Topic 4 PrinciplesMachines

Embed Size (px)

Citation preview

  • 8/17/2019 Topic 4 PrinciplesMachines

    1/17

    Jan-May 2010 Electrical Machines & Drives - ECNG 3010 2 -

    Basic Principles of ElectromechanicalEnergy Conversion

    Electric Drive

    Electrical

    System

    Electrical

    Machine

    Mechanical

    System

    Motoring Mode

    Braking (Generating)Mode

    Pelec Pmech

    Pelec Pmech

    1

  • 8/17/2019 Topic 4 PrinciplesMachines

    2/17

    Jan-May 2010 Electrical Machines & Drives - ECNG 3010 2 -

    Magnetic Field

    ! Magnetic field produced by a current carrying conductor 

    !  Ampere’s Law

    !" H dl    =Closed path

    dl  

    2

  • 8/17/2019 Topic 4 PrinciplesMachines

    3/17

    Jan-May 2010 Electrical Machines & Drives - ECNG 3010 2 -

    Flux Density

    BsatBm

    !0

    !0

    !m

    HmHm

    Bm

    " Units : Weber/meter2 (Wb/m2)) or Tesla (T)

    " In air B = !oH , !o = 4" x 107 Wb/A/m

    " Ferro-magnetic materials (higher permeability)

    # Linear approximation Bm = !mHm# Bsat~ 1.6 – 1.8 Tesla

    # In saturation !m approaches !0

    3

  • 8/17/2019 Topic 4 PrinciplesMachines

    4/17

    Jan-May 2010 Electrical Machines & Drives - ECNG 3010 2 -

    Flux, Flux Linkage & MMF

    ! Flux !m (Wb)

    (assuming uniform flux density)

    !m = Bm A m

    Bm= !mHm and Hm = Ni  / l m

    !m

     = Ni

    l m"mAm

    = F

     Am

    !m

    4

  • 8/17/2019 Topic 4 PrinciplesMachines

    5/17

    Jan-May 2010 Electrical Machines & Drives - ECNG 3010 2 -

    Flux, Flux Linkage, and MMF

    ! Reluctance

    ! FluxLinkage

    ! MMF

    " m = N !m

    F = N i

    m

    =l m

    "mAmR 

    5

  • 8/17/2019 Topic 4 PrinciplesMachines

    6/17

    Jan-May 2010 Electrical Machines & Drives - ECNG 3010 2 -

    Analogy between Electric and MagneticCircuits

    Electric Circuit Unit Magnetic Circuit Unit

    Driving Force emf (V) V mmf (F) At

    Response current (I) A flux (!) Wb

    Impedance resistance (R)   " reluctance ( R   ) 1/H

    Equivalentcircuit

    Field intensityrelationship

    # E . dl = V V #  H . dl = I  A

    Potentialdifference

     V = IR V At

     V R +

     _ I

     V = IR 

    F+

     _ !

    F = !

    F = !

    6

  • 8/17/2019 Topic 4 PrinciplesMachines

    7/17

    Jan-May 2010 Electrical Machines & Drives - ECNG 3010 2 -

      Inductance

    ! For linear magnetic conditions inductance depends only on magnetic circuit

      Energy stored in

    magnetic circuits

      Energy density

    "m = Lmi

    i A m

    !mN

    !m

    Lm=i

    = N

    l m

    "mAm N# m

    =

      N2

      l m  "mAm

    = N2

      N2

      l m

      "mAm

    Lm=

    i  Hm Bm   !m   ! m N l rx  x (!m)  x (A m) x (N)

    volume

    w = W = 1 B2m

      volume 2"m 

    W= (1/2) L i2 = 1 B2 A ml m

      2"m

    7

  • 8/17/2019 Topic 4 PrinciplesMachines

    8/17

    Jan-May 2010 Electrical Machines & Drives - ECNG 3010 2 -

    Rotating Machine

    8

  • 8/17/2019 Topic 4 PrinciplesMachines

    9/17

    Jan-May 2010 Electrical Machines & Drives - ECNG 3010 2 -

    Rotating Machine

    Stator

    Rotor

     Air Gap

    Two sets of windings: stator and rotor… why?

    9

  • 8/17/2019 Topic 4 PrinciplesMachines

    10/17

    Jan-May 2010 Electrical Machines & Drives - ECNG 3010 2 -

    Rotating Machine

    10

  • 8/17/2019 Topic 4 PrinciplesMachines

    11/17

    Jan-May 2010 Electrical Machines & Drives - ECNG 3010 2 -

    Basic Principles of Operation

    ! Force on a current carrying conductor subjected toan externally-established magnetic field (extensionof Lorentz law – motor equation)

    $  f  em  = il xB

    ! emf induced in a conductor moving in a magnetic

    field ( extension of Faraday law)$ e = B l u

    11

  • 8/17/2019 Topic 4 PrinciplesMachines

    12/17

    Jan-May 2010 Electrical Machines & Drives - ECNG 3010 2 -

    Electromagnetic Force

    ! Force Direction – Higher concentration field to lower.

    External B field

     f  em f  em

    subtract add

     f  em

    resultant

     B

    il 

     f  em = B l i

    [Nm] [Wb/m2] [m] [A]

    12

  • 8/17/2019 Topic 4 PrinciplesMachines

    13/17

    Jan-May 2010 Electrical Machines & Drives - ECNG 3010 2 -

    Electromagnetic Force

    Torque produced by forcescaused by interaction ofcurrent-carrying conductors

    and magnetic fields

    ferromagnetic pieces

    Principle of Alignment

    Magnetic flux

    lines

     F 

     F 

    Principle of interaction

     F   F 

     F 

     F 

    13

  • 8/17/2019 Topic 4 PrinciplesMachines

    14/17

    Jan-May 2010 Electrical Machines & Drives - ECNG 3010 2 -

    ! Force on positive charges

       f q = q ( u x B )

      In this example a net positive chargeaccumulates at the top and a net

    negative charge accumulates at thebottom (Lorentz force)

    ! Magnitude of induced emf 

      e =  B  l u

      [V] [Wb/m2] [m] [m/s]

      Polarity of induced emf is given by  f q 

    and is independent of current flowingthrough the conductor.

    Induced EMF

     f q-

     f q+

    +

     _ 

     B

    (into paper)

     f q+

    u

     B

    (into paper)

    14

  • 8/17/2019 Topic 4 PrinciplesMachines

    15/17

    Jan-May 2010 Electrical Machines & Drives - ECNG 3010 2 -

    Rotating Electrical Machine:Two windings

    ! One winding: producesmain magnetic field (couldbe replaced by magnets).

    ! Next winding: produces thetorque due to the “motorequation”. Carries thecurrent associated withtorque.

    !  Additional issues: inducedvoltages, more than onemagnetic field.

     F 

     F 

    15

  • 8/17/2019 Topic 4 PrinciplesMachines

    16/17

    Jan-May 2010 Electrical Machines & Drives - ECNG 3010 2 -

    Production of Magnetic Field

    ! Radial field (H,F,B) in the air gap

      H positive if away from center 

    Rotorsurface

     Nsis#02l g

    -$/2   0   $   2$

    Statorsurface  B s(t)

    +  Nsis#

    02l g

    !

    Magnetic

    axis

    !

    " = $

    is(t)

    is(t) N  s

    16

  • 8/17/2019 Topic 4 PrinciplesMachines

    17/17

    Jan-May 2010 Electrical Machines & Drives - ECNG 3010 2 -

    Application of Basic Principles

    Assumptions

      Uniform B s , radial in direction

    - Rotor current of constant magnitudebut polarity changes with position

    -

    Counter- clockwise torque ispositive

    Force acting on conductor 

      f em = B s (N r I) l 

      and torque on coil

      T em = 2 f emr = 2 B s (N r I) l r 

    Emf induced in coil

      er =2 econd  = 2 N r B s l r"m r 

    i r 

     I 

    - I 

    er   E 

    - E 

    0

    0

    0

    1800

    3600

    T em

    %

    %

    %

    Magnetic

    axisElectricalsystem

    !

    &m

    Tem

    + _ er ir 

    stator

    MotoringMode

    17