  

1. Plan  for  change  from  a  solid  base.  2. Identify  differences  between  formal  and  informal  practices.  3. Control  expectations  about  the  proposed  changes.  4. Select  change  agents  carefully.  5. Build  support  among  like-­‐minded  people  however  they  are  recruited.  6. Identify  those  opposed  to  change  and  try  to  neutralize  them.  7. Avoid  future  shock.  

6.5. Lessons  learned  from  overseas  experiences  Australia  does  not  need  to  ‘reinvent  the  wheel’  with  a  lot  of  transition  initiatives.  There  are  many  existing  international  initiatives  being  implemented  overseas  which  Australian  industry  could  adopt  or  adapt  for  local  use.  It  would  be  useful  if  stakeholders  with  experience  in  appropriate  programs  can  outline  the  lessons  learned  from  applicable  overseas  projects.  

• Which  overseas  programs  were  successful  and  what  lessons  can  be  learned  from  their  successes  or  failures?  

• Would  any  overseas  programs  be  suitable  for  adoption  in  Australia?  • Have  the  costs  and  benefits  of  these  programs  been  quantified?  • Which  tools  and  training  materials  would  be  suitable  for  adoption  in  Australia?  

6.6. Opportunities  for  the  HVAC&R  industry  The  transition  to  low-­‐emission  HVAC&R  is  largely  seen  as  a  threat  to  industry  however  the  transition  can  also  be  viewed  as  a  source  of  business  opportunities.  

6.6.1. Low-­‐carbon  consultants  This  may  be  time  for  the  operators  in  the  HVAC&R  industry  to  think  outside  the  HVAC&R  box.  Many  of  the  energy-­‐efficiency  interventions  in  buildings  will  lead  to  downsizing  the  size  of  plant  and  systems  it  may  be  time  that  HVAC&R  service  providers  diversify  to  become  low  carbon  advisors  able  to  advise  on,  cost  and  implement  the  full  range  of  energy-­‐efficiency  interventions  including  increased  thermal  insulation,  providing  sealing  and  draught  proofing  services,  installation  of  additional  blinds  and  shades,  provision  of  alternative  lighting  systems  as  well  as  new  technologies  and  practices  associated  with  low-­‐emission  HVAC&R.  Forming  strategic  alliances  with  other  service  providers  (e.g.  energy  auditors)  can  also  help  develop  new  business  streams.  

Page 148: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  148  of  162  

6.6.2. Maintenance  for  energy  efficiency  With  energy  prices  continuing  to  rise,  many  owners  and  operators  will  be  focussing  on  reducing  their  energy  consumption  and  energy  bill.  As  a  result  they  will  be  reviewing  their  HVAC&R  systems  and  will  require  technical  advice  and  assistance.  There  is  a  significant  opportunity  for  existing  technical  service  providers  to  expand  their  services  into  energy  efficiency  maintenance  and  interventions.  

6.6.3. Maintenance  for  leak  minimisation  With  significant  increases  in  refrigerant  replacement  prices  many  owners  and  operators  will  have  a  renewed  focus  on  reducing  system  leakage  rates  and  taking  a  more  proactive  approach  to  leak  minimisation.  There  is  a  significant  opportunity  for  existing  technical  service  providers  to  expand  their  services  into  leak  minimisation  maintenance  and  interventions.  

6.6.4. System  upgrades  for  energy  efficiency  Existing  systems  that  are  otherwise  functional  and  would  have  been  left  alone  may  now  be  replaced  or  upgraded  due  to  deficiencies  in  their  energy  efficiency  or  energy  consumption.  This  represents  a  new  work  stream  for  the  HVAC&R  industry  in  a  low-­‐emission  future.  

6.6.5. System  retrofitting  for  low-­‐GWP  refrigerants  In  the  quest  for  low-­‐emission  HVAC&R  these  may  be  an  increase  in  the  retrofitting  of  low-­‐GWP  refrigerant-­‐based  technology  into  existing  HVAC&R  systems.  These  retrofit  projects  require  skilled  design  and  knowledgeable  implementation  and  again  this  represents  a  new  work  stream  for  the  HVAC&R  industry  in  a  low-­‐emission  future.  

6.6.6. Identifying  incentives  and  finance  opportunities  One  of  the  major  barriers  to  energy-­‐efficiency  interventions  is  cost  and  finance  issues  for  owners.  Any  HVAC&R  company  that  can  provide  owners  with  accurate  information  and  practical  help  in  accessing  the  incentives  and  finance  schemes  will  be  provided  with  a  market  advantage.  

6.7. Demand  and  supply  and  demand  Unlike  the  rapidly  increasing  demand  for  electricity,  air  conditioning  and  refrigeration  the  demand  for  training,  maintenance  and  energy-­‐efficiency  interventions  in  HVAC&R  remains  at  a  low  level.  This  is  counter  intuitive  in  many  ways;  there  is  a  want  and  a  need  for  these  services  but  no  demand.  This  appears  to  result  from  a  disconnect  between  system  users  and  the  systems  themselves.  For  the  most  part  HVAC&R  is  invisible  to  users  and  owners  and  consequently  a  lowest-­‐common-­‐denominator  approach  is  taken  to  system  procurement  and  management.  

• Unless  there  is  a  demand  for  low-­‐emission  HVAC&R  services  there  will  be  no  low-­‐emission  service  providers.  

• Unless  there  is  a  demand  for  low-­‐emission  training  in  HVAC&R  there  will  be  no  low-­‐emission  training  providers.  

• Unless  there  is  a  demand  for  low-­‐GWP  technologies  there  will  be  no  low-­‐GWP  technologies  installed.  

Page 149: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  149  of  162  

This  is  no  chicken  and  egg  situation;  the  demand  for  a  service  must  exist  for  the  supply  of  that  service  to  be  a  sustainable  business  proposition.  In  some  cases  the  demand  for  a  service  might  be  stimulated  by  providing  or  facilitating  a  supply  process.  

A  sustained  communications  strategy  would  benefit  all  sectors  of  the  industry,  the  strategy  should  be  targeted  to  the  end  user  to  stimulate  demand.  If  the  demand  is  there  then  the  industry  will  respond.  The  industry  must  look  for  ways  to  create  the  demand  from  the  end  user  

6.8. Intellectual  property  and  knowledge  transfer  There  is  generally  a  poor  transfer  of  information  between  industry  stakeholders.  Industry  professional  development  systems  are  weak  and  there  is  a  low  demand  from  industry  practitioners  for  continuing  professional  development  in  many  sectors  including  energy  efficiency.  

Intellectual  property  is  hard  won  in  both  the  consultancy  and  contracting  industries,  with  new  technologies  and  associated  practices  often  refined  and  streamlined  through  lessons  learned  from  mistakes  or  individual  investments  in  training,  research  and  development.  Many  organisations  protect  their  intellectual  property  as  it  is  seen  as  a  market  advantage  and  a  key  point  of  difference  between  them  and  their  competitors.  

However  it  is  clear  if  the  industry  and  society  is  serious  about  a  transition  to  low-­‐emission  HVAC&R  then  some  of  the  barriers  to  the  sharing  of  intellectual  property  among  competing  businesses  and  between  large  and  small  organisations  needs  to  be  improved.  

6.9. Small  and  medium  enterprises  SMEs  

6.9.1. SME  end  users  Many  of  the  end  users  of  HVAC&R  fall  into  the  SME  category  and  this  sector  deserves  special  mention  with  regard  to  barriers  to  low-­‐emission  HVAC&R  and  energy-­‐efficiency  interventions  in  general.  Some  of  the  specific  problems  that  SMEs  face  in  transition  include:  

• Lack  of  end  user  understanding  of  the  HVAC&R  issues,  typically  this  is  not  their  core  business.  

• Lack  of  awareness  of  the  percentage  of  their  energy  bills  is  directly  related  to  HVAC&R  systems.  

• Lack  of  awareness  of  opportunities  to  improve  efficiency  including  behavioural  changes,  equipment/system  upgrades,  time  shifting  of  demands.  

• Lack  of  understanding  of  how  to  match  time-­‐of-­‐use  tariffs  to  HVAC&R  equipment  use.  

• Lack  of  time  to  seek  technical  assistance,  apply  for  grants,  analyse  energy  profiles.  

• Lack  of  resources  to  fund  energy  efficiency  interventions.  

• Lack  of  resources  to  provide  staff  training  to  improve  behaviours.  

• Poor  advice  that  reflects  the  interests  of  the  service  provider  giving  the  advice.  

Page 150: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  150  of  162  

6.9.2. SME  technical  service  providers  Many  of  the  HVAC&R  technical  services  providers  (designers,  contractors  and  maintenance  providers)  fall  into  the  SME  category  and  this  sector  deserves  special  mention  with  regard  to  transition.  Some  of  the  specific  problems  that  SMEs  face  in  transition  include:  

• Most  SME  managers  time  is  spent  looking  for  work  to  keep  their  businesses  afloat.  

• Clients  and  end  users  are  minimising  expenditure  on  maintenance.  

• Small  end  users  are  only  intervening  at  system  failure.  

• Small  contractors  will  only  up  skill  tradespeople  in  response  to  business  demands.  

• Contractors  have  difficulty  selling  the  concept  of  preventative  maintenance  or  building/system  tuning  to  owners  and  operators.  

• Most  SMEs  are  unaware  of  programs  such  as  HVAC  HESS  and  In  from  the  cold.  

• Most  SME’s  see  the  equivalent  carbon  price  for  high-­‐GWP  HFC  refrigerants  as  a  threat  to  their  business  and  do  not  focus  on  the  potential  opportunities.  

Page 151: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  151  of  162  

7. Industry  transition  action  roadmaps  

7.1. Section  Introduction  The  primary  purpose  of  this  project  is  to  help  the  HVAC&R  industry  define  a  roadmap  outlining  the  actions  and  solutions  that  need  to  be  taken  to  transition  the  industry  to  low-­‐emission  practices  and  technologies.    What  has  been  created  with  the  discussion  paper  will  not  generate  a  cradle-­‐to-­‐grave  Roadmap  for  low-­‐emission  HVAC&R.  The  industry  does  not  have  a  well  defined  emissions  start  point  or  and  end  point  at  this  stage  and  it  is  difficult  to  draw  a  map  if  you  do  not  have  the  data  to  know  where  you  are  or  where  you  are  going.  What  the  discussion  paper  has  generated  is  a  list  of  potential  practical  steps  that  could  be  implemented  to  encourage,  facilitate,  or  mandate  lowering  the  direct  and  indirect  emissions  associated  with  the  HVAC&R  industry.  Some  small  and  simple  steps,  but  many  larger  and  more  complex  and  possibly  inter  related  actions.  

What  has  been  developed  is  a  series  of  pathways  for  improvement  rather  than  a  roadmap  to  an  end  point.  

The  pathways  that  have  emerged  are  presented  as  follows:  

Professionalism  –  The  things  that  help  to  set  the  industry  objectives  and  process  for  transition  including  funding  and  engagement,  strategy  and  policy,  compiling  and  sharing  data,  and  professionalising  the  industry  through  skills,  training,  licensing  and  registration.  

Regulating  –  The  things  that  relate  to  helping  the  HVAC&R  industry  to  inform  government  policy  and  regulations,  industry  codes,  Australian  Standards,  and  government  programs.  

Information  –  The  things  that  relate  to  the  information  that  can  be  provided  to  educate  and  inform  end  users  and  technical  service  providers  on  energy  efficiency  and  low-­‐emission  skills  and  knowledge,  technologies,  fee  structures  and  design  practices,  and  maintenance  imperatives.  

Measurement  –  The  things  that  relate  to  helping  industry  and  end  users  monitor,  measure,  rate,  and  benchmark  HVAC&R  performance,  validate  efficiency  claims,  and  compare  technology  solutions,  

Emission  abatement  –  The  practical  things  that  are  done  to  reduce  emissions  including  product  stewardship,  incentives  for  new  technology  and  innovation,  system  procurement,  good/best-­‐practice  accreditation,  incentivising  low-­‐emission  interventions,  maintenance  for  energy  efficiency  and  refrigerant  containment.  

It  is  intended  that  this  Draft  Roadmap  and  its  proposed  solutions  be  assessed  and  prioritised  by  industry  stakeholders  and  the  results  taken  for  refinement  and  strategy  planning  at  the  industry  summit.  

The  pathways  included  in  this  section  will  then  be  populated  with  the  industry  endorsed  solutions  and  actions.    

Page 152: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  152  of  162  

7.2. Roadmap  Therefore  the  HVAC&R  Industry  Roadmap  currently  looks  something  like  this:  

DRAFT  ROADMAP  –  Transition  to  low-­‐emission  HVAC&R  

Overall  objective  or  

Vision  A  highly  skilled  and  professional  Australian  HVAC&R  industry  that  is  safe,  cost  effective  and  environmentally  effective.  

Pathways  –  To  low-­‐emission  HVAC&R  

Professionalism   Skills  and  training,  licensing,  professional  registration,  tertiary  education  and  an  industry  council  or  forum  to  consider  strategy,  policy,  information  sharing,  and  industry  practices.  

Regulating   Inform  government  policy  and  regulations,  industry  codes  and  Australian  Standards,  including  validation,  regulatory  data,  and  enforcement.  

Information   Educate  and  inform  end  users,  disseminate  low-­‐emission  skills  and  knowledge,  technologies,  design  practices,  convert  data  to  information.  

Measurement   Measure  and  benchmark  HVAC&R  performance  using  system  rating  tools,  industry  metrics,  building  tuning,  system  optimisation,  validated  efficiency  claims  and  technology  comparison  tools.  

Emission  abatement   Product  stewardship,  new  technologies,  work  practice  accreditation,  incentivising  low-­‐emission  interventions,  maintenance  for  energy  efficiency,  and  refrigerant  containment.  

PRIME  :  One  of  the  meanings  of  the  word  prime  is  to  prepare,  to  get  ready,  to  brief,  to  train  and  to  

prepare  something  for  operation.  It  is  also  used  to  designate  importance.  In  the  context  of  the  industry  roadmap  the  word  “Prime”  seems  an  appropriate  term  to  use.  PRIME  means  putting  in  the  right  effort  and  groundwork  before  you  start  to  ensure  you  get  a  good  outcome.  

Within  this  roadmap  there  are  also  some  general  principles  that  need  to  be  adhered  to:  

• Develop  data  on  the  current  situation  • Learn  from  international  experience  

   

Page 153: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  153  of  162  

7.3. Professionalism  solutions  Draft  Roadmap  –  Professionalism  pathways  to  low-­‐emission  HVAC&R  

Pathway  1     Pathway  2     Pathway  3                  

             

             

Pathway  4     Pathway  5     Pathway  6                  

             

             

Pathway  7     Pathway  8     Pathway  9                  

             

             

 

   

Page 154: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  154  of  162  

7.4. Regulatory  solutions  Draft  Roadmap  –  Regulatory  pathways  to  low-­‐emission  HVAC&R  

Pathway  1     Pathway  2     Pathway  3                  

             

             

Pathway  4     Pathway  5     Pathway  6                  

             

             

Pathway  7     Pathway  8     Pathway  9                  

             

             

 

 

Page 155: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  155  of  162  

7.5. Information  solutions  Draft  Roadmap  –  Information  pathways  to  low-­‐emission  HVAC&R  

Pathway  1     Pathway  2     Pathway  3                  

             

             

Pathway  4     Pathway  5     Pathway  6                  

             

             

Pathway  7     Pathway  8     Pathway  9                  

             

             

 

   

Page 156: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  156  of  162  

7.6. Measurement  solutions  Draft  Roadmap  –  Measurement  pathways  to  low-­‐emission  HVAC&R  

Pathway  1   Pathway  2     Pathway  3                  

             

             

Pathway  4     Pathway  5     Pathway  6                  

             

             

Pathway  7     Pathway  8     Pathway  9                  

             

             

 

   

Page 157: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  157  of  162  

7.7. Emission  reduction  solutions  Draft  Roadmap  –  Emission  reduction  pathways  to  low-­‐emission  HVAC&R  

Pathway  1     Pathway  2     Pathway  3                  

             

             

Pathway  4     Pathway  5     Pathway  6                  

             

             

Pathway  7     Pathway  8     Pathway  9                  

             

             

 

   

Page 158: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  158  of  162  

7.8. Complementary  solutions  Draft  Roadmap  –  Complementary  pathways  to  low-­‐emission  HVAC&R  

Pathway  1     Pathway  2     Pathway  3                  

             

             

Pathway  4     Pathway  5     Pathway  6                  

             

             

Pathway  7     Pathway  8     Pathway  9                  

             

             

 

-­‐End  of  discussion  paper-­‐  

Page 159: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  159  of  162  

Appendix  A  Project  Stakeholders  and  Supporters  THE  FOLLOWING  ORGANISATIONS  HAVE  SUPPORTED  THIS  PROJECT:  

 

Australian  Chamber  of  Commerce  and  Industry  

ACT  Planning  and  Land  Authority  

Actrol  

AECOM  

AG  Coombs  

Air  Conditioning  and  Mechanical  Contractors  Association  

Air  Conditioning  and  Refrigeration  Equipment  Manufacturers  Association  

Airchange  

Airefrig  

Alan  Pears  

Aldi  

Amcor  

ARUP  

ASHRAE  

Austral  Group  

Australian  Building  Codes  Board  

Australian  Conservation  Foundation  

Australian  Construction  Industry  Forum  

Australian  Constructors  Association  

Australian  Direct  Property  Investment  Association  

Australian  Hotels  Association  

Australian  Industry  Group  

Australian  Institute  for  Building  Performance  Research  

Australian  Institute  of  Architects  

Australian  Institute  of  Building  Surveyors  

Australian  Institute  of  Quantity  Surveyors  

Australian  Meat  Industry  Council  

Australian  National  University  

Australian  Refrigerated  Warehouse  Association  

Australian  Refrigeration  Association  

Australian  Refrigeration  Council  

Australian  Sustainable  Built  Environment  Council  

Australian  Workforce  and  Productivity  Agency  

Australasian  Procurement  and  Construction  Council  

AUSVEG  

BAYER  

Building  Commission  (VIC)  

Building  Commission  (WA)  

Buildings  Alive  

CA  Group  

Chartered  Institute  of  Building  Services  Engineers  

City  of  Yarra  

City  West  Water  

Coles  

Consult  Australia  

Consumer  Electronics  Suppliers  Association  

Crone  Partners  

CSIRO  

Cundall  

Dairy  Manufacturers  Sustainability  Council  

Page 160: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  160  of  162  

Department  of  Business  and  Innovation  (Vic)  

Department  of  Defence  

Department  of  Finance  (WA)  

Department  of  Industry,  Innovation,  Science,  Research  and  Tertiary  Education  

Department  of  Infrastructure  and  Planning  

Department  of  Planning,  Transport  and  Infrastructure  (SA  Govt)  

Department  of  Resources  Energy  and  Tourism  

Department  of  State  Development,  Infrastructure  and  Planning  

Department  of  Sustainability  and  Environment  (VIC)  

Department  of  Sustainability,  Environment,  Water,  Population  and  Communities/  Department  of  Climate  Change  and  Energy  Efficiency  

Dsquared  consulting  

EE-­‐OZ  

Energex  

Energy  Efficiency  Council  

Energy  Networks  Association  

Engineers  Australia  

Enterprise  Connect  

Ergon  Energy  

Exergy  

Expert  Group  

Facilities  Management  Association  of  Australia  

Foodworks  

Gas  Regulators  Technical  Committee  

GEA  Group  

GHD  

Gordon  Refrigeration  

Green  Building  Council  of  Australia  

Grundfos  

Heatcraft  

Hussman  

Hychill  

IHRACE  

Institute  of  Hospital  Engineers  Australia  

Institute  of  Refrigeration  (UK)  

ISECO  

Lend  Lease  

Manufacturing  Skills  Australia  

Massey  University  (NZ)  

Master  Grocers  Association  

Master  Plumbers  and  Mechanical  Services  Association  of  Australia  

Mediaforte  

Metcash  

Minus  40  

Moreland  Ciy  Council  

Moreland  Energy  Foundation  

National  Occupational  Licensing  Authority  

NDY  

NECA  /  RACCA  NSW  

NECA  WA  

NSW  Office  of  Environment  and  Heritage  

Office  of  Energy  (WA)    

Pioneer  Air  

Pitt  and  Sherry  

Plumbing  Industry  Climate  Action  Centre  

Plumbing  Industry  Commission  (VIC)  

Plumbing  Trades  Employees  Union  

Polytechnic  West  

Property  Council  of  Australia  

Pump  Industry  Australia  

RACCA  Qld  -­‐  IRASE    

Page 161: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

 

 

Claim  the  sustainability  space    

 

 

Transition  to  low-­‐emission  HVAC&R:  Issues  and  solutions  |  March  2013  

Page  161  of  162  

Real  Cold  Australia  

Refrigerant  Reclaim  Australia  

Refrigerants  Australia  

Refrigerated  Warehouse  and  Transport  Association  

Refrigeration  and  Air  Conditioning  Contractors  Association  

Refrigeration  Innovations  

Royal  Institute  of  Chartered  Surveyors  

Safework  Australia  

Scantec  

Seafood  Services  Australia  

Society  of  Building  Services  Engineers  

Standards  Australia  

Sustainability  Victoria    

Sustainable  Built  Environment  National  Research  Centre  (SBEnrc)  

Sustainable  Melbourne  Fund  

Swinburne  University  -­‐  National  Centre  for  Sustainability  

TAFE  trainers  and  head  teachers  

The  Fifth  Estate  

The  Warren  Centre  

Thinkwell  

Tritech  Refrigeration  

University  of  Wollongong  

United  Nations  Environment  Program  

University  of  South  Australia  

University  of  Melbourne  

University  of  New  South  Wales  

University  of  Queensland  

University  of  South  Australia  

University  of  Sydney  

University  of  Technology  Sydney  

VASA  

Victoria  University  

Viridis  3D  

Williams  Refrigeration  

Winery  Engineers  Association  

Woolworths  

WSP  Group  

XO

Page 162: Transitionto)low Aemission HVAC&R:(Issues(andsolutions · 2016. 9. 17. · Claim!thesustainabilityspace!!!! TransitiontolowAemission)HVAC&R:)Issues)and)solutions)|March)2013) Page5!of!162!

   

 

 

 

 

 

 

 

 

Copyright  AIRAH  -­‐  2013