18
Toward Prediction of Relativistic Electron Environment in Geospace Tsutomu Nagatsuma, K. Sakaguchi, S. Saito, M. Kunitake, and K. T. Murata National Institute of Information and Communications Technology Applied Electromagnetic Research Institute Space Weather and Environment Informatics Laboratory onal Institute of Information and Communications Technology uperDARN 2011 Workshop 2011/05/30-06/04

Toward Prediction of Relativistic Electron Environment in Geospace Tsutomu Nagatsuma, K. Sakaguchi, S. Saito, M. Kunitake, and K. T. Murata National Institute

Embed Size (px)

Citation preview

Page 1: Toward Prediction of Relativistic Electron Environment in Geospace Tsutomu Nagatsuma, K. Sakaguchi, S. Saito, M. Kunitake, and K. T. Murata National Institute

Toward Prediction of Relativistic Electron Environment in Geospace

Tsutomu Nagatsuma, K. Sakaguchi, S. Saito, M. Kunitake, and K. T. Murata

National Institute of Information and Communications Technology

Applied Electromagnetic Research Institute

Space Weather and Environment Informatics Laboratory

National Institute of Information and Communications Technology

SuperDARN 2011 Workshop 2011/05/30-06/04

Page 2: Toward Prediction of Relativistic Electron Environment in Geospace Tsutomu Nagatsuma, K. Sakaguchi, S. Saito, M. Kunitake, and K. T. Murata National Institute

Space Weather and Environment Informatics Laboratory

Every afternoon, we make a daily forecast by the meeting.

ISES RWC Tokyo

Real-time space weather simulator

Broadcasting of SWx information on the Web, e-mail, etc.

National Institute of Information and Communications Technology

Page 3: Toward Prediction of Relativistic Electron Environment in Geospace Tsutomu Nagatsuma, K. Sakaguchi, S. Saito, M. Kunitake, and K. T. Murata National Institute

Prediction of space environment around GEO

Prediction of ionospheric disturbances

Development of relativistic electron environment prediction model and high-precision Global MHD simulation

⇒ Prediction of space environment (keV ~ MeV particles) around GEO

Space Weather and Environment Informatics LaboratoryThe 3rd 5-Year Plan (2011-2015)

Space Weather Research based on merging among observation, simulation and informatics

Development of near-real time prediction system for generation and propagation of equatorial plasma bubble and high-precision ionospheric simulation including atomospheric and magnetospheric interactions⇒ 1 hour ahead of Ionospheric disturbance forecast

National Institute of Information and Communications Technology

Page 4: Toward Prediction of Relativistic Electron Environment in Geospace Tsutomu Nagatsuma, K. Sakaguchi, S. Saito, M. Kunitake, and K. T. Murata National Institute

Is it necessary for predicting space environment around GEO?•More than 300 satellites exist in GEO

•24 Japanese satellites in GEO

Numbers of satellite anomalies in GEO during 1987 ~ 1994 ( from

NOAA database )400~500

 2003/10/27 ・ GOES 8 障害

2003/10/28-30 (その1)・国際宇宙ステーションで放射線を防ぐためサービスモジュールに宇宙飛行士避難 ・ NOAA 17 機器障害・ ACE and Wind プラズマ観測不能・ GOES 静止軌道の電子観測が飽和 ・ Chandra 放射線のため自律的に観測停止( 11/01 に復旧)・ Kodama セーフモード( 10/29 )・ DMSP F14 SSM/T2 センサーに障害、従系に切り換え( 11/04 に主系に切り換え)・ RHESSI CPU の自然リセット( 10/28 and 10/29 )・ CHIPS 衛星  18 時間通信不能・ SOHO CDS をコマンドによりセーフモードにした。( 10/28-30 )・ Odyssey セーフモード  10/29 データダウンロード中にメモリエラー発生、 10/31にコールドリブート  MARIE 温度以上で電源オフ、故障( 10/28 )

2003/11/02・ Chandra 放射線により自律的に停止

2003/11/06・ Polar 機器( TIDE )がリセットし高圧電源 disable・ Odyssey コマンドでセーフモードにしていたが運用再開

2003/10/28-30 (その2)・ Mars Explorer Rover star tracker の異常により Sun アイドルモード・ SIRTF 高プロトンフラックスのため、科学観測機器をオフして地球指向に( 10/28 )・ X-ray Timing Explorer 二つの観測装置が自動的に停止・ Microwave Anisotropy Probe star trucker リセット ・ GALEX 二つの紫外線観測器が停止 ・ Polar despun プラットフォームのロックを3度失う

Proton Flux

Large number of satellite anomalies are occurred in extreme solar flare event

2003/10/28-30 (その3)・ Cluster プロセッサのリセット・ FedSat シングルイベントアップセット( SEU )・ Inmarsat 9 機のうち 2 機でモーメンタムホイールの速度上昇・ NASA の地球科学ミッションオフィスがAQUA, Landsat, TERRA, TOMS, TRMM の五つの衛星で観測装置を停止させセーフモードに( 10/29 )・ ICESat GPS がリセット・ UARS  機器( HALOE )のオンを延期

Satellite anomalies during Halloween event

 

More than 60 satellite anomaly events happened in each yearGEO is important for

communications, broadcasting, and meteorological monitoring

Page 5: Toward Prediction of Relativistic Electron Environment in Geospace Tsutomu Nagatsuma, K. Sakaguchi, S. Saito, M. Kunitake, and K. T. Murata National Institute

Classifications of Satellite Anomaly

More than half satelliteanomalies are

caused by electrostatic discharge

National Institute of Information and Communications Technology

Page 6: Toward Prediction of Relativistic Electron Environment in Geospace Tsutomu Nagatsuma, K. Sakaguchi, S. Saito, M. Kunitake, and K. T. Murata National Institute

Two major charging phenomena related to satellite anomaly

①Deep dielectric charging ②Surface charging

GEO Satellite Injection related to substorms

Accelerations of relativistic electrons

Deep dielectric charging

Surface Charging

Constructing prediction model of relativistic electron

flux

Constructing prediction model of substorm injection

based on Global MHD simulation

Requirement for NICT’s space weather information by satellite operating companies•Observation data and simulation results during previous satellite anomalies period are important for investigation•Surface charging problem is improved for new-generation satellite. However, prediction of surface charging is still important for old-generation satellite.•Prediction of deep dielectric charging is important for next declining phase of 24 th solar cycle.

National Institute of Information and Communications Technology

Page 7: Toward Prediction of Relativistic Electron Environment in Geospace Tsutomu Nagatsuma, K. Sakaguchi, S. Saito, M. Kunitake, and K. T. Murata National Institute

Example of satellite anomaly at GEO- cases from B-SAT –

(http://www5e.biglobe.ne.jp/~kazu_f/digital-sat/satellite.html )

BSAT-2a ( Orbital Sciences : Star Bus )• 2001/09/25 anomaly of attitude control SEU due to Proton Event?• 2001/11/07 anomaly of attitude control SEU due to Proton Event?• 2004/02/14 anomaly of transponder(Bs-15ch) Deep dielectric charging due to REE?• 2005/08/19 anomaly of command receiver Deep dielectric charging due to REE? BSAT-2c ( Orbital Sciences : Star Bus )• 2008/09/11 anomaly of transponder(BS-3ch) Deep dielectric charging due to REE? • 2008/09/14 anomaly of transponder(BS-13ch Deep dielectric charging due to REE? BAST-3a ( Lockheed Martin Commercial Space Systems : A2100A Bus )• 2010/08/24 BSAT-3a temporal attitude anomaly unknown

National Institute of Information and Communications Technology

Page 8: Toward Prediction of Relativistic Electron Environment in Geospace Tsutomu Nagatsuma, K. Sakaguchi, S. Saito, M. Kunitake, and K. T. Murata National Institute

Feb. 14, 2004 (BSAT-2a anomaly of BS-15ch transponder) relativistic electron enhancement

Solar X-ray flux

IMF Intensity

IMF Bz

Vsw

Density

High energy proton flux

Relativistic electron flux at GEO

Kakioka K index

Page 9: Toward Prediction of Relativistic Electron Environment in Geospace Tsutomu Nagatsuma, K. Sakaguchi, S. Saito, M. Kunitake, and K. T. Murata National Institute

Radiation belt Radiation belt dynamicsdynamics

Solar maximum

Risingphase

Decliningphase

Thick line: anomaly period ±5 days  Dash line: average level

Relationship between satellite anomalies and relativistic electron flux

静止軌道静止軌道Relativistic electron flux

Solar activities ( Black )

Now

Cycle 23 Cycle 24

Halloween event

Important period For prediction

Rising SolarMaximum

Declining

Page 10: Toward Prediction of Relativistic Electron Environment in Geospace Tsutomu Nagatsuma, K. Sakaguchi, S. Saito, M. Kunitake, and K. T. Murata National Institute

ULF-ELF waves plays an important role for supply and loss of relativistic electrons

- Application of ground-based observation data -

Balance between supply and loss controls variations of relativistic electrons-> possibility of prediction of relativistic electrons using ULF waves

Pc5-6 -> supply of relativistic electrons (radial diffusion, adiabatic acceleration)

Pc1 -> loss of relativistic electrons (pitch angle scattering)

National Institute of Information and Communications Technology

Page 11: Toward Prediction of Relativistic Electron Environment in Geospace Tsutomu Nagatsuma, K. Sakaguchi, S. Saito, M. Kunitake, and K. T. Murata National Institute

Magnetometer & HF radar observations in Far East Siberia

Domestic Ionosonde Network & Hiraiso Solar Observatory

NICT’s Space Weather Monitoring Networks (NICT-SWM)

HF radar

Hiraiso Solar Observatory

Ionosonde

South-East Asia low latitude IOnospheric Network (SEALION)

Magnetometer

Ionospheric observation at Syowa Base

National Institute of Information and Communications Technology

Page 12: Toward Prediction of Relativistic Electron Environment in Geospace Tsutomu Nagatsuma, K. Sakaguchi, S. Saito, M. Kunitake, and K. T. Murata National Institute

( 73.50,80.60)

( 69.80 、 88.13) ( 71.58 、 129.00)

( 70.09,170.93)( 77.72,104.28)

National Institute of Information and Communications Technology

Monitoring magnetic field variations at Russian auroral sector based on the collaboration among Russia (AARI, IDG), Japan (NICT, Kyoto-U), and USA (JHU/APL)

Page 13: Toward Prediction of Relativistic Electron Environment in Geospace Tsutomu Nagatsuma, K. Sakaguchi, S. Saito, M. Kunitake, and K. T. Murata National Institute

INTERMAGNET

• International consortium for geomagnetic observatory (now 104 observatories are participated) We play a role of real-time data exchange in Asian sector with WDC Kyoto.

National Institute of Information and Communications Technology

Page 14: Toward Prediction of Relativistic Electron Environment in Geospace Tsutomu Nagatsuma, K. Sakaguchi, S. Saito, M. Kunitake, and K. T. Murata National Institute

NICT_MAG

• Monitoring magnetic field variation mainly around Japanese meridian sector which Rapid MAG and INTERMAGNET does not cover

National Institute of Information and Communications Technology

Page 15: Toward Prediction of Relativistic Electron Environment in Geospace Tsutomu Nagatsuma, K. Sakaguchi, S. Saito, M. Kunitake, and K. T. Murata National Institute

SuperDARN ( King Salmon )

• Radar observation network for monitoring polar ionospheric convection. We operate HF radar at King Salmon, Alaska for montoring auroral and subauroral plasma flow.

King Salmon

National Institute of Information and Communications Technology

Page 16: Toward Prediction of Relativistic Electron Environment in Geospace Tsutomu Nagatsuma, K. Sakaguchi, S. Saito, M. Kunitake, and K. T. Murata National Institute

National Institute of Information and Communications Technology

2011/06/01(Thu.) 10:30-10:50 Comparison of ionospheric azimuthal Pc5 plasma oscillations with geomagnetic pulsations on the ground and in geostationary orbit, by Sakaguchi et al.

However, azimuthal Pc5 plasma oscillations observed by KSR is not clearly correlated with geomagnetic pulsations on the ground and in geostationary orbit

Page 17: Toward Prediction of Relativistic Electron Environment in Geospace Tsutomu Nagatsuma, K. Sakaguchi, S. Saito, M. Kunitake, and K. T. Murata National Institute

Future : constructing prototype of relativistic electron flux prediction

Current: radiation belt simulation only for 2MeV electrons

Research Plan of practical radiation belt model

Magnetopause

shadowing

(insta

lled )

Atmospheric loss( installed)

Precipitation

MPSWhistlerEMIC…

ULF

Will be installed

Introducing non- stationary background magnetic field from Global MHD simulation

Will be installed

Global MHD

GEOGEO

Empirical model based on NICT’s observation network data

National Institute of Information and Communications Technology

Page 18: Toward Prediction of Relativistic Electron Environment in Geospace Tsutomu Nagatsuma, K. Sakaguchi, S. Saito, M. Kunitake, and K. T. Murata National Institute

Thank You!