33
http://www.icp.uni-stuttgart.de Tracer diffusion in polymer solutions Peter Košovan 1 Olaf Lenz 1 Christian Holm 1 Apostolos Vagias 2 Kaloian Koynov 2 George Fytas 2 1. Institute for Computational Physics, University of Stuttgart 2. MPI for Polymer Research, Mainz ESPRESSO Summer School, Stuttgart, 12.10.2012 P. Košovan et. al. Tracer diffusion 1/27

Tracer diffusion in polymer solutions - ESPResSoespressomd.org/html/ess2012/Day5/pkosovan.pdft.de Tracer diffusion in polymer solutions Peter Košovan1 Olaf Lenz1 Christian Holm1 Apostolos

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • http

    ://w

    ww

    .icp.

    uni-s

    tuttg

    art.d

    e

    Tracer diffusion in polymersolutions

    Peter Košovan1 Olaf Lenz1 Christian Holm1

    Apostolos Vagias2 Kaloian Koynov2 George Fytas2

    1. Institute for Computational Physics, University of Stuttgart2. MPI for Polymer Research, Mainz

    ESPRESSO Summer School, Stuttgart, 12.10.2012

    P. Košovan et. al. Tracer diffusion 1/27

  • http

    ://w

    ww

    .icp.

    uni-s

    tuttg

    art.d

    e

    Diffusion – how and why?

    • Diffusant in an environment

    • Drug release, chemical reaction kinetics

    • Biology

    Methods to study diffusion in solutions

    • Particle tracking

    • Scattering of light, neutrons, X-rays . . .

    • PFG NMR

    • Fluorescence recovery after photobleaching (FRAP)

    • . . .

    • Fluorescence Correlation Spectroscopy

    P. Košovan et. al. Tracer diffusion 2/27

  • http

    ://w

    ww

    .icp.

    uni-s

    tuttg

    art.d

    e

    Diffusion – how and why?

    • Diffusant in an environment

    • Drug release, chemical reaction kinetics

    • Biology

    Methods to study diffusion in solutions

    • Particle tracking

    • Scattering of light, neutrons, X-rays . . .

    • PFG NMR

    • Fluorescence recovery after photobleaching (FRAP)

    • . . .

    • Fluorescence Correlation Spectroscopy

    P. Košovan et. al. Tracer diffusion 2/27

  • http

    ://w

    ww

    .icp.

    uni-s

    tuttg

    art.d

    e

    Fluorescence correlation spectroscopy (FCS)

    • Fluorophores(fluorescent tracers)

    • Selectivity

    • Single-molecule sensistivity

    • Sub-micron sized focal spot

    • Tracer diffusion in itsenvironment

    • Popular in biosciences• Works also in vivo

    Focusedvolume

    Excitation beam

    Flu

    ore

    sce

    nce Objective

    optics

    Laser source

    Collector optics

    Dichroic mirror

    Detector

    Schematic representation ofexperimental setup

    P. Košovan et. al. Tracer diffusion 3/27

  • http

    ://w

    ww

    .icp.

    uni-s

    tuttg

    art.d

    e

    Typical FCS tracers

    W. Chiuman, Y. Li, Nucl. Acids Res. (2007) 35 (2): 401-405 doi: 10.1093/nar/gkl1056

    P. Košovan et. al. Tracer diffusion 4/27

  • http

    ://w

    ww

    .icp.

    uni-s

    tuttg

    art.d

    e

    Analysis of FCS experiments

    • Autocorrelation of fluorescence intensity fluctuations

    G(t) =〈δI(t0)δI(t0 + t)〉〈δI(t)〉2

    • Inverse problem – solved by curve fitting

    • Single-component diffusion

    G(t) =1N

    (1 +

    4Dtw2)−1(

    1 +4Dt

    s2w2)−0.5

    • Multi-component diffusion + photophysical relaxation

    G(t) =Q(t)

    N

    n∑i=1

    Fi

    [(1 +

    4Di tw2

    )−1(1 +

    4Di ts2w2

    )−0.5]

    P. Košovan et. al. Tracer diffusion 5/27

  • http

    ://w

    ww

    .icp.

    uni-s

    tuttg

    art.d

    e

    Analysis of FCS experiments

    • Autocorrelation of fluorescence intensity fluctuations

    G(t) =〈δI(t0)δI(t0 + t)〉〈δI(t)〉2

    • Inverse problem – solved by curve fitting

    • Single-component diffusion

    G(t) =1N

    (1 +

    4Dtw2)−1(

    1 +4Dt

    s2w2)−0.5

    • Multi-component diffusion + photophysical relaxation

    G(t) =Q(t)

    N

    n∑i=1

    Fi

    [(1 +

    4Di tw2

    )−1(1 +

    4Di ts2w2

    )−0.5]

    P. Košovan et. al. Tracer diffusion 5/27

  • http

    ://w

    ww

    .icp.

    uni-s

    tuttg

    art.d

    e

    Analysis of FCS experiments

    • Autocorrelation of fluorescence intensity fluctuations

    G(t) =〈δI(t0)δI(t0 + t)〉〈δI(t)〉2

    • Inverse problem – solved by curve fitting

    • Single-component diffusion

    G(t) =1N

    (1 +

    4Dtw2)−1(

    1 +4Dt

    s2w2)−0.5

    • Multi-component diffusion + photophysical relaxation

    G(t) =Q(t)

    N

    n∑i=1

    Fi

    [(1 +

    4Di tw2

    )−1(1 +

    4Di ts2w2

    )−0.5]

    P. Košovan et. al. Tracer diffusion 5/27

  • http

    ://w

    ww

    .icp.

    uni-s

    tuttg

    art.d

    e

    A glimpse on experimental FCS data

    Two different tracers in dilute polymer solution

    0.00

    0.20

    0.40

    0.60

    0.80

    1.00

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    N G

    (t)

    / Q

    (t)

    t / s

    (a) Experiment

    A488 2.3e-3 g/ml

    Rh6G 2.6e-3 g/ml

    -0.05

    0.00

    0.05

    10-6

    10-4

    10-2

    Re

    sid

    ua

    lst / s

    P. Košovan et. al. Tracer diffusion 6/27

  • http

    ://w

    ww

    .icp.

    uni-s

    tuttg

    art.d

    e

    Crowding-induced slowdown

    10-3

    10-2

    10-1

    100

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    D / D

    0

    c [g/ml]

    c = c*

    A488

    A647

    Polymer

    P. Košovan et. al. Tracer diffusion 7/27

  • http

    ://w

    ww

    .icp.

    uni-s

    tuttg

    art.d

    e

    Concentration regimes in polymer solutions

    Dilute Semidilute Concentrated

    • Overlap concentration:

    c∗ =N

    43πR

    3g∼ N

    N−3ν∼ N−2ν ≈ N−1.2

    P. Košovan et. al. Tracer diffusion 8/27

  • http

    ://w

    ww

    .icp.

    uni-s

    tuttg

    art.d

    e

    Diffusion of polymers in solution

    Rouse: no hydrodynamics

    • Real concentrated solutions• Langevin thrermostat• Rouse time

    τR ∼ τ0N(1+2ν)

    • Long time scales τ � τR

    DR =kBTζR

    =kBTNζ

    Zimm: hydrodynamics

    • Real dilute solutions• LB-fluid, DPD• Zimm time

    τZ ∼ τ0N3ν

    • Long time scales τ � τZ

    DZ =kBTζZ∼∼ kBT

    ηsbNν

    • Zimm is faster than Rouse for the same N

    P. Košovan et. al. Tracer diffusion 9/27

  • http

    ://w

    ww

    .icp.

    uni-s

    tuttg

    art.d

    e

    One more tracer

    10-3

    10-2

    10-1

    100

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    D / D

    0

    c [g/ml]

    c = c*

    A488

    A647

    Rh6G

    Polymer

    P. Košovan et. al. Tracer diffusion 10/27

  • http

    ://w

    ww

    .icp.

    uni-s

    tuttg

    art.d

    e

    . . . and one more

    10-3

    10-2

    10-1

    100

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    D / D

    0

    c [g/ml]

    c = c*

    A488

    A647

    Rh6G

    QD

    Polymer

    P. Košovan et. al. Tracer diffusion 11/27

  • http

    ://w

    ww

    .icp.

    uni-s

    tuttg

    art.d

    e

    Clue: polymer-tracer interactions

    10-2

    10-1

    100

    101

    102

    103

    0 10 20 30 40 50

    Inte

    nsity [A

    .U.]

    Distance from surface [µm]

    glass gel solution

    Rh6G

    QD

    A488

    A647

    P. Košovan et. al. Tracer diffusion 12/27

  • http

    ://w

    ww

    .icp.

    uni-s

    tuttg

    art.d

    e

    Model system setup

    • 20 athermal polymers(WCA potential)

    • Chain length M = 50

    • 10 athermal tracers(WCA potential)

    • 5 attractive tracers(LJ potential)

    • Variation of �LJ• Concentrations:

    c/c∗ ∈ [10−3 : 102]

    • σLJ = 1 nm, D0 = D(Rh6G)

    • Langevin thermostatP. Košovan et. al. Tracer diffusion 13/27

  • http

    ://w

    ww

    .icp.

    uni-s

    tuttg

    art.d

    e

    Relevant observables

    • G(t) from simulation trajectory

    G(t) =〈

    exp(−∆x

    2(t)w2

    − ∆y2(t)

    w2− ∆z

    2(t)s2w2

    )〉,

    F. Höfling et. al., Soft Matter, 7, 1358–1363 (2011)

    • Realization in ESPRESSO:

    set fcs [correlation new obs1 $tracer_positions \

    corr_operation fcs_acf $wx $wy $wz dt 1.0 \tau_max $tot_time tau_lin 16];

    correlation $fcs autoupdate start...# integration loop...correlation $fcs finalizecorrelation $fcs write_to_file "Gt.dat"

    P. Košovan et. al. Tracer diffusion 14/27

  • http

    ://w

    ww

    .icp.

    uni-s

    tuttg

    art.d

    e

    Fits to G(t)

    0.00

    0.20

    0.40

    0.60

    0.80

    1.00

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    N G

    (t)

    / Q

    (t)

    t / s

    (b) Simulation

    c = 3.2e-04 g/ml

    Attractive

    Repulsive

    -0.05

    0.00

    0.05

    10-8

    10-6

    10-4

    Re

    sid

    ua

    lst / s

    P. Košovan et. al. Tracer diffusion 15/27

  • http

    ://w

    ww

    .icp.

    uni-s

    tuttg

    art.d

    e

    Athermal tracers: crowding-induced slowdown

    10-3

    10-2

    10-1

    100

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    D / D

    0

    c [g/ml]

    c = c*

    A488

    A647

    Athermal (sim)

    Polymer

    Polymer (sim)

    P. Košovan et. al. Tracer diffusion 16/27

  • http

    ://w

    ww

    .icp.

    uni-s

    tuttg

    art.d

    e

    Attractive (�LJ = 2.5): two-component diffusion

    10-3

    10-2

    10-1

    100

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    D / D

    0

    c [g/ml]

    c = c*

    PNiPAAm

    Polymer (sim)

    Rh6G 280k

    Attractive (sim)

    P. Košovan et. al. Tracer diffusion 17/27

  • http

    ://w

    ww

    .icp.

    uni-s

    tuttg

    art.d

    e

    Attractive (�LJ = 2.0): gradual slowdown

    10-3

    10-2

    10-1

    100

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    D / D

    0

    c [g/ml]

    c = c*

    A488

    A647

    Athermal (sim)

    QD

    Weak Attr. (sim)

    Polymer (sim)

    PNiPAAm

    P. Košovan et. al. Tracer diffusion 18/27

  • http

    ://w

    ww

    .icp.

    uni-s

    tuttg

    art.d

    e

    Amplitudes = fraction of bound tracers

    K =[T][P][TP]

    0.00

    0.20

    0.40

    0.60

    0.80

    1.00

    10-5

    10-4

    10-3

    10-2

    10-1

    Fslo

    w

    or

    f

    c [g/ml]

    Fslow (ε=2.5)

    P. Košovan et. al. Tracer diffusion 19/27

  • http

    ://w

    ww

    .icp.

    uni-s

    tuttg

    art.d

    e

    Amplitudes = fraction of bound tracers

    K =[T][P][TP]

    0.00

    0.20

    0.40

    0.60

    0.80

    1.00

    10-5

    10-4

    10-3

    10-2

    10-1

    Fslo

    w

    or

    f

    c [g/ml]

    Fslow (ε=2.5)

    f (ε=2.5)

    P. Košovan et. al. Tracer diffusion 19/27

  • http

    ://w

    ww

    .icp.

    uni-s

    tuttg

    art.d

    e

    Amplitudes = fraction of bound tracers

    K =[T][P][TP]

    0.00

    0.20

    0.40

    0.60

    0.80

    1.00

    10-5

    10-4

    10-3

    10-2

    10-1

    Fslo

    w

    or

    f

    c [g/ml]

    f (ε=2.0)

    f (ε=2.5)

    Fslow (ε=2.5)

    P. Košovan et. al. Tracer diffusion 19/27

  • http

    ://w

    ww

    .icp.

    uni-s

    tuttg

    art.d

    e

    Amplitudes = fraction of bound tracers

    K =[T][P][TP]

    0.00

    0.20

    0.40

    0.60

    0.80

    1.00

    10-5

    10-4

    10-3

    10-2

    10-1

    Fslo

    w

    or

    f

    c [g/ml]

    f (ε=2.0)

    f (ε=2.5)

    Fslow (ε=2.5)

    Fsow Rh6G

    Fslow A488

    P. Košovan et. al. Tracer diffusion 19/27

  • http

    ://w

    ww

    .icp.

    uni-s

    tuttg

    art.d

    e

    Comparing different length scales

    Tracer trajectory (�LJ = 2.5) compared to different focal spot sizes

    w ≈ 30 nm w ≈ 100 nmJ. Enderlein, PRL 108, 108101 (2012)

    P. Košovan et. al. Tracer diffusion 20/27

  • http

    ://w

    ww

    .icp.

    uni-s

    tuttg

    art.d

    e

    History-dependent observable: binding lifetime

    • Definition: time interval between two events(binding or unbinding)

    • Event = change of a state• Need to know the state in the past• Realization in ESPRESSO:

    set bound_lft [observable new interaction_lifetimes \type $type_tr_att type $type_mon $cut 1];

    ...for {set i 0} {$i < $maxi} {incr i} {

    integrates $nsteps;observable $bound_lft update

    }...set lifetimes observable $bound_lft print;

    P. Košovan et. al. Tracer diffusion 21/27

  • http

    ://w

    ww

    .icp.

    uni-s

    tuttg

    art.d

    e

    Measuring the bound lifetimes

    10-3

    10-2

    10-1

    100

    0 2 4 6 8 10 12 14 16 18

    Pro

    babili

    ty

    Lifetime, τ [µs]

    (a) Bound state lifetimes

    ε=2.0

    ε=2.5

    10-3

    10-2

    10-1

    100

    0 2 4 6 8 10 12 14 16 18

    Pro

    babili

    ty

    Lifetime, τ [µs]

    (b) Free state lifetimes

    ε=2.0

    ε=2.5

    • Survival probabilityP(t) = exp(−t/τ)

    P. Košovan et. al. Tracer diffusion 22/27

  • http

    ://w

    ww

    .icp.

    uni-s

    tuttg

    art.d

    e

    Quantitative comparison of length scales

    L2bound = 6Dboundtbound

    L2free = 6Dfreetfree

    �LJ tbound[µs]

    Lbound[nm]

    tfree[µs]

    Lfree[nm]

    2.0 0.45 11 4.63 1012.5 2.17 54 2.53 75.0

    �LJ = 2.0 : Lbound � w = 30 nm

    �LJ = 2.5 : Lbound ≈ w

    P. Košovan et. al. Tracer diffusion 23/27

  • http

    ://w

    ww

    .icp.

    uni-s

    tuttg

    art.d

    e

    Effective diffusion coefficient (�LJ = 2.0)

    Deff = fDbound + (1− f )Dfree

    10-3

    10-2

    10-1

    100

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    D / D

    0

    c [g/ml]

    c = c*

    DeffQD

    Weak Attr. (sim)

    Polymer (sim)

    PNiPAAm

    P. Košovan et. al. Tracer diffusion 24/27

  • http

    ://w

    ww

    .icp.

    uni-s

    tuttg

    art.d

    e

    Resolved issues

    • Diffusion slowdown critically depends on polymer-diffusantinteractions

    • Universal behaviour for athermal diffusants

    • Slowdown deep in the dilute solution for interacting diffusants

    • FCS can resolve the two processes when attraction is strongenough

    • It yields Deff when attraction is weaker

    • Clear comparison of length scales from simulations

    P. Košovan et. al. Tracer diffusion 25/27

  • http

    ://w

    ww

    .icp.

    uni-s

    tuttg

    art.d

    e

    Open questions

    • Deviatoin of Rh6G slowdown from simple binding.

    • Saturation of Fslow ≈ 0.5

    • Origin of slow A488 slow component at high c

    P. Košovan et. al. Tracer diffusion 26/27

  • http

    ://w

    ww

    .icp.

    uni-s

    tuttg

    art.d

    e

    Thanks and Acknowlegement

    • Experimental collaborators:A. Vagias, K. Koynov, G. Fytas

    $ DFG SPP 1259 Intelligente Hydrogele

    Thank you for your attention!

    P. Košovan et. al. Tracer diffusion 27/27

    MotivationExperimentsSimulation modelSummary and conclusions