62
Sh Topology in e-h Double Layers Rui-Rui Du Rice University Shoucheng Zhang Memorial Workshop May 2-5,.2019

Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

Sh

Topology in e-h Double Layers

Rui-Rui Du

Rice University

Shoucheng Zhang Memorial Workshop May 2-5,.2019

Page 2: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

路漫漫其修远兮吾将上下而求索

I shall take a long Journeyto seek eternal truth

Page 3: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

1989

1992

Composite Fermions

Du, Stormer, Tsui, Pfeiffer, West 1993

Page 4: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

A Gift from Nature

Infrared Detectors

FQHELaser

Transistor

AlAsGaAs

Eg

Ge Si

InAs

GaSb

IQHE

QSHE

Exciton

Insulator

Page 5: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

OUTLINES1. Introduction

2. Materials and Devices

3. Quantum Spin Hall Effect

4. Large Gap TI

Page 6: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

Quantized Conductance of Edge States

Phys. Rev. Lett. 2011, Knez et al, Evidence for edge modes

Phys. Rev. Lett. 2012, Knez et al, Perfect Andreev reflection of edge-SC junction

Phys. Rev. Lett. 2015, Du et al, Quantized edge states for small samples

Phys. Rev. Lett. 2014, Stanton et al,

Phys. Rev. Lett. 2014, Knez et al.

Phys. Rev. Lett. 2015, Li et al

Phys. Rev. Lett. 2017, Du, et al , N.Comm. 2017, Du et al

Page 7: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

Date: 01/09/2011 (04:54:27 PM CDT)

From: sczhang <[email protected]>

To: [email protected]

Cc: [email protected], Chaoxing Liu <[email protected]>

Dear Rui and Ivan,

I read your beautiful paper over and over

again, and simply can not withhold

my excitement about this important

breakthrough in the field!

Page 8: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

Eg1

Large

Gap

Eg2

Small

Gap

Eg3

Negative

Gap

Mott, Philos Mag 1961

Keldysh, Yu.V., Fizika ,1964

Halperin & Rice, Rev Mod Phys

1968

+e

-e

Exciton Insulators

EF

EFTopological

Exciton Insulator

w/ edge states

Page 9: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

OUTLINES

1. Introduction

2. Materials and Devices

3. Quantum Spin Hall Effect

4. Large Gap TI

Page 10: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

10

Liu, et al, PRL 100, 236601(2008)

6.1 A Family

1. Band parameter

DE = E1 – H1

tuned by width, x, gates

2. DE < 0 inverted -0.15 eV to 0

Tunneling mix e-h and opens

a gap at finite k-vector

Page 11: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

p

n SCSC

NTT, ETH

Wafer and Device

11

n-Inv

n-Metal

p-Metal

TI

NI

p-Inv

Page 12: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

Two Limits of Coupling

Strong

Tunneling

1- D

Dirac Fermions

Majorana

Pair

Mini Gap

S-Superconductor+

Weak Tunneling

Strong Coulomb

2D

Excitons

Exciton

Insulator

Counter flow

Superfluid

-e

+e

E

Iin

Iout

Page 13: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

Gerry Sullivan and Amal Ikhlassi

In front of GEN III MBEICQM PKU

Page 14: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

OUTLINES

1. Introduction

2. Materials and Devices

3. Quantum Spin Hall Effect

4. Large Gap TI

Page 15: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

Corbino Disk

rBulk >> 10 MW

Minigap ~ 66 K

Mobility gap

~ 26 K

Truly Insulating Bulk

15

Lingjie Du

Page 16: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

Conductance Plateau up to 4 K

16

Page 17: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

Non-Local Ede Transport: H-Bar

17Lingjie Du

Page 18: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

18

SQUID Imaging of InAs/GaSb Edge Modes

Stanford: Spanton, Moler

Rice: Lingjie Du, RRDPRL 14

50 mm

Current(Horizontal)

Current(Vertical)

Page 19: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

APS March Meeting 2018, LA, California, USA

QSHE vs. Exciton Condensation

A competition between even- and odd-parity exciton

condensate

the parity of order parameter

o For small A, topologically trivial s-

wave exciton condensate phase

o For large A, topologically nontrivial

QSH insulator phase with a p-wave

exciton order parameter

Phys. Rev. Lett.112,

176403(2014)

Coupling term between two layers

odd-parity even-parity

Page 20: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

Editors' ChoicePhysics

Probing an excitonic insulator

1.Jelena Stajic

Science 22 Dec 2017:

Vol. 358, Issue 6370, pp. 1552-1553

DOI: 10.1126/science.358.6370.1552-g

Page 21: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

Bohr Rad. ~ 45A

Intra. Dis. ~ 100-300A

Binding E. ~100K

Page 22: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits
Page 23: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

THz Absorption Spectrum

Page 24: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

Transport Measurements

Page 25: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

Conductance Oscillations

in the Gap of Inverted InAs/GaSb

Page 26: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

Frequency Jump from Metallic to Gap Regimes

Page 27: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

QSH to QH Topological Phase Transition

Page 28: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

OUTLINES

1. Introduction

2. Materials and Devices

3. Quantum Spin Hall Effect

4. Large Gap TI

Page 29: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

Strained QWS

Page 30: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

Strain Effects on the Band Structures

9.5 nm InAs/4 nm Ga0.75In0.25Sb

Page 31: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

InAs/GaSb InAs/In0.25Ga0.75Sb

20% Indium

~ 1% strain in InxGa1-xSb

0 % 60 K

25% 130 K

32% 250 K

40% 480 K

Page 32: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

Enhanced Bulk Hybridization Gaps

20% 25% 32%

B//

0

25

32%

B//

Page 33: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

Quantized Edge Transport in 10 um Length

Quantized in a 10um Hall Bar

Page 34: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

April 2018

All based on InAS/GaSb and InAs/InGaSb

Gap > 50 meV

Large Fermi velocity

Page 35: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

Epitaxial Transfer Process

• (a,b,c) The epitaxially grown, single-crystal

InAs films are patterned with PMMA and

wet etched into nanoribbon (NR) arrays. (d)

A subsequent selective wet etch of the

underlying AlGaSb sacrificial layer. InAs

NRs are partially released. (e,f) transfer of

NRs by using an elastomeric PDMS slab

resulting the formation of InAs NR arrays on

Si/ SiO2 substrates.

Partially released InAs nanoribbons

(a) (b) (c)

(f) (e) (d)

姚思齐,韩中东

Page 36: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

Marcus, Palmstrøm groups Hard Gap

SiO2GaInSbInAs

Al Al

Our Group

Page 37: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

Double-Layer Excitonic Condensations

Strong

Tunneling

1- D

Dirac Fermions

Majorana

Pair

Mini Gap

S-Superconductor+

Weak Tunneling

Strong Coulomb

2D

Excitons

Exciton

Insulator

Counter flow

Superfluid

-e

+e

E

Iin

Iout

Page 38: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

SUMMARY1) Quantum Spin Hall Effect inInAs/GaSb

2) Ground States becomes Excitoinc Insulator

3) Large gap TI is within reach

4) Next : Carry on

A clean laboratory for

electron/hole many-particle physics

Page 39: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

1. Materials: Strained-Layer InAs/GaInSb

2. Large-Gap QSHI

3. Double-Layer Excitonic Condensation

Page 40: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

40

6.1 A Family

1. Band parameter

DE = E1 – H1

tuned by width, x, gates

2. DE < 0 inverted -0.15 eV to 0

Tunneling mix e-h and opens

a gap at finite k-vector

Liu et al, PRL 100, 236601 (2008)

Infrared Detectors

Page 41: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

p

n SCSC

NTT, ETH

Wafer and Device

41

n-Inv

n-Metal

p-Metal

TI

NI

p-Inv

Page 42: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

C. Liu et al, PRL 100 236601

(2008)Phase Diagram

Three Regimes of InAs/GaSb System

Shallowly InvertedDeeply Inverted

(semimetal,

bulk still conducting)

Non-

inverted

(Normal

Insulator)

This is the regime

for QSHE !

Page 43: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

Quantum Spin Hall Insulators (QSHIs)

L. Du et al, PRL 114 096802 (2015)

InAs/GaSb QWs in Shallowly

Inverted Regime

Larger samples:

Coherent length ~ 4 mm

Some backscattering

Small sample

Page 44: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

44

* Quantized conductance for small samples

* Non-quantized conductance for large samples

* Conductance does not change under high B//

•Low velocity of edge modes

uF ~ 2 x104 m/s

kF ~ 1 x 106/cm

•Extreme. long scattering time

t=l/uF = 4mm/(2x104m/s)~200 ps

•Tunable mode dispersion

Properties of InAs/GaSb Edge States

HgTe

5 x105 m/sg = e2/ uF e

Page 45: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

WHY Large-gap 2D Topological Insulators

• Recover single particle

properties

“Plain Vanilla QSHI”

• More insulating bulk gaps

• Long coherent length

Page 46: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

Strained QWS

Page 47: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

Strain Effects on the Band Structures

9.5 nm InAs/4 nm Ga0.75In0.25Sb

Page 48: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

InAs/GaSb InAs/In0.25Ga0.75Sb

20% Indium

~ 1% strain in InxGa1-xSb

0 % 60 K

25% 130 K

32% 250 K

40% 480 K

Page 49: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

Enhanced Bulk Hybridization Gaps

20% 25% 32%

B//

0

25

32%

B//

Page 50: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

“Coherent Length” increase

with less inverted band:

Correlated with increased VF

- Less interacting 1D Electronic system

- Move away from Luttinger

Coherent length increases with increasing VF

Page 51: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

Quantized Edge Transport in 10 um Length

Quantized in a 10um Hall Bar

Page 52: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

TRS Protected Helical Edge States

9.5 nm InAs/4 nm Ga0.75In0.25Sb

Page 53: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

SiO2

Page 54: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

Compatible with III-V CMOS Technology

Page 55: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

Marcus, Palmstrøm groups Hard Gap

SiO2GaInSbInAs

Al Al

Our Group

Page 56: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

3. Double-Layer Excitonic Condensations

Strong

Tunneling

1- D

Dirac Fermions

Majorana

Pair

Mini Gap

S-Superconductor+

Weak Tunneling

Strong Coulomb

2D

Excitons

Exciton

Insulator

Counter flow

Superfluid

-e

+e

E

Iin

Iout

Page 57: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

57

Mott, Philos Mag 1961

Knox, 1963

Keldysh, Yu.V., Fizika ,1964

Jerome, Rice, Kohn, 1967

Halperin & Rice, Rev Mod Phys, 1968

The Exciton Analog of BCS Superconductivity

Electron-Hole Pairing Cooper Pairing

Page 58: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

58

BEC

BCSBCS

dDilute limit: 5 x 1010/cm2

Reasonably high mobility 105 cm2/Vs

Electron-hole symmetry

Page 59: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

9.5nm

10nm

5nm

Page 60: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

Observation

T > 4 K

Main Peak

Onset 40 K

Gap 90 K

Side Peak

Onset 15 K

Gap 25 K

Large Energy Scale

Page 61: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

61

THz Absorption Shows e-h Pair-breaking Excitation

Page 62: Topology in e-hDouble Layers - Stanford University · 2019. 5. 15. · a gap at finite k-vector. p n SC SC NTT, ETH Wafer and Device 11 n-Inv n-Metal p-Metal TI NI p-Inv. Two Limits

Summary for Large Gap QSHI in Strained Layer QWs

• The strained InAs/Ga1-xInxSb QWs offers

Larger bulk insulating gap up to 50 meV

Z2 2D topological insulator

Double-layer exciton condensation

• Future work:

• SC Proximity + Edge States + FM

Insulator

• Counter-flow experiments

QSH Edge

Majorana Platform