16
Today: Review for Exam 1 Wednesday: Chapter 5 Exam Informa+on 10/1/14 – Wednesday 7:30 PM All Sec+ons 505509 MPHY 205 (this room, 30 min a.er class ends) Dura+on 1 hour 15 min Please return to the classroom 20 min aLer class is dismissed and wait to be let into the room. Know your instructor’s name (S+egler) and your sec+on number (505 509). Have your TAMU ID ready to show when turning in your exam. Calculators are allowed, no presaved data on them, if you are caught using previously saved data it will be considered chea=ng and dealt with accordingly. Exam Structure 5 mul+ple choice ques+on You do not need to show your work on these. There is no par+al credit. 4 long problems The problems will be similar to homework problems of medium difficulty. There will be a mix of ‘numeric’ and ‘symbolic’ problems. Par+al credit is given, you must show your work clearly. T. S+egler 09/29/2014 Texas A&M University

Today:’Review’forExam’1’ Wednesday:’Chapter5people.physics.tamu.edu/tyana/PHYS218/files/Lect_09_9-29-14_post.… · g =9.80 m/s2 =32.15 ft/s2 (on Earth’s surface) G =6.674

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Today:’Review’forExam’1’ Wednesday:’Chapter5people.physics.tamu.edu/tyana/PHYS218/files/Lect_09_9-29-14_post.… · g =9.80 m/s2 =32.15 ft/s2 (on Earth’s surface) G =6.674

Today:  Review  for  Exam  1  Wednesday:  Chapter  5  

Exam  Informa+on  10/1/14  –  Wednesday  7:30  PM  All  Sec+ons  505-­‐509    à  MPHY  205  (this  room,  30  min  a.er  class  ends)  Dura+on  à  1  hour  15  min    Ø  Please  return  to  the  classroom  20  min  aLer  class  is  dismissed  and  wait  to  be  let  into  the  room.    Ø  Know  your  instructor’s  name  (S+egler)    and  your  sec+on  number  (505  -­‐  509).  Ø  Have  your  TAMU  ID  ready  to  show  when  turning  in  your  exam.  Ø  Calculators  are  allowed,  no  pre-­‐saved  data  on  them,  if  you  are  caught  using  previously  saved  data  

it  will  be  considered  chea=ng  and  dealt  with  accordingly.    Exam  Structure  Ø  5  mul+ple  choice  ques+on  

•  You  do  not  need  to  show  your  work  on  these.    •  There  is  no  par+al  credit.  

Ø  4  long  problems  •  The  problems  will  be  similar  to  homework  problems  of  medium  difficulty.    •  There  will  be  a  mix  of  ‘numeric’  and  ‘symbolic’  problems.  •  Par+al  credit  is  given,  you  must  show  your  work  clearly.  

T.  S+egler                09/29/2014            Texas  A&M  University  

Page 2: Today:’Review’forExam’1’ Wednesday:’Chapter5people.physics.tamu.edu/tyana/PHYS218/files/Lect_09_9-29-14_post.… · g =9.80 m/s2 =32.15 ft/s2 (on Earth’s surface) G =6.674

Problem  1  

T.  S+egler                09/29/2014            Texas  A&M  University  

Find  the  magnitude  and  direc+on  of  the  sum  R  of  the  three  vectors  shown  in  the  figure.  R  =  A  +  B  +  C      The  vectors  have  the  following  magnitudes:  A  =  5.0m,  B  =  9.5m,  and  C  =  6.0m.  Express  the  direc+on  of  the  vector  sum  by  specifying  the  angle  it  makes  with  the  posi+ve  x-­‐axis,  with  the  counterclockwise  angles  taken  to  be  posi+ve.      

Page 3: Today:’Review’forExam’1’ Wednesday:’Chapter5people.physics.tamu.edu/tyana/PHYS218/files/Lect_09_9-29-14_post.… · g =9.80 m/s2 =32.15 ft/s2 (on Earth’s surface) G =6.674

Problem  2  

T.  S+egler                09/29/2014            Texas  A&M  University  

x(t)  =  t4  –  2t2  +  3  (in  SI  units)  describes  the  posi+on  of  a  par+cle  moving  along  a  line.    (a)  What  is  the  average  velocity  between  0  and  2  s?    (b)  What  is  v(t)  (b)  What  is  the  accelera+on  at  t  =  3  s?        

General math:

log (x/y) = log (x)! log (y)

log (xy) = log (x) + log (y)

log (xn) = n log (x)

lnx " loge x

x = 10(log10 x)

x = e(ln x)

ha

hho

!

"

ha = h cos ! = h sin"

ho = h sin ! = h cos"

h2 = h2a + h2

o tan ! =ho

ha

#A = Axi+Ay j +Az k

#A · #B = AxBx +AyBy +AzBz = AB cos ! = A!B = AB!

#A# #B = (AyBz!AzBy )i+ (AzBx!AxBz)j + (AxBy!AyBx)k

= AB sin ! = A"B = AB"

df

dt= natn#1

If f(t) = atn, then

!

"

"

#

"

"

$

% t2t1

f(t)dt = an+1

&

tn+12 ! tn+1

1

'

ax2 + bx+ c = 0 $ x =!b±

%b2 ! 4ac

2a

"

" + ! = 90!" + ! = 180!

"!

!

"

!

"

!

"

!

"!

" !

Equations of motion:translational rotational

constant (linear/angular) acceleration only:

#r(t) = #r$ + #v$t+12#at

2

#v(t) = #v$ + #at

v2f = v2$ + 2a(r ! r$)

#r(t) = #r$ +12 (#vi + #vf )t

!(t) = !$ + $$t+12%t

2

$(t) = $$ + %t

$2f = $2

$ + 2%(! ! !$)

!(t) = !$ +12 ($i + $f )t

always true:

&#v' = !r2#!r1t2#t1

#v = d!rdt

&#a' = !v2#!v1

t2#t1#a= d!v

dt =d2!rdt2

#r(t) = #r$ +% t0 #v(t) dt

#v(t) = #v$ +% t0 #a(t) dt

&$' = "2#"1t2#t1

$ = d"dt

&%' = #2##1

t2#t1%= d#

dt =d2"dt2

!(t) = !$ +% t0 #$(t) dt

$(t) = $$ +% t0 #%(t) dt

Forces, Energy and Momenta:translational rotational

W = #F ·!#r =%

#F · d#r

P = dWdt = #F · #v

#pcm = m1#v1 +m2#v2 + . . .

= M#vcm#J =

%

#Fdt = !#p(

#Fext = M#acm = d!pcm

dt(

#Fint = 0

Ktrans =12Mv2cm

#& = #r # #F and |#& | = F"r

W = & !! =%

&d!

P = dWdt = #& · #$

#L = I1#$1 + I2#$2 + . . .

= Itot#$

= #r # #p(

#&ext = Itot#% = d!Ldt

(

#&int = 0

Krot =12Itot$

2

— Both translational and rotational —

W = !K = Ktrans,f +Krot,f !Ktrans,i !Krot,i

Etot,f = Etot,i +Wother ( Kf + Uf = Ki + Ui +Wother

U = !)

#F · d#r ; Ugrav = Mgycm ; Uelas =12k(r ! requil)

2

Fx(x) = !dU(x)/dx #F = !#)U = !*

$U$x i+

$U$y j +

$U$z k

+

Circular motion: arad =v2

RT =

2'R

v

s = R! vtan = R$ atan = R%

Relative velocity:#vA/C = #vA/B + #vB/C

#vA/B = !#vB/A

Constants/Conversions:

g = 9.80 m/s2 = 32.15 ft/s2 (on Earth’s surface)

G = 6.674# 10#11 N ·m2/kg2

R% = 6.38# 106 m M% = 5.98# 1024 kgR& = 6.96# 108 m M& = 1.99# 1030 kg

1 km = 0.6214 mi 1 mi = 1.609 km1 ft = 0.3048 m 1 m = 3.281 ft1 hr = 3600 s 1 s = 0.0002778 hr

1 kgms2 = 1 N = 0.2248 lb 1 lb = 4.448 N

1 J = 1 N·m 1 W = 1 J/s1 rev = 360$ = 2' radians 1 hp = 745.7 W

10#9 nano- n10#6 micro- µ10#3 milli- m10#2 centi- c

103 kilo- k106 mega- M109 giga- G

Forces: Newton’s:, #F = m#a, #FB on A = !#FA on B

Hooke’s: #Felas = !k(#r ! #requil)

friction: |#fs| * µs|#n|, |#fk| = µk|#n|

Centre-of-mass:

#rcm =m1#r1 +m2#r2 + . . .+mn#rn

m1 +m2 + . . .+mn

(and similarly for #v and #a)

Gravity:

Fgrav = GM1M2

R212

Ugrav = !GM1M2

R12T =

2'a3/2%GM

Phys 218 — Final Exam Formulae

Page 4: Today:’Review’forExam’1’ Wednesday:’Chapter5people.physics.tamu.edu/tyana/PHYS218/files/Lect_09_9-29-14_post.… · g =9.80 m/s2 =32.15 ft/s2 (on Earth’s surface) G =6.674

Problem  3  

T.  S+egler                09/29/2014            Texas  A&M  University  

A  rocket  is  launched  from  rest  on  the  ground  with  an  constant  upward  accelera+on  of  5  m/s2.        6 s  aLer  the  launch  the  rocket’s  engine  shuts  down.    What  is  the  maximum  height  reached  by  the  rocket?    (Neglect  air  resistance.)    

General math:

log (x/y) = log (x)! log (y)

log (xy) = log (x) + log (y)

log (xn) = n log (x)

lnx " loge x

x = 10(log10 x)

x = e(ln x)

ha

hho

!

"

ha = h cos ! = h sin"

ho = h sin ! = h cos"

h2 = h2a + h2

o tan ! =ho

ha

#A = Axi+Ay j +Az k

#A · #B = AxBx +AyBy +AzBz = AB cos ! = A!B = AB!

#A# #B = (AyBz!AzBy )i+ (AzBx!AxBz)j + (AxBy!AyBx)k

= AB sin ! = A"B = AB"

df/dt = natn#1

If f(t) = atn, then

!

"

"

"

#

"

"

"

$

% t2t1

f(t)dt = an+1 (t

n+12 ! tn+1

1 ) (for n $= !1)%

f(t)dt = an+1 t

n+1 + C (for n $= !1)

ax2 + bx+ c = 0 % x =!b±

&b2 ! 4ac

2a

"

" + ! = 90!" + ! = 180!

"!

!

"

!

"

!

"

!

"!

" !

Equations of motion:

constant acceleration only:

#r(t) = #r$ + #v$t+12#at

2

#v(t) = #v$ + #at

v2x = v2x,0 + 2ax(x! x0)(and similarly for y and z)

#r(t) = #r$ +12 (#vi + #vf )t

always true:

'#v( = !r2#!r1t2#t1

#v = d!rdt

'#a( = !v2#!v1

t2#t1#a= d!v

dt =d2!rdt2

#r(t) = #r$ +% t0 #v(t

%) dt%

#v(t) = #v$ +% t0 #a(t

%) dt%

Circular motion: |#arad| =v2

RT =

2$R

v

Relative velocity: #vA/C = #vA/B + #vB/C

#vA/B = !#vB/A

Constants/Conversions:

g = 9.80 m/s2 = 32.15 ft/s2 (on Earth’s surface)

1 km = 0.6214 mi 1 mi = 1.609 km1 ft = 0.3048 m 1 m = 3.281 ft1 hr = 3600 s 1 s = 0.0002778 hr

1 kgms2 = 1 N = 0.2248 lb 1 lb = 4.448 N

10#9 nano- n10#6 micro- µ10#3 milli- m10#2 centi- c

103 kilo- k106 mega- M109 giga- G

Forces: Newton’s:& #F = m#a, #FB on A = !#FA on B

Phys 218 — Exam I Formulae

Page 5: Today:’Review’forExam’1’ Wednesday:’Chapter5people.physics.tamu.edu/tyana/PHYS218/files/Lect_09_9-29-14_post.… · g =9.80 m/s2 =32.15 ft/s2 (on Earth’s surface) G =6.674

Problem  4  

T.  S+egler                09/29/2014            Texas  A&M  University  

A  ball  is  dropped  (from  rest)  from  a  window  at  height  h  and  is  seen  to  reach  the  ground  in  a  certain  +me.  The  ball-­‐dropper  then  climbs  to  a  height  2h  but  wants  the  ball  to  reach  the  ground  in  the  original  +me.  Find  the  velocity  v0  that  must  be  given  to  this  ball  to  achieve  the  goal.    

General math:

log (x/y) = log (x)! log (y)

log (xy) = log (x) + log (y)

log (xn) = n log (x)

lnx " loge x

x = 10(log10 x)

x = e(ln x)

ha

hho

!

"

ha = h cos ! = h sin"

ho = h sin ! = h cos"

h2 = h2a + h2

o tan ! =ho

ha

#A = Axi+Ay j +Az k

#A · #B = AxBx +AyBy +AzBz = AB cos ! = A!B = AB!

#A# #B = (AyBz!AzBy )i+ (AzBx!AxBz)j + (AxBy!AyBx)k

= AB sin ! = A"B = AB"

df/dt = natn#1

If f(t) = atn, then

!

"

"

"

#

"

"

"

$

% t2t1

f(t)dt = an+1 (t

n+12 ! tn+1

1 ) (for n $= !1)%

f(t)dt = an+1 t

n+1 + C (for n $= !1)

ax2 + bx+ c = 0 % x =!b±

&b2 ! 4ac

2a

"

" + ! = 90!" + ! = 180!

"!

!

"

!

"

!

"

!

"!

" !

Equations of motion:

constant acceleration only:

#r(t) = #r$ + #v$t+12#at

2

#v(t) = #v$ + #at

v2x = v2x,0 + 2ax(x! x0)(and similarly for y and z)

#r(t) = #r$ +12 (#vi + #vf )t

always true:

'#v( = !r2#!r1t2#t1

#v = d!rdt

'#a( = !v2#!v1

t2#t1#a= d!v

dt =d2!rdt2

#r(t) = #r$ +% t0 #v(t

%) dt%

#v(t) = #v$ +% t0 #a(t

%) dt%

Circular motion: |#arad| =v2

RT =

2$R

v

Relative velocity: #vA/C = #vA/B + #vB/C

#vA/B = !#vB/A

Constants/Conversions:

g = 9.80 m/s2 = 32.15 ft/s2 (on Earth’s surface)

1 km = 0.6214 mi 1 mi = 1.609 km1 ft = 0.3048 m 1 m = 3.281 ft1 hr = 3600 s 1 s = 0.0002778 hr

1 kgms2 = 1 N = 0.2248 lb 1 lb = 4.448 N

10#9 nano- n10#6 micro- µ10#3 milli- m10#2 centi- c

103 kilo- k106 mega- M109 giga- G

Forces: Newton’s:& #F = m#a, #FB on A = !#FA on B

Phys 218 — Exam I Formulae

Page 6: Today:’Review’forExam’1’ Wednesday:’Chapter5people.physics.tamu.edu/tyana/PHYS218/files/Lect_09_9-29-14_post.… · g =9.80 m/s2 =32.15 ft/s2 (on Earth’s surface) G =6.674

Problem  5  

T.  S+egler                09/29/2014            Texas  A&M  University  

A  basketball  player  releases  the  ball  from  a  height  h1  at  an  angle  θ  and  ini+al  velocity  v0  in  an  aeempt  to  put  the  ball  into  the  basket  which  is  at  height  h2  and  a  horizontal  distance  d.  Calculate  the  distance  d  if  the  ball  is  to  make  it  into  the  basket.  (find  in  terms  of  h1,  h2,  θ,  and  v0)  General math:

log (x/y) = log (x)! log (y)

log (xy) = log (x) + log (y)

log (xn) = n log (x)

lnx " loge x

x = 10(log10 x)

x = e(ln x)

ha

hho

!

"

ha = h cos ! = h sin"

ho = h sin ! = h cos"

h2 = h2a + h2

o tan ! =ho

ha

#A = Axi+Ay j +Az k

#A · #B = AxBx +AyBy +AzBz = AB cos ! = A!B = AB!

#A# #B = (AyBz!AzBy )i+ (AzBx!AxBz)j + (AxBy!AyBx)k

= AB sin ! = A"B = AB"

df/dt = natn#1

If f(t) = atn, then

!

"

"

"

#

"

"

"

$

% t2t1

f(t)dt = an+1 (t

n+12 ! tn+1

1 ) (for n $= !1)%

f(t)dt = an+1 t

n+1 + C (for n $= !1)

ax2 + bx+ c = 0 % x =!b±

&b2 ! 4ac

2a

"

" + ! = 90!" + ! = 180!

"!

!

"

!

"

!

"

!

"!

" !

Equations of motion:

constant acceleration only:

#r(t) = #r$ + #v$t+12#at

2

#v(t) = #v$ + #at

v2x = v2x,0 + 2ax(x! x0)(and similarly for y and z)

#r(t) = #r$ +12 (#vi + #vf )t

always true:

'#v( = !r2#!r1t2#t1

#v = d!rdt

'#a( = !v2#!v1

t2#t1#a= d!v

dt =d2!rdt2

#r(t) = #r$ +% t0 #v(t

%) dt%

#v(t) = #v$ +% t0 #a(t

%) dt%

Circular motion: |#arad| =v2

RT =

2$R

v

Relative velocity: #vA/C = #vA/B + #vB/C

#vA/B = !#vB/A

Constants/Conversions:

g = 9.80 m/s2 = 32.15 ft/s2 (on Earth’s surface)

1 km = 0.6214 mi 1 mi = 1.609 km1 ft = 0.3048 m 1 m = 3.281 ft1 hr = 3600 s 1 s = 0.0002778 hr

1 kgms2 = 1 N = 0.2248 lb 1 lb = 4.448 N

10#9 nano- n10#6 micro- µ10#3 milli- m10#2 centi- c

103 kilo- k106 mega- M109 giga- G

Forces: Newton’s:& #F = m#a, #FB on A = !#FA on B

Phys 218 — Exam I Formulae

General math:

log (x/y) = log (x)! log (y)

log (xy) = log (x) + log (y)

log (xn) = n log (x)

lnx " loge x

x = 10(log10 x)

x = e(ln x)

ha

hho

!

"

ha = h cos ! = h sin"

ho = h sin ! = h cos"

h2 = h2a + h2

o tan ! =ho

ha

#A = Axi+Ay j +Az k

#A · #B = AxBx +AyBy +AzBz = AB cos ! = A!B = AB!

#A# #B = (AyBz!AzBy )i+ (AzBx!AxBz)j + (AxBy!AyBx)k

= AB sin ! = A"B = AB"

df/dt = natn#1

If f(t) = atn, then

!

"

"

"

#

"

"

"

$

% t2t1

f(t)dt = an+1 (t

n+12 ! tn+1

1 ) (for n $= !1)%

f(t)dt = an+1 t

n+1 + C (for n $= !1)

ax2 + bx+ c = 0 % x =!b±

&b2 ! 4ac

2a

"

" + ! = 90!" + ! = 180!

"!

!

"

!

"

!

"

!

"!

" !

Equations of motion:

constant acceleration only:

#r(t) = #r$ + #v$t+12#at

2

#v(t) = #v$ + #at

v2x = v2x,0 + 2ax(x! x0)(and similarly for y and z)

#r(t) = #r$ +12 (#vi + #vf )t

always true:

'#v( = !r2#!r1t2#t1

#v = d!rdt

'#a( = !v2#!v1

t2#t1#a= d!v

dt =d2!rdt2

#r(t) = #r$ +% t0 #v(t

%) dt%

#v(t) = #v$ +% t0 #a(t

%) dt%

Circular motion: |#arad| =v2

RT =

2$R

v

Relative velocity: #vA/C = #vA/B + #vB/C

#vA/B = !#vB/A

Constants/Conversions:

g = 9.80 m/s2 = 32.15 ft/s2 (on Earth’s surface)

1 km = 0.6214 mi 1 mi = 1.609 km1 ft = 0.3048 m 1 m = 3.281 ft1 hr = 3600 s 1 s = 0.0002778 hr

1 kgms2 = 1 N = 0.2248 lb 1 lb = 4.448 N

10#9 nano- n10#6 micro- µ10#3 milli- m10#2 centi- c

103 kilo- k106 mega- M109 giga- G

Forces: Newton’s:& #F = m#a, #FB on A = !#FA on B

Phys 218 — Exam I Formulae

Page 7: Today:’Review’forExam’1’ Wednesday:’Chapter5people.physics.tamu.edu/tyana/PHYS218/files/Lect_09_9-29-14_post.… · g =9.80 m/s2 =32.15 ft/s2 (on Earth’s surface) G =6.674

Problem  6  

T.  S+egler                09/29/2014            Texas  A&M  University  

A  daring  510N  swimmer  dives  off  a  cliff  with  a  running  horizontal  leap,  as  shown.  What  must  her  minimum  speed  just  as  she  leaves  the  top  of  the  cliff,  v0  ,  so  that  she  will  miss  the  ledge  at  the  boeom,  which  is  1.75m  wide  and  9.00m  below  the  top  of  the  cliff.  

General math:

log (x/y) = log (x)! log (y)

log (xy) = log (x) + log (y)

log (xn) = n log (x)

lnx " loge x

x = 10(log10 x)

x = e(ln x)

ha

hho

!

"

ha = h cos ! = h sin"

ho = h sin ! = h cos"

h2 = h2a + h2

o tan ! =ho

ha

#A = Axi+Ay j +Az k

#A · #B = AxBx +AyBy +AzBz = AB cos ! = A!B = AB!

#A# #B = (AyBz!AzBy )i+ (AzBx!AxBz)j + (AxBy!AyBx)k

= AB sin ! = A"B = AB"

df/dt = natn#1

If f(t) = atn, then

!

"

"

"

#

"

"

"

$

% t2t1

f(t)dt = an+1 (t

n+12 ! tn+1

1 ) (for n $= !1)%

f(t)dt = an+1 t

n+1 + C (for n $= !1)

ax2 + bx+ c = 0 % x =!b±

&b2 ! 4ac

2a

"

" + ! = 90!" + ! = 180!

"!

!

"

!

"

!

"

!

"!

" !

Equations of motion:

constant acceleration only:

#r(t) = #r$ + #v$t+12#at

2

#v(t) = #v$ + #at

v2x = v2x,0 + 2ax(x! x0)(and similarly for y and z)

#r(t) = #r$ +12 (#vi + #vf )t

always true:

'#v( = !r2#!r1t2#t1

#v = d!rdt

'#a( = !v2#!v1

t2#t1#a= d!v

dt =d2!rdt2

#r(t) = #r$ +% t0 #v(t

%) dt%

#v(t) = #v$ +% t0 #a(t

%) dt%

Circular motion: |#arad| =v2

RT =

2$R

v

Relative velocity: #vA/C = #vA/B + #vB/C

#vA/B = !#vB/A

Constants/Conversions:

g = 9.80 m/s2 = 32.15 ft/s2 (on Earth’s surface)

1 km = 0.6214 mi 1 mi = 1.609 km1 ft = 0.3048 m 1 m = 3.281 ft1 hr = 3600 s 1 s = 0.0002778 hr

1 kgms2 = 1 N = 0.2248 lb 1 lb = 4.448 N

10#9 nano- n10#6 micro- µ10#3 milli- m10#2 centi- c

103 kilo- k106 mega- M109 giga- G

Forces: Newton’s:& #F = m#a, #FB on A = !#FA on B

Phys 218 — Exam I Formulae

Page 8: Today:’Review’forExam’1’ Wednesday:’Chapter5people.physics.tamu.edu/tyana/PHYS218/files/Lect_09_9-29-14_post.… · g =9.80 m/s2 =32.15 ft/s2 (on Earth’s surface) G =6.674

Problem  7  

T.  S+egler                09/29/2014            Texas  A&M  University  

A  jet  plane  comes  in  for  a  downward  dive.  The  boeom  part  of  the  path  is  a  quarter  circle  having  a  radius  of  curvature  of  350  m.  According  to  medical  tests,  pilots  lose  consciousness  at  an  accelera+on  of  5.50  g.  (a)  At  what  speed  (in  m/s)  will  the  pilot  black  out  for  this  dive?  (b)  At  what  speed  (in  mph)  will  the  pilot  black  out  for  this  dive?      

General math:

log (x/y) = log (x)! log (y)

log (xy) = log (x) + log (y)

log (xn) = n log (x)

lnx " loge x

x = 10(log10 x)

x = e(ln x)

ha

hho

!

"

ha = h cos ! = h sin"

ho = h sin ! = h cos"

h2 = h2a + h2

o tan ! =ho

ha

#A = Axi+Ay j +Az k

#A · #B = AxBx +AyBy +AzBz = AB cos ! = A!B = AB!

#A# #B = (AyBz!AzBy )i+ (AzBx!AxBz)j + (AxBy!AyBx)k

= AB sin ! = A"B = AB"

df/dt = natn#1

If f(t) = atn, then

!

"

"

"

#

"

"

"

$

% t2t1

f(t)dt = an+1 (t

n+12 ! tn+1

1 ) (for n $= !1)%

f(t)dt = an+1 t

n+1 + C (for n $= !1)

ax2 + bx+ c = 0 % x =!b±

&b2 ! 4ac

2a

"

" + ! = 90!" + ! = 180!

"!

!

"

!

"

!

"

!

"!

" !

Equations of motion:

constant acceleration only:

#r(t) = #r$ + #v$t+12#at

2

#v(t) = #v$ + #at

v2x = v2x,0 + 2ax(x! x0)(and similarly for y and z)

#r(t) = #r$ +12 (#vi + #vf )t

always true:

'#v( = !r2#!r1t2#t1

#v = d!rdt

'#a( = !v2#!v1

t2#t1#a= d!v

dt =d2!rdt2

#r(t) = #r$ +% t0 #v(t

%) dt%

#v(t) = #v$ +% t0 #a(t

%) dt%

Circular motion: |#arad| =v2

RT =

2$R

v

Relative velocity: #vA/C = #vA/B + #vB/C

#vA/B = !#vB/A

Constants/Conversions:

g = 9.80 m/s2 = 32.15 ft/s2 (on Earth’s surface)

1 km = 0.6214 mi 1 mi = 1.609 km1 ft = 0.3048 m 1 m = 3.281 ft1 hr = 3600 s 1 s = 0.0002778 hr

1 kgms2 = 1 N = 0.2248 lb 1 lb = 4.448 N

10#9 nano- n10#6 micro- µ10#3 milli- m10#2 centi- c

103 kilo- k106 mega- M109 giga- G

Forces: Newton’s:& #F = m#a, #FB on A = !#FA on B

Phys 218 — Exam I Formulae

Page 9: Today:’Review’forExam’1’ Wednesday:’Chapter5people.physics.tamu.edu/tyana/PHYS218/files/Lect_09_9-29-14_post.… · g =9.80 m/s2 =32.15 ft/s2 (on Earth’s surface) G =6.674

Problem  8  

T.  S+egler                09/29/2014            Texas  A&M  University  

Passengers  on  a  carnival  ride  move  at  constant  speed  in  a  horizontal  circle  of  radius  14.0  m,  making  a  complete  circle  in  10.0  s.    (a)  What  is  their  accelera+on?    (b)  Draw  the  accelera+on  vector  at  each  point  (A,  B,  C,  D).    (c)  How  would  your  answer  in  (b)  change  if  the  speed  were  not  constant?  (Explain  in  words  and/or  drawing)  

General math:

log (x/y) = log (x)! log (y)

log (xy) = log (x) + log (y)

log (xn) = n log (x)

lnx " loge x

x = 10(log10 x)

x = e(ln x)

ha

hho

!

"

ha = h cos ! = h sin"

ho = h sin ! = h cos"

h2 = h2a + h2

o tan ! =ho

ha

#A = Axi+Ay j +Az k

#A · #B = AxBx +AyBy +AzBz = AB cos ! = A!B = AB!

#A# #B = (AyBz!AzBy )i+ (AzBx!AxBz)j + (AxBy!AyBx)k

= AB sin ! = A"B = AB"

df/dt = natn#1

If f(t) = atn, then

!

"

"

"

#

"

"

"

$

% t2t1

f(t)dt = an+1 (t

n+12 ! tn+1

1 ) (for n $= !1)%

f(t)dt = an+1 t

n+1 + C (for n $= !1)

ax2 + bx+ c = 0 % x =!b±

&b2 ! 4ac

2a

"

" + ! = 90!" + ! = 180!

"!

!

"

!

"

!

"

!

"!

" !

Equations of motion:

constant acceleration only:

#r(t) = #r$ + #v$t+12#at

2

#v(t) = #v$ + #at

v2x = v2x,0 + 2ax(x! x0)(and similarly for y and z)

#r(t) = #r$ +12 (#vi + #vf )t

always true:

'#v( = !r2#!r1t2#t1

#v = d!rdt

'#a( = !v2#!v1

t2#t1#a= d!v

dt =d2!rdt2

#r(t) = #r$ +% t0 #v(t

%) dt%

#v(t) = #v$ +% t0 #a(t

%) dt%

Circular motion: |#arad| =v2

RT =

2$R

v

Relative velocity: #vA/C = #vA/B + #vB/C

#vA/B = !#vB/A

Constants/Conversions:

g = 9.80 m/s2 = 32.15 ft/s2 (on Earth’s surface)

1 km = 0.6214 mi 1 mi = 1.609 km1 ft = 0.3048 m 1 m = 3.281 ft1 hr = 3600 s 1 s = 0.0002778 hr

1 kgms2 = 1 N = 0.2248 lb 1 lb = 4.448 N

10#9 nano- n10#6 micro- µ10#3 milli- m10#2 centi- c

103 kilo- k106 mega- M109 giga- G

Forces: Newton’s:& #F = m#a, #FB on A = !#FA on B

Phys 218 — Exam I Formulae

Page 10: Today:’Review’forExam’1’ Wednesday:’Chapter5people.physics.tamu.edu/tyana/PHYS218/files/Lect_09_9-29-14_post.… · g =9.80 m/s2 =32.15 ft/s2 (on Earth’s surface) G =6.674

Problem  8  –  cont.    

T.  S+egler                09/29/2014            Texas  A&M  University  

(b)  Draw  the  accelera+on  vector  at  each  point  (A,  B,  C,  D).    (c)  How  would  your  answer  in  (b)  change  if  the  speed  were  not  constant?  (Explain  in  words  and/or  drawing)  

General math:

log (x/y) = log (x)! log (y)

log (xy) = log (x) + log (y)

log (xn) = n log (x)

lnx " loge x

x = 10(log10 x)

x = e(ln x)

ha

hho

!

"

ha = h cos ! = h sin"

ho = h sin ! = h cos"

h2 = h2a + h2

o tan ! =ho

ha

#A = Axi+Ay j +Az k

#A · #B = AxBx +AyBy +AzBz = AB cos ! = A!B = AB!

#A# #B = (AyBz!AzBy )i+ (AzBx!AxBz)j + (AxBy!AyBx)k

= AB sin ! = A"B = AB"

df/dt = natn#1

If f(t) = atn, then

!

"

"

"

#

"

"

"

$

% t2t1

f(t)dt = an+1 (t

n+12 ! tn+1

1 ) (for n $= !1)%

f(t)dt = an+1 t

n+1 + C (for n $= !1)

ax2 + bx+ c = 0 % x =!b±

&b2 ! 4ac

2a

"

" + ! = 90!" + ! = 180!

"!

!

"

!

"

!

"

!

"!

" !

Equations of motion:

constant acceleration only:

#r(t) = #r$ + #v$t+12#at

2

#v(t) = #v$ + #at

v2x = v2x,0 + 2ax(x! x0)(and similarly for y and z)

#r(t) = #r$ +12 (#vi + #vf )t

always true:

'#v( = !r2#!r1t2#t1

#v = d!rdt

'#a( = !v2#!v1

t2#t1#a= d!v

dt =d2!rdt2

#r(t) = #r$ +% t0 #v(t

%) dt%

#v(t) = #v$ +% t0 #a(t

%) dt%

Circular motion: |#arad| =v2

RT =

2$R

v

Relative velocity: #vA/C = #vA/B + #vB/C

#vA/B = !#vB/A

Constants/Conversions:

g = 9.80 m/s2 = 32.15 ft/s2 (on Earth’s surface)

1 km = 0.6214 mi 1 mi = 1.609 km1 ft = 0.3048 m 1 m = 3.281 ft1 hr = 3600 s 1 s = 0.0002778 hr

1 kgms2 = 1 N = 0.2248 lb 1 lb = 4.448 N

10#9 nano- n10#6 micro- µ10#3 milli- m10#2 centi- c

103 kilo- k106 mega- M109 giga- G

Forces: Newton’s:& #F = m#a, #FB on A = !#FA on B

Phys 218 — Exam I Formulae

Page 11: Today:’Review’forExam’1’ Wednesday:’Chapter5people.physics.tamu.edu/tyana/PHYS218/files/Lect_09_9-29-14_post.… · g =9.80 m/s2 =32.15 ft/s2 (on Earth’s surface) G =6.674

Problem  9  

T.  S+egler                09/29/2014            Texas  A&M  University  

A  plane  is  flying  north  at  200  m/s  in  gale-­‐force  winds  of  35.0  m/s  which  are  blowing  in  a  direc+on  30.0°  south  of  east.  How  far  off  course  are  they  in  the  east-­‐west  direc+on  aLer  2.00  hrs?  (P=plane,  A=air,  E=earth)  General math:

log (x/y) = log (x)! log (y)

log (xy) = log (x) + log (y)

log (xn) = n log (x)

lnx " loge x

x = 10(log10 x)

x = e(ln x)

ha

hho

!

"

ha = h cos ! = h sin"

ho = h sin ! = h cos"

h2 = h2a + h2

o tan ! =ho

ha

#A = Axi+Ay j +Az k

#A · #B = AxBx +AyBy +AzBz = AB cos ! = A!B = AB!

#A# #B = (AyBz!AzBy )i+ (AzBx!AxBz)j + (AxBy!AyBx)k

= AB sin ! = A"B = AB"

df

dt= natn#1

If f(t) = atn, then

!

"

"

#

"

"

$

% t2t1

f(t)dt = an+1

&

tn+12 ! tn+1

1

'

ax2 + bx+ c = 0 $ x =!b±

%b2 ! 4ac

2a

"

" + ! = 90!" + ! = 180!

"!

!

"

!

"

!

"

!

"!

" !

Equations of motion:translational rotational

constant (linear/angular) acceleration only:

#r(t) = #r$ + #v$t+12#at

2

#v(t) = #v$ + #at

v2f = v2$ + 2a(r ! r$)

#r(t) = #r$ +12 (#vi + #vf )t

!(t) = !$ + $$t+12%t

2

$(t) = $$ + %t

$2f = $2

$ + 2%(! ! !$)

!(t) = !$ +12 ($i + $f )t

always true:

&#v' = !r2#!r1t2#t1

#v = d!rdt

&#a' = !v2#!v1

t2#t1#a= d!v

dt =d2!rdt2

#r(t) = #r$ +% t0 #v(t) dt

#v(t) = #v$ +% t0 #a(t) dt

&$' = "2#"1t2#t1

$ = d"dt

&%' = #2##1

t2#t1%= d#

dt =d2"dt2

!(t) = !$ +% t0 #$(t) dt

$(t) = $$ +% t0 #%(t) dt

Forces, Energy and Momenta:translational rotational

W = #F ·!#r =%

#F · d#r

P = dWdt = #F · #v

#pcm = m1#v1 +m2#v2 + . . .

= M#vcm#J =

%

#Fdt = !#p(

#Fext = M#acm = d!pcm

dt(

#Fint = 0

Ktrans =12Mv2cm

#& = #r # #F and |#& | = F"r

W = & !! =%

&d!

P = dWdt = #& · #$

#L = I1#$1 + I2#$2 + . . .

= Itot#$

= #r # #p(

#&ext = Itot#% = d!Ldt

(

#&int = 0

Krot =12Itot$

2

— Both translational and rotational —

W = !K = Ktrans,f +Krot,f !Ktrans,i !Krot,i

Etot,f = Etot,i +Wother ( Kf + Uf = Ki + Ui +Wother

U = !)

#F · d#r ; Ugrav = Mgycm ; Uelas =12k(r ! requil)

2

Fx(x) = !dU(x)/dx #F = !#)U = !*

$U$x i+

$U$y j +

$U$z k

+

Circular motion: arad =v2

RT =

2'R

v

s = R! vtan = R$ atan = R%

Relative velocity:#vA/C = #vA/B + #vB/C

#vA/B = !#vB/A

Constants/Conversions:

g = 9.80 m/s2 = 32.15 ft/s2 (on Earth’s surface)

G = 6.674# 10#11 N ·m2/kg2

R% = 6.38# 106 m M% = 5.98# 1024 kgR& = 6.96# 108 m M& = 1.99# 1030 kg

1 km = 0.6214 mi 1 mi = 1.609 km1 ft = 0.3048 m 1 m = 3.281 ft1 hr = 3600 s 1 s = 0.0002778 hr

1 kgms2 = 1 N = 0.2248 lb 1 lb = 4.448 N

1 J = 1 N·m 1 W = 1 J/s1 rev = 360$ = 2' radians 1 hp = 745.7 W

10#9 nano- n10#6 micro- µ10#3 milli- m10#2 centi- c

103 kilo- k106 mega- M109 giga- G

Forces: Newton’s:, #F = m#a, #FB on A = !#FA on B

Hooke’s: #Felas = !k(#r ! #requil)

friction: |#fs| * µs|#n|, |#fk| = µk|#n|

Centre-of-mass:

#rcm =m1#r1 +m2#r2 + . . .+mn#rn

m1 +m2 + . . .+mn

(and similarly for #v and #a)

Gravity:

Fgrav = GM1M2

R212

Ugrav = !GM1M2

R12T =

2'a3/2%GM

Phys 218 — Final Exam Formulae

Page 12: Today:’Review’forExam’1’ Wednesday:’Chapter5people.physics.tamu.edu/tyana/PHYS218/files/Lect_09_9-29-14_post.… · g =9.80 m/s2 =32.15 ft/s2 (on Earth’s surface) G =6.674

Problem  10  

T.  S+egler                09/29/2014            Texas  A&M  University  

In  a  triathlon,  a  contestant  swims  from  start  to  finish  in  a  +me  T.  In  order  to  do  so,  the  contestant  has  to  swim  against  the  flow  of  the  river  which  has  a  constant  speed  V  rela+ve  to  ground  as  shown.  What  is  the  x-­‐component  of  the  swimmer’s  velocity,  vx,  with  respect  to  the  water?    

D  

W  

start  

&inish  

V  

water  

x  

swimmer’s  path  

General math:

log (x/y) = log (x)! log (y)

log (xy) = log (x) + log (y)

log (xn) = n log (x)

lnx " loge x

x = 10(log10 x)

x = e(ln x)

ha

hho

!

"

ha = h cos ! = h sin"

ho = h sin ! = h cos"

h2 = h2a + h2

o tan ! =ho

ha

#A = Axi+Ay j +Az k

#A · #B = AxBx +AyBy +AzBz = AB cos ! = A!B = AB!

#A# #B = (AyBz!AzBy )i+ (AzBx!AxBz)j + (AxBy!AyBx)k

= AB sin ! = A"B = AB"

df

dt= natn#1

If f(t) = atn, then

!

"

"

#

"

"

$

% t2t1

f(t)dt = an+1

&

tn+12 ! tn+1

1

'

ax2 + bx+ c = 0 $ x =!b±

%b2 ! 4ac

2a

"

" + ! = 90!" + ! = 180!

"!

!

"

!

"

!

"

!

"!

" !

Equations of motion:translational rotational

constant (linear/angular) acceleration only:

#r(t) = #r$ + #v$t+12#at

2

#v(t) = #v$ + #at

v2f = v2$ + 2a(r ! r$)

#r(t) = #r$ +12 (#vi + #vf )t

!(t) = !$ + $$t+12%t

2

$(t) = $$ + %t

$2f = $2

$ + 2%(! ! !$)

!(t) = !$ +12 ($i + $f )t

always true:

&#v' = !r2#!r1t2#t1

#v = d!rdt

&#a' = !v2#!v1

t2#t1#a= d!v

dt =d2!rdt2

#r(t) = #r$ +% t0 #v(t) dt

#v(t) = #v$ +% t0 #a(t) dt

&$' = "2#"1t2#t1

$ = d"dt

&%' = #2##1

t2#t1%= d#

dt =d2"dt2

!(t) = !$ +% t0 #$(t) dt

$(t) = $$ +% t0 #%(t) dt

Forces, Energy and Momenta:translational rotational

W = #F ·!#r =%

#F · d#r

P = dWdt = #F · #v

#pcm = m1#v1 +m2#v2 + . . .

= M#vcm#J =

%

#Fdt = !#p(

#Fext = M#acm = d!pcm

dt(

#Fint = 0

Ktrans =12Mv2cm

#& = #r # #F and |#& | = F"r

W = & !! =%

&d!

P = dWdt = #& · #$

#L = I1#$1 + I2#$2 + . . .

= Itot#$

= #r # #p(

#&ext = Itot#% = d!Ldt

(

#&int = 0

Krot =12Itot$

2

— Both translational and rotational —

W = !K = Ktrans,f +Krot,f !Ktrans,i !Krot,i

Etot,f = Etot,i +Wother ( Kf + Uf = Ki + Ui +Wother

U = !)

#F · d#r ; Ugrav = Mgycm ; Uelas =12k(r ! requil)

2

Fx(x) = !dU(x)/dx #F = !#)U = !*

$U$x i+

$U$y j +

$U$z k

+

Circular motion: arad =v2

RT =

2'R

v

s = R! vtan = R$ atan = R%

Relative velocity:#vA/C = #vA/B + #vB/C

#vA/B = !#vB/A

Constants/Conversions:

g = 9.80 m/s2 = 32.15 ft/s2 (on Earth’s surface)

G = 6.674# 10#11 N ·m2/kg2

R% = 6.38# 106 m M% = 5.98# 1024 kgR& = 6.96# 108 m M& = 1.99# 1030 kg

1 km = 0.6214 mi 1 mi = 1.609 km1 ft = 0.3048 m 1 m = 3.281 ft1 hr = 3600 s 1 s = 0.0002778 hr

1 kgms2 = 1 N = 0.2248 lb 1 lb = 4.448 N

1 J = 1 N·m 1 W = 1 J/s1 rev = 360$ = 2' radians 1 hp = 745.7 W

10#9 nano- n10#6 micro- µ10#3 milli- m10#2 centi- c

103 kilo- k106 mega- M109 giga- G

Forces: Newton’s:, #F = m#a, #FB on A = !#FA on B

Hooke’s: #Felas = !k(#r ! #requil)

friction: |#fs| * µs|#n|, |#fk| = µk|#n|

Centre-of-mass:

#rcm =m1#r1 +m2#r2 + . . .+mn#rn

m1 +m2 + . . .+mn

(and similarly for #v and #a)

Gravity:

Fgrav = GM1M2

R212

Ugrav = !GM1M2

R12T =

2'a3/2%GM

Phys 218 — Final Exam Formulae

Page 13: Today:’Review’forExam’1’ Wednesday:’Chapter5people.physics.tamu.edu/tyana/PHYS218/files/Lect_09_9-29-14_post.… · g =9.80 m/s2 =32.15 ft/s2 (on Earth’s surface) G =6.674

Problem  11  

T.  S+egler                09/29/2014            Texas  A&M  University  

A  rocket  starts  from  rest  and  moves  upward  from  the  surface  of  the  earth.  For  the  first  10.0s  of  its  mo+on,  the  ver+cal  accelera+on  of  the  rocket  is  given  by  ay(t)  =  (2.80  m/s3)t,  where  the  +y-­‐direc+on  is  upward.    (a)  What  is  the  height  of  the  rocket  above  the  surface  of  the  earth  at  t  =  10.0s?  (b)  What  is  the  speed  of  the  rocket  when  it  is  325  m  above  the  surface  of  the  earth?        

General math:

log (x/y) = log (x)! log (y)

log (xy) = log (x) + log (y)

log (xn) = n log (x)

lnx " loge x

x = 10(log10 x)

x = e(ln x)

ha

hho

!

"

ha = h cos ! = h sin"

ho = h sin ! = h cos"

h2 = h2a + h2

o tan ! =ho

ha

#A = Axi+Ay j +Az k

#A · #B = AxBx +AyBy +AzBz = AB cos ! = A!B = AB!

#A# #B = (AyBz!AzBy )i+ (AzBx!AxBz)j + (AxBy!AyBx)k

= AB sin ! = A"B = AB"

df

dt= natn#1

If f(t) = atn, then

!

"

"

#

"

"

$

% t2t1

f(t)dt = an+1

&

tn+12 ! tn+1

1

'

ax2 + bx+ c = 0 $ x =!b±

%b2 ! 4ac

2a

"

" + ! = 90!" + ! = 180!

"!

!

"

!

"

!

"

!

"!

" !

Equations of motion:translational rotational

constant (linear/angular) acceleration only:

#r(t) = #r$ + #v$t+12#at

2

#v(t) = #v$ + #at

v2f = v2$ + 2a(r ! r$)

#r(t) = #r$ +12 (#vi + #vf )t

!(t) = !$ + $$t+12%t

2

$(t) = $$ + %t

$2f = $2

$ + 2%(! ! !$)

!(t) = !$ +12 ($i + $f )t

always true:

&#v' = !r2#!r1t2#t1

#v = d!rdt

&#a' = !v2#!v1

t2#t1#a= d!v

dt =d2!rdt2

#r(t) = #r$ +% t0 #v(t) dt

#v(t) = #v$ +% t0 #a(t) dt

&$' = "2#"1t2#t1

$ = d"dt

&%' = #2##1

t2#t1%= d#

dt =d2"dt2

!(t) = !$ +% t0 #$(t) dt

$(t) = $$ +% t0 #%(t) dt

Forces, Energy and Momenta:translational rotational

W = #F ·!#r =%

#F · d#r

P = dWdt = #F · #v

#pcm = m1#v1 +m2#v2 + . . .

= M#vcm#J =

%

#Fdt = !#p(

#Fext = M#acm = d!pcm

dt(

#Fint = 0

Ktrans =12Mv2cm

#& = #r # #F and |#& | = F"r

W = & !! =%

&d!

P = dWdt = #& · #$

#L = I1#$1 + I2#$2 + . . .

= Itot#$

= #r # #p(

#&ext = Itot#% = d!Ldt

(

#&int = 0

Krot =12Itot$

2

— Both translational and rotational —

W = !K = Ktrans,f +Krot,f !Ktrans,i !Krot,i

Etot,f = Etot,i +Wother ( Kf + Uf = Ki + Ui +Wother

U = !)

#F · d#r ; Ugrav = Mgycm ; Uelas =12k(r ! requil)

2

Fx(x) = !dU(x)/dx #F = !#)U = !*

$U$x i+

$U$y j +

$U$z k

+

Circular motion: arad =v2

RT =

2'R

v

s = R! vtan = R$ atan = R%

Relative velocity:#vA/C = #vA/B + #vB/C

#vA/B = !#vB/A

Constants/Conversions:

g = 9.80 m/s2 = 32.15 ft/s2 (on Earth’s surface)

G = 6.674# 10#11 N ·m2/kg2

R% = 6.38# 106 m M% = 5.98# 1024 kgR& = 6.96# 108 m M& = 1.99# 1030 kg

1 km = 0.6214 mi 1 mi = 1.609 km1 ft = 0.3048 m 1 m = 3.281 ft1 hr = 3600 s 1 s = 0.0002778 hr

1 kgms2 = 1 N = 0.2248 lb 1 lb = 4.448 N

1 J = 1 N·m 1 W = 1 J/s1 rev = 360$ = 2' radians 1 hp = 745.7 W

10#9 nano- n10#6 micro- µ10#3 milli- m10#2 centi- c

103 kilo- k106 mega- M109 giga- G

Forces: Newton’s:, #F = m#a, #FB on A = !#FA on B

Hooke’s: #Felas = !k(#r ! #requil)

friction: |#fs| * µs|#n|, |#fk| = µk|#n|

Centre-of-mass:

#rcm =m1#r1 +m2#r2 + . . .+mn#rn

m1 +m2 + . . .+mn

(and similarly for #v and #a)

Gravity:

Fgrav = GM1M2

R212

Ugrav = !GM1M2

R12T =

2'a3/2%GM

Phys 218 — Final Exam Formulae

Page 14: Today:’Review’forExam’1’ Wednesday:’Chapter5people.physics.tamu.edu/tyana/PHYS218/files/Lect_09_9-29-14_post.… · g =9.80 m/s2 =32.15 ft/s2 (on Earth’s surface) G =6.674

Problem  11  -­‐  cont.  

T.  S+egler                09/29/2014            Texas  A&M  University  

General math:

log (x/y) = log (x)! log (y)

log (xy) = log (x) + log (y)

log (xn) = n log (x)

lnx " loge x

x = 10(log10 x)

x = e(ln x)

ha

hho

!

"

ha = h cos ! = h sin"

ho = h sin ! = h cos"

h2 = h2a + h2

o tan ! =ho

ha

#A = Axi+Ay j +Az k

#A · #B = AxBx +AyBy +AzBz = AB cos ! = A!B = AB!

#A# #B = (AyBz!AzBy )i+ (AzBx!AxBz)j + (AxBy!AyBx)k

= AB sin ! = A"B = AB"

df

dt= natn#1

If f(t) = atn, then

!

"

"

#

"

"

$

% t2t1

f(t)dt = an+1

&

tn+12 ! tn+1

1

'

ax2 + bx+ c = 0 $ x =!b±

%b2 ! 4ac

2a

"

" + ! = 90!" + ! = 180!

"!

!

"

!

"

!

"

!

"!

" !

Equations of motion:translational rotational

constant (linear/angular) acceleration only:

#r(t) = #r$ + #v$t+12#at

2

#v(t) = #v$ + #at

v2f = v2$ + 2a(r ! r$)

#r(t) = #r$ +12 (#vi + #vf )t

!(t) = !$ + $$t+12%t

2

$(t) = $$ + %t

$2f = $2

$ + 2%(! ! !$)

!(t) = !$ +12 ($i + $f )t

always true:

&#v' = !r2#!r1t2#t1

#v = d!rdt

&#a' = !v2#!v1

t2#t1#a= d!v

dt =d2!rdt2

#r(t) = #r$ +% t0 #v(t) dt

#v(t) = #v$ +% t0 #a(t) dt

&$' = "2#"1t2#t1

$ = d"dt

&%' = #2##1

t2#t1%= d#

dt =d2"dt2

!(t) = !$ +% t0 #$(t) dt

$(t) = $$ +% t0 #%(t) dt

Forces, Energy and Momenta:translational rotational

W = #F ·!#r =%

#F · d#r

P = dWdt = #F · #v

#pcm = m1#v1 +m2#v2 + . . .

= M#vcm#J =

%

#Fdt = !#p(

#Fext = M#acm = d!pcm

dt(

#Fint = 0

Ktrans =12Mv2cm

#& = #r # #F and |#& | = F"r

W = & !! =%

&d!

P = dWdt = #& · #$

#L = I1#$1 + I2#$2 + . . .

= Itot#$

= #r # #p(

#&ext = Itot#% = d!Ldt

(

#&int = 0

Krot =12Itot$

2

— Both translational and rotational —

W = !K = Ktrans,f +Krot,f !Ktrans,i !Krot,i

Etot,f = Etot,i +Wother ( Kf + Uf = Ki + Ui +Wother

U = !)

#F · d#r ; Ugrav = Mgycm ; Uelas =12k(r ! requil)

2

Fx(x) = !dU(x)/dx #F = !#)U = !*

$U$x i+

$U$y j +

$U$z k

+

Circular motion: arad =v2

RT =

2'R

v

s = R! vtan = R$ atan = R%

Relative velocity:#vA/C = #vA/B + #vB/C

#vA/B = !#vB/A

Constants/Conversions:

g = 9.80 m/s2 = 32.15 ft/s2 (on Earth’s surface)

G = 6.674# 10#11 N ·m2/kg2

R% = 6.38# 106 m M% = 5.98# 1024 kgR& = 6.96# 108 m M& = 1.99# 1030 kg

1 km = 0.6214 mi 1 mi = 1.609 km1 ft = 0.3048 m 1 m = 3.281 ft1 hr = 3600 s 1 s = 0.0002778 hr

1 kgms2 = 1 N = 0.2248 lb 1 lb = 4.448 N

1 J = 1 N·m 1 W = 1 J/s1 rev = 360$ = 2' radians 1 hp = 745.7 W

10#9 nano- n10#6 micro- µ10#3 milli- m10#2 centi- c

103 kilo- k106 mega- M109 giga- G

Forces: Newton’s:, #F = m#a, #FB on A = !#FA on B

Hooke’s: #Felas = !k(#r ! #requil)

friction: |#fs| * µs|#n|, |#fk| = µk|#n|

Centre-of-mass:

#rcm =m1#r1 +m2#r2 + . . .+mn#rn

m1 +m2 + . . .+mn

(and similarly for #v and #a)

Gravity:

Fgrav = GM1M2

R212

Ugrav = !GM1M2

R12T =

2'a3/2%GM

Phys 218 — Final Exam Formulae

(a)  What  is  the  height  of  the  rocket  above  the  surface  of  the  earth  at  t  =  10.0s?  (b)  What  is  the  speed  of  the  rocket  when  it  is  325  m  above  the  surface  of  the  earth?    

Page 15: Today:’Review’forExam’1’ Wednesday:’Chapter5people.physics.tamu.edu/tyana/PHYS218/files/Lect_09_9-29-14_post.… · g =9.80 m/s2 =32.15 ft/s2 (on Earth’s surface) G =6.674

Problem  12  

T.  S+egler                09/29/2014            Texas  A&M  University  

The  accelera+on  of  an  object  is  given  by  a(t)  =  2.0  m/s2  +  (.75  m/s3)t  while  moving  in  the  x-­‐direc+on.  If  its  ini+al  posi+on  is  x  =  3.0  m  and  its  ini+al  velocity  is  zero,  find  the  velocity  and  posi+on  when  t  =  2.5  s.  

General math:

log (x/y) = log (x)! log (y)

log (xy) = log (x) + log (y)

log (xn) = n log (x)

lnx " loge x

x = 10(log10 x)

x = e(ln x)

ha

hho

!

"

ha = h cos ! = h sin"

ho = h sin ! = h cos"

h2 = h2a + h2

o tan ! =ho

ha

#A = Axi+Ay j +Az k

#A · #B = AxBx +AyBy +AzBz = AB cos ! = A!B = AB!

#A# #B = (AyBz!AzBy )i+ (AzBx!AxBz)j + (AxBy!AyBx)k

= AB sin ! = A"B = AB"

df

dt= natn#1

If f(t) = atn, then

!

"

"

#

"

"

$

% t2t1

f(t)dt = an+1

&

tn+12 ! tn+1

1

'

ax2 + bx+ c = 0 $ x =!b±

%b2 ! 4ac

2a

"

" + ! = 90!" + ! = 180!

"!

!

"

!

"

!

"

!

"!

" !

Equations of motion:translational rotational

constant (linear/angular) acceleration only:

#r(t) = #r$ + #v$t+12#at

2

#v(t) = #v$ + #at

v2f = v2$ + 2a(r ! r$)

#r(t) = #r$ +12 (#vi + #vf )t

!(t) = !$ + $$t+12%t

2

$(t) = $$ + %t

$2f = $2

$ + 2%(! ! !$)

!(t) = !$ +12 ($i + $f )t

always true:

&#v' = !r2#!r1t2#t1

#v = d!rdt

&#a' = !v2#!v1

t2#t1#a= d!v

dt =d2!rdt2

#r(t) = #r$ +% t0 #v(t) dt

#v(t) = #v$ +% t0 #a(t) dt

&$' = "2#"1t2#t1

$ = d"dt

&%' = #2##1

t2#t1%= d#

dt =d2"dt2

!(t) = !$ +% t0 #$(t) dt

$(t) = $$ +% t0 #%(t) dt

Forces, Energy and Momenta:translational rotational

W = #F ·!#r =%

#F · d#r

P = dWdt = #F · #v

#pcm = m1#v1 +m2#v2 + . . .

= M#vcm#J =

%

#Fdt = !#p(

#Fext = M#acm = d!pcm

dt(

#Fint = 0

Ktrans =12Mv2cm

#& = #r # #F and |#& | = F"r

W = & !! =%

&d!

P = dWdt = #& · #$

#L = I1#$1 + I2#$2 + . . .

= Itot#$

= #r # #p(

#&ext = Itot#% = d!Ldt

(

#&int = 0

Krot =12Itot$

2

— Both translational and rotational —

W = !K = Ktrans,f +Krot,f !Ktrans,i !Krot,i

Etot,f = Etot,i +Wother ( Kf + Uf = Ki + Ui +Wother

U = !)

#F · d#r ; Ugrav = Mgycm ; Uelas =12k(r ! requil)

2

Fx(x) = !dU(x)/dx #F = !#)U = !*

$U$x i+

$U$y j +

$U$z k

+

Circular motion: arad =v2

RT =

2'R

v

s = R! vtan = R$ atan = R%

Relative velocity:#vA/C = #vA/B + #vB/C

#vA/B = !#vB/A

Constants/Conversions:

g = 9.80 m/s2 = 32.15 ft/s2 (on Earth’s surface)

G = 6.674# 10#11 N ·m2/kg2

R% = 6.38# 106 m M% = 5.98# 1024 kgR& = 6.96# 108 m M& = 1.99# 1030 kg

1 km = 0.6214 mi 1 mi = 1.609 km1 ft = 0.3048 m 1 m = 3.281 ft1 hr = 3600 s 1 s = 0.0002778 hr

1 kgms2 = 1 N = 0.2248 lb 1 lb = 4.448 N

1 J = 1 N·m 1 W = 1 J/s1 rev = 360$ = 2' radians 1 hp = 745.7 W

10#9 nano- n10#6 micro- µ10#3 milli- m10#2 centi- c

103 kilo- k106 mega- M109 giga- G

Forces: Newton’s:, #F = m#a, #FB on A = !#FA on B

Hooke’s: #Felas = !k(#r ! #requil)

friction: |#fs| * µs|#n|, |#fk| = µk|#n|

Centre-of-mass:

#rcm =m1#r1 +m2#r2 + . . .+mn#rn

m1 +m2 + . . .+mn

(and similarly for #v and #a)

Gravity:

Fgrav = GM1M2

R212

Ugrav = !GM1M2

R12T =

2'a3/2%GM

Phys 218 — Final Exam Formulae

Page 16: Today:’Review’forExam’1’ Wednesday:’Chapter5people.physics.tamu.edu/tyana/PHYS218/files/Lect_09_9-29-14_post.… · g =9.80 m/s2 =32.15 ft/s2 (on Earth’s surface) G =6.674

Problem  12  –  cont.  

T.  S+egler                09/29/2014            Texas  A&M  University  

The  accelera+on  of  an  object  is  given  by  a(t)  =  2.0  m/s2  +  (.75  m/s3)t  while  moving  in  the  x-­‐direc+on.  If  its  ini+al  posi+on  is  x  =  3.0  m  and  its  ini+al  velocity  is  zero,  find  the  velocity  and  posi+on  when  t  =  2.5  s.  

General math:

log (x/y) = log (x)! log (y)

log (xy) = log (x) + log (y)

log (xn) = n log (x)

lnx " loge x

x = 10(log10 x)

x = e(ln x)

ha

hho

!

"

ha = h cos ! = h sin"

ho = h sin ! = h cos"

h2 = h2a + h2

o tan ! =ho

ha

#A = Axi+Ay j +Az k

#A · #B = AxBx +AyBy +AzBz = AB cos ! = A!B = AB!

#A# #B = (AyBz!AzBy )i+ (AzBx!AxBz)j + (AxBy!AyBx)k

= AB sin ! = A"B = AB"

df

dt= natn#1

If f(t) = atn, then

!

"

"

#

"

"

$

% t2t1

f(t)dt = an+1

&

tn+12 ! tn+1

1

'

ax2 + bx+ c = 0 $ x =!b±

%b2 ! 4ac

2a

"

" + ! = 90!" + ! = 180!

"!

!

"

!

"

!

"

!

"!

" !

Equations of motion:translational rotational

constant (linear/angular) acceleration only:

#r(t) = #r$ + #v$t+12#at

2

#v(t) = #v$ + #at

v2f = v2$ + 2a(r ! r$)

#r(t) = #r$ +12 (#vi + #vf )t

!(t) = !$ + $$t+12%t

2

$(t) = $$ + %t

$2f = $2

$ + 2%(! ! !$)

!(t) = !$ +12 ($i + $f )t

always true:

&#v' = !r2#!r1t2#t1

#v = d!rdt

&#a' = !v2#!v1

t2#t1#a= d!v

dt =d2!rdt2

#r(t) = #r$ +% t0 #v(t) dt

#v(t) = #v$ +% t0 #a(t) dt

&$' = "2#"1t2#t1

$ = d"dt

&%' = #2##1

t2#t1%= d#

dt =d2"dt2

!(t) = !$ +% t0 #$(t) dt

$(t) = $$ +% t0 #%(t) dt

Forces, Energy and Momenta:translational rotational

W = #F ·!#r =%

#F · d#r

P = dWdt = #F · #v

#pcm = m1#v1 +m2#v2 + . . .

= M#vcm#J =

%

#Fdt = !#p(

#Fext = M#acm = d!pcm

dt(

#Fint = 0

Ktrans =12Mv2cm

#& = #r # #F and |#& | = F"r

W = & !! =%

&d!

P = dWdt = #& · #$

#L = I1#$1 + I2#$2 + . . .

= Itot#$

= #r # #p(

#&ext = Itot#% = d!Ldt

(

#&int = 0

Krot =12Itot$

2

— Both translational and rotational —

W = !K = Ktrans,f +Krot,f !Ktrans,i !Krot,i

Etot,f = Etot,i +Wother ( Kf + Uf = Ki + Ui +Wother

U = !)

#F · d#r ; Ugrav = Mgycm ; Uelas =12k(r ! requil)

2

Fx(x) = !dU(x)/dx #F = !#)U = !*

$U$x i+

$U$y j +

$U$z k

+

Circular motion: arad =v2

RT =

2'R

v

s = R! vtan = R$ atan = R%

Relative velocity:#vA/C = #vA/B + #vB/C

#vA/B = !#vB/A

Constants/Conversions:

g = 9.80 m/s2 = 32.15 ft/s2 (on Earth’s surface)

G = 6.674# 10#11 N ·m2/kg2

R% = 6.38# 106 m M% = 5.98# 1024 kgR& = 6.96# 108 m M& = 1.99# 1030 kg

1 km = 0.6214 mi 1 mi = 1.609 km1 ft = 0.3048 m 1 m = 3.281 ft1 hr = 3600 s 1 s = 0.0002778 hr

1 kgms2 = 1 N = 0.2248 lb 1 lb = 4.448 N

1 J = 1 N·m 1 W = 1 J/s1 rev = 360$ = 2' radians 1 hp = 745.7 W

10#9 nano- n10#6 micro- µ10#3 milli- m10#2 centi- c

103 kilo- k106 mega- M109 giga- G

Forces: Newton’s:, #F = m#a, #FB on A = !#FA on B

Hooke’s: #Felas = !k(#r ! #requil)

friction: |#fs| * µs|#n|, |#fk| = µk|#n|

Centre-of-mass:

#rcm =m1#r1 +m2#r2 + . . .+mn#rn

m1 +m2 + . . .+mn

(and similarly for #v and #a)

Gravity:

Fgrav = GM1M2

R212

Ugrav = !GM1M2

R12T =

2'a3/2%GM

Phys 218 — Final Exam Formulae