49
© Fraunhofer Towards Roll-to-Roll Fabrication of Electronic Functions on Plastic Films Gerhard Klink Fraunhofer Research Institution for Modular Solid State Technologies Hansastraße 27d, 80686 München

Towards Roll-to-Roll Fabrication of Electronic Functions

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

© Fraunhofer

Towards Roll-to-Roll Fabrication of Electronic Functions on Plastic Films

Gerhard Klink Fraunhofer Research Institution for Modular Solid State Technologies Hansastraße 27d, 80686 München

© Fraunhofer

The FOLAE Research Area (Flexible, Organic, Large-Area Electronics)

Organic, Printed and Large Area Electronics are often used as synonyms,

but they differ by focusing materials, substrate and processing issues

However there is large overlap between these fields, where plastic films as

substrates are needed

Organic materials

(„low temperature“ processing)

• RFIds

• sensors

• flexible displays

• OPV

• ...

Large substrates

• flat panel displays

• solar cell panels

• ...

Printing processes

Printed

• antennae

• solar cells

• display

• ...

FOLAE

Flexible materials

• Flex and Rigid-

Flex PCB

• Plastic Film

wirings

• ...

Organic E.

Printed E.

plastic film substrates

Large Area E. Flexible E.

© Fraunhofer

Large-Area Electronics

Flat panel displays

Solar panels

Wiring systems

rigid substrates flexible substrates

Large-Volume Devices

Antennas and RFID

EL Lamp

Single-use sensors

© Fraunhofer

Large Volume / Large Area Patterning

TSMC Si Wafer fabs

Sharp LCD display plant

König&Bauer Rotary Printing Press

Wafer size Ø200 , Ø300 mm

Glass size (Gen10) 2880 x 3130 mm²

Web width 2520 mm

~1 Mio. (8“eq.)/month 32,000 m² 105-106 ICs/m²

72,000 subs./month 300,000 m² 0.6 - 2 displays/m²

140,000 m²/h 1-20 pcs/m²

20 … 130 nm 5 µm 100 µm

© Fraunhofer

Classification of OLAE Applications

Application field:

Large area Large volume

high lateral

resolution

low lateral

resolution

high lateral

resolution

low lateral

resolution

high vertical

resolution

FP Display

OTFT

backplane

OPV panel,

OLED lighting polymer IC solar cell

low vertical

resolution

large area

sensing signage

single-use

sensor

printed

antenna

In OLAE it should be distinguished between • large area and • large volume applications

© Fraunhofer

Why should we use a plastic film substrate?

Benefits of plastic film systems

Mechanically flexible, bendable or rollable

Inexpensive substrate for large area applications

Free form factor, foldable for 3D-Integration,“Origami“ electronics

Ruggedness, robustness

Endless substrate for roll-to-roll manufacturing

© Fraunhofer

New Functional Materials

Many new organic materials been developed during the last ten years.

Especially soluble materials, which can be deposited by solution-processing, are attractive for large-area processing

P3HT/PCBM system for photovoltaics

p- and n-type semiconductors

© Fraunhofer

other functional materials

electronic devices photonic devices

OLED

OPV

oTFT

peripherials

Sensor

Display

Lighting Solar Cell

rollable line driver

active matrix backplane

ID circuits

flexible and rollable display

RF interface

RFId

organic semiconductor

battery

Memory

Family Tree of Organic Electronics

© Fraunhofer

Devices Based on Electron Transporting Organic Materials

© Fraunhofer IZM

Organic Diode

source: Fraunhofer ISE

-200 0 200 400 600 800-10

-8

-6

-4

-2

0

2

4

curr

ent de

nsity [m

A/c

m2]

voltage [mV]

Organic Transistor Organic Solar Cell

Schottky diode with PTAA semiconductor

High mobility transistor with TIPS pentacene

Solar cell with P3HT/PCBM heterojunction

© Fraunhofer

Amorphous Semiconductor

PTAA

Architecture

Top-Gate / Bottom Contact

Status:

• p-type oTFTs

• On/off ratio 1000

Disadvantage:

• low mobility (10-3)

• high threshold 10 – 15 V

• low on-current (10-9 A/sq.)

• yield problems („hard yield“)

• instable above 100

C in air

Schema:

20

10-8

10-7

10-6

10-5

-50 -40 -30 -20 -10 0 10

Gate-Voltage Vg [V]

Cu

rre

nt I

d [A

]

10-9

Vds=-50 V

l= 20 µm

w/l= 2000

PTAA Transferkennlinie

© Fraunhofer

Crystallizing Semiconductor

W/L=20 di=1.5µm Vt=-0.5V µFE=0.1cm²/Vs

TIPS Pentacene

Advantages:

• Mobility ~1 cm²/Vs

• high currents(10-7 A/sq.)

• low threshod (0-3 V)

• temperature stable >150

C

Disadvantages

only bottom gate

compatibility with dielectric

crosslinked dielectric necessary

TIPS Pentacene Transferkennlinie

-30 -25 -20 -15 -10 -5 0 5 10 1510

-9

10-8

10-7

10-6

10-5

Dra

in C

urr

ent

[A]

Gate Voltage [V]

© Fraunhofer

Crystallization of Semiconductor Coatings

Low boiling point solvent Siedepunkt (e. g. Toluol)

Fast drying

12.5x 50x 12.5x 50x

High boiling point solvent (e. g. Cl2-Benzol) Cl2-Benzol)

Slow drying

Crystallinity of deposited semiconductor strongly depends on drying process

Critical process with regard to device variation and circuit integration

© Fraunhofer

Circuit schematics

From Organic Transistors to Circuits

Layout of a Sequencer

Transforms data from parallel input to serial output for load modulation.

Layout for 4 data bits

152 transistors, 186 vias

Processed area 34x34 mm²

No working device Reasons: Hard yield problems (Short and Open Circuits) Soft yield problems (Variation in oTFT performance

© Fraunhofer

1,0E-14

1,0E-13

1,0E-12

1,0E-11

1,0E-10

1,0E-09

1,0E-08

0 200 400 600 800

d [nm]

I_le

ak [A

/mm

^2]

batch 03

batch 04

slot die 1

Patterning of PMMA and optimisation of dielectric properties

Breakdown voltage pp to 250V/µm achieved

PMMA achieves the required specs concerning leakage current (<0.1nA)

and breakdown voltage (100V/µm),

Yield is strongly influenced by defect density on sheet surface

normalized leakage current for different samples

Gate Insulation Layer Gate dielectric layer is the major performance driver for organic circuits

photopatterned PMMA dielectric

© Fraunhofer

0

10

20

30

40

50

0 10 20 30 40 50 Vin / [V]

Vo

ut /

[V

]

Vout

Vin

0

10

20

30

40

50

0 10 20 30 40 50

Vin / Vout [V]

Vo

ut /

Vin

[V]

Variation in Device Characteristics Cause of Soft Yield Problems

„good“ inverter characteristic

Size of Overlap Noise margin Robustness of digital circuitry

„bad“ inverter characteristic

© Fraunhofer

Ring Oscillators (p-type)

Amplification nearly 1

Noise margin is much too low to get oscillation

Vo

ut

/ V

in [

V]

0

5

10

15

20

25

30

0 5 10 15 20 25 30 Vin / Vout [V]

Individual inverter Averaged charact.l Mirrored Vin/Vout

© Fraunhofer

Complementary oTFTs – Organic “CMOS”

Higher definition of switching levels makes complementary logic circuits more robust against variation in characteristics

Switched state is always high resistance, low power consumption

But! More complicated processing (deposition of two semiconductor materials)

switch

load

Vs

Vout

Vin

S

D

G

S

D

G

0 V

Vs

n-channel

p-channel

Vout Vin

S

D

G

S

D

G

Vss

Vdd

Vin

Vout

Vs

Vs

ViH ViL

VoL

VoH

Vin

Vout

Vs

Vs

ViH ViL

VoL

VoH

Inverter in PMOS technology Inverter in CMOS technology

© Fraunhofer

Organic n-type Semiconductor

N1500 n-type (C) n-type (Au)

VT (V) ~ -4 undefined

µsat (cm2/Vs)

0,07 undefined

µp/µn 0,29

Ion ~10µA <100 nA

Ioff ~400 nA ~ 10 nA Ion/Ioff 25 <10

N3000 n-type (Au)

OSC1

Ion 100 nA – 3 µA

Ioff 0.5 – 50 nA

Ion/Ioff 500 - 2000 large variablity (dev2dev)

Proprietary materials from Polyera Corp. (based on Perylene)

© Fraunhofer

Alignment in Plastic Film Processing

Stop&Go Roll-to-Roll Distance defined by web transport

gk

Distance defined by lithography tool

e. g. print cylinder

Continuous Roll-to-Roll

© Fraunhofer

Processing Flexible Electronics – From Single Substrates to Continuous Printing

single substrates or

carriers

stop&go from roll to

roll

“true” rotational

printing

electronic packaging flex technologies graphic arts printing

single sheets 1 – 3 m/min 100 m/min and more

high precision and

resolution

precision combined with

easier handling

high throughput

electronic defect free

(pass or fail)

defect free, but

compromises

visible defect free

(gradual steps)

traditional electronics cost-efficient electronics ubiquitous electronics

single item tagging

volume

cost

© Fraunhofer

Reel-to-Reel Lab at Fraunhofer EMFT

Fine-line patterning of metallized plastic films Thick-film screen printing on sheets and rolls

Electrical testing Laser processing Foil lamination Sputter deposition Web coating

© Fraunhofer

Basic Process: UV-Lithography

1) Roll of PET film (50

µm) metallized with

500 nm copper

2) Hot-roll lamination with

dry film photoresist

3) UV broadband

exposure

(200 mm·200 mm

mask)

mask alignment

UV exposure

spooler

despooler

4) Alkaline development

5) Copper etching and resist

strip

© Fraunhofer

Reel-to-Reel Application Center - Equipment Screen printer with belt oven and UV curing (Aurel S. A.)

unwinder printer buffer UV cure oven (4 zones) spooler

© Fraunhofer

Devices on Plastic Films

RFId antennae Organic electronics EL signage HiRes Wiring Printed passives

Temperature Electrochemical Ultra thin ICs Capacitive sensor Biosensor

© Fraunhofer

Technological Challenges for Processing on Plastic Films

Non-planar substrate needs support or tensile stress

Tensile stress leads to stretching

Uptake of water and other vapours during processing

Dimensional changes due to heat, water, solvent

Contaminated surface (particles, chemicals)

Impact of film stresses (wrinkling)

© Fraunhofer

Surface Imperfections of Plastic Films

Particles

Extrusions

Surface contaminations

50µ

1µ 4µ

© Fraunhofer

Uptake of Water, Other Gases and Vapours

Plastic films are not as compact as rigid substrates. Gases and also chemicals penetrate them and can be absorbed.

Common problem for plastic films is water uptake

1,0E-08

1,0E-07

1,0E-06

1,0E-05

1,0E-04

1,0E-03

7:00 9:00 11:00 13:00 15:00 17:00 19:00 21:00

time

p [

mb

ar]

chamber ws

chamber dc2

Outgassing of plastic film in R2R vacuum equipment

© Fraunhofer

Dimensional Changes Caused by Heat and Web Tension

There is a predictable part (reproducable), which can be corrected, and

Random part, which can not be corrected and determines alignment accuracy

Melinex 501

-1.0%

-0.5%

0.0%

0.5%

change in machine direction

chan

ge i

n t

ran

svers

e d

irect

ion

250 N/m 100 N/m

0 N/m

-1.0% -0.5% 0.0% 0.5%

100

C

120

C

150

C

82 mm

© Fraunhofer

Cracking of Thin Layers

Plastic films are stretchable

Higher thermal expansion than anorganic materials

May result in cracking of thin films during deposition or further processing

Depends on brittleness, plasticity and thickness

Cracked chromium metallisation sputtered on PEN

200 µ

© Fraunhofer

Impact of Film Stress

85

C 125

C 165

C 205

C 245

C

Polyimide coating - influence of peak curing temperature on film stress

Influences on film stress

material shrinkage

different thermal expansion coefficients

plastic flow of material

© Fraunhofer

Multilayer Wiring on Plastic Films

Basis for system integration is a

wiring of at least two conductive

layers:

Layer 1:

High-resolution layer in thin-film

technology

Layer2:

Layer 1:

Electroplated

copper

Printed 2nd wiring (Ag

paste)

electroplated 2nd

wiring (Ag paste)

Low-cost version with printed conductors

High wiring density with thin-film conductors

© Fraunhofer

Fabrication of Vias - Laser Drilled Holes in Plastic Film

Holes through 50 µm polyimide

High aspect ratio vias

© Fraunhofer

Double Side Metallization of Plastic Films

Cross section of vias after electroplating via hole

SEM image of via hole after laser drilling

PI

Cu

Removal of laser residues

Alignment top to rear side

Ablation stop on copper

Debris after laser ablation

Clean copper after plasma cleaning

Results hole diameter bottom: ≈ 15µm, top: ≈ 85µm mean via resistance: 9.6 m yield: 98%

© Fraunhofer

Printed Resistors – Variation and Stability

Test pattern for printed resistors (carbon paste).

Resistivity(cured): 743 Ohm

6,3% (1σ) Square res. (25 µm) 101,4 Ohm/sq.

Distribution Resistance

Results:

© Fraunhofer

Reliability Investigation – Variation and Stability

Results :

Stable under mechanical bending

Largest influence by humidity

Tests performed:

Mechanical bending Ø100…200 mm

Thermal cycling -10/85

C

Climate Chamber 85

C/85 %r.H.

© Fraunhofer

Making PCBs Flexible with Foil Substrates

SMD circuitry on polyimide film Sensor circuit for monitoring tire temperature

Molded package 26x21x2,5 mm ↓

High temperature foil is needed

Competitive to Flex-PCB Sensor wristlet

© Fraunhofer

Demonstrator for the Fabrication Process

Reel-to-reel compatible

processing on foils of test

patterns

• Process Control Modules

• Transistors with different

geometries

• Inverters

• Oscillators

channel length 10…40 µm

via size 200…400 µm

38 18/07/2013 Copyright © 2010-2013 POLARIC Consortium

1,0E-14

1,0E-13

1,0E-12

1,0E-11

1,0E-10

1,0E-09

1,0E-08

0 200 400 600 800

d [nm]

I_le

ak [A

/mm

^2]

batch 03

batch 04

slot die 1

Patterning of PMMA and optimisation of dielectric properties

Breakdown voltage pp to 250V/µm achieved

PMMA achieves the required specs concerning leakage current (<0.1nA)

and breakdown voltage (100V/µm),

Yield is strongly influenced by defect density on sheet surface

normalized leakage current for different samples

Gate Insulation Layer

© Fraunhofer

Web Coating of Thin Dielectrics

web

Web parameters: w: web width v: web speed q: liquid volume flow Web material parameters c: solid contents (wt%) L: solvent gravity S: solids gravity

wet film thickness

dry film thickness

coating head for uniform deposition

q

dL

© Fraunhofer

Roll-to-Roll Wet Coating

Doctor blade

Slot die

400

450

500

550

600

650

700

-10 -5 0 5 10

thic

kn

es

s [

nm

]

position TD [cm]

© Fraunhofer

Polymer-opto-electronic detection module: Functional integration on Plastic Film

Fabrication of different devices on same substrate

Using flexibility of plastic film for simple assembly by folding

Measurement of light transmission and adsorbtion

ITO ITO

S D S D

barrier layers

EL layer

dielectric

ITO ITO

S D S D

PHS

PET film

OTFT, light sensor EL, light source

EL layer

top electrode

dielectric OSC

PEN foil

glue

glue

PEN foil

glue

glue

glue

glue

glue

glue

EL light source

fluidic channel

transparent PET

oTFT light sensor

PEN PEN

© Fraunhofer

Fluid analysis by opto-electronic absorbance measurement

Polymer-opto-electronic detection module

3000 3500 4000 4500 5000 5500 6000-3,5x10

-6

-3,0x10-6

-2,5x10-6

I dra

in (

A)

Time (s)

Rho

c1

Rho

c2Rho

c3

Rho

c4

EL

off

3000 3500 4000 4500 5000 5500 6000-3,5x10

-6

-3,0x10-6

-2,5x10-6

I dra

in (

A)

Time (s)

Rho

c1

Rho

c2Rho

c3

Rho

c4

EL

off

Rhodamine B Concentrations: c1: 0,15 mM c2: 0,46 mM c3: 1,1 mM c4: 5,5 mM

Demo device

Device parts

© Fraunhofer

Sensor Foil

Double-sided Adhesive Foil OTFT

EL Element

Analysis System for Gases

PEN Foil

ITO

PHS

EL Paste

Ag SP

ITO

PHS TIPS

Carbon SP

Layer schematics

Laser cut hole

Gas

Gas

Layout of EL and TFT

Cross-sectional view after folding process

Circular Transistor

Indranil Bose, Anna Ohlander et al.: »Polymer opto-chemical-electronic based module as a detection system for volatile analytes on a foil substrate«, Proc. SPIE 8479. DOI: 10.1117/12.929821

© Fraunhofer

Chemical Sensor Materials - Dyes, Layers, Particles

LEDs

Photodiodes

Nanosensors

on films

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S NH

Si

O

OH

COOH

O

O

O

O

NH

S

NH

Si

O

OH

HOOC

OO

O

O

NH

SNH

Si

O

OH

HOOC

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S NH

Si

O

OH

COOH

O

O

O

O

NH

S

NH

Si

O

OH

HOOC

OO

O

O

NH

SNH

Si

O

OH

HOOC

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S NH

Si

O

OH

COOH

O

O

O

O

NH

S

NH

Si

O

OH

HOOC

OO

O

O

NH

SNH

Si

O

OH

HOOC

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S NH

Si

O

OH

COOH

O

O

O

O

NH

S

NH

Si

O

OH

HOOC

OO

O

O

NH

SNH

Si

O

OH

HOOC

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S NH

Si

O

OH

COOH

O

O

O

O

NH

S

NH

Si

O

OH

HOOC

OO

O

O

NH

SNH

Si

O

OH

HOOC

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S NH

Si

O

OH

COOH

O

O

O

O

NH

S

NH

Si

O

OH

HOOC

OO

O

O

NH

SNH

Si

O

OH

HOOC

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S NH

Si

O

OH

COOH

O

O

O

O

NH

S

NH

Si

O

OH

HOOC

OO

O

O

NH

SNH

Si

O

OH

HOOC

O

O

O

LEDs

Photodiodes

Nanosensors

on films

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S NH

Si

O

OH

COOH

O

O

O

O

NH

S

NH

Si

O

OH

HOOC

OO

O

O

NH

SNH

Si

O

OH

HOOC

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S NH

Si

O

OH

COOH

O

O

O

O

NH

S

NH

Si

O

OH

HOOC

OO

O

O

NH

SNH

Si

O

OH

HOOC

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S NH

Si

O

OH

COOH

O

O

O

O

NH

S

NH

Si

O

OH

HOOC

OO

O

O

NH

SNH

Si

O

OH

HOOC

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S NH

Si

O

OH

COOH

O

O

O

O

NH

S

NH

Si

O

OH

HOOC

OO

O

O

NH

SNH

Si

O

OH

HOOC

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S NH

Si

O

OH

COOH

O

O

O

O

NH

S

NH

Si

O

OH

HOOC

OO

O

O

NH

SNH

Si

O

OH

HOOC

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S NH

Si

O

OH

COOH

O

O

O

O

NH

S

NH

Si

O

OH

HOOC

OO

O

O

NH

SNH

Si

O

OH

HOOC

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S NH

Si

O

OH

COOH

O

O

O

O

NH

S

NH

Si

O

OH

HOOC

OO

O

O

NH

SNH

Si

O

OH

HOOC

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S NH

Si

O

OH

COOH

O

O

O

O

NH

S

NH

Si

O

OH

HOOC

OO

O

O

NH

SNH

Si

O

OH

HOOC

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S NH

Si

O

OH

COOH

O

O

O

O

NH

S

NH

Si

O

OH

HOOC

OO

O

O

NH

SNH

Si

O

OH

HOOC

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S NH

Si

O

OH

COOH

O

O

O

O

NH

S

NH

Si

O

OH

HOOC

OO

O

O

NH

SNH

Si

O

OH

HOOC

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S NH

Si

O

OH

COOH

O

O

O

O

NH

S

NH

Si

O

OH

HOOC

OO

O

O

NH

SNH

Si

O

OH

HOOC

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S NH

Si

O

OH

COOH

O

O

O

O

NH

S

NH

Si

O

OH

HOOC

OO

O

O

NH

SNH

Si

O

OH

HOOC

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S NH

Si

O

OH

COOH

O

O

O

O

NH

S

NH

Si

O

OH

HOOC

OO

O

O

NH

SNH

Si

O

OH

HOOC

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S NH

Si

O

OH

COOH

O

O

O

O

NH

S

NH

Si

O

OH

HOOC

OO

O

O

NH

SNH

Si

O

OH

HOOC

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S NH

Si

O

OH

COOH

O

O

O

O

NH

S

NH

Si

O

OH

HOOC

OO

O

O

NH

SNH

Si

O

OH

HOOC

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S NH

Si

O

OH

COOH

O

O

O

O

NH

S

NH

Si

O

OH

HOOC

OO

O

O

NH

SNH

Si

O

OH

HOOC

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S NH

Si

O

OH

COOH

O

O

O

O

NH

S

NH

Si

O

OH

HOOC

OO

O

O

NH

SNH

Si

O

OH

HOOC

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S NH

Si

O

OH

COOH

O

O

O

O

NH

S

NH

Si

O

OH

HOOC

OO

O

O

NH

SNH

Si

O

OH

HOOC

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S NH

Si

O

OH

COOH

O

O

O

O

NH

S

NH

Si

O

OH

HOOC

OO

O

O

NH

SNH

Si

O

OH

HOOC

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S NH

Si

O

OH

COOH

O

O

O

O

NH

S

NH

Si

O

OH

HOOC

OO

O

O

NH

SNH

Si

O

OH

HOOC

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S

NH

Si

OOH

COOH

O

O

O

O

NH

S NH

Si

O

OH

COOH

O

O

O

O

NH

S

NH

Si

O

OH

HOOC

OO

O

O

NH

SNH

Si

O

OH

HOOC

O

O

O

Sensor materials

detect analytes such as ions, gases and neutral molecules

by the change of optical properties, e.g. colour or fluorescence

are ready for inkjet- and screen-printing, dispensing, web- or spray-coating

can be combined to arrays and be read out with miniaturized modules

© Fraunhofer

Device characterization / results

The dynamic response of the sensor with screen-printed carbon source-drain to different pH levels.

pH 4

pH 5

pH 6 pH 7

© Fraunhofer

ROSC ROSC

Vload DRV

SENS

13.56 MHz

DIODE

CAP

RF-Application – Sensor Label

Organic Diode Oscillator Load transistor

Capacitor

Resistor

© Fraunhofer

Sensor Label – Test of Working Principle

Proof of Principle with silicon devices Load modulation, 1 kHz, rectangular

© Fraunhofer

Final Remarks

A bunch of coating and patterning processes are already ready for

roll-to-roll processing

Roll-to-roll offers a better cost structure than single substrate

handling

Monolithic foil systems are still far away, system integration is needed

for electronics on plastic films

Techniques for foil processing have to be further developed,

regarding

- low temperature

- mechanical flexibility

- low thickness

- robustness and reliability

© Fraunhofer

Acknowledgements:

I thank my colleagues from the Polytronic Systems department, especially

• Dieter Bollmann

• Indranil R. Bose

• Dieter Hemmetzberger

• Anna Ohlander

• Sabine Trupp

• Prof. Karlheinz Bock

for their support to this presentation

The work presented here has been financially supported by projects granted by

German BMBF: PolyOpto (FKZ 16SV3870) European Commision:

COSMIC (GA 247681), Polaric (GA 247978) and InterFlex (GA 247710)