12
Geobiology. 2018;16:341–352. wileyonlinelibrary.com/journal/gbi | 341 © 2018 John Wiley & Sons Ltd Received: 16 July 2017 | Accepted: 31 March 2018 DOI: 10.1111/gbi.12289 ORIGINAL ARTICLE Tracking the rise of eukaryotes to ecological dominance with zinc isotopes Terry T. Isson 1 | Gordon D. Love 2 | Christopher L. Dupont 3 | Christopher T. Reinhard 4 | Alex J. Zumberge 2 | Dan Asael 1 | Bleuenn Gueguen 5 | John McCrow 6 | Ben C. Gill 7 | Jeremy Owens 8 | Robert H. Rainbird 9 | Alan D. Rooney 1 | Ming-Yu Zhao 1 | Eva E. Stueeken 10 | Kurt O. Konhauser 11 | Seth G. John 12 | Timothy W. Lyons 2 | Noah J. Planavsky 1 1 Geology and Geophysics, Yale University, New Haven, Connecticut 2 Earth Science, University of California, Riverside, Riverside, California 3 Microbial and Environmental Genomics, J. Craig Venter Institute, San Diego, California 4 Georgia Institute of Technology, Atlanta, Georgia 5 Earth Science, Université de Bretagne Occidentale, Brest, France 6 J. Craig Venter Institute, Rockville, Maryland 7 Geosciences, Virginia Tech, Blacksburg, Virginia 8 Florida State University, Tallahassee, Florida 9 Geology, Geological Survey of Canada, Ottawa, ON, Canada 10 School of Earth and Environmental Sciences, University of St Andrews, St Andrews, Scotland, UK 11 Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, Canada 12 Earth Science, University of Southern Carolina, Los Angeles, California Correspondence Terry T. Isson, Yale University, New Haven, CT. Email: [email protected] Funding information NSF FESD Program; NASA Astrobiology Institute Abstract The biogeochemical cycling of zinc (Zn) is intimately coupled with organic carbon in the ocean. Based on an extensive new sedimentary Zn isotope record across Earth’s history, we provide evidence for a fundamental shift in the marine Zn cycle ~800 mil- lion years ago. We discuss a wide range of potential drivers for this transition and propose that, within available constraints, a restructuring of marine ecosystems is the most parsimonious explanation for this shift. Using a global isotope mass balance approach, we show that a change in the organic Zn/C ratio is required to account for observed Zn isotope trends through time. Given the higher affinity of eukaryotes for Zn relative to prokaryotes, we suggest that a shift toward a more eukaryote-rich ecosystem could have provided a means of more efficiently sequestering organic- derived Zn. Despite the much earlier appearance of eukaryotes in the microfossil record (~1700 to 1600 million years ago), our data suggest a delayed rise to ecological prominence during the Neoproterozoic, consistent with the currently accepted organic biomarker records. KEYWORDS carbon cycle, Earth history, eukaryotes, marine productivity, ocean chemistry, zinc, zinc isotopes

Tracking the rise of eukaryotes to ecological dominance ...myweb.fsu.edu/jdowens/Publications/Isson_2018.pdfISSO ET AL. | 343 In contrast, culture studies of cyanobacteria conducted

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Tracking the rise of eukaryotes to ecological dominance ...myweb.fsu.edu/jdowens/Publications/Isson_2018.pdfISSO ET AL. | 343 In contrast, culture studies of cyanobacteria conducted

Geobiology. 2018;16:341–352. wileyonlinelibrary.com/journal/gbi  | 341© 2018 John Wiley & Sons Ltd

Received:16July2017  |  Accepted:31March2018DOI: 10.1111/gbi.12289

O R I G I N A L A R T I C L E

Tracking the rise of eukaryotes to ecological dominance with zinc isotopes

Terry T. Isson1  | Gordon D. Love2 | Christopher L. Dupont3 | Christopher T. Reinhard4 |  Alex J. Zumberge2 | Dan Asael1 | Bleuenn Gueguen5 | John McCrow6 | Ben C. Gill7 |  Jeremy Owens8 | Robert H. Rainbird9 | Alan D. Rooney1  | Ming-Yu Zhao1 |  Eva E. Stueeken10  | Kurt O. Konhauser11 | Seth G. John12 | Timothy W. Lyons2 |  Noah J. Planavsky1

1GeologyandGeophysics,YaleUniversity,NewHaven,Connecticut2EarthScience,UniversityofCalifornia,Riverside,Riverside,California3MicrobialandEnvironmentalGenomics,J.CraigVenterInstitute,SanDiego,California4GeorgiaInstituteofTechnology,Atlanta,Georgia5EarthScience,UniversitédeBretagneOccidentale,Brest,France6J.CraigVenterInstitute,Rockville,Maryland7Geosciences,VirginiaTech,Blacksburg,Virginia8FloridaStateUniversity,Tallahassee,Florida9Geology,GeologicalSurveyofCanada,Ottawa,ON,Canada10SchoolofEarthandEnvironmentalSciences,UniversityofStAndrews,StAndrews,Scotland,UK11EarthandAtmosphericSciences,UniversityofAlberta,Edmonton,AB,Canada12EarthScience,UniversityofSouthernCarolina,LosAngeles,California

CorrespondenceTerryT.Isson,YaleUniversity,NewHaven,CT.Email:[email protected]

Funding informationNSFFESDProgram;NASAAstrobiologyInstitute

AbstractThebiogeochemicalcyclingofzinc(Zn)isintimatelycoupledwithorganiccarbonintheocean.BasedonanextensivenewsedimentaryZnisotoperecordacrossEarth’shistory,weprovideevidenceforafundamentalshiftinthemarineZncycle~800mil-lionyearsago.Wediscussawiderangeofpotentialdriversforthistransitionandproposethat,withinavailableconstraints,a restructuringofmarineecosystems isthemostparsimoniousexplanationforthisshift.Usingaglobalisotopemassbalanceapproach,weshowthatachangeintheorganicZn/CratioisrequiredtoaccountforobservedZnisotopetrendsthroughtime.GiventhehigheraffinityofeukaryotesforZn relative to prokaryotes,we suggest that a shift toward amore eukaryote-richecosystemcouldhaveprovidedameansofmoreefficientlysequesteringorganic-derivedZn.Despite themuchearlier appearanceof eukaryotes in themicrofossilrecord(~1700to1600millionyearsago),ourdatasuggestadelayedrisetoecologicalprominence during the Neoproterozoic, consistent with the currently acceptedorganicbiomarkerrecords.

K E Y W O R D S

carboncycle,Earthhistory,eukaryotes,marineproductivity,oceanchemistry,zinc,zincisotopes

Page 2: Tracking the rise of eukaryotes to ecological dominance ...myweb.fsu.edu/jdowens/Publications/Isson_2018.pdfISSO ET AL. | 343 In contrast, culture studies of cyanobacteria conducted

342  |     ISSON et al.

1  | INTRODUC TION

Whileeukaryoticmicroalgaeareresponsibleforasubstantialportionof marine export production today (Falkowski etal., 2004), primaryproductionandmicrobialcommunitiesintheArcheanandProterozoicoceansaretraditionallyviewedtohavebeendominatedbyunicellularprokaryotes(Brocksetal.,2017;Butterfield,2015;Knoll,2014).Thislong-termshifttowardamoreeukaryote-richEarthsystemhasbeenmechanistically linked to numerous major events in Earth’s history,in particular the onset of low-latitude “Snowball Earth” glaciations,majorcarboncycleperturbations,andocean-atmosphereoxygenationduringNeoproterozoictime(e.g.,Feulner,Hallmann,&Kienert,2015;Tziperman,Halevy,Johnston,Knoll,&Schrag,2011;Zhuetal.,2016).However,althoughithasbeencommonlyproposedthattherewasamajorecosystemshiftduringtheNeoproterozoic,therearerelativelyfewconstraintsoneithertheextentofmarineproductivityorthecom-positionofplanktoncommunitiesthroughmostofEarth’shistory.

Thus far, twomainapproacheshavebeenapplied to track theearly evolution of primary producers. The microfossil record hasbeenusedbothtodelineatetheappearanceoftheearliestdefini-tiveeukaryotesat~1700–1600Ma(Butterfield,2015;Knoll,Javaux,Hewitt,&Cohen, 2006) and to track theonset of extensive algalprimaryproductivityby~800Ma(Brocksetal.,2017;Feulneretal.,2015;Knoll,2014).Molecularfossils(organicbiomarkers)havealsobeenusedtotracktheevolutionofphototrophsandthebalanceofbacterialversusalgalproductivity.Forexample,theratioofhopane(e.g.,bacterial)tosterane(e.g.,eukaryotic)biomarkerscanpotentiallyprovideafirst-orderviewoftherelativebalancebetweenbacterialand eukaryotic inputs in aquatic depositional settings (Figure1).While there have been numerous reports of abundant eukaryoticbiomarkers inMesoproterozoic rocks (e.g., Zhang etal., 2016), re-centlipidbiomarkerevidence,usingcleananalyticalmethodologiestominimizecontamination,suggeststhattheearliestdetectableandrobusteukaryotic (24-alkylated) steranebiomarkers appear some-timewithin theNeoproterozoicEra (<1000Ma) (e.g.,Brocksetal.,2015,2017;Frenchetal.,2015;Loveetal.,2009)(seeAppendixS1).Earlier reports of abundant steranes, as old as 2700Ma, are now

attributable to contamination artifacts (French etal., 2015).Here,weproposeanoveltracerforshiftsinmarineecosystemstructure—thatis,acoupledrecordofthephase-specificsedimentaryenrich-mentandstableisotopecompositionofzinc(Zn).

2  | THE BIOLOGIC AL USE OF ZINC

StableisotopesofZnhavethepotentialtotracktheriseandecologicalexpansionofeukaryotesintheglobalocean.Whileallorganismsuti-lizeZn,moderneukaryoticphytoplanktonappeartohaveelevatedZndemandsandelevatedZn/Cratiosrelativetocyanobacteria(Nuester,Vogt,Newville,Kustka,&Twining,2012;Quigg,Irwin,&Finkel,2011;Twining,Baines,&Fisher,2004;Twiningetal.,2003,2011). Inaddi-tion,culturesshowthatZncanbecolimitingforeukaryoticalgae(e.g.,Zn-C and Zn-P colimitation) (Brand, Sunda, & Guillard, 1983; John,Geis, Saito, & Boyle, 2007; Morel etal., 1994; Schulz etal., 2004;Shaked,Xu,Leblanc,&Morel,2006;Sunda&Huntsman,1992,1995).Specifically,reducedgrowthrateshavebeenshowninmultiple(>25)eukaryoticphytoplanktonspeciesatfreeZn2+concentrationsbelow10−11.5Mwhileothermoretolerantspeciesonlyexhibitadeclinestart-ingat10−13M(Anderson,Morel,&Guillard,1978;Brandetal.,1983;Ellwood&Hunter,2000;Johnetal.,2007;Moreletal.,1994;Schulzetal.,2004;Shakedetal.,2006;Sunda&Huntsman,1992,1995,1998,2005;Tortell&Price,1996).Inmoredetailedstudies,lowinorganicZnconcentrationshavebeendemonstratedtoreducetheactivitiesofkeyspecificZnmetalloenzymesdramatically,suchascarbonicanhydrase,whichfacilitatestheacquisitionofbicarbonate(Moreletal.,1994),andalkaline phosphatase, which allows phytoplankton to acquire phos-phorousfromorganicphosphoruscompounds(Shakedetal.,2006).Insomeregionsoftheocean(e.g.,areasofhighnutrientandlowchloro-phyll)Znadditioncanresultinincreasedgrowthrates(Chappelletal.,2016; Coale, 1991; Franck, Bruland, Hutchins, & Brzezinski, 2003;Jakuba,Saito,Moffett,&Xu,2012). Inaddition, insomecases,sub-tlechangesinphytoplanktoncomposition(ecosystemstructure)havebeenobservedwiththeadditionofZn(Crawfordetal.,2003;Leblancetal.,2005;Lohan,Crawford,Purdie,&Statham,2005).

F IGURE  1 Organicbiomarkerrecorddepictingthepresence/absenceofeukaryoticsteranesinProterozoicorganic-richshales[Colourfigurecanbeviewedatwileyonlinelibrary.com]

Barney Creek Fm.N. Australia [1]

Xiamaling Fm.N. China [4]

Hongshuizhuang Fm.N. China [13]

Taoudeni BasinTouirist Fm. (Atar Gp.)NW Africa [5,17]

Chuar Gp.Laurentia [6,14,15,19]

Visingso Gp.Baltica [6,19]

McArthur BasinVelkerri Fm. (Roper Gp.)

N. Australia [2,3]

Malgina Fm.E. Siberia [16]

1,640 Time (Ma)1,370 1,100 7428001,000 8501,430 Phan.

abundant hopane biomarkers from bacteria; no steranes from eukaryotes

Stu

rtia

n

Mar

inoa

n

24-ipcsterane/hopane ratio increases

Post-Sturtian to Early CambrianSiberia, Australia, Oman, India, et al.

[7,8,9,10,11,12,18-20]

[1] Brocks et al., 2005[2] Dutkiewicz, Volk, Ridley, & George, 2003[3] Flannery and George, 2014[4] Luo, Hallmann, Xie, Ruan, & Summons, 2015

[9] Mckirdy, Webster, Arouri, Grey, & Gostin, 2006[10] Love et al., 2009[11] Grosjean, Love, Stalvies, Fike, & Summons, 2009[12] Kelly, Love, Zumberge, & Summons, 2011

[5] Blumenberg, Thiel, Riegel, Kah, & Reitner, 2012[6] Brocks et al., 2015[7] Grantham, 1986[8] McCaffrey et al., 1994

[13] Luo, Ono, Beukes, Wang, Xie, & Summons, 2016 [14] Summons et al., 1988 [15] Vogel, Thorsen, Curry, Sandager, & Uldbjerg, 2005[16] Suslova, Parfenova, Saraev, & Nagovitsyn, 2017

[17] Gueneli, Brocks, & Legendre, 2012 [18] Bhattacharya, Dutta, & Summons, 2017[19] Brocks et al., 2017[20] Hoshino et al., 2017

Proterozoic biomarker recordEukaryotic primary productivity dominated by:

Red algal clades/heterotrophs

Green algal clade

Page 3: Tracking the rise of eukaryotes to ecological dominance ...myweb.fsu.edu/jdowens/Publications/Isson_2018.pdfISSO ET AL. | 343 In contrast, culture studies of cyanobacteria conducted

     |  343ISSON et al.

In contrast, culture studies of cyanobacteria conducted thus farhavenotfoundZndemandssimilartothatobservedineukaryotes.InculturestudiesthecommonmarinecyanobacteriaProchlorococcus and SynechococcusappearnothaveresolvableZnrequirements,demon-stratinginvariantgrowthrateswhenZnisdepleted(Brandetal.,1983;Saito, Moffett, Chisholm, &Waterbury, 2002; Sunda & Huntsman,1995).However,ithasbeendiscoveredthatextantcyanobacteriaarenotentirelydevoidofZn.ForinstanceZn-carbonicanhydrasemetallo-enzymeshavebeenfoundtobeexpressedincyanobacteria(Blindauer,2008; So etal., 2004). Further,more recent culturework has high-lightedthepossibleuseofZninproteinsinvolvedinPO4

3−acquisitionwhen subject tophosphorousdeficiency (Cox&Saito, 2013)—likelylinkedtotheexpressionofextracellularphosphataseincyanobacteria(Bar-Yosef,Sukenik,Hadas,Viner-Mozzini,&Kaplan,2010;Whitton,Grainger,Hawley,&Simon,1991).Itisimportanttonotethatwithin-creasinglyelevatedambientZn levels,moreZncanbe incorporatedintocyanobacteria(Ohnemusetal.,2017).However,thishighuptakemaybeinadvertentanditisunlikelythattherehadeverbeenmarkedlyelevatedZnconcentrationsinsurfacewatersduetoZnsorption,up-take,andscavenging.Cyanobacteriaalsohaveahighercellularsurfaceareatovolumeratio(relativetoeukaryoticcells)thatfacilitateshigherdegrees of adsorption over assimilation, such that a cyanobacteria-dominatedecosystemisintheorycapableofforcingthesamedegreeofZndrawdowninsurfacewaterswithamuchlowerdegreeoforgan-ically incorporatedZn.Duringthistime, ironoxidescavengingcouldhavealsosignificantlyinfluencedwatercolumnZnprofiles.Therefore,althoughmorework is required, fieldstudiesandcultureworkbothstronglysupporttheobservationthatsubstantiallylessZnwillbein-corporated into biomass when cyanobacteria instead of eukaryoticphytoplanktonarethedominantprimaryproducers.

Genomicsurveysofgenesencodingformetalbindingproteinspro-videanadditionalmeanstoprobeZnrequirementsandtheevolution-aryhistoryofZnutilization.BasedonpredictedZnbindingproteinsfromwholegenomesequences,highZnrequirementsareobserved

for all major eukaryotic clades (Dupont, Butcher, Valas, Bourne, &Caetano-Anollés,2010;Dupont,Yang,Palenik,&Bourne,2006). Infact,ouranalysiswithupdatedgenomicdatabases(Figure2)suggeststhatZn isoftenthemostabundant inorganiccofactor ineukaryoticenzymesacrossalllineages.Further,eukaryoticgenomeshavesignifi-cantlymoreZnbindingproteinsthanprokaryotesasapercentageofthetotalpredictedproteome(Figure2a–b;seeAppendixS1).WefindthathighnumbersofgenesforZnbindingproteinsarenotonlyfoundinlaterevolvingcladesthatdominatemodernoceans,butalsoinsomeof the earliest evolving groups of eukaryotic algae, such as rhodo-phytes (Figure2c).DiverseuseofZn ineukaryotes isclearlyacon-servedandbasaltrait (Figure2c).AlthoughgenomicdatacannotbedirectlytranslatedintoZnquotas,thisworksupportsthepremisethatthereisafundamentaldifferencebetweeneukaryoticandprokaryoticZnutilizationandthatthisdifferencewouldhavebeenpresentinearlyevolvingeukaryotes.ContrastsinZnusagecanbelinkedtoanabun-danceofnucleus-localizedproteinsineukaryotes(e.g.,ZnfingersandRINGdomains)responsibleforDNA–RNAtranscriptionandprotein–proteininteractions(Berg&Shi,1996;Dupontetal.,2010;Rhodes&Klug,1993;Twiningetal.,2004).ThisrelationshipisconsistentwithobservationsfrommarineplanktonthatrevealZnlocalizationwithinthenuclei,ahallmarkfeatureofeukaryotes(Twining&Baines,2013;Twining, Baines,Vogt, Jonge,&Martin, 2008; Twining etal., 2003,2004).Insum,whole-cellZnmeasurementsandgenome-basedanaly-sessupporttheassertionthateukaryoticphytoplanktonhavesignifi-cantlyelevatedZnutilizationrelativetoprokaryoticphytoplankton.

3  | GLOBAL ZINC ISOTOPE MA SS BAL ANCE: ORGANIC BIOMA SS, A L ARGE AND ISOTOPIC ALLY LIGHT SINK FOR ZINC

The global mean δ66Zn value of modern seawater is ~0.5‰,while sourcesofZn to theoceans, including riverine, aerosol, and

F IGURE  2 Genomeencodedmetalutilization:Thepercentageofiron(red)andzinc(blue)bindingdomainscomparedwiththetotalnumberofproteindomainsindiscretegenomesof(a)cyanobacteria(n = 123)and(b)eukaryotes(n = 437).(c)Percentageofzinc-bindingdomainsineukaryoticandprokaryoticphytoplankton,relativetothetotalnumberofproteindomainsencodedbyeachgenome[Colourfigurecanbeviewedatwileyonlinelibrary.com]

0

5

10

15

20

25

30

0 2,000 4,000 6,000 8,000 10,000 12,000

Zinc Iron

0

5

10

15

20

25

30

0 50,000 100,000 150,000 200,000 0

2

4

6

8

10

12

14

1,000 10,000 100,000 1,000,000

Chlorophytes Rhodophytes Haptophytes Bacillophytes Pelagophytes Cyanobacteria

Total No. of Domains Annotated

% b

ind

ing

a m

etal

(a) Cyanobacteria (b) Eukaryotes (c) Zn and Phytoplankton

Zinc Iron

Page 4: Tracking the rise of eukaryotes to ecological dominance ...myweb.fsu.edu/jdowens/Publications/Isson_2018.pdfISSO ET AL. | 343 In contrast, culture studies of cyanobacteria conducted

344  |     ISSON et al.

hydrothermalinputs,areclosetotheaveragecrustalvalueof~0.3‰(Little,Vance,Walker-Brown,&Landing,2014).IronandmanganeseoxidesscavengeisotopicallyheavyZn(Δ66Zn~0.3to0.5‰)(Bryan,Dong,Wilkes,&Wasylenki,2015;Little,Sherman,Vance,&Hein,2014;Maréchal, Nicolas, Douchet, & Albarède, 2000; Pokrovsky,Viers, & Freydier, 2005). Carbonates appear to be unfraction-ated from seawater; however, isotopically heavy carbonates havebeen observed within the geologic record (e.g., Pichat, Douchet,& Albarède, 2003).While we do not yet understand the specificcontrolsonZnincorporationintocarbonates(VanDijk,DeNooijer,Wolthers,&Reichart,2017),abinitioworksuggeststhattheisotopicsignatureofZnassociatedwithcarbonatespeciesoughttovarywithambientpHlevels(Fujii,Moynier,Blichert-Toft,&Albarède,2014).InthemostrecentsummaryoftheglobalisotopemassbalanceofZn,theisotopicallylightsinkwasnotfullyresolved(Little,Vance,etal.,2014),althoughorganic-richcontinentalmarginshavebeenshowntoburylightZn(Little,Vance,Mcmanus,&Severmann,2016).Here,webuildfrompreviousworkontheZnmassbalanceandnewdata

that constrain the isotopic composition of previously unidentifiedorganicandsulfidemarineexportfluxes(Figure3).WediscusseachofthemajorZnburialtermsandproposeabalancedmodernZniso-topebudget(Figures3and4).

Culture experiments reveal that eukaryotic phytoplanktonpreferentially incorporate the lighter isotopesofZnwithan iso-topicfractionation(Δ66Znorg-sw)between−0.8‰to−0.2‰(John&Conway,2014; Johnetal.,2007).Theway inwhichbiologicalfractionationsmanifestintheoceansmaydependonavarietyofprocessesincludingtheambientZnconcentrations,theextentofwatercolumnconsumption,andtheδ66Znofwaterssuppliedtotheeuphoticzone.However,wehavefoundthatkerogen(theinsolu-bleorganicfraction)andbitumen(thesolubleorganicfraction)ex-tractedfromcore-topsitesacrosstheCariacoBasin(seemethodsforfullextractiondetails)areallcharacterizedbyδ66Znvaluesthataremoredepletedthanambientwaters,providingclearevidencethat biological export sequesters isotopically depleted (light) Znwithinthesediments(Figure4).TheexportoflightorganicZnhas

F IGURE  3 ModernglobalisotopicmassbalanceofZn.(Top)fluxes.(Bottom)Isotopicrange.Thedashedlinerepresentsmeanδ66Znvalues(0.5‰)ofdeepseawater,andtheasterisksinbarshighlightthemeanδ66Znvaluesforthesesourcesandsinks.Fluxestimatesinroundbracketsare×108 mol year−1ofZn.SeeTableS1forfulllistofreferences[Colourfigurecanbeviewedatwileyonlinelibrary.com]

δ66Zn0.60.40.20 0.8 1.0–0.2–0.4–0.6

Riverine

Sources

Aeolian dust

1.2 1.4

Hydrothermal fluids

Sinks

Fe-Mn oxide

Carbonate

Euxinic precipitates

Organic biomass

Silica

Lithosphere

Organic delivered (62%)

Euxinicsediments (11%)

Ferromanganese crust (20%)

Silica (4%)

Carbonate (3%)

Rivers (92%)

Aeolian dust (8%)

Hydrothermal(<1%)

Page 5: Tracking the rise of eukaryotes to ecological dominance ...myweb.fsu.edu/jdowens/Publications/Isson_2018.pdfISSO ET AL. | 343 In contrast, culture studies of cyanobacteria conducted

     |  345ISSON et al.

alsobeensuggestedinothermodernmarinesettingsbasedonZnisotopeanalysesinbulksediments(Littleetal.,2016).Inacriticalmanner,wealsoprovideevidenceforpreferentialburialofisoto-pically light organic Zn in ancient sedimentary rocks (i.e., δ66Znvalueslessthanseawaterinputsourcesofapproximately+0.33‰(Little,Vance,etal.,2014);Figure5b).Althoughtheisotopiccom-positionoforganicZninancientshalesoflowthermalmaturityisvariable,theseδ66Znorgvaluesareonaveragesignificantlylighterthantheassumedinputterms.Thus,theδ66ZnorgrecordprovidesclearevidencethattheorganicZnflux leadstoburialof isotopi-callylightZn.

Profilesforδ66Zninmodernmarinewatercolumnsdonottypi-callyincreasetowardthesurfacedespitetheexportoflightorganicZn from seawater (Conway& John, 2014; John& Conway, 2014;Zhao,Vance,Abouchami,&DeBaar, 2014). This apparent lackofan expressed biological fractionation in near-surface waters mayreflect a role forZn adsorption in controllingwater columnδ66Zn(John&Conway,2014;Köbberich&Vance,2017)(FigureS1).Zincis predominantly complexed by organic ligands, many with un-knownstructures,orsorbedtobiologicalormineralogicalsurfaces(Bruland,1989; Jakubaetal., 2012; John&Conway,2014; Lohan,Statham, & Crawford, 2002). Ligands preferentially complex theheavyisotope(Jouvin,Louvat,Juillot,Maréchal,&Benedetti,2009;Köbberich&Vance,2017;Markovićetal.,2016),leavingtheresidual

dissolvedZn2+poolisotopicallylight(John&Conway,2014).Ithasbeenproposed thatnatural phytoplankton communities alsohavetheabilitytoregulateambientZnconcentrationsinsurfacewatersviarapidligandproductiontoreduceZntoxicity,particularlywhereZnconcentrationsarehigh (Lohanetal.,2005).Theabundanceoforganic ligands has beenobserved to be closely linkedwith ratesofsurfaceproductivity (John&Conway,2014;Kozelka&Bruland,1998;Lohanetal.,2005;Wells,Kozelka,&Bruland,1998).Thesizeofthisorganicligandpoolcanbeextremelydynamic,withgenera-tionandremineralizationoccurringonthetimescaleofdays.Rapidoxidation of organic ligands in both surface waters and at depthreleases the ligand-bound Zn back into solution (John&Conway,2014;Lohanetal.,2005).Thelikelihoodofanygeologicallymean-ingfulligand-boundZnburialfluxisthereforelow.Thisassumptionisconsistentwithourdataset,whichindicatesisotopicallydepletedδ66Znorg relative to sulfideboundZn (δ

66Znsulf) across thebreadthofthegeologicalrecord(seebelow;Figure2).Insum,multiplepro-cessesgoverntheexpressionofZnisotopesinsurfacewaters,eachassociatedwithpotentiallylargeintrinsicfractionations.Watercol-umn isotopic profiles therefore express intricate spatial and tem-poralvariabilitythatcannotbeaccountedforbyanysingleprocess(e.g., uptake, sorption, remineralization), and future work will nodoubt continue tomove forward our understanding of Zn cyclingin theupperoceans.However,what is critical forourpurposes is

F IGURE  4 Znisotopedataofthesulfide,bitumen(TLE),andkerogen(HyPy)fractionsofeuxiniccore-topmudsfromninesitesacrosstheCariacoBasin.Themeanvalueofδ66Znsulf(+0.50±0.07‰2SD,n = 9)accuratelycapturestheglobaldeepoceanwaterδ66Znsignature(+0.50±0.14‰2SD,n = 223).Verticalerrorbarsdenoteexternalreproducibility.δ66Znorgvaluesareconsistentlymorenegativethanthoseofdeepseawater[Colourfigurecanbeviewedatwileyonlinelibrary.com]

Deep-Seawater

δ66Z

n

(1) (2) (3) (4) (5) (6) (7) (8) (9)

SulfideOrg (Bitumen, TLE)Org (Kerogen, HyPy)

1.0

100

1,400

1300900

700500300

900

300

300

500

700900

1,1001,300

500

10030011ºN

10ºN 66º 65º

Margarita

Cubagua

Araya

Cumana

Piritu

Unare platform

Rio Unare

Laguna de Tacarigua

Rio Tuy

Cabo Codera

Tortuga

Tortuga Bank

Venezuela

0 500

km

N

E

1

23

456

7

89

0.8

0.6

0.4

0.2

0

Page 6: Tracking the rise of eukaryotes to ecological dominance ...myweb.fsu.edu/jdowens/Publications/Isson_2018.pdfISSO ET AL. | 343 In contrast, culture studies of cyanobacteria conducted

346  |     ISSON et al.

thattheisotopiccompositionoftheburialfluxesultimatelycontrolsthemeanvaluesforglobalanddeep-waterdissolvedδ66Znandthatmodern and ancient sedimentaryorganicmatter (Figures4 and5)areisotopicallydepleted.

Sulfide capture is particularly important to our discus-sion because of our emphasis on shale-hosted isotopic data. Atdepths >100–300m in the modern oceans, the isotopic compo-sition and concentration of dissolved Zn are largely homogenous(+0.50±0.14‰2SD,n = 223;Bruland,1980;Conway&John,2014;

Conway&John,2015;Jakubaetal.,2012; John&Conway,2014;John,Helgoe,&Townsend,2017;Zhaoetal.,2014).Hence,tempo-ralvariationsintheisotopicsignatureofthedeep-seareservoircanthereforeshedlightonchangesintheglobalbiogeochemicalcyclingofZn.Here,weprovidenewdataindicatingthatcaptureofZnineu-xinicsedimentscanserveasaseawaterarchivebasedonanalysisofsedimentsfromtheCariacoBasin.TheCariacoBasinispermanently(ratherthanseasonally)euxinic(anoxicandsulfidic)andZnprecipi-tatesoutofsolutioneitherasauthigenicZnsulfidesorbyscavenging

F IGURE  5 SedimentaryZnisotoperecordspanning3.5billionyearsofEarth’shistory.(a–b)Newdatafromthesulfide(bluecircles),bitumen(redcircles)andkerogen(blacksquares)fractionsofsulphidicblackshales(n = 502).HorizontalgrayfieldsdenotethecrustalZnisotopicrange(32).Verticalerrorbarsdenoteexternalreproducibility.Weidentifythreestageswithinthesulfiderecord.Stage1(pre-800Ga):sulfidesexpressrestrictedvalueswithinthecrustalrange.Stage2(lateNeoproterozoic):transitionintervalduringwhichδ66Znsulf valuesdistinctivelylighterandheavierthanthecrustalrangeareexpressed,likelyreflectingboththeecologicalriseofeukaryotesand re-organizationoftheglobalbiogeochemicalZncycle.Stage3(Phanerozoic):isotopicallylightδ66Znsulfvaluesareabsent,andmeanvaluesaredistinctivelymorepositivethanthoseofthecrustalaverage.(c)Frequencydistributionsofbootstrapresampledmeansofsulfide(blue)andorganic(bitumenandkerogen)(red)Znisotopedatapre-andpost-800Ma[Colourfigurecanbeviewedatwileyonlinelibrary.com]

2.0 1.01.5 0.5 03.0 2.5

Age (Gyr Ago)

3.5

0.2

0

0.4

0.6

0.8

1.0

–0.2

Sul

fide δ66

Zn

(‰)

–0.3 –0.2 –0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

0

50

100

150

Post-800 Ma

Pre-800 Ma

(a)

0

50

100

ff

150

(b)

0.8

0.4

0

–0.4

–0.8

Org

anic

δ66Z

n (‰

)

δ66Zn (‰)

(c)

Age (Gyr Ago)

0.5 01.01.5

Stage 1 Stage 2 Stage 3

Page 7: Tracking the rise of eukaryotes to ecological dominance ...myweb.fsu.edu/jdowens/Publications/Isson_2018.pdfISSO ET AL. | 343 In contrast, culture studies of cyanobacteria conducted

     |  347ISSON et al.

duringironsulfideprecipitation(Morse&Luther,1999).Sulfidescanalso capture organic-delivered Zn released during biomass decaywithinsedimentaryporewaters,aprocessthatwoulddrivethesig-nature toward lighter δ66Zn values typical of organicmatter. Zincsulfide formation can also be associated with a negative isotopefractionation (Vance etal., 2016). However, near-quantitative Zndrawdown,duetomuchlowerZnconcentrationrelativetothatofH2S,asistypicalinsulfide-richwatercolumnsandporewaters(e.g.,Tankéréetal.,2001), is likelytomute isotopefractionationtiedtoaqueous Zn speciation or kinetic effects during sulfide precipita-tion(John,Kunzmann,Townsend,&Rosenberg,2017;Vanceetal.,2016).Consistentwithmuted fractionationsduring sulfide forma-tion,wefindthatδ66Znvaluesforauthigenicsulfidefromcore-topsitesacross theCariacoBasin (+0.50±0.07‰;Figure4)are indis-tinguishable from the globally homogenous δ66Zn in the moderndeepocean (+0.50±0.14‰,n = 223).AsAtlanticdeepwatersarethemain source of Zn into theCariacoBasin, these observationssupportthatthereislimitednetisotopicoffsetfromseawaterduringZnsulfideburial.Buildingon theseobservations,wepropose thatsulfideswillnotbeamajor lever indrivingchanges inthe isotopiccompositionofseawater.Insum,sulfidesinblackshalesdepositedinancientanoxicsettingscanprovidearobustrecordofdissolvedδ66Znvaluesforseawaterasithasevolvedovergeologictime.

WithinthisglobalZnisotopemassbalanceframework,theburialofisotopicallylightZntiedtobiologicaluptakeisthecentralprocessthatcandrivetheglobalseawaterδ66Zntovaluesthataremoreposi-tivethantheinputs(Figure3).Thisframeworkbuildsfromthemech-anismscontrollingZnburialandallavailablesedimentaryZnisotopedata(seebelow).Assumingthatthereisnotemporalvariationintheδ66Znof inputs, positive shifts inmean seawaterδ66Znvalues canthusbecausedby(i)anincreaseintheamountofisotopicallylightor-ganicburialand/or(ii)alargernetisotopicfractionationforbiologicalZnuptakedrivenbygreaterZnbioavailability.Wefindthatthefrac-tionationfactorassociatedwithorganicZnburial (Δ66Znorg-diss)canbeestimatedtoruleoutoption(2),makingitpossibletouseZniso-topestoquantitativelytracktheevolutionofeukaryoticorganiccar-bonexportasaresultoftheirsignificantlyelevatedZnrequirements.

4  | ZINC ISOTOPE SYSTEMATIC S THROUGH TIME

WepresentanextensivenewZnisotoperecord(n = 502)fromalargesamplesetoforganic-richblackshalesspanningfromtheArcheantothepresent(Figure5),withtheaimofusingtheδ66Znsulfrecordtotrackseawaterevolutionandorganic-boundZntoestimatetheiso-topicoffsetbetweenorganicmatterandcoevalseawater(Δ66Znorg-

sulf) through time. In a specific manner, these data encompass acomprehensiverecordofleachedsulfidephases(δ66Znsulf)frompre-viously examinedblack shales from65 formations (Figure5a).Wefocusedonsulfidicshales,whichhaveahighpotentialforcapturinggloballyhomogenousdeepseawatervalues(seeabove).Priortothemid-Neoproterozoic(~800Ma),thesulfidefractionintheexamined

blackshalesshowsδ66Znvaluesindistinguishablefromthoseofthepresumed input sources (mean +0.33‰, range +0.17 to +0.58‰;Figures5,S4–S5).Thefirstdatawellaboveassumedinputvaluesarefoundinthe~800MaWynniattFormationoftheShalerSupergroupinArcticCanada(δ66Znsulf>0.9‰)(Thomson,Rainbird,Planavsky,Lyons,&Bekker,2015) (Figure5,S5).Thesepositiveδ66Znsulf val-ues remainprevalent throughout the lateNeoproterozoic and thePhanerozoic.Variabilityinδ66Znsulfvaluesafter~800Macanbetiedtoshiftsineitherglobaldeepwater,localseawater,orvaryingpore-watersignalsthatoverprinttheglobalsignal.Nonetheless,theonsetofpositiveδ66ZnsulfvaluesrecordsafundamentalshiftintheglobalZncycle.Weproposethatthisshift inglobalZnisotopecyclingat~800Mamarksanincreaseintheburialoforganic-derivedZn,prin-cipally as eukaryoticbiomass, rather than changes in global redoxconditionsorZnbioavailability(seeSupplementaryInformationandbelowfordiscussion).

OxygenationthroughtheNeoproterozoicwas likelyprogressive(e.g.,PoggevonStrandmannetal.,2015),andthisoxygenationwouldhavereshapedtheZncycle.Specifically,theburialofZnassociatedwith oxides is an important component of themodern Zn isotopebudget,andthisfluxwouldhaveincreasedwithoceanoxygenation.OxideboundZnburialwaslikelyreducedinlargelyanoxicoceans.AsoxideburialisassociatedwithapositiveZnisotopeeffect,Zn-metaloxideburialoughttodecreaseratherthanincreasedissolvedseawa-terδ66Znvaluesandthereforecannotexplaintheobservedshiftat~800Ma.Incontrast,moreoxicconditionswouldhaveledtoacor-respondingdecreaseinsulfideburialoncesulfateburialinanincreas-inglywell-oxygenatedoceanbecameprevalent.Further,althoughtheratioofwatercolumntoporewatersulfideburialmayhavedecreasedwithoceanoxygenation,Zncapturewithinbothporewatersandeu-xinicwatercolumnsislikelytobenearquantitativeandthusanypos-sible(intrinsic)Znisotopefractionationduringsulfideformation(e.g.,Vanceetal.,2016)isunlikelytobeexpressed.

VariationsinaqueousZnspeciationmayalsobeexpectedwithashift inoceanredoxchemistry.Foremost,marinesulfate levelshaveincreaseddramaticallythroughoutEarth’shistorytrackingincreasingoxygenationandoughttohaveincreasedatleasttransientlyataround800Ma (Turner&Bekker,2016).However, a rise in sulfate levels isunlikelytoexplaintheobservedisotopictrendsgiventhatZn-sulfatecomplexes are weak andmake-up a negligible component (<6%) ofmarineZnspeciestoday(Black,Kavner,&Schauble,2011;Fujiietal.,2014),despitemarinesulfatelevelsthatarecurrentlyattheirhighestpointinEarth’shistory(Canfield&Farquhar,2009).Inadditionevenifpresent,ab initiocalculationspredict limited isotopicfractionationassociatedwiththeformationofZn-sulfatecomplexes(Fujii,Moynier,Pons,&Albarède,2011).Thus,oceanoxygenationislikelytohavehadasignificanteffectontheglobalZncycle,butthisprocessisunlikelytohavedirectlydriventheobservedshifttomorepositiveδ66ZnsulfvaluesintheNeoproterozoicthroughoxide-orsulfideburial-relatedcontrols.

ThebioavailabilityofZn inseawaterhasthepotential to influ-encetheZnisotopefractionationassociatedwithbiologicaluptake.LowlevelsofZnbioavailabilityinProterozoicoceanswerepreviouslyproposedbasedonthermodynamicconsiderations(Saito,Sigman,&

Page 8: Tracking the rise of eukaryotes to ecological dominance ...myweb.fsu.edu/jdowens/Publications/Isson_2018.pdfISSO ET AL. | 343 In contrast, culture studies of cyanobacteria conducted

348  |     ISSON et al.

Morel,2003),andlowZnbioavailabilitycouldinprinciplehavere-sultedinmutedΔ66Znorg-swvaluespriorto~800Ma.However,thismodelhasrecentlybeenchallengedbasedonrecordsofapprecia-blesedimentaryZnenrichmentduringthisinterval(FigureS3)andthus ample supplies in seawater (Robbins etal., 2013; Scott etal.,2012).OurZnisotopedatasetsupportsthelatterview.Specifically,weobservenearconstantΔ66Znorg-sulfvaluesofabout−0.36‰priorto~800Ma(Figure5), indicatingthatburialofisotopicallylightZnwithorganicmatteroccurredpriortothemid-Neoproterozoicrisein δ66Znsulfvalues.Therefore, the lightZn isotopevaluesrecordedintheorganicfractionofshalesindicatethattheobservedshiftinδ66Znsulf(i.e.,ourproxyforcoevalbottomwaters)isalsounlikelytobelinkedtoashift inZnisotopefractionationduringorganicmat-ter uptake and burial. We observe a subtle shift toward smallermean Δ66Znorg-sulfvaluesafter~800Mafrom−0.36‰to−0.26‰(Figure5c),whichwould,ifanything,mutetheobservedincreaseinδ66Znsulf.

TheobservedtrendinorganicZndataisunlikelytoreflectapat-ternofalteration,becauseonlystrataoflowthermalmaturitywithnodiscerniblecontaminationwereselectedforδ66Znorganalysis(oilwindowmaturity or lower based on Rock-Eval pyrolysis and lipidbiomarkerdata;seeSupplementaryInformation).Thereforewecon-cludethatlightorganicZnwasbeingdeliveredtothesedimentpilethroughtheProterozoic,buttheextentoforganic-derivedZnburialwaslikelytoolowtodriveseawatertosignificantlyheavyδ66Znval-uespriorto800Ma.ThismodelisconsistentwithanobservedjumpinorganicZnconcentrationsinthemid-Neoproterozoic(byoveranorderofmagnitude in termsofbootstrap resampledmeanvalues;Figure6).

Wefindthatthemostparsimoniousexplanationfortheobservedmid-Neoproterozoic-Phanerozoicriseinmarineδ66Znisanincreaseinorganic-derivedZnburial,givenevidenceforthenearlyconstantΔ66Znorg-sulfvalues,anexpecteddecreaseindeepoceanδ

66Znwithocean oxygenation via removal of 66Zn onto metal oxides, and asmallersulfidesinkforZn.WeproposethatthistransitionwasmostlikelycausedbybothahigherZndemandfollowingtheriseofeu-karyotestoecologicaldominanceinphasewithanoverallincreaseintotalglobalproductivity.WefindinourZnisotopemassbalancethatanincreaseinorganiccarbonburialaloneisinsufficienttoaccountfor

thepositiveZn isotopevaluesobserved inpost-800MasedimentsifburiedwiththeZn/Cratioweobserveforpre-800Masedimen-taryorganicmatter(Figure7).Rather,wefindthatincreasesinma-rineorganicZn/Careessentialtodrivetheobservedriseinseawater

F IGURE  6 Frequencydistributionsofbootstrapresampledmeansoforganic(bitumenandkerogen)Znabundancedata,aspresentedinFigure5,pre-(black)andpost(gray)-800Ma[Colourfigurecanbeviewedatwileyonlinelibrary.com]

0 100 200 300 400 500 600 700 800 900 1,0000

200

400

600

800

1,000

1,200

1,400

Post-800 Ma

Pre-800 Ma

Organic [Zn] (ppm)

F IGURE  7 GlobalZnisotopemassbalanceforapre-andpost-800Maocean,illustratingdeviationsintheZnisotopiccompositionofseawaterawayfrommeansourceinputvalues(verticalaxis),withgivenchangesin(1)organiccarbonburial(horizontalaxis)and(2)theZn/Cratiooforganicbiomassbeingexported(dashedandsolidlines).Blacklinesrepresentmodernoxicremovalflux(1.7×108 mol yr−1),andredrepresentscalculationsforapervasivelyreducingoceaninwhichthereisnegligibleoxicburial.Weadoptabiologicalisotopefractionationfromseawater(Δ66Znorg-sw)of−0.5‰,andariverineinputfluxof13×10

8molesyr−1.OurmodelingsuggeststhatthattheZnisotopecompositionofseawaterislargelyinsensitivetoasystemlargelycharacterizedbyprokaryoticcells(Zn/Cratioof~10).ThismodelsuggeststhatmuchlargerZn/Cratiosof~100,typicalofeukaryoticphytoplankton,arerequiredforanyoceansystemtoachieveδ66Znvaluesthatare0.5–0.7‰greaterthanthesourcemean,afeatureofpost-800Maseawater.Anincreaseinorganic-derivedZnburialacrossthemid-Neoproterozoicsuggestsafundamentalrestructuringofglobalmarineecosystemstructures,towardamoreeukaryote-richsysteminwhichthereismoreextensivebiologicalZnutilization(FigureS2)[Colourfigurecanbeviewedatwileyonlinelibrary.com]

0 2 4 6 8 10 12–0.2

–0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Global organic carbon burial (Tmol yr–1)

∆66

(‰

)sw

-inp

ut

Biomass Zn:C1005010

Increasing Zn:C

Stage 1(Pre-800 Ma)

Stage 3(Phanerozoic)

Page 9: Tracking the rise of eukaryotes to ecological dominance ...myweb.fsu.edu/jdowens/Publications/Isson_2018.pdfISSO ET AL. | 343 In contrast, culture studies of cyanobacteria conducted

     |  349ISSON et al.

δ66Zn(Figure7).ThisframeworkisconsistentwiththeobservedlateNeoproterozoic to Phanerozoic increase in organic Zn concentra-tions (Figure6).Wepropose that theobserved rise in sedimentaryorganicZn/Cislikelylinkedtoalargereukaryoticcontribution(withanelevatedZn/Cratio)toexportedmarinebiomass.Moreover,ourfirstmarkedlypositiveZnisotopevaluesappeararound800Ma,butadditionalworkintheNeoproterozoicandPhanerozoicisneededtodetermineiftheNeoproterozoicZncycleoscillatedbetweentypicalmid-ProterozoicandlateNeoproterozoic/Phanerozoicstatesasop-posedtoasinglestatechange.

5  | CONCLUSION

Given fossil evidence for eukaryote emergence at > ~1700Ma(Butterfield,2015;Knoll,2014;Parfrey,Lahr,Knoll,&Katz,2011),ourZnrecordsprovidesupportforalong(billon-year)lagbeforetheirrisetoecological prominence at~800Ma,which is consistentwith theearliestrobustfindingofdetectablesteranecompoundsinthermallywell-preservedsedimentaryrocks(Brocksetal.,2017).Thissteranebiomarker signalwas attributed tomainly unicellular heterotrophicprotists,asgaugedfromtheunusualC27steranecarbonnumberdom-inance(Brocksetal.,2017),butsubstantialcontributionsfromeukar-yoticphytoplankton(inparticularfromredalgalclades)couldproducesimilarsteranepatterns(Kodner,Pearson,Summons,&Knoll,2008)andaccountforsomeappreciablesterane/hopaneratios(0.003–0.42reportedforasmall720–820Masampleset)(Brocksetal.,2017).Inaddition,theZnrecordprovidesanopportunitytoevaluatetheimpactthatthefirstabundanteukaryoticexportproductivitymayhavehadonNeoproterozoic climatic and carbon cycleperturbations. For in-stance,theshiftinecosystemstructurerecordedinourisotopicdataoccurredalmost80millionyearsbeforetheonsetofthe“SnowballEarth”eventschallengesprevioussuggestionsthatalgalproliferationwasintimatelyanddirectlylinkedwiththeonsetofglaciation(Feulneretal.,2015;Tzipermanetal.,2011).Atthesametime,theincreaseineukaryotecontributiontoprimaryproductivitycoincidedwithadra-maticshifttowardmoredynamiccarbonisotopevaluesinmarinecar-bonatesfollowingmorethanabillionyearsofrelativeδ13Cstability,andjustpriortothefirstappearanceofmicrofossilsfortestateamoe-bae(eukaryoticheterotrophs)(Porter&Knoll,2000),markingtheendofanextendedbiogeochemicalstasisthatprevailedinthepreceding“boringbillion”.WhileestablishingthecauseandeffectrelationshipsbehindtheseobservationsviamoredetailedNeoproterozoicrecordsremainsimportantforfutureresearch,theZnisotoperecordnever-theless suggests that the proliferation of eukaryotes in the oceanswas closely coupledwith the onset of dynamic environmental andbiogeochemicalevolutionduringthemid-Neoproterozoic.

ACKNOWLEDG MENTS

The authors acknowledge funding from the NSF FESD Program(TL, GL) and the NASA Astrobiology Institute under CooperativeAgreementNo.NNA15BB03AissuedthroughtheScienceMission

Directorate (TL, CD,CR,GL,NP, etc.).We are extremely gratefultoAndyKnoll,LarryPetersonandChristopherJuniumforprovidingsamplesforthisstudy.

ORCID

Terry T. Isson http://orcid.org/0000-0002-1040-0230

Alan D. Rooney http://orcid.org/0000-0002-5023-2606 Eva E. Stueeken http://orcid.org/0000-0001-6861-2490

R E FE R E N C E S

Anderson,M.,Morel, F., & Guillard, R. (1978). Growth limitation of acoastaldiatombylowzincionactivity.Nature,276,70–71.https://doi.org/10.1038/276070a0

Bar-Yosef, Y., Sukenik,A.,Hadas,O.,Viner-Mozzini, Y.,&Kaplan,A.(2010). Enslavement in thewater body by toxic Aphanizomenonovalisporum, inducing alkaline phosphatase in phytoplank-tons. Current Biology, 20, 1557–1561. https://doi.org/10.1016/j.cub.2010.07.032

Berg,J.M.,&Shi,Y.(1996).Thegalvanizationofbiology:Agrowingap-preciationfortherolesofzinc.Science,271,1081–1085.https://doi.org/10.1126/science.271.5252.1081

Bhattacharya,S.,Dutta,S.,&Summons,R.E.(2017).Adistinctivebio-marker assemblage in an Infracambrian oil and source rock fromwestern India:Molecular signaturesof eukaryotic sterols andpro-karyotic carotenoids.Precambrian Research,290, 101–112. https://doi.org/10.1016/j.precamres.2016.12.013

Black,J.R.,Kavner,A.,&Schauble,E.A.(2011).Calculationofequilib-riumstable isotopepartitionfunctionratiosforaqueouszinccom-plexesandmetalliczinc.Geochimica et Cosmochimica Acta,75,769–783.https://doi.org/10.1016/j.gca.2010.11.019

Blindauer, C. A. (2008). Zinc-handling in cyanobacteria: An update.Chemistry and Biodiversity,5, 1990–2013. https://doi.org/10.1002/cbdv.200890183

Blumenberg, M., Thiel, V., Riegel, W., Kah, L. C., & Reitner, J.(2012). Biomarkers of black shales formed by microbial mats,Late Mesoproterozoic (1.1 Ga) Taoudeni Basin, Mauritania.Precambrian Research, 196, 113–127. https://doi.org/10.1016/j.precamres.2011.11.010

Brand, L. E., Sunda,W. G., &Guillard, R. R. (1983). Limitation ofma-rine phytoplankton reproductive rates by zinc, manganese, andiron. Limnology and Oceanography, 28, 1182–1198. https://doi.org/10.4319/lo.1983.28.6.1182

Brocks, J. J., Jarrett, A. J., Sirantoine, E.,Hallmann, C.,Hoshino, Y., &Liyanage,T.(2017).TheriseofalgaeinCryogenianoceansandtheemergence of animals.Nature, 548, 578. https://doi.org/10.1038/nature23457

Brocks, J. J., Jarrett, A. J., Sirantoine, E., Kenig, F., Moczydlowska,M., Porter, S.,&Hope, J. (2015). Early sponges and toxic protists:Possiblesourcesofcryostane,anagediagnosticbiomarkerantedat-ingSturtianSnowballEarth.Geobiology,14,129–149.

Brocks, J. J.,Love,G.D.,Summons,R.E.,Knoll,A.H.,Logan,G.A.,&Bowden, S. A. (2005). Biomarker evidence for green and purplesulphur bacteria in a stratified Palaeoproterozoic sea.Nature,437,866–870.https://doi.org/10.1038/nature04068

Bruland,K.W.(1980).Oceanographicdistributionsofcadmium,zinc,nickel,andcopperintheNorthPacific.Earth and Planetary Science Letters,47,176–198.https://doi.org/10.1016/0012-821X(80)90035-7

Bruland,K.W.(1989).ComplexationofzincbynaturalorganicligandsinthecentralNorthPacific.Limnology and Oceanography,34,269–285.https://doi.org/10.4319/lo.1989.34.2.0269

Page 10: Tracking the rise of eukaryotes to ecological dominance ...myweb.fsu.edu/jdowens/Publications/Isson_2018.pdfISSO ET AL. | 343 In contrast, culture studies of cyanobacteria conducted

350  |     ISSON et al.

Bryan,A.L.,Dong,S.,Wilkes,E.B.,&Wasylenki,L.E.(2015).Zinciso-topefractionationduringadsorptionontoMnoxyhydroxideat lowandhighionicstrength.Geochimica et Cosmochimica Acta,157,182–197.https://doi.org/10.1016/j.gca.2015.01.026

Butterfield,N.J.(2015).EarlyevolutionoftheEukaryota.Palaeontology,58,5–17.https://doi.org/10.1111/pala.12139

Canfield,D.E.,&Farquhar,J.(2009).Animalevolution,bioturbation,andthesulfateconcentrationoftheoceans.Proceedings of the National Academy of Sciences of the United States of America,106,8123–8127.https://doi.org/10.1073/pnas.0902037106

Chappell,P.D.,Vedmati,J.,Selph,K.E.,Cyr,H.A.,Jenkins,B.D.,Landry,M.R.,&Moffett,J.W.(2016).PreferentialdepletionofzincwithinCostaRicaUpwellingDomecreatesconditionsforzincco-limitationof primary production. Journal of Plankton Research, 38, 244–255.https://doi.org/10.1093/plankt/fbw018

Coale,K.H. (1991).Effectsof iron,manganese, copper, and zincenrich-mentsonproductivityandbiomassinthesubarcticPacific.Limnology and Oceanography,36,1851–1864.https://doi.org/10.4319/lo.1991.36. 8.1851

Conway,T.M.,&John,S.G.(2014).ThebiogeochemicalcyclingofzincandzincisotopesintheNorthAtlanticOcean.Global Biogeochemical Cycles,28,1111–1128.https://doi.org/10.1002/2014GB004862

Conway,T.M.,&John,S.G. (2015).Thecyclingof iron,zincandcad-mium in the North East Pacific Ocean – Insights from stable iso-topes.Geochimica et Cosmochimica Acta,164,262–283.https://doi.org/10.1016/j.gca.2015.05.023

Cox, A. D., & Saito, M. A. (2013). Proteomic responses of oceanicSynechococcusWH8102 to phosphate and zinc scarcity and cad-miumadditions.Frontiers in Microbiology,4,387.

Crawford,D.,Lipsen,M.,Purdie,D.,Lohan,M.,Statham,P.,Whitney,F.,…Peterson,T.(2003).Influenceofzincandironenrichmentsonphy-toplanktongrowth inthenortheasternsubarcticPacific.Limnology and Oceanography, 48, 1583–1600. https://doi.org/10.4319/lo.2003.48.4.1583

Dupont,C.L.,Butcher,A.,Valas,R.E.,Bourne,P.E.,&Caetano-Anollés,G. (2010). History of biological metal utilization inferred throughphylogenomic analysis of protein structures. Proceedings of the National Academy of Sciences of the United States of America, 107,10567–10572.https://doi.org/10.1073/pnas.0912491107

Dupont,C.L.,Yang,S.,Palenik,B.,&Bourne,P.E.(2006).Modernpro-teomes contain putative imprints of ancient shifts in trace metalgeochemistry.Proceedings of the National Academy of Sciences of the United States of America,103,17822–17827.https://doi.org/10.1073/pnas.0605798103

Dutkiewicz, A., Volk, H., Ridley, J., & George, S. (2003). Biomarkers,brines,andoilintheMesoproterozoic,RoperSuperbasin,Australia.Geology,31,981–984.https://doi.org/10.1130/G19754.1

Ellwood,M. J., &Hunter, K. A. (2000). The incorporation of zinc andiron into the frustule of the marine diatom Thalassiosira pseud-onana. Limnology and Oceanography, 45, 1517–1524. https://doi.org/10.4319/lo.2000.45.7.1517

Falkowski, P. G., Katz, M. E., Knoll, A. H., Quigg, A., Raven, J. A.,Schofield,O.,&Taylor,F.J.(2004).Theevolutionofmoderneukary-oticphytoplankton.Science,305,354–360.https://doi.org/10.1126/science.1095964

Feulner,G.,Hallmann,C.,&Kienert,H. (2015).Snowball coolingafteralgal rise.Nature Geoscience,8, 659–662. https://doi.org/10.1038/ngeo2523

Flannery,E.N.,&George,S.C.(2014).Assessingthesyngeneityandindi-geneityofhydrocarbonsinthe-1.4GaVelkerriFormation,McArthurBasin, using slice experiments.Organic Geochemistry,77, 115–125.https://doi.org/10.1016/j.orggeochem.2014.10.008

Franck,V.M.,Bruland,K.W.,Hutchins,D.A.,&Brzezinski,M.A.(2003).Iron and zinc effects on silicic acid and nitrate uptake kinetics

in three high-nutrient, low-chlorophyll (HNLC) regions. Marine Ecology Progress Series, 252, 15–33. https://doi.org/10.3354/meps252015

French,K.L.,Hallmann,C.,Hope,J.M.,Schoon,P.L.,Zumberge,J.A.,Hoshino,Y.,…Summons,R.E. (2015).ReappraisalofhydrocarbonbiomarkersinArcheanrocks.Proceedings of the National Academy of Sciences of the United States of America,112,5915–5920.https://doi.org/10.1073/pnas.1419563112

Fujii,T.,Moynier,F.,Blichert-Toft,J.,&Albarède,F.(2014).Densityfunc-tionaltheoryestimationof isotopefractionationofFe,Ni,Cu,andZn among species relevant to geochemical andbiological environ-ments.Geochimica et Cosmochimica Acta,140,553–576.https://doi.org/10.1016/j.gca.2014.05.051

Fujii,T.,Moynier,F.,Pons,M.-L.,&Albarède,F.(2011).TheoriginofZnisotope fractionation in sulfides.Geochimica et Cosmochimica Acta,75,7632–7643.https://doi.org/10.1016/j.gca.2011.09.036

Grantham,P.(1986).TheoccurenceofunusualC27andC29steranepre-dominancesintwotypesofOmancrudeoil.Organic Geochemistry,9,1–10.https://doi.org/10.1016/0146-6380(86)90077-X

Grosjean,E.,Love,G.,Stalvies,C.,Fike,D.,&Summons,R.(2009).Originof petroleum in the Neoproterozoic–Cambrian South Oman saltbasin.Organic Geochemistry,40, 87–110. https://doi.org/10.1016/j.orggeochem.2008.09.011

Gueneli, N., Brocks, J., & Legendre, E. (2012).1.1 Billion-years-old bio-markers from a microbial mat.MineralogicalMagazineA,1565.

Hoshino, Y., Poshibaeva, A., Meredith, W., Snape, C., Poshibaev, V.,Versteegh, G. J., … Neumann,M. (2017). Cryogenian evolution ofstigmasteroidbiosynthesis.Science Advances,3,e1700887.https://doi.org/10.1126/sciadv.1700887

Jakuba,R.W.,Saito,M.A.,Moffett,J.W.,&Xu,Y.(2012).DissolvedzincinthesubarcticNorthPacificandBeringSea: Itsdistribution,spe-ciation,andimportancetoprimaryproducers.Global Biogeochemical Cycles,26,1–15.

John, S.G.,&Conway, T.M. (2014).A role for scavenging in thema-rine biogeochemical cycling of zinc and zinc isotopes. Earth and Planetary Science Letters, 394, 159–167. https://doi.org/10.1016/j.epsl.2014.02.053

John,S.G.,Geis,R.W.,Saito,M.A.,&Boyle,E.A. (2007).Zinc isotopefractionationduringhigh-affinityandlow-affinityzinctransportbythemarinediatomThalassiosira oceanica. Limnology and Oceanography,52,2710–2714.https://doi.org/10.4319/lo.2007.52.6.2710

John,S.G.,Helgoe, J.,&Townsend,E. (2017).Biogeochemical cyclingofZnandCdandtheirstableisotopesintheEasternTropicalSouthPacific.Marine Chemistry,201,256–262.

John,S.G.,Kunzmann,M.,Townsend,E.J.,&Rosenberg,A.D.(2017).Zincandcadmiumstable isotopes in thegeological record:Acasestudy from the post-snowball Earth Nuccaleena cap dolostone.Palaeogeography, Palaeoclimatology, Palaeoecology, 466, 202–208.https://doi.org/10.1016/j.palaeo.2016.11.003

Jouvin,D.,Louvat,P.,Juillot,F.,Maréchal,C.N.,&Benedetti,M.F.(2009).Zinc isotopic fractionation: Why organic matters. Environmental Science and Technology, 43, 5747–5754. https://doi.org/10.1021/es803012e

Kelly, A. E., Love, G. D., Zumberge, J. E., & Summons, R. E. (2011).HydrocarbonbiomarkersofNeoproterozoictoLowerCambrianoilsfromeasternSiberia.Organic Geochemistry,42,640–654.https://doi.org/10.1016/j.orggeochem.2011.03.028

Knoll,A.H.(2014).Paleobiologicalperspectivesonearlyeukaryoticevo-lution.Cold Spring Harbor Perspectives in Biology,6,a016121.https://doi.org/10.1101/cshperspect.a016121

Knoll, A. H., Javaux, E. J., Hewitt, D., & Cohen, P. (2006). Eukaryoticorganisms in Proterozoic oceans. Philosophical Transactions of the Royal Society B: Biological Sciences, 361, 1023–1038. https://doi.org/10.1098/rstb.2006.1843

Page 11: Tracking the rise of eukaryotes to ecological dominance ...myweb.fsu.edu/jdowens/Publications/Isson_2018.pdfISSO ET AL. | 343 In contrast, culture studies of cyanobacteria conducted

     |  351ISSON et al.

Köbberich,M.,&Vance,D.(2017).KineticcontrolonZnisotopesigna-turesrecordedinmarinediatoms.Geochimica et Cosmochimica Acta,210,97–113.https://doi.org/10.1016/j.gca.2017.04.014

Kodner,R.B.,Pearson,A.,Summons,R.E.,&Knoll,A.H.(2008).Sterolsin red and green algae: Quantification, phylogeny, and relevanceforthe interpretationofgeologicsteranes.Geobiology,6,411–420.https://doi.org/10.1111/j.1472-4669.2008.00167.x

Kozelka,P.B.,&Bruland,K.W.(1998).ChemicalspeciationofdissolvedCu,Zn,Cd,PbinNarragansettBay,RhodeIsland.Marine Chemistry,60,267–282.https://doi.org/10.1016/S0304-4203(97)00107-2

Leblanc, K., Hare, C., Boyd, P., Bruland, K., Sohst, B., Pickmere, S., …Hutchins,D. (2005).FeandZneffectson theSi cycle anddiatomcommunitystructureintwocontrastinghighandlow-silicateHNLCareas.Deep Sea Research Part I: Oceanographic Research Papers,52,1842–1864.https://doi.org/10.1016/j.dsr.2005.06.005

Little,S.H.,Sherman,D.M.,Vance,D.,&Hein,J.R.(2014).Molecularcon-trolsonCuandZnisotopicfractionationinFe–Mncrusts.Earth and Planetary Science Letters, 396, 213–222. https://doi.org/10.1016/j.epsl.2014.04.021

Little,S.H.,Vance,D.,Mcmanus,J.,&Severmann,S.(2016).KeyroleofcontinentalmarginsedimentsintheoceanicmassbalanceofZnandZnisotopes.Geology,G37493,37491.

Little,S.H.,Vance,D.,Walker-Brown,C.,&Landing,W.M.(2014).Theoceanicmassbalanceof copper and zinc isotopes, investigatedbyanalysisoftheirinputs,andoutputstoferromanganeseoxidesedi-ments.Geochimica et Cosmochimica Acta,125,673–693.https://doi.org/10.1016/j.gca.2013.07.046

Lohan,M. C., Crawford,D.W., Purdie,D. A., & Statham, P. J. (2005).Iron and zinc enrichments in the northeastern subarctic Pacific:Ligand production and zinc availability in response to phytoplank-ton growth. Limnology and Oceanography, 50, 1427. https://doi.org/10.4319/lo.2005.50.5.1427

Lohan,M.C.,Statham,P.J.,&Crawford,D.W. (2002).TotaldissolvedzincintheupperwatercolumnofthesubarcticNorthEastPacific.Deep Sea Research Part II: Topical Studies in Oceanography,49,5793–5808.https://doi.org/10.1016/S0967-0645(02)00215-1

Love,G.D.,Grosjean,E.,Stalvies,C.,Fike,D.A.,Grotzinger,J.P.,Bradley,A. S.,… Summons,R. E. (2009). Fossil steroids record the appear-anceofDemospongiaeduring theCryogenianperiod.Nature,457,718–721.https://doi.org/10.1038/nature07673

Luo, G., Hallmann, C., Xie, S., Ruan, X., & Summons, R. E. (2015).Comparative microbial diversity and redox environments of blackshale and stromatolite facies in the Mesoproterozoic XiamalingFormation.Geochimica et Cosmochimica Acta,151,150–167.https://doi.org/10.1016/j.gca.2014.12.022

Luo,G.,Ono,S.,Beukes,N. J.,Wang,D.T.,Xie, S.,&Summons,R.E.(2016).RapidoxygenationofEarth’satmosphere2.33billionyearsago. Science Advances, 2, e1600134. https://doi.org/10.1126/sciadv.1600134

Maréchal, C. N., Nicolas, E., Douchet, C., & Albarède, F. (2000).Abundance of zinc isotopes as a marine biogeochemical tracer.Geochemistry, Geophysics, Geosystems,1,5.

Marković,T.,Manzoor,S.,Humphreys-Williams,E.,Kirk,G.J.,Vilar,R.,&Weiss,D.J.(2016).Experimentaldeterminationofzincisotopefrac-tionationincomplexeswiththephytosiderophore2′-deoxymugeneicacid(DMA)anditsstructuralanalogues,andimplicationsforplantup-takemechanisms.Environmental Science and Technology,51,98–107.

Mccaffrey,M.A.,Moldowan,J.M.,Lipton,P.A.,Summons,R.E.,Peters,K.E.,Jeganathan,A.,&Watt,D.S.(1994).Paleoenvironmentalimpli-cationsofnovelC30steranesinPrecambriantoCenozoicagepetro-leumandbitumen.Geochimica et Cosmochimica Acta,58,529–532.https://doi.org/10.1016/0016-7037(94)90481-2

Mckirdy,D.M.,Webster, L. J., Arouri, K. R., Grey, K., &Gostin, V. A.(2006). Contrasting sterane signatures in Neoproterozoic marine

rocks of Australia before and after the Acraman asteroid impact.Organic Geochemistry, 37, 189–207. https://doi.org/10.1016/j.orggeochem.2005.09.005

Morel,F.M.M.,Reinfelder,J.R.,Roberts,S.B.,Chamberlain,C.P.,Lee,J.G.,&Yee,D.(1994).Zincandcarbonco-limitationofmarinephyto-plankton.Nature,369,740–742.https://doi.org/10.1038/369740a0

Morse,J.,&Luther,G.(1999).Chemicalinfluencesontracemetal-sulfideinteractions inanoxicsediments.Geochimica et Cosmochimica Acta,63,3373–3378.https://doi.org/10.1016/S0016-7037(99)00258-6

Nuester,J.,Vogt,S.,Newville,M.,Kustka,A.B.,&Twining,B.S.(2012).The unique biogeochemical signature of the marine diazotrophTrichodesmium. Environmental Bioinorganic Chemistry of Aquatic Microbial Organisms,164,1–15.

Ohnemus, D. C., Rauschenberg, S., Cutter, G. A., Fitzsimmons, J. N.,Sherrell, R.M., & Twining, B. S. (2017). Elevated tracemetal con-tent of prokaryotic communities associated with marine oxygendeficientzones.Limnology and Oceanography,62,3–25.https://doi.org/10.1002/lno.10363

Parfrey,L.W.,Lahr,D.J.,Knoll,A.H.,&Katz,L.A.(2011).Estimatingthetim-ingofearlyeukaryoticdiversificationwithmultigenemolecularclocks.Proceedings of the National Academy of Sciences of the United States of America,108,13624–13629.https://doi.org/10.1073/pnas.1110633108

Pichat,S.,Douchet,C.,&Albarède,F.(2003).Zincisotopevariationsindeep-seacarbonatesfromtheeasternequatorialPacificoverthelast175ka.Earth and Planetary Science Letters,210,167–178.https://doi.org/10.1016/S0012-821X(03)00106-7

PoggevonStrandmann,P.A.,Stüeken,E.E.,Elliott,T.,Poulton,S.W.,Dehler,C.M.,Canfield,D.E.,&Catling,D.C.(2015).Seleniumiso-topeevidenceforprogressiveoxidationoftheNeoproterozoicbio-sphere.Nature Communications,6,10157.

Pokrovsky,O.S.,Viers,J.,&Freydier,R.(2005).Zincstableisotopefrac-tionationduringitsadsorptiononoxidesandhydroxides.Journal of Colloid and Interface Science,291,192–200.https://doi.org/10.1016/j.jcis.2005.04.079

Porter,S.M.,&Knoll,A.H.(2000).TestateamoebaeintheNeoproterozoicEra: Evidence from vase-shaped microfossils in the Chuar Group,GrandCanyon.Paleobiology,26,360–385.https://doi.org/10.1666/0094-8373(2000)026&lt;0360:TAITNE&gt;2.0.CO;2

Quigg,A.,Irwin,A.J.,&Finkel,Z.V.(2011).Evolutionaryinheritanceofelemental stoichiometry inphytoplankton.Proceedings of the Royal Society of London B: Biological Sciences, 278, 526–534. https://doi.org/10.1098/rspb.2010.1356

Rhodes,D.,&Klug,A.(1993).Zincfingers.Scientific American,268,56–65.https://doi.org/10.1038/scientificamerican0293-56

Robbins,L.J.,Lalonde,S.V.,Saito,M.A.,Planavsky,N.J.,Mloszewska,A.M.,Pecoits,E.,…Konhauser,K.O.(2013).Authigenicironoxideproxiesformarinezincovergeologicaltimeandimplicationsforeu-karyoticmetallomeevolution.Geobiology,11,295–306.https://doi.org/10.1111/gbi.12036

Saito,M.A.,Moffett,J.W.,Chisholm,S.W.,&Waterbury,J.B.(2002).CobaltlimitationanduptakeinProchlorococcus.Limnology and Oceanography,47,1629–1636.https://doi.org/10.4319/lo.2002.47.6.1629

Saito,M.A.,Sigman,D.M.,&Morel,F.M.(2003).Thebioinorganicchem-istryoftheancientocean:Theco-evolutionofcyanobacterialmetalrequirementsandbiogeochemicalcyclesattheArchean–Proterozoicboundary? Inorganica Chimica Acta, 356, 308–318. https://doi.org/10.1016/S0020-1693(03)00442-0

Schulz,K.G.,Zondervan,I.,Gerringa,L.,Timmermans,K.,Veldhuis,M.,&Riebesell,U.(2004).Effectoftracemetalavailabilityoncoccolitho-phoridcalcification.Nature,430,673–676.https://doi.org/10.1038/nature02631

Scott,C.,Planavsky,N.J.,Dupont,C.L.,Kendall,B.,Gill,B.C.,Robbins,L.J.,…Lyons,T.W.(2012).Bioavailabilityofzincinmarinesystemsthroughtime.Nature Geoscience,6,125–128.

Page 12: Tracking the rise of eukaryotes to ecological dominance ...myweb.fsu.edu/jdowens/Publications/Isson_2018.pdfISSO ET AL. | 343 In contrast, culture studies of cyanobacteria conducted

352  |     ISSON et al.

Shaked, Y., Xu, Y., Leblanc, K., &Morel, F.M. (2006). Zinc availabilityand alkaline phosphatase activity in Emiliania huxleyi: ImplicationsforZn-Pco-limitationintheocean.Limnology and Oceanography,51,299–309.https://doi.org/10.4319/lo.2006.51.1.0299

So, A. K.-C., Espie, G. S., Williams, E. B., Shively, J. M., Heinhorst,S., & Cannon, G. C. (2004). A novel evolutionary lineage of car-bonicanhydrase(εclass) isacomponentofthecarboxysomeshell.Journal of Bacteriology, 186, 623–630. https://doi.org/10.1128/JB.186.3.623-630.2004

Summons, R. E., Brassell, S. C., Eglinton, G., Evans, E., Horodyski, R.J., Robinson, N., & Ward, D. M. (1988). Distinctive hydrocarbonbiomarkers from fossiliferous sediment of the Late ProterozoicWalcott Member, Chuar Group, Grand Canyon, Arizona.Geochimica et Cosmochimica Acta, 52, 2625–2637. https://doi.org/10.1016/0016-7037(88)90031-2

Sunda,W.G.,&Huntsman,S.A.(1992).Feedbackinteractionsbetweenzincandphytoplanktoninseawater.Limnology and Oceanography,37,25–40.https://doi.org/10.4319/lo.1992.37.1.0025

Sunda,W.G.,&Huntsman,S.A. (1995).Cobalt and zinc interreplace-ment in marine phytoplankton: Biological and geochemical impli-cations. Limnology and Oceanography, 40, 1404–1417. https://doi.org/10.4319/lo.1995.40.8.1404

Sunda, W. G., & Huntsman, S. A. (1998). Processes regulating cellu-lar metal accumulation and physiological effects: Phytoplanktonas model systems. Science of the Total Environment, 219, 165–181.https://doi.org/10.1016/S0048-9697(98)00226-5

Sunda,W.G.,&Huntsman,S.A.(2005).EffectofCO2supplyanddemandonzincuptakeandgrowthlimitationinacoastaldiatom.Limnology and Oceanography, 50, 1181–1192. https://doi.org/10.4319/lo.2005.50.4.1181

Suslova,E.,Parfenova,T.,Saraev,S.,&Nagovitsyn,K. (2017).Organicgeochemistry of rocks of the Mesoproterozoic Malgin Formationand their depositional environments (southeastern SiberianPlatform).Russian Geology and Geophysics,58,516–528.https://doi.org/10.1016/j.rgg.2016.09.027

Tankéré,S.,Muller,F.,Burton,J.,Statham,P.,Guieu,C.,&Martin,J.-M.(2001).Tracemetaldistributions in shelfwatersof thenorthwest-ernBlackSea.Continental Shelf Research,21,1501–1532.https://doi.org/10.1016/S0278-4343(01)00013-9

Thomson,D.,Rainbird,R.H.,Planavsky,N.,Lyons,T.W.,&Bekker,A.(2015).ChemostratigraphyoftheShalerSupergroup,VictoriaIsland,NWCanada:ArecordofoceancompositionpriortotheCryogenianglaciations. Precambrian Research, 263, 232–245. https://doi.org/10.1016/j.precamres.2015.02.007

Tortell,P.D.,&Price,N.M.(1996).CadmiumtoxicityandzinclimitationincentricdiatomsofthegenusThalassiosira.Marine Ecology Progress Series,138,245–254.https://doi.org/10.3354/meps138245

Turner, E., & Bekker, A. (2016). Thick sulfate evaporite accumulationsmarking a mid-Neoproterozoic oxygenation event (Ten StoneFormation, Northwest Territories, Canada). Geological Society of America Bulletin,128,203–222.

Twining, B. S., &Baines, S. B. (2013). The tracemetal composition ofmarinephytoplankton.Annual Review of Marine Science,5,191–215.https://doi.org/10.1146/annurev-marine-121211-172322

Twining,B.S.,Baines,S.B.,Bozard,J.B.,Vogt,S.,Walker,E.A.,&Nelson,D. M. (2011). Metal quotas of plankton in the equatorial PacificOcean. Deep Sea Research Part II: Topical Studies in Oceanography,58,325–341.https://doi.org/10.1016/j.dsr2.2010.08.018

Twining,B.S.,Baines,S.B.,&Fisher,N.S. (2004).Elementstoichiom-etries of individual plankton cells collected during the SouthernOcean Iron Experiment(SOFeX). Limnology and Oceanography, 49,2115–2128.https://doi.org/10.4319/lo.2004.49.6.2115

Twining,B.S.,Baines,S.B.,Fisher,N.S.,Maser,J.,Vogt,S., Jacobsen,C., … Sañudo-Wilhelmy, S. A. (2003). Quantifying trace elements

in individualaquaticprotist cellswitha synchrotronX-ray fluores-cencemicroprobe.Analytical Chemistry,75,3806–3816.https://doi.org/10.1021/ac034227z

Twining, B. S., Baines, S. B., Vogt, S., Jonge, D., &Martin, D. (2008).Exploringoceanbiogeochemistrybysingle-cellmicroprobeanalysisofprotistelementalcomposition.Journal of Eukaryotic Microbiology,55,151–162.https://doi.org/10.1111/j.1550-7408.2008.00320.x

Tziperman, E.,Halevy, I., Johnston,D. T., Knoll, A.H., & Schrag,D. P.(2011). Biologically induced initiation ofNeoproterozoic snowball-Earthevents.Proceedings of the National Academy of Sciences of the United States of America,108,15091–15096.https://doi.org/10.1073/pnas.1016361108

Van Dijk, I., De Nooijer, L. J., Wolthers, M., & Reichart, G.-J. (2017).Impacts of pH and [CO3 2−] on the incorporation of Zn in fora-miniferal calcite. Geochimica et Cosmochimica Acta, 197, 263–277.https://doi.org/10.1016/j.gca.2016.10.031

Vance, D., Little, S. H., Archer, C., Cameron, V., Andersen, M. B.,Rijkenberg,M.J.,&Lyons,T.W.(2016).Theoceanicbudgetsofnickelandzincisotopes:Theimportanceofsulfidicenvironmentsasillus-tratedbytheBlackSea.Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,374, 20150294.https://doi.org/10.1098/rsta.2015.0294

Vogel, I., Thorsen, P., Curry, A., Sandager, P., & Uldbjerg, N. (2005).Biomarkers for the prediction of preterm delivery. Acta obste-tricia et gynecologica Scandinavica, 84, 516–525. https://doi.org/10.1111/j.0001-6349.2005.00771.x

Wells,M.L.,Kozelka,P.B.,&Bruland,K.W.(1998).Thecomplexationofdissolved‘Cu,Zn,CdandPbbysolubleandcolloidalorganicmatterinNarragansettBay,RI.Marine Chemistry,62,203–217.https://doi.org/10.1016/S0304-4203(98)00041-3

Whitton, B., Grainger, S., Hawley, G., & Simon, J. (1991). Cell-boundand extracellular phosphatase activities of cyanobacterial isolates.Microbial Ecology,21,85–98.https://doi.org/10.1007/BF02539146

Zhang,S.,Wang,X.,Wang,H.,Bjerrum,C.J.,Hammarlund,E.U.,Costa,M.M.,…Canfield,D.E.(2016).Sufficientoxygenforanimalrespira-tion1,400millionyearsago.Proceedings of the National Academy of Sciences of the United States of America,113,1731–1736.https://doi.org/10.1073/pnas.1523449113

Zhao,Y.,Vance,D.,Abouchami,W.,&DeBaar,H.(2014).Biogeochemicalcyclingofzincand its isotopes in theSouthernOcean.Geochimica et Cosmochimica Acta, 125, 653–672. https://doi.org/10.1016/j.gca.2013.07.045

Zhu, S., Zhu,M.,Knoll,A.H.,Yin,Z., Zhao, F., Sun, S.,…Liu,H. (2016).Decimetre-scalemulticellulareukaryotesfromthe1.56-billion-year-oldGaoyuzhuang Formation in North China.Nature Communications, 7,11500.https://doi.org/10.1038/ncomms11500

SUPPORTING INFORMATION

Additional supporting information may be found online in theSupportingInformationsectionattheendofthearticle.

How to cite this article:IssonTT,LoveGD,DupontCL,etal.Trackingtheriseofeukaryotestoecologicaldominancewithzincisotopes.Geobiology. 2018;16:341–352. https://doi.org/10.1111/gbi.12289