1
Toward tracking glacier ice-balance with seismology Yahtse glacier, Alaska Michael West, [email protected] Geophysical Institute, Univ. Alaska Fairbanks Glaciers generate extremely high rates of seismic activity. The largest signals are caused predominantly by iceberg calving at the terminus of tidewater glaciers. A recent surge in glacier seismic studies is providing a new understanding of how calving is manifest seismically. The continuous nature of remote seismic recording, combined with automated detection, proffer this as a technique for longterm 24/7 glacier monitoring. Measuring the ice loss from marineterminating glaciers remains a key step in determining the flux of freshwater into the oceans. This freshwater is a critical control on sea level, ocean currents, and by extension, climate. Recent experiments in coastal Alaska (e.g. NSF award #0810313) demonstrate the complex but tractable seismic signature of calving (Figure 1). Estimating ice mass remains a challenge, but it is now possible to infer calving activity remotely from continuous seismic records near glaciers. However activity across a regional ice field cannot be extrapolated from a single glacier. Glaciers in close proximity can exhibit wildly different behavior, such as retreating via catastrophic ice loss while adjacent glaciers are advancing. To understand the out flow of an entire ice field, it is necessary to monitoring glaciers on a regional scale. Earthscope The broad regional coverage afforded by the Transportable Array (TA) would allow research to expand from a oneglacieratatime technique, to comprehensive calving monitoring across an entire glacier province. The TA, coupled with existing stations, would provide a station density sufficient to track notable calving events at a rate of 10s to 100s per day in Alaska. This real time tracking could even facilitate timesensitive efforts such as oncall satellite imagery, LIDAR or deployment of onice instrumentation, not unlike how the community advances earthquake and volcanic eruption studies through rapid response campaigns. A calving event at Yahtse glacier, southcentral Alaska. Three video frames at left show the detachment and fall of an iceberg from the terminus. A nearby seismic recording (at right) is filtered in several bands to illustrate the multiple overlapping processes that contribute to the signal.

Toward tracking glacier ice-balance with seismology Yahtse ... tracking glacier ice-balance with seismology Yahtse glacier, Alaska Michael West, [email protected] Geophysical Institute,

Embed Size (px)

Citation preview

Toward tracking glacier ice-balance with seismology Y a h t s e g l a c i e r , A l a s k a

Michael West, [email protected] Geophysical Institute, Univ. Alaska Fairbanks

Glaciers  generate  extremely  high  rates  of  seismic  activity.  The  largest  signals  are  caused  predominantly  by  iceberg  calving  at  the  terminus  of  tidewater  glaciers.  A  recent  surge  in  glacier  seismic  studies  is  providing  a  new  understanding  of  how  calving  is  manifest  seismically.  The  continuous  nature  of  remote  seismic  recording,  combined  with  automated  detection,  proffer  this  as  a  technique  for  long-­‐term  24/7  glacier  monitoring.  Measuring  the  ice  loss  from  marine-­‐terminating  glaciers  remains  a  key  step  in  determining  the  flux  of  freshwater  into  the  oceans.  This  freshwater  is  a  critical  control  on  sea  level,  ocean  currents,  and  by  extension,  climate.  Recent  experiments  in  coastal  Alaska  (e.g.  NSF  award  #0810313)  demonstrate  the  complex  but  tractable  seismic  signature  of  calving  (Figure  1).  Estimating  ice  mass  remains  a  challenge,  but  it  is  now  possible  to  infer  calving  activity  remotely  from  continuous  seismic  records  near  glaciers.  

However  activity  across  a  regional  ice  field  cannot  be  extrapolated  from  a  single  glacier.  Glaciers  in  close  proximity  can  exhibit  wildly  different  behavior,  such  as  retreating  via  catastrophic  ice  loss  while  adjacent  glaciers  are  advancing.  To  understand  the  out  flow  of  an  entire  ice  field,  it  is  necessary  to  monitoring  glaciers  on  a  regional  scale.  

E a r t h s c o p e  

The  broad  regional  coverage  afforded  by  the  Transportable  Array  (TA)  would  allow  research  to  expand  from  a  one-­‐glacier-­‐at-­‐a-­‐time  technique,  to  comprehensive  calving  monitoring  across  an  entire  glacier  province.  The  TA,  coupled  with  existing  stations,  would  provide  a  station  density  sufficient  to  track  notable  calving  events  at  a  rate  of  10s  to  100s  per  day  in  Alaska.  This  real  time  tracking  could  even  facilitate  time-­‐sensitive  efforts  such  as  on-­‐call  satellite  imagery,  LIDAR  or  deployment  of  on-­‐ice  instrumentation,  not  unlike  how  the  community  advances  earthquake  and  volcanic  eruption  studies  through  rapid  response  campaigns.    

 A  calving  event  at  Yahtse  glacier,  south-­‐central  Alaska.  Three  video  frames  at  left  show  the  detachment  and  fall  of  an  iceberg  from  the  terminus.  A  nearby  seismic  recording  (at  right)  is  filtered  in  several  bands  to  illustrate  the  multiple  overlapping  processes  that  contribute  to  the  signal.