Topic 5 PowerFlow

Embed Size (px)

Citation preview

  • 8/16/2019 Topic 5 PowerFlow

    1/32

    Power Systems Analysis ECNG 3012 5-Jan-May 2009

    The bus admittance matrix [Ybus]

    1 2

    3

    1 !

    1 ! 1 !

    1 !

    -1 !

    2 -1 -1

    -1 2 -1

    -1 -1 3

    1 2 3

    1

    2

    3

     Y BUS =

    1

  • 8/16/2019 Topic 5 PowerFlow

    2/32

    Power Systems Analysis ECNG 3012 5-Jan-May 2009

    Changes in the system [Ybus]

    ! Remove a line.!Equivalent to adding a line in parallel to the

    one to be removed with y = -yline" Diagonal –yline ii & jj

    " Off-diagonal +yline ij & ji

    ! Add a line.

    2

  • 8/16/2019 Topic 5 PowerFlow

    3/32

    Power Systems Analysis ECNG 3012 5-Jan-May 2009

    Changes in the system [Ybus]

    ! Remove a bus!  Assume we are interested only in m buses in

    a system with n buses (m

  • 8/16/2019 Topic 5 PowerFlow

    4/32

    Power Systems Analysis ECNG 3012 5-Jan-May 2009

    Changes in the system [Ybus]

    Ib

     = 0 = Y ab

    t Va

     + Y bb

     Vb

      Vb = -Y bb-1 Y ab

    t Va

    Then:

    Ia= Y aa Va + Y ab Vb  = Y aa Va + Y ab(-Y bb

    -1 Y abt Va)

    Ia = [Y aa – Y ab Y bb-1

     Y abt

    ]Va

      Ia = [Y BUSEQUIV] Va

      [Y BUSEQUIV] = Y aa – Y ab Y bb

    -1 Y abt

    KRON’S

    REDUCTION

    4

  • 8/16/2019 Topic 5 PowerFlow

    5/32

    Power Systems Analysis ECNG 3012 5-Jan-May 2009

    Power Flow

    !

    Operation point of thesystem.!  Steady State.!  Given conditions of

    generation, load &

    configuration: OperationPoint

    Buses (V/!)Branches (P, Q)

    Solve Equations (Balance generation and load)

    5

  • 8/16/2019 Topic 5 PowerFlow

    6/32

    Power Systems Analysis ECNG 3012 5-Jan-May 2009

    Power Flow Main Objectives

    !

    To calculate P&Q flow through elements." Observe power flow and check overloads.

    " Effects of contingencies.

    " Effects of configuration changes.

    !

    To calculate voltage magnitude and angle on buses." Quality of service." Strategies to operate elements with voltage control ( Taps, Exc.

    Generator , Capacitors.)

    ! To design the optimal operation & distribution of

    loads.

    ! To define operation guidelines.

    6

  • 8/16/2019 Topic 5 PowerFlow

    7/32

    Power Systems Analysis ECNG 3012 5-Jan-May 2009

    Power Flow

     V1  V2

     V5

     V3

     V4

    SD1

    SD4 SD5

    SD3

    SG2 SG3SG1

    7

  • 8/16/2019 Topic 5 PowerFlow

    8/32

    Power Systems Analysis ECNG 3012 5-Jan-May 2009

    Power Flow Basics

    BasicEquations

    Power Balance on each node

    Power Balance for the system

    ! Sinput = ! Soutput

    SGEN = SLOADS + SLOSSES

    S = P + jQ

    (Generated real power is calculated with economic dispatch)

    8

  • 8/16/2019 Topic 5 PowerFlow

    9/32

    Power Systems Analysis ECNG 3012 5-Jan-May 2009

    Power Flow

    P+"PQ+"Q I

    R + jX Vg /!  Vc /0

    0

    P + jQ

    " V

     Vg

    I  Vc IR 

    IX

    !

    !

    " V We want:" V =f(P,Q)

    # V = f(P,Q)

    9

  • 8/16/2019 Topic 5 PowerFlow

    10/32

    Power Systems Analysis ECNG 3012 5-Jan-May 2009

    Power Flow

     Vg2

     = (Vc +" V)2

     + (" V)2

     Vg2 = (Vc + RI cos$ + IX sin$ )

    2 + (IX cos$ - RI sin$ )2

    P = VcI cos $  ; Q = VcI sin $

     Vg2 = Vc + RP + XQ

    2 + XP - RQ 2

       Vc  Vc  Vc  Vc

    " V = RP + XQ Vc

    " V = XP – RQ

     Vc

    If R

  • 8/16/2019 Topic 5 PowerFlow

    11/32

    Power Systems Analysis ECNG 3012 5-Jan-May 2009

    Power Flow

    ! If load P increases # increases

    ! If load Q increases Vc

     reduces

    ! Real power flow #sending end > #receiving end

    ! Reactive power flow |Vsending end| >|Vreceiving end|

    11

  • 8/16/2019 Topic 5 PowerFlow

    12/32

    Power Systems Analysis ECNG 3012 5-Jan-May 2009

    Power Flow - Definitions

    !  At each bus:Vk (Voltage magnitude), #k (Voltage angle),Pk (Total injected real power), Qk(Total injected reactive

    power)

    ! Reduced number of unknowns. Assumptions:

    "  At most generator buses, the active power PG is controlled (by

    speed governor) and the voltage magnitude is controlled (by thevoltage regulator). Treat these as known.

    "  At most load buses, a reasonable approximation is that the loadactive and reactive power demand PD and QD are known.

    "  At one generator bus, leave the active power as a variable (tomake up system losses).

    12

  • 8/16/2019 Topic 5 PowerFlow

    13/32

    Power Systems Analysis ECNG 3012 5-Jan-May 2009

    Power Flow – Bus Types

    ! Load bus (PQ)

    " known real (P) and reactive (Q) power injections

    ! Voltage controlled bus (PV)

    " known real (P) power injection and the voltagemagnitude (V)

    ! Slack bus (swing bus)

    "

    known voltage magnitude (V) and voltage angle ($)"must have one generator as the slack bus

    " takes up the power slack due to losses in the network

    13

  • 8/16/2019 Topic 5 PowerFlow

    14/32

    Power Systems Analysis ECNG 3012 5-Jan-May 2009

    Power Flow – Bus Types

    ! LOAD (PQ)" Given: Pk, Qk" Unknown: Vk, #k 

    " Example: Loads, transformer buses

    ! VOLTAGE CONTROLLED (PV)" Given: Pk, Vk" Unknown: Qk, #k 

    " Example: Generation buses, reactive powercompensation buses

    ! SLACK(V #)" Given: Vk, #k" Unknown: Pk, Qk 

    14

  • 8/16/2019 Topic 5 PowerFlow

    15/32

    Power Systems Analysis ECNG 3012 5-Jan-May 2009

    Power Flow Equations

    15

  • 8/16/2019 Topic 5 PowerFlow

    16/32

  • 8/16/2019 Topic 5 PowerFlow

    17/32

    Power Systems Analysis ECNG 3012 5-Jan-May 2009

    Power Flow – Gauss-Seidel

    17

  • 8/16/2019 Topic 5 PowerFlow

    18/32

    Power Systems Analysis ECNG 3012 5-Jan-May 2009

    Power Flow – Gauss- Seidel

    18

  • 8/16/2019 Topic 5 PowerFlow

    19/32

    Power Systems Analysis ECNG 3012 5-Jan-May 2009

    Power Flow – Gauss-Seidel

    19

  • 8/16/2019 Topic 5 PowerFlow

    20/32

    Power Systems Analysis ECNG 3012 5-Jan-May 2009

    Power Flow – Gauss-Seidel

    20

  • 8/16/2019 Topic 5 PowerFlow

    21/32

    Power Systems Analysis ECNG 3012 5-Jan-May 2009

    Power Flow – Gauss-Seidel

    21

  • 8/16/2019 Topic 5 PowerFlow

    22/32

    Power Systems Analysis ECNG 3012 5-Jan-May 2009

    Power Flow – Gauss-Seidel

    22

  • 8/16/2019 Topic 5 PowerFlow

    23/32

    Power Systems Analysis ECNG 3012 5-Jan-May 2009

    Power Flow – Gauss-Seidel

    ! Complete set of equations

    23

  • 8/16/2019 Topic 5 PowerFlow

    24/32

    Power Systems Analysis ECNG 3012 5-Jan-May 2009

    Power Flow – Gauss-Seidel

    24

  • 8/16/2019 Topic 5 PowerFlow

    25/32

    Power Systems Analysis ECNG 3012 5-Jan-May 2009

    Power Flow – Gauss-Seidel

    ! System characteristics!Since both components (V & $) are specified

    for the slack bus, there are 2(n - 1) equationswhich must be solved iteratively.

    !For the load buses, the real and reactivepowers are known: scheduled" the voltage magnitude and angle must be

    estimated."

    in per unit, the nominal voltage magnitude is 1 p.u." the angles are generally close together, so an

    initial value of 0 degrees is appropriate.

    25

  • 8/16/2019 Topic 5 PowerFlow

    26/32

    Power Systems Analysis ECNG 3012 5-Jan-May 2009

    Power Flow – Gauss-Seidel

    ! For the generator buses, the real power andvoltage magnitude are known" the real power is scheduled."

    the reactive power is computed based on theestimated voltage values." the voltage is computed by Gauss-Seidel, only the

    angle is kept" the complex voltage is found from the schedule

    magnitude and the iterative angle part.

    26

  • 8/16/2019 Topic 5 PowerFlow

    27/32

    Power Systems Analysis ECNG 3012 5-Jan-May 2009

    Power Flow – Gauss-Seidel

    Select initial voltages

    for each bus

    Find Maximum Voltage Change

    "EMAX = | Ei! – Ei

    ! -1|MAX OVER i

    "EMAX! %Calculate Line Flows,

    Losses, Mismatch, etc

    Print Results Stop

     YesNo

    Do for all ii = 1 … N

    (i "ref)

    % = Specified Voltage

      Convergence

      Tolerance

    Start

    Solve for EiNEW

    EiNEW

    = f(Pi,E j) j = 1 … N

    27

  • 8/16/2019 Topic 5 PowerFlow

    28/32

    Power Systems Analysis ECNG 3012 5-Jan-May 2009

    Power Flow – Gauss-Seidel Example

    21

    3

    4

    5

    6

    Bus Type Given Unknown

    1 Load P1,Q1 V1,#1

    2 Voltage

    controlled

    P2,V2 Q1,#2

    3 Load P3,Q3 V3,#3

    4 Load P4,Q4 V4,#4

    5 Load P5,Q5 V5,#5

    6 Slack V6,#6 P6,Q6

    28

  • 8/16/2019 Topic 5 PowerFlow

    29/32

    Power Systems Analysis ECNG 3012 5-Jan-May 2009

    Power Flow – Gauss-Seidel Example

    Calculate [Y bus

    ]: Y 11

    , Y 12

    , Y 13

    , Y 21

    , Y 22

    , Y 26

    , Y 31

    , Y 33

    , Y 34

    , Y 43

    ,

      Y 43, Y 44, Y 45, Y 54, Y 55, Y 56, Y 62, Y 64, Y 66

    Bus V(0)   #(0)

    1 1.0 0o

    2 Vknown

    0o

    3 1.0 0o

    4 1.0 0o

    5 1.0 0o

    6 Vknown

    0o

    Initial voltages (Flat start)

    29

  • 8/16/2019 Topic 5 PowerFlow

    30/32

    Power Systems Analysis ECNG 3012 5-Jan-May 2009

    Power Flow – Gauss-Seidel Example

    Bus 1  V1(1) =1 -P1 + jQ1

     Y 11  V1(0)*- Y 12 V2(0)  - Y 13 V3(0)

    Q2(1) = V2(0) [ V1(1){G21 sin(!21) – B21 cos (!21)}

      + V6{G26 sin(!26) – B26 cos (!26)}

     V2(1) =1 P2 – jQ2

     Y 22  V2(0)*- Y 21 V1(1)  - Y 26 V6

    Bus 2

    !21 = !2 - !1 ;  !26 = !2 - !6

    Multiply V2(1) such that |V2(1)| = V2 given

    30

  • 8/16/2019 Topic 5 PowerFlow

    31/32

    Power Systems Analysis ECNG 3012 5-Jan-May 2009

    Example – Equations

     V3(1) =1 -P3 + jQ3

     Y 33  V3(0)*- Y 31 V1(1)  - Y 34 V4(0)

    Bus 3

     V4(1) =1 -P4 + jQ4

     Y 44  V4(0)*- Y 43 V3(1)  - Y 45 V5(0) - Y 46 V6

    Bus 4

     V5(1) = 1 -P5 + jQ5

     Y 55  V5(0)*- Y 45 V4(1)

    Bus 5

    Iterate with these equations31

  • 8/16/2019 Topic 5 PowerFlow

    32/32

    Power Systems Analysis ECNG 3012 5-Jan May 2009

    Gauss – Seidel Method

    ! Simple , basic

    ! Slow convergence

    ! Convergence problems

     Acceleration Factor

     Vi(k)acc =  Vi(k-1) + ! (Vi(k) – Vi(k-1))

     1.0" ! "2.0

    32