121
UNCLASSIFIED AD NUMBER ADB069402 NEW LIMITATION CHANGE TO Approved for public release, distribution unlimited FROM Distribution authorized to U.S. Gov't. agencies only; Critical Technology; Test and Evaluation; FEB 1982. Other requests shall be referred to Air Force Aero Propulsion Laboratory [AFWAL/POTX], Wright-Patterson AFB, OH 45433. AUTHORITY 27 Jun 1990, ST-A per WRDC-IST notice THIS PAGE IS UNCLASSIFIED

TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

UNCLASSIFIED

AD NUMBER

ADB069402

NEW LIMITATION CHANGE

TOApproved for public release, distributionunlimited

FROMDistribution authorized to U.S. Gov't.agencies only; Critical Technology; Testand Evaluation; FEB 1982. Other requestsshall be referred to Air Force AeroPropulsion Laboratory [AFWAL/POTX],Wright-Patterson AFB, OH 45433.

AUTHORITY

27 Jun 1990, ST-A per WRDC-IST notice

THIS PAGE IS UNCLASSIFIED

Page 2: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

AFWAL-TR- 82-2017

TRANSONIC FAN/COMPRESSORROTOR DESIGN STUDY

Volume II

D.E. Parker and M.R. SimonsonGeneral Electric Company

/ Aircraft Engine Business GroupAdvanced Technology Programs Dept.Cincinnati, Ohio 45215

February 1982

Final Report for Period September 1980 - February 1982

SUBJECT TO EXPORT CONTROL LAWSThis document contains information for manufacturing or r.:ng mu.nitions of war. Export of the information contained herein, or releaseto foreign nationals within the United States, without first obtainingan export license, is a violation of the International Traffic.in.ArmsRegulations. Such violation is subject to a penalty of up to 2 years im.prisonment and a fine of $100,000 under 22 USC 2778.Include this notice with any reproduced portion of this document.

Distribution limited to U.S. Government agencies only: Test V.and Evaluation, February 12. Other requests for this docu-nent must be referred to Air Force Aero Propulsion Llbomatory .

(AFWAL/POTX), Wright-Patterson APS, ON4 454-14 192 "1

. Aero Propulsion Laboratory AAir Force Wright Aeronautical LaboratoriesAir Force System Command o (D 6

S Wright-Patterson Air Force Base, Ohio 45433

Page 3: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

NOTICE

When Government drawings, specifications, or other data are used for anypurpose other than in conjunction with a definitely related Government procure-ment operation, the United States Government thereby incurs no responsibilitynor any obligation whatsoever; and the fact that the Government may have formu-

* lated, furnished, or in any way supplied the said drawings, specifications, orother data, is not to be regarded by implication or otherwise as in any mannerlicensing the holder or any other persons or corporation, or conveying anyrights or permission to manufacture, use, or sell any patented invention thatmay in any way be related thereto.

This technical report has been reviewed and is approved for publication.

ARTHUR J. WENNERSTROM WALKER H. MITCHELLChief, Compressor Research Group Chief, Technology Branch

FOR THE COMMANDER

H. IVAN BUSHDirector, Turbine Engine Division

.

If your address has changed, if you wish to be removed from our mailing list,or if the addressee is no longer employed by your organization, please notify

AFWAL/POTX, WPAFB OH 45433 to help us maintain a current mailing list.

*Copies of this report should not be returned unless return is required bysecurity considerations, contractual obligations, or notice on a spec 4ficdocument.

Page 4: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

UnclassifiedSECURITY CLAS1IFICATION O THIS PAGE (*'hen Date Entered)REPORT DOCU~IENTATION PAGE "READ INSTRUCTIONS

BEFORE COMPLETING FORM1. REPORT NUMBER 2. GOVT ACCESSION NO. 3 RECIPIENT'S CATALOG NUMBER

AFWAL-TR-82-2017- IN) 406 7 O

4. TITLE (and Subtitle) 5. TYPE OF REPORT A PERIOD COVERED

Transonic Fan/Compressor Rotor Design Study Final Technical Re. qrt

Volume II September 1980 - July 19826. PERFORMING ORG. REPORT NUMBER

R82AEB328,- Volume -K-7. AUTHOR(q) I. CONTRACT OR GRANT NUMBER(s)

D.E. Parker F33615-80-C-2059M.R. Simonson

S. PERFORMING ORGANIZATiON NAME AND ADDRESS 10. PROGRAM FLEMENT PROJECT, TASK

General Electric Company AREA & WORK UNIT NUMBERS

Aircraft Engine Business Group Project 2307

Cincinnati, Ohio 45215 Task Si________________ Work Unit 38

II. CONTROLLING OFFICE NAME AND ADDRESS 12. RepoR UTEAero Propulsion Laboratory (ANVAL/POT) tVbep_ 1982Air Force Wright Aeronautical Laboratories 3. UMSEROF-PAGESAir Force System CommandWright-Patterson Air Force Base. Ohio 45433 il

14. MONITORING AGENCY NAME & ADDRESS(Il dillerent from Caotrollinl Ofi1ce) IS. SECURITY CLASS. (ol this report)

Unclassified

I5a. DLCLASSIFICATION/DOWNA.RA DNGSCHEDULE

IS. DISTRIBUTION STATEMENT (of this Repor)

Distribution limited to U.S. Government agencies only: Test and Evaluation,

SI f5. Other requests for this document must be referred to AirForce Aero Propulsion Laboratory (AFWAL/POTX), Wright-Patterson AFB,OH 45433.

17. DISTRIBUTION STATEMENT (t the abstraect entered In Block 20, It dliferent from Report)

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (Continue on tevere 0d It necessary and Identity by block number)

Fan Aircraft EnginesCompressor Blade ThicknessRotor Camber DistributionAerodesign Throat MarginAerodynamics

20. 1ABSRACT (Conlnue an ewer@* aide It necesery and Ident tf by block number)

" zVolumes I through VI of this report describes the aerodynamic designof a series of five transonic rotors all parametrically related to abaseline design documented in Technical Report AFAPL-TR-79-2078. Each ofthe five designs deviate from the base line, in so far as practical, by

a variation of one parameter only. The parametric variations are specified

at the rotor tip.- The original hub characteristics were preserved to the

maximum extent practical. The varied parameter was adjusted long the span.

DD 1 F 1473 EDITION Or I NOV 65 IS OBSOLETE Unclassified

o SECURITY CLASSIFICATION OF THIS PAGE (Nhen Date Entered)

Page 5: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

,/Unclassified

SECURITY CLASSIFICATION OF THIS PAGEtMien Date Entered)

This volume describes the aerodynamic design details of the Phase I

Rotor. The Phase I rotor has the tip airfoil maximum thickness located

at 40% of meanline length as compared with 70% for the baseline rotor.

The location of maximum thickness varied line.irly with radius to 56% of

meanline length at the hub, which is the same as the baseline rotor.

71..4

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(U'hen Date Entered)

Page 6: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

VOLUME II

PHASE i ROTOR DESIGN

j FOREWORD

This Final Technical Report was prepared by the Advanced TechnologyPrograms Department, Aircraft Engine Business Group, General Electric Company,Evendale , Ohio for the'United States Air Force Systems Command, Air ForceWright Aeronautical Laboratories Wright-Patterson Air Force Base, Ohio underContract F33615-80-C-2059. The work was performed over a period ofone year starting in September 1980. Effren Strain (Captain USAF) was theAir Force Project Engineer for this program.

This report describes the results of an effort to aerodynamically definefive rotor designs, all parametrically related to a base line design which

could be evaluated by future testing in order to define the sensitivity1i of transonic blade rows to several design variables.

-For the General Electric Company Mr. D.E. Parker was the TechnicalProgram Manager for this program. Mr. M.R. Simonson was the principalinvestigator. Mr. A.J. Bilhardt was the overall Program Manager.

./V.

"ii

9.i

Page 7: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

-,, VOLUME II

TABLE OF CONTENTS

SECTION PAGE

VII. DESIGN OF PHASE I ROTOR 1

1. Introduction 1

2. Design Procedure 1

VIII. DETAILS OF PHASE I ROTOR DESIGN 12

1. Circumferential Average Flow Solution 12

2. Streamsurface Blade Coordinates 42

3. Plane Section Blade Coordinates 51

IX . REFERENCES 111

Page 8: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

VOLUME II

- - LiST OF ItUSTRATIONS

FIGURE PAGE

19. Comparison of Phase I Rotor Hub C~itour toBaseline Rotor Hub Contour 3

20. Phase I Rotor Static Pressure Distribution 5

21. Phase I Rotor Intrablade Work Distribution6

22. Phase I Rotor Incidence Angle Versus FractionalImersion 7

23. Phase I Rotor Deviation Angle Versus FractionalImmersion 7

24. Phase I Rotor Intrablade Departure AngleDistribution 8

25. Phase I Rotor Streamaurface Tip Section Comparedwith Baseline Design 9

26. Phase I Rotor Deviation Angle Minus ReferenceDeviation Angle Compared with Data Match 10

27. Phase I Stator Incidence Angle Compared withData Match 10

28. Phase I Rotor Throat Margin Compared with 11Data Match

29. Compressor Flowpath with Calculati.on Stations 13

30. -:acked Phase I Rotor Streamsurfes Sections 43

31. Stacked Phase I Rotor Plane Sections 57

, v4

Vi

Page 9: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

LIST OF SYMBOLS AND ABBREVIATIONS

1. Used in Circumferential Average Flow Output Tables

STA calculation station number

WTZ total airflow

PSIC stream function (0 - tip (OD), 1 - hub (ID))

axial locatioi- inches

R radius inches

PHI streamline slope degrees

CURV streamline curvature .- neg.--,- pos. 1/inches

VM meridional velocity ft/sec

CU absolute tangential velocity ft/secALPHAM absolute flow angle on stream surface degrees

M! meridional Mach number

SL calculation streamline number

BLDBLK flow blockage factor Pree area - blocked areffree area

PS static pressure psia

PT total pressure psia

TT total temperature degrees

BETAM relative flow angle on stream surface degrees

UREL relative velocity ft/sec

MREL relative Mach number

VABS absolute velocity ft/sec

MABS absolute Mach number

GAMIA specific heat ratio

PT-RAT total pressure/inlet total pressure

TT-RAT total temperature/inlet total temperature

RCU radius x tangential velocity in-ft/sec

Ca axial velocity ft/sec

PCT DM percent annulus immersion from tip (OD)

RAD average of leading and trailing edge inchesstreamline radii

ACC PTRATIO cumulative total pressure ratio

ACC TTRATIO ctulative total temperature ratio

vii

Page 10: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

'1

LIST OF SYMBOLS AND ABBREVIATIONS

1. Used in Circumferential Average Flow Output Tables (Cont'd)

AD. adiabatic efficiency

POLY polytropic efficiency

Axial axial valocity ratio across blade row,VEL R

2. Used in Stream Surface Blade Coordinate Tables

PT point number

PCT X fraction of meridional distance from leading edge

X meridional coordinate on meanline inches

Y tangential coordinate on meanline inches

B*M meanline angle on stream surface degrees

T(M) thickness of blade perpendicular to meanline inchesXS meridional coordinate on suction surface inches

YS tangential coordinate on suction surface inches

XP meridional coordinate on pressure surface inches

YP tangential coordinate on pressure surface inches

3. Used in Plane Section Coordinate Tables

axial coordinate of stacking axis inches

R radius of coordinate system origin inches

MU tilt angle in axial direction degrees

ETA tilt angle in tangential direction degrees

RHO section height inches

PT point number

ALPHA axial coordinate inches

BETA* meanline angle from axial degrees

UPSILON coordinate perpendicular to ALPHA and radius inches

PCT AL fraction of axial distance from leading edge

T/C local thickness/chord ratio

viii

Page 11: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

SECTION VII

DESIGN OF PHASE I ROTOR

1. INTRODUCTION

The specification of the chordwise location of airfoil maximum thickness

of the transonic/compressor rotors has often been defined more on the basis

of historical practice than on a knowledge of its aerodynamic effect. Research

by NASA in the 1950's generally indicated that as relative inlet Mach numbers

rose, it was desirable to move the location of maximum thickness aft on an

airfoil.

The early work, however, was done with airfoils having significant positive

camber. Today, many airfoils have little overall relative turning in the tip

region, and frequently have S-shaped meanlines: negative camber followed by

some positive camber. In some cases, a forward shift in maximum airfoil thick-

nC3s may help achieve the desired airfoil suction surface shape, with a less

S-shaped meanline. There is also incentive to move the maximum thickness

forward to make the blade more capable of withstanding a bird strike without

excessive damage.

To get more definitive aerodynamic data on the effect of the location of

airfoil maximum thickness, the Phase I blade has been designed with the maximum

thickness located at 40% and the Phase II blade with maximum thickness at

55%, compared with the baseline rotor which has its tip maximum thickness at

70% of meanline length.

2. DESIGN PROCEDURE

The "data match" circumferential average flow solution, which was

previously described in Vol. I, was used as a starting point for the design

of the Phase I rotor. The annulus blockage used in the internal blade

calculation stations was adjusted to be consistent with the forward shift of

the airfoil maximum thickness. The assumed chordwise distribution of work

was iteratively adjusted to obtain a calculated chordwise distribution of

static pressure similar to that of the data match calculations of the baseline

rotor. Also the blade meanline departure angles (the difference between the

air angle and the meanline angle) were adjusted to maintain the same throat

Page 12: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

area and flow induction capacity as the baseline blade. To adjust for the

increased blade blockage in the forward half of the blade, and to better

match the data match static pressure distribution in the hub, the hub contour

internally within the rotor was modified slightly relative to the baseline

rotor. The two hub contours are compared in Figure 19.

After each modification to the chordwise work distribution and/or

departure angles, revised blade annulus blockage and blade lean angles were

calculated and input to the circumferential Average Flow Determination (CAFD)

computer program for the next iteration.

The rotor exit radial distribution of total pressure and temperature was

maintained the same as the data match of the baseline rotol.

The resulting streamline static pressure distribution for the Phase I blade

is compared with the data match of the baseline rotor on Figure 20.

The assumed streamline work input (as a fraction of the total streamline

work) is plotted versus percent axial projection in Figure 21. The tip stream-

line is the one on the left. Each subsequent streamline is indexed to the right

by the value of its stream function (fraction of the total flow from the tip).

The dashed lines are lines of constant percent axial projection.

A method of characteristics computer program was used to analyze the flow

in the cascade flow induction region for streamlines 3 and 6 to assure that

the rotor would achieve the design flow. For other streamlines, the difference

between the suction surface angle and the "free flow" streamline angle was com-

pared with similar data from the data match calculations of the baseline rotor.

This then, was used as a guide in setting the suction surface angle in the flow

induction region.

To satisfy the same flow induction capacity as the baseline blade, it was

required to use larger meanline incidence angles as a result of the largerblade leading edge wedge angle resulting from the foryfard location of maximum

thickness, Phase I blade incidence angles are shown on Figure 22.

A modified version of Carter's Rule was used to calculate a reference

deviation angle for the baseline rotor. This procedure converts the vector

diagrams (from the data match calculations) to an equivalent two-dimensional

Page 13: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

.2.......4.. ..

.. ... .. .. .. ...... . .... . ......

.. ........ ...... ... .... .. ...

HIS I

Z-1

-10 -9 -8 - 6-

AXIAL COORDINATE, IN.

Figure 19. Comparison of Phase I Rotor Hub Contour to BaselineRotor Hub Contour

3

Page 14: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

set of Vectors which would produce the same circulation as the actual blade

taking into account the change in streamline radius and meridional velocity.

'The difference between the deviation angle implied by the data match calculations

and the reference deviation angle was then added to the reference deviation

,angle calculated from the modified Carter's Rule for the Phase I blade.

Phase I Rotor deviation angles are shown on Figure 23. A plot of departure

angles for each streamsurface section is shown in Figure 24. Once the intra-

blade work distribution was chosen these departure angles were required to

satisfy the desired incidence angles, deviation angles, and passage area ratios.

The resulting streamsurface tip section of the Phase I rotor is compared to

that of the baseline rotor in Figure 25. The "deviation angle minus reference

deviation angle" for the Phase I rotor wes kept essentially the same as the data

match analysis although there are some small differences. Figure 26 shows the

"delta deviation" compared to the data match of the baseline design.

If the performance of a new rotor design is to be accurately evaluated

by comparing overall stage performance with the baseline design then it is

important that the stator have nearly the same entering conditions in both

cases. Figure 27 shows a comparison of the Phase I stator incidence angles

with the data match base. As can be seen the differences are small.

Figure 28 shows the radial distribution of Phase I rotor throat margin

and compares it to the data match case. The throat margin for a streamsurface

blade section is defined here as the percent of excess throat area over and

above the minimum theoretical area required to pass the streamtube flow at a

throat Mach number of 1.0 and assuming a total pressure loss equivalent to a

normal shock at the upstream Mach number. In a rotor the effect of radius change

(between the leading edge and throat) on the relative total enthalpy and pressure

is included. As can be seen in Figure 27 the Phase I rotor throat margin is

nearly identical to that of the data match of the baseline design.

Details of the Phase I rotor design are given in Section VIII.

4

Page 15: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

IS L

PHI I

...... .. . ... . ...................... ... ....... . . . ...

If I

Iti

... ..... ... .... ,. .. .....

.. .. ... .. . . . ........ .... .. .

....... .D ... ...~ca.

.....-..... ....... . ..

.0. -4. . . 04 06 06 0. . .

Fiue2.Phs oo Sai PrsueDsrbto

Page 16: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

.4Z

0'-E-1

~~WjT77f11Tu

Ln

-- -~ ~ Li1j 11

441 ii I~A ~,

.-----.-...-

0' ~191AHO 7.IJla oioa

Page 17: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

III

2 1-4

... . ...... . . ..

za

6 8 9 10 11

INCIDENCE ANGLE, DEGREES

Figure 22. Phase I Rotor Incidence AngleVersus Fractional Immersion

°2

a al~

I...0 CC.

II a*.1 H

-- 0 5 10 15 20 25

DEVIATION ANGLE, DEGREES

Figure 23. Phase I Rotor Deviation AngleVersus Fractional Immersion

!

7

I .

Page 18: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

00

J . . .... . . . 0

4 ..... .. ..... ......

4 1 4

I . .... ......

414

4~14

.0

4414

4,. ..........

04 1' ' tiSO90VO80601

NOIIzfocl ivix aoNOI~*u

4 ~ 4 48

Page 19: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

LEADING EDGE

ASE INE > ROTATION "

Figure 25 Phase I Rotor Streamsurface Tip Section

Compared With Baseline Design

Page 20: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

0 -H PHSE I

...........................................

O ~ C ......... '.... . . . . . ......

O DATA MATCH

-. S 2 , AS 3.5 4 4.5

DELTA DEVIATION., DEGREES

Figure 26 Phase I Rotor Deviation Angle MinusReference Deviation Angle ComparedWith Data Match

... .... .. .... ......

0 ,

PHASE I DAT

Oso kTC.. . .................... .. .... . . ..

H PHASE I t .. , T''m"'-'-r ~HAA

-1 0 2 2 3 4 5

INCIDENCE ANGLE, DEGREES

Figure 27 Phase I Stator Zncidence AngleCompared With Data Match

10

Page 21: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

-rj-----PHASE I

-- O---.- DATA MATCH

_ , ~~~~ ......... ........................... ........ .. .........I . •

.............. ....... .........

......... . ............ .... .... .... .. ... ............ ...... ..... ...... .... ... ... ..... ....... ...

4 6 8 10 12 14 16

THROAT MARGIN, PERCENT

Figure 28. Phase I Rotor Throat MarginCompared With Data Match

',

11

Page 22: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

SECTION VIII

DETAILS OF PHASE I ROTOR DESIGN

1. CIRCUMFERENTIAL AVERAGE FLOW SOLUTION

The following tabulation presents the detail results of the Phase I Rotor

circumferential average flow computation. Each page of the tabulation gives

results for one calculation station. Figure 29 shows the calculation station

locations within the gas flowpath. At each calculation station various aero-

dynamic parameters are given on each of thirteen calculation streamlines. Also

given are several mass averaged station flow properties. The Phase I rotor

blade forces are included at the end of this tabulation.

12

Page 23: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

>41

4 44

-to

cn

100

.. .. .. . ........ .....

CA Lm-Cd

-4-4

"4*

........

.... .m~i cot n

2~*N S.1-..m

I1

Page 24: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

-Lo

0000000000

W04

Ix . .~o . - c . u0.0000000000000 0 00i M

0j 0-e e c r.m0r t .01

304 4- ------- 000 t

1' z W 0 0

0 - ---- -

'.Mo. Mn t- 0w OO VS - M'---m - 4 II

0..Z('0 _t' > )W C4 t O0 0n

LL a-i ZW M 0 W 05)aaa 0 t %rr. o(f

' 0 Cui- 0 o.

* we

*fIf

-. 1 -0i00 0 00 0 It Oe- ---

14

Page 25: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

M1 010W1W j

c;

W 0~-WD U 'Ow vfl v0 t r

00 --- --- 0000a6~tf 4q w C f I x )

K .Oww~vV_ ooWdddd 00000000006g000 -

C,4 -nZ0 9) an vv v m a

11W mm 4 0~4 4N - t ; N 4 LI**.*9L*. -00r- M nqe N4vt w 9-

4 ZO00008000000 WOOY1V~C

11 0 0~ewD-- 0 Wm -0 mm -

IL . . . . .. .W4

If ONOOM NNCDWO qe1§t- WI'm

0 Q-WWflqCN0ovm -- ~--- - -- It'

4nowtor-o WM C)WNCON oI.0 ;O0OMWW- rm~- aD .fV.C). . .r .. I.-lIau~0 r0-0 00 0 0 Owo-o N 40 ( ammriC n(

N. -

W 0000000000000 4 W§W It .... wr Wm0 : .c*q U. 000000666666WSW Vfl4

~ @-~'fl~-Wnc.r-0 Ilnmmmamlanmnl15I

Page 26: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

~ N :ww6660000a In.

w j

0) . 4 VJ~m co - n CNI O 1-

Cl z004 itmnmmw~c a.

tL4O 0rt U) ID C1 -ooo q N Vco in00 000 0t WM4wO-pll

r=L r-Il00C0l ID-' I

0 40 40 In in W) In in V it IN) 0. 1 .N

i- .1 a 0 Ni 0 OrO 0- 0. . .. . . . . wa O

mw wwwwwwqwqv -44= 00 0 0.o

(t% meL In.qc . m vw 0cloa; qt 'f (O0 0 0 0-0 N- - -- - -

C!O~ C!.) iI- r% v'Cl r-O 0 mw0v- m i-.>

.a.. . . 4.0---------- 000 0 ~ In --- -ww ww w w (

z .-

16

Page 27: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

W4)Q oO n4

in 0- o n c0 w r- f 0m (D to w ry P4 ), l- r 000 If) -le4 00. 00 inW Oglqalt'Ia m'C

*w 0000000000000000OOO0w

M.0000000000000 . . . . . . . 11 i000 00 AO

0 uj 0

1' 4-4 Ato ~~mawr-(MOMwNr'm-( -K

-J , * . 4 IUm~two-mmo -O wt-"8i I O 'N)0 O M' Wil

0 0 a Inm00I1-

39 . 4 OD o v O 0 n mf%0

d( no0 coo 0 .00--- wOr-

>W-t -Lu, 6666 6606 666 o 9 'fli

v-I is~O ;-

IL.c 0 14 N OD M MN N - -- -- - - -- - --

N 0 0 w t in0 w~~I 0i t- I0w)ananc4'as 40-----'- 0

aNV------ 00000 --- -- --

0S~OOO~oOO0O O0000000000 g

a- 0n o-~~~n 0000vW W1 c 0 b-

-J U. 000000000000- ('A N--v-- w

17

Page 28: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

Do- Ifl0 t 101 CA0 40 V)-00 (D~

*0 0000000000 0000000060000;

U. 4 0 S0 -C)04 ' II NW in IV '4- Q o 10~0 M KI

*t-0000000000000 wo 100 00 49

004i Irs

* 0 C2WU1 r=0- 0 004to0 *. .. . .. . ~r 40 0

0-

W 6 6 0O 6''IO I C4 .

o~i SI''' WO~' WO1--tf Om

m 00000080000- 04

I.-W 44)

01 0 0:0 m o m mCC N f, C40O4I, P 1 (DIn0 z

4- . . . . .044.044.04004400 u

'-. "No- M0O4O -- -- -O 0

4~C 04 C4 *

40 10 40 40 10 a0 WD0 la AD40 40-

C . 0000000000

V 18

Page 29: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

04 1

*to

- - -ma - - - -- 000 a0 a iC

0 > WWWOVONDUwt-W Do004%t - ,W -MM -MVI '0o6 tI %I r %r % 00i I I

Wooooooo a~o)I~. 'o-

I*I - 01 0 - W~X~C'~4OVWOlIDwd~wwtm ~ 40

06l"I r) rI D co m Cat..0 n0W ) 7I q j o

K m08000000800 wmcr1

>. N.666-:CC;Wt4 A u

9L I V oc0oo

It-in It1Otox c ia r n, iw)w 4mK I-vD 1-0 00-1 r n oo

I'~l' m.....................iDIM

to 0) 0;4 ,0*0c 0 ; 0 (~ ' y

M00000000000

wo"01)0 0088880

I- 1/ 0-"MVlw~fIr-00110b-

z

19

Page 30: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

V)MI ): Vfl 5I nC

M3VI ,VVi -1 )CV 4 .0 t

.40 0C 0r nC I n- t 1 ,t -t -r D( )V t

C4 N6 CN CN O4US

00.000

00: '0

f.. . OX

in Ix 0 * I-jI

>WUS4Oimo-IoD 0.4'

v ww~ww r-tsnsommw XMIs M e'scs--wmscr-mo am..

o 0. vi-5oo 84N'sosIMIM-- wj > - N- *- 0vw~ KW 00-Ms SN080 ow~mmU~ a-A n Mo 000 - woOS

> v

0w 00000000000 04>. V Dw t, M v 0 N fN ID mo-s-rrI- r 2 Z

4. *1- ,. usii- . x 0 0' 044- V;mmmmmm I

OnK Inv!o 0

-0 o V M N t-soc5w 0- - - 0o OlC04D a c~vh0c4w

I OWSWWW-0-O-wa I-u0. 00iii-0scves' U)s

-~~~~~C S4 W4( -iqt3- a.................-. (O~c10504SaS(0qe'd OS00OS@*200.C*'

Page 31: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

II

U.w 0000000000 0000000000000.4

0: W4 -to 88wVC c4 -

2 : .0 . me in 0 ~40 cWo 00r- 0- fOW

04It 11 01O#00 "Onw tVM~ wwwv w0~mv0cm

04 *~mimmwe~N000 0

'If0~wr f -of

- - - - - - - - - - oxLfcc-t-11 wwwom mom 4040 CLD 0..1w E-~0W-tew0 IL0i"

30. 1W~ t

.jit--g m-wmwwri"mwU v-om 404 00000 0 0 wOrn)

41~

oo o N0e00000wwwOO00mwnmfl04 0N

"t0. 0. 1 0 0 0- a~ ~ U

4''0. ~CC4 N~ 0NM : w r8W

N IS0'In 0 0 - -- -- - -- - --- - OD

1 it

9L 0~0O t " 0. w * I-wM~wamwNoeiVieN 000O000000--- In

m MVVVVMN;-owwv

0110000 04000000C0U, in

N mt v-~Uwtw' 0) 1 O NC* 0.I-0 ~ ~ C I'0 C; (5 C; C; C; C; 'dCc;0

0 F.-

21

Page 32: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

C; - - - P%-

c; C; C

6 , A

It 1

., .0.0 .0. . . . . . ..00 04VO( 0,a--atin' kmO'

- ------ 0 W-3

-j .. . . . . . . I

01 w~~wwr"N w

>- .- M 14W0 4 Ch1MO - - - - - - - - - - -

In COMMODOD m n0110tarm(W0~~N OTf 0c40rv4Drow In w

0 U0000000080000 LP0q

000 4U:

I-I-NV- 0M- IV

U)~ CL I UW O C; C4 (4 4O t ( V; C4 K

it Ill. . .-. . . . . . . .. I/ L )

in a . 0c.9110 m oum

0~S .iC .* . . . . . . ..J. .I~ - 00 c .I- 1 t. goood Mooo.- LcU I % k )

22n

0 o M -mwovt r

Page 33: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

'C C

0000000000

4- owo o~

z "rS.2 r-cm 0 .....

lz 4 0 o mm o mm o rtm t Co -W fc

. ... N V MvA1N v wo~

m. 0000---0-000000n

.J . .J.. .--.. .- -. .- -. .-

II 04 we mtw~4~ & a

$1 - 04It dm~l (-W0IO mmt-% m 0 -I

XJ A. K NMMNi MMNi ci u

0 VInVI ZCj M. C440 W'1 ).Inn .0~ ~ . 04 .. I.-- > 0'IflV VW 0- -0m-4.00VI --- - - m

V.~~o 00 00W w OWo-t- .

I- - Wn 0C It~IIt N C I f~,&n q- w m-I vdlnm v f

It 000 00000 0,0,N, 0eW

In I-. In0O U ov8(4; mm.o 40alr%"~u oIn 0~

ox0 e~0 I - t C, Q om m rw m r

M f 0r)40M - I v InW C4 IN -4CIn ------------

* -I -M VoC)l-MW~nWW Ism'

110.0000I0

-'0 IDonD888888880In8.-u I0 0e'dIO~Vwp ( 0N I

0000000000000 I0 0000000 i

0 1--

23

Page 34: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

.4

V) 0 i 1 mtMNm"Ioo o

&*C 00000 000000 O -w uw

~ovo- VON-6dd6 i0 ZmmWNN N C c4 c- I. IA . w

O I I-M04O . w~ T - 0

4 ~ ~ ~ ~ ~ ~ ~ 3 -m NW-C W 0N0 d-~~iy

NW N vwON M -- - - - 00 00."30.N OM M U)aa~ m gowr-v t- o o dwmm-r o I- * C, I.4 .00 00 0 &W-in oo MC W OW

0 0 0 0 0 0 00 V --- a 4 tI I C.~,W W W .~~q afl C

0 >l . . . . . . . .I' D.0 Z00000 o" W040C

*m Aeao~~- n 6

V N t-4 V Nt

0 mVW;SWC~ .4.

ovUm#mwr-vm.m-w 4-v ~ -t~ .0 N

& .10 . . .N- in 00 0 0 0 0 0 -In -----

fC t-r -( r -r -tt . X-JM VW 3~N

2440u 0Wj0 ,0 0 *0 *0 ; C

Page 35: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

m 000vt-t D0V.1 -04 -f ,f I 01 4

.4 ... 0 0 0 0 0 0

440IM

IIV0

OW00N"4.N~ WN

in 000 tI-4)CW 00 00 O11 40()UU-(U 004

*. di 4q~~0 9 % M M wwf 1% 0>2 r.~00-cio m 0S -0 - 4 %v"Wv 6

0 000 U) OII II -01

19 !m;W0mvmmmm IID e w1 CO WW(~r-qP-(DinC4)w 1

04L W*.NN f-V0 m~o0s- w- 0OO~ v vm

o . . . . . . .4

IL osoosor- '--'----,--q-0

I0NW 30 Q)W000000000000ab0.1

4 Ln In

in- 1,66666066660 tfl0i S~aq4m * 0 0 0 e r w I-wz . 0C)1DDD - i i3alfi

N I-~ *25

Page 36: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

A;oP ~- COD00dm 0wow

004 -ut- I.w to

0 ~40

.a~'w.4 w m r0c I . 4 7 7 O o m w~- C

cwwmwMwMMM -m- I * w

11 w X- mw-woo, r-aIL

j I- >n~4I(-~

m008880000 WO(D

winta~C' (4 - -w -~ 0 0- i-~~~~.~ 4.0~~nvnt- innnnf 'lfUifUtll XX N

.- . . . . . . . .e .0.C . .48~~~~.W 0t'fC It(eMW0000-q T0--N~~;O a

fOWIIC119C4

m x a;4 co r 4 U; C; Ocw 0 min W wwwwiC' I.4I* a. weinininw- inCVeo,4-40 0~l1-1a . . . . . . . .W0 . . . . I

ItCV r o to vC4 r% T O iinnit) in in v v m m (N

40 iii iiCOii 40 N m W4 m o1,U)0 V d( -,q1% 0 go 00, wt-Wq(NOWq-t0 C4 C

~- 0000000000000000000

U.3

26

Page 37: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

00 MOW WWU-NN M"I 11 x )I n 0wWtoDO-r r - Zc c ;

a, 00000 0 *066 6c6;6ccc

Sz0 t- wwqI-c M v vo n...............4 40OOD Itm mm Mwot- 00C'( y-crd-r'r- , f a

* 4m0c c,. V t-w An -Z2 0.00000)0--40 > M00O00 )0

00400000 0

c IIM)L toIt0 o" -'.M Oin b-1-..I

z4 C4oo 4-t -0 om A

X L A m U) )Uw r ''-0 00000 O fl

woq-vo v o- wine -Cu-Cmo-1 AN

LL " D a - 00001-V MN fliii8 ,O~o .. . 0t

8 AW1I n2OO.-'Il-I 0.0 6 6 6 66 6 ' >II .(l.- Q 0 I

w- o e-~o w- w~-2In)C0D 4'II $I I? mOO6mw~c0000( 0orMin *_. . . It

I -~( 0 0010Op- 0 ww ,i ,U

0 (0 .4O)04MN-00.MO 8-N1- ~ ~ ~ ~ - -m o - o rN 00~--D0- qn d C ~ ~ CCV.C -~1

.-UC1W .D.~C1C2 0 . t ; 4"U78

-0o)-o wo() i) I-l v

SO. flI00D 000 001-))~000 CB

F_ '' ''.'' ' 666666666666-BO

27

Page 38: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

w 1 )N og1n 0I

as.4 o- D)cmM C3CYV00M0r - t

oo M N -ww-0 g0 o -1r - m 4

*~ A0

11 o

* ) 0 w0f6iw 0n00 1OO 0 4 too ni W 0 w IOV£~iiI0wnI0w:-: a-660666

*00044

of w 0&4D0C4Il I* -qr-mm M Ocdn q- -

2i a- > w 0 m r% M m 0 sw M t. 0 0 404 m 000000 o

04 U 0000

q ~ w nuiiif inNt MI V 0w )a N

IL .. .. 4. .

In xnn-----ma

lOW U~ Ca.

C!'- wCi ~ l ~ ' q Go lCDiCD go co 00 0CcdC o o'd 6 666

V" 988008oooooOo o

4 U0. 0000wr mo M a~i n- n ~ i

a~ 39

-I.- I-28

Page 39: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

7i7'7=7

0 0i)g J 0t 0r

M .014M O V -W W WP;1* O

oov4 ie.o N ~ fon 4404 0 .r c l0

It I

.I;; C6 6 CCCMO 000000

C9~ 000000000000 w.0vr:opoI00 -'46G f ; ; O M

- - J IIV IVIV 0) M v) M MIt I

j M r) MOD 1 40 to W W N In 0 f'0*W Ml w tw o~ - W - ,-NO --- ft

00 . .. 0 r .t .r

04o o M M " W i Y 4i * 0, 0, M W, V, s %is ow 0

000000000" I' 040

An 0. .4 , -1 r .t

Im ori' W400C0ONVO42WMt w

n 0 00 0sI000'Z0

2, 40N M Go V Will00 on

>0 t Wq- Vq- 0i in W! - 0!

..JIm Ir- 1wnnct w0t 1- W 0uN 0 t-

o40 M 0 0t

I-I-

-0-

a C)r-V -M Qg0 i in Nq'M- " N O - U>'0. n il rV 0 00 I.~0 VoNe'OOt- N O AL~0 0. ............Iin Nf -000000 ------

(D 0 a 0 0 0 0 O l C; -qC C

0 - in O OO0 00

29

Page 40: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

0 '1

.1c

0 '- N ~ "0I A . . .. .. Ua Dr l 404 vmIiv M W - o m I z x

. - C og qvt D I.x-SO O O O

w C0OM04v r ,

. .... ... ccw o ,mW040 O tfQ10 4'- 4; 4UO0000000000000'

If 0 OOO..4O o~UmWN-uONw0mco 0000000000000mW wR 900000000

z-om~~nw~ 401ow noirnm MU 0000000000

I' 1-011W IM-00rn VIXIM"N" 00."4 0 r- q0 w Z IMOV .~v .c~-~ .- . . ~ .

-> r. 00 0 0 -0&n WO -rC0n.'~ 404 0 000 000000'-- m40 Mn1eC~i

t-0m 0 w. 0 t- - 0-4040 M 1in(0 1 04NOV Ifl0-C~ 40- 4000000 000 0 ZiN

x0 0.. 0 0'-c f0 r-cNOMO OW0 0K"00. - - -O O oooo C4 4 0 0 0 0 0 0 0w t- 0, 400i& U

i-I- ~ ~ ~ ~ ~ ~ ~ ~ w 40d0ws~c~-n 4 ~wv)r--,Omc~ O~w

40 00 o1149 .0 . ... ...-1- mt- -,- OD I-fnu1, 10 40 0C*V e'bOOM ONI4 4 a .. z 04 W ~ ~ '

N M 0 w N0 t- r- 0000momt-40an' t-

I' o o M vo f mC. WQWMVI!-ONINM40&t)C!0 1

NO.~~ .. . .. . . .~- c ~ r 4 r ~ . .c . . C1- L. 0 008800 00 II) 0 0C 00 0 -- -1 Cd'4'zfW0

I.-.

30

Page 41: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

ItmmN~mwMMOOOV -m OIfiI lO - vNmvM' 4W 0r -goWWc 100

I j1!aC ;C ; ;C ;C ;C*C 0000000

IWof XC DC o0

00 m 0 0 -I * .... ' .. 'a0w 04K 6~ooo

0O WOt

W~~~ CDfl0

W~4-00>000wO 0rww K~~0 c

011 w~ wc~ - 00000000~u

0 0 00wi-- --- a.W - 1 r i Owo 1-0ceZo0s0w~hf~~ 01

0N W~t- -00l-c(P z. N

- 4 00 IL -0 -'~ N M N O OO O

0 L m 00000000000 4 MW0 ~ ~ ~f W It ~ 0--04iC

-n>.~--mr0 -V V i,-fltc-u>w~w~wwD~

ftwmct COM ONZ 00-n ii 0;( CNU tC#id4 I

W-00 _CJ'If CO" 000000000 tQ

0.~~J . . .Cd'~f N . . . . . . . .)

ID f

'-eIt0 . W . .. .* , J " v ~ - m - M I

W O L000 QQ QQQ W0 000000 i

W. ft.* O .9O

31

Page 42: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

.-wO i

~Il~wrnn(Dww~oO 4 Dwvr MMMM~doO~O- .4

6666oe666666666 i*Ln0"

fw r-m*N~M 40f mm1O- mr-c n-W 0-0 ,- t.O mr In 1 it t.uo VIooo- xt

INW O mw-w ~w a

wt m m w t-M- At-II 88N-;8 N *wO q m mN x r

-j> Vww06000666666666 W0

1 .11 # 1

it) . Ue SO4OVni -w-wc'vrfwoiS.-M 0. (

. . . . -. . . . . . . .

49v 4C mU0 0 0 0

P: I SU~ I i S ,1, i - o m v Wq In , - n 40 N oo-Ct).-mm O~ a5.t ( . . . . . . . . O0'.D.O.S.I.

Nf 00. to8 8 8 8 8o W0.O0 In~( nnC10O0O00000W

I-I C;fSD~t( 0 ;60 -j V nWr

V)s 39- ism 0i0.................32e~

Page 43: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

," 4,

00w 0000000000 000Of :It0ID~'..~f.I.0 0.9Ou~frmmmW WW -. 0

It 11 - t,

U- I--cu - fh *#M 4wooW4'C4 0I0NY NtW1C~IIwv~%Il wZ ~~ 000~0CI'~ 0V 00M0 OD o 0 4 o

It " .4z04 y

.4.. (4 U; C4I- 4 6 c; w 1IS 0v0Mr vMr ; > 0@MMOM I-AVt

N ~ ~ ~ ~ ~ - - - W ~ &MIDVVUI(O we-OVw'ab wf

0 aU a.. 0"

00000000. --- 00000llfU

II .4 .. 4 . ." f

I CL X0 fl00WI

(~ 0Wwr-mvw 0 4M.'

InI9L N 000 N00Nv C4N0-1 1 -

~~V Q It000 0 00 0

0 -N ( 140N I -'4 t- * -iIN>o~ 9L Wo ro a 01-0 N U)~f~2(

"o II(DD C.Z-Cd~ Wc~v)OI(*I 0t~0 . N D-WM---C Di )r e)1)NOOOOOOOO 0fi ; w 0r-b r-(D4 i n nU)i W 4 . N"C' ---

M 0 0 c- 00M 0-m r. W -

O.~ .~D~-n,0 CU .O . ~ * 0 .~ .. ....

(dI-- 0'O 0bn r-a0V M -NU . m0~.n~~o-(d4 01

.40 WW~c0'1Il-WO C33

Page 44: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

00t- or mm 4 w. r-WOV t--ww 0 c

B- c4qomq() OMMMIlOONW ;.4, ;0;' . wan~~~~r (m six [email protected]~ ~B

04 m 0 '0

uwrt.00 -NOW---00000 anan

M .0 .. . . . . I- iow vr401INvrII0 -- --- a

w1 0CL.0I0CBf0D W0~~ N inN IU. 89I M q.1-INNnn *U. IiXc )w V4a-- C1 0Av0r-Mv -V- §00000-a ei 0 - -- - -UU8D

4. cc

.0 .- (1- 1 ' . . )rof - cc~n Me Mal~ 14 0 r0W C )

44 N 0000 0 0 4

.1 00 0 0 0 0 0 .4 . (. I'4L W I NN I IV0 MM - f 0 4 () M MM M C M O 0

0. 0IM a) r- 04-(.fID l o VC YC4ciNciC N C4 N Bi('dV) W -008.01CBf 1D(IV-IDD WII v

ea1-,-1E

N V) 4N N "N INC l r N C -N N

4L0 -j M- (0W)r- 0 04010 00 0 .

u. 0 880080 O1ID( C C C C 1C;. C4~Bat n~-m - W88b8888 4

Ba V) . * . . . . lO1( 0 t-1WIDIU1U~fl 0 11D1 In00 Ix

344

Page 45: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

.o*

In In 66d 40 too M N V M o 00-,100 m 4v9 I m w 0

l' 4 -I- ZO .w~ s . ... . .in me0 mcc-(~.4 ~ ~ix

z> a Qwm0wm 4K

in 004"

V! 1! 1-0Iin m 10 0 04 -W w c c 0 0-r- C %

*- - m~- W vvW.00"NN --- 040

it~~0 OW 0

(4 f- .4 .t . . . . . . .

'4 - KeLI"O e ,-a~c4 4~ >NmWmw - 0

886 00 00 Kw WO w8- 0

O K QOOOOOO OO 000 4 .

wr0i-o in' -o

CC X 4I CC * f t .4 i' U ; I M 0'~' 0 4M 4' )O 4 a

-' ~ 0

c~~cc~,40000omIn iv C V;it-In r ;C V V NN-"

W~~~n InnUID 00000igalco ovC

n 0 O)a N4 0.

000000 00000 ',- - ,- -

§ -~ -35

Page 46: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

A 1

vo 00) M O-M 40 0r.nwnnaw0 ani wwwnnt an- f-0 0 r- 0ix n 0 wDt or-r- r-,-- t%

I4 . *** 00000000000000.0 0000000000000.

m-0 vi v ,w( mmII

0n A-0u an~- 00 m)n f- 0 0) 0r -mW; U; v 0 o 11. .*. . . . . . . . . . . ot 0* 8 I

Z~~I NDOW~I44 40 N V LM W) 4

004 waIi It)0 nocd0~ f-

C4 0N 04 N iY - 0 0 0;

1a.N a00)))00000 P.- t---I-0--m

m c v 0 -0V . w In 0 InvP N k1C0 0 n" m0- ZWD0)-W00C.IcwvN M N

v4 0 00o00I 0 r

II 1-0w 1-.a-onqe0'- o.1

L.30. .9 IV-40~n0MOCCIC04 W0 > -anOOMMVNqi-alOM I.... .. .. .. .. . .... I (W~m 8 8Nmvmm~w

00I m 000000000 4 NOV o:t

v~~~~~~ anODra0tiWf--r- Lanmc 0 o- Ir ow o-,mn.--f V) -

N Go w man0r-(o-vc 1- w m inw v )m M c 1IN >" in 00CMtCmr- 44 40 #an 0 (a 10 to 4D 0 tanan I N41

4.400. ---- C§0N000000000V0

ana 1-mNMW).c.orc-0)-a NNNN NN N N N Nm

C~x woo-r-o-a'wnanrnman mm4>

in r- 0oOr-C c,00)0 1- ul0. aC 0nnnnnnf)0ac t an-W

aoODoODO owO ow 00 0 CD~ N~e'd NC~t'4

*- M*Mwn wm Nm 0.44 C*V0 0 00 0 0 0

000 000 00036

Page 47: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

int -4 4 ot of

100r 0C At DC - oM0r .1 o 000oo4r r D0000 -9I nb 04 04 4 0r -f 0 0l

a j

I. I

00 .- r-st mom-v-r-m000mrOU JNM M w9 m v InnnnSI-W-IrI

00000000000 C;

i- I In (*, w .-. 0Cl4 - C ui 000000066 j

Mo vm* ----- ~oc~- 0aw IL Oooooo-inimovor, *sr

00 ii- mwr-ams-vsso- CCL-

4, ~~- - - - - - - - - - - -n -i

.j 1,- > Nwwft WU 0 v w w C 6cl;fl 0M)00

n0 I 0 ~ 0 §' 0. 00'I inSwwr~m

x0nt~~'W'0 000000000000000V f-0 CD t 01-w - " 0 00 m.-r

(' WNOO -00MMON . *0&f#-OV t-

C4.4 XC~'0 @ tV Ys I -)04 4 4C4 O oi

0 . CwnV~ InI-f -.11- a n 0tlIr U0C t- t- t-~V~O L)1flC4N 40 1

0. 8 or NC('C mo Dim 1 i r i alOC in fin cnl 416 Wt -0 wC~s91 W- w w- r.o NmIn Sr IO w~

4 *0 00vClw1nofw 4 ( j Z

ti-o--OlDt't -= o0O 0 Olm

N 0 0.. 0 0 0 w w tI- r- r-0 0

. 0888888888r 0 § lint >z 000000r-t- (Y) .

ot' L 0 000~~f~lf Cl-nmi0Im00& 4 .J1,i- tsn)sVn lC) I.N 5.

Na. UVVVV C'~C.0IDl@IW Sf37

Page 48: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

1- M N N

ooI o ,t -t l o

W6c;6oooOO00o6666

.0D D ~ -(tt .

J cz

UO

'It 044 * * . . *

o- oNov ---------- --- Maw t

0 0 fr, f-r- r- w w w 00U) w w4I0 (00.W(UW S - C;

4w0(m~~dmm- 88 NM M rm- ai

m 00000000- 4~

w( t0( (0(r 0 - 0 -- 0 0 (0MAX . .. o~0 .m ot.-0 0 naO

-Mu-.l( 04

N M M00 "

0 -0000oa

'' '' I 'S ' WNW0000000000000

l0zO O In r

0000000 N NlNNC

to 0q O 0 -uN 0 0I-i~! , .! 1 O qwwpt m((Cmo- e. 0. I

P. LL 660000000000- to .- - - -x I-

38

Page 49: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

0 1I

Iv'O

0000000

*400000000

o

t.n

0 ) m

111-$4,

11 0w I In* 04W

-J > 4N Im ; 000000- 44

w 0000000000000 I*('w V 0 - - 0 y.Y - . - M (0(

.I .- .. 4 . . . . .

UL&100100l ---- 0 ar; 0De0 I

i-o4o-rr 0NW §00 0 I 0 V

wmm0tm-- wC -0

4- 0 0O'000.000

0. ~ ~ ~ ~ - to0 YC0D''( I4(0 (00 .W 0 0 0 01? D (D0

.I . . .. (0 I

ID L~~~. wOOO m OOwO~-Oc-OOO .10 00 00 0 00 0 oIon......................

t--j- - '--- 000000000 0 c

N d34 4C'C

39)

Page 50: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

w 04

-Ix

-'UU

'Cooo666~666 a

0 wmto~ -o 0

w O O O OO O O at**~* *fM ~ w f w . - 0U w m v vm m- -9" -9 0; -4 -(6 -;, 0, ;, M, 0* ,

oomWNvv '>0W W ww v ; 0 -4.

9 - >m LOU,9-- 8UC.

ILI 0 0 00

M&MIifl000o 00.00c1"0. 4 - - m m - o

a at 0 V! C! . . . If -

woC~ 00000 00000 & .. .. .. ..

0000000000000

0N. IL C V)C,-W-)-C-

I'-K

40~

Page 51: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

w

0-

sw

0WO

0W W Uw

a - .Z L

> <41-4 ~ ~ LL.* g.c .z .J0 p a Q Q0 Dr,%, ot

w ~ f ce - C%

a w u sw-IlIIlloz If. CA 0 de 0 L.

0-40 w vW 1-4JO

H 0A.. Owl ww~. ~ &n-Ws =( as- -a I C')C'tJN N = -J<~O

41f L . <= In 4 w

= L (A4 a i *NV L)DrcmQ N ujwww

oz I m Lu z 0 .zCiea0 -4 > L N IL

4w Z~ww- ~..JU =O=X Z ~ Wa-.a~l-~l 4-

4a-a 41

Page 52: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

2. STREAMSURFACE BLADE COORDINATES

Figure 30 shows the stacked Phase I rotor streamsurface sections.

Each page of the following tabulation gives the coordinates for one of these

sections. The streamline designation for these sections corresponds to the

calculation streamlines of the circumferential average flow calculation.

Streamline 1 is at the casing and streamline 13 is at the hub. Also given

in the tabulations -are coordinates for the section meanline, the meanline

angle, and the section thickness at each point. Streamsurface section chord,

camber angle, and stagger angle are also given. All dimensions in this

tabulation are in inches or degrees.

42

Page 53: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

LEADING EDGE

/

: ROTATION

" Figure 30. Stacked Phase I Rotor Streamsurface Sections

43

Page 54: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

z

aj 00 wcx - co

0 w

'I WN O O 0

a 0'~'0-C'V~ ~0 0nU-r-t-o0-w~v -0X -- wwnwwM0WNWWwmOmmNN

ZC r! WO Il'.QW-WC C". 00r' 1 1 Oc'1 QCr.- -.-- 00.:6r-wwnn-00600000000000w*00o'.

LU a'a a - ym

U,00800000000 0 000000I

.0000000000000000000 W

I. 0 0

0 a) M-wC-mmfwmwr-w-r- 0

Ix .z 49O w m tw

a I 0-fl0 r-0ol) r-4 a . . . . . . . . .0. .-- .-.-.--.-.- C

aa - -- -- -00 00 00W66 6 m U6 6--U: .Ln.

U~~~ IN wt-00O)Co0 - n~ow

00

w-----------------------------0 000000 0004004000000-----------l

4 44

Page 55: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

0(N -00-- -6 0000;6 c;606000006C;06 00

z

1 mo f- mv0a- t- M 0 V f )

A - 00c.C;000,0000000000000000000O0

* 0

La 0 0 0 0 0 0 0 0 0 0-------------

00 00 La) qwa womt

----i-- - 0000000000000000 000 --

I-. -- - - - -O

cc

L6a

M-0 M- CO 00 IC

VoL) - 0 r)0 ;0 r t L t ;( ,r a4 - C; 0o , OI U~I0&n

a Uncz . .lu

0 w I -~-0 V 0 IO 00 N U~-O W M V ~ O%lx 0 4

0 w WUCt 0

o . . . . . . . . . . . . . .. M a

a -- - -- - 0000000000000000000-17a. ) u I I S I a S I I a a

z4c -JM O W N OM N W w N W~" W v 0- 0

u 00 -0 - -N ,4 s mm v w w o -- wwwn!m-

CV MMM.I

a (NO00~t- WU,'qC~O0(Nm45'

Page 56: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

-------- 000000000000000000000 ----

I . I I I . . . .. . . . . . . . . I

0 V)OW

----------- 000000000000000000000 -----2 ' * I I I I I I I I I I ccv V 1

---- 0000000000000000000000O-------------

"I) V, W, rn (0,C)~ Q f., 1 t in C iN CC P ,G, W

Ix a

*- M O CDC.I cs M m

Lut4 a

z C w w O t N '~~~

0 L)

"N* MM tW v.mtI.- 4 V)j( 1 0 0-; C; C;'L )~ 0 0 C; C; C; 6 0* 0 0 C; C;0 0' 0 C;

LaL~ 1 0 0 n 00 8

-o - -

4.- ~ * W ~ t ~ a46

Page 57: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

N t

z

I C m

------- -00000000000000000006000000-----.1 z a a a I I a I S I S I a I

a'Ix

11000 mm-00000000000000

--------- ~ 000 00 00 00 0 0 w00000000---r-~-- 9

--------------------------------- -------- 00 0 00 00 00 --->I I a a I a a a

LU

00 00 0 -- - -- ---- 0 0 00 00

U

o I

Ix inC.~i 0-~~.ci~iv~- 0o0rr C~~

a mmwm .WN

>. -MO mo0000000000000000000000000000000ONM

- 0

U U

---- 0000000000000000000000000-

-. -J -0

Z 47

Page 58: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

N ------ 000000000000000000000000--

ccI

. . . . . I . . I .

7* v

C tNV; mvr-N

z Nom folmmm §0 womN tr.

CD:

m m0-N0 0N 00 00 m 0 NN0 0 M t- - r C~ n0 4

4 a -00000000000000000000000------

Ix a

UN

* ov N-0 rwov -000.1Ommwr-om-

aw 000 00 000 00 00 000 0 00000 66 6 6 6 600 0

0 ICA. on m -wQ . M4 owoo t O mMU A x .

- a ~ 0

4~ ~~ 7 74 ~ - 0V C 0' 7 V 0ft(C~

U~ 0

S 448

Page 59: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

-. S -- :----.:.--- 006000000000C0000000006c;0660060

C ~ ~ ~ ~ ~ ~ O L mD 0 O ' .o0C~f r-mO- M-01cl

U: .^v I cC lccr -( l

4 0000000006660000 000000 0000-------

o eyr nwwr -wc 7 na

u ----- 000000000000000000000000000000c

w a ~W 0 O ~ ~ U C~r O 4 O 4Ml -C

-------- 000000000000000000000000 ---

crLo

a 0 . t- CY

a - - cy - n v 9IMN MOM-'w inc C r V M O ONNN

r- 000 0-------------------------------------rr .- 0v 0000. . . . . . . . . . . .

- O O O O O O O OO O O Q O O O Q O Q1. 4 -N-m-0r -- O v O N M M Nmm 0 t

cx an 04e a - )N

In v -00vmC4C 4()vvi nI .WC )a. .

0j -- - -a00a00a00aa00a00aa000 aa 00a 00aa 0a 000a 00aa 00a 00a 0

NcxW M 00 a; ; wa~~a a MU

*~~~ 00 - ~ -D ~ ~ U t( -~0

U.:--- -- 0 0000----------0 000 00

4 49

Page 60: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

00, C 000,0 000 00,0 0,0 0*0*0,00000000000

z

LL O TvM -0 0 r O M (-0 -N. VL)Df

u~~~ Nc W rr) C. ~ C~C0 0 7 1 00 pm0 0k )wq0 oC V

I- M ~ . . .. . . . . . . . . . . . . . ... O000 000O00w00;000Cm .

z a a a g P I I a I a S S DI IWu T v1N -Cc

w in r-w c

rI v 0- v 0 r- or cNvm r m0wt ~ C4-m t,X a 0 M 00 , orpMv ,4-0 C4nVWWrOD0 - N N ) M-

. . .~n~w c w .w .~W 0 - ~ - 1 f~- f( . .. I.......I

--------- 0000000000000000000000----w I I I I I a I I

cc I

LILP

0 VM

1 -00000---- -- - - CdC e'd(NN----------- - -- -- --- 00 000 L- I 0000000000000000000000000000000000 0

'a 0 0 w

coW -I, 64'W ta o- 0* n ,v t-; 6 00 wN w%0~0 ot

4~~~I W t-~W0 W ' 0 0 000

V) I

U 1! 1! CN-) C4 -- 0 (.QC W 4 ~ In WC M0N 7-(N0C 0 "CN MNI-. -: -: (666Q (000 cad 00C~a W~ -W'-.00

- 50

Page 61: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

o Ov0 . .6 OO O O C;COC;OO6O66OO66 OOOOO'6 OOOOC O"

w C%

---- 00000000000000000000000000000-~

a I I I I I I I I IOT M W

CCex

o wo (

6- 0 0 - - cccc4vUcccc44 7 ,-,- o o664 66o~o66;666 6~o666

o w N

mot wo MN (ND0O000( N mv 4nw

0 ui

mtI ~ t- m v 0CC W W ~ W 0 f~lN - a 0 n

* Im

-- -- 4 o oo o o~ o '6 066o---,-

0 i

00000000000000000000000000000000

I . .. ..-- - - - - - - - -* L

4 -. I ooooooooooooooooooe~oooooo51

Page 62: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

----- 00 -0000000000000000000

M -00 V.ad Lfl CD C. r- m0 W 0 M t W (w ccN M M r r- N C4 U 0 D a' O0 CC t. In 0 0 r- IN

dc 00000000000000000000 -----

0 t.0mwr-Ommov 0 wmomm0t-06nS -- - - ( 0C',WWW0InIDwow.On M C',

w

*--.--000- 0000000000000000000000000000---

ai ma a ii asO C N W M aorw MmaM~e (Dla I I IIII.

CL ---- ----

Ix a

a -( vv O w - ~ o v-~-~ N ~ W

00 0---- ( (N Na--- - - -0000I

Ix I

Om nm - M nvr t 0- Onse W M m-o-m "Oo o -v w m w v-m

. .0 a a a a a a S I a I a I- - - - - - - - - - -a a a

00 - ~n~I(N-I ~ -0nflI- 0cmom-f-vo

w -00000000660000000000000000000000IAl Lu a a a

4

w cl) In t- m ; M m r- C0 0 0 -~w 0 c I D a .-' -f - .-

-I - 000 0 00000 000000000000-------------

a I- nrfl- cviflt- c,)wlc(rJ-Vr- rwmcwic 'v- miDOIC'4mrl-

a 0000000000000000000000

52

Page 63: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

00000-0%C4'0 0 000 0_0-0000

ra -

w Cx C-0~ 4Dt D nvC)ci 0 .f IV M- N~ t 0 0uYV Vin( ca D 1 0

0

C; 0ooooooooooo6666666666oooo66o060,o00oo0ooo0ooIxp a a a a a a a a a * *

Ix

a ~~~~N-M- VW-C~l-0-0~fw L

4 a -f--7 7 17 ? ? loltolo o o ---------00 000 00

Itt

xr ot -- MONO-MwM8 v0o0wr-M-wwm-M or--

0x a

L . a 4

a Mt- o ~ oV ~ -

4IVM amo 0v e- N0- 0 ~ ~ ' CI l oWt- O

a 77----------------------aaaaaaaaa------

ft 8M M 0 8.00 - -a

o ; C C ft a6 m C 0C; C C ; ,6 ; 'C;6 6 0, C; 60 C 0

0~v~t OD 0:! v w Cm -cr~~w-w,0 Mft c4N NNm4m mm

I- ~ 0 rn!0 0 N~t l~fl fl53

Page 64: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

--- 00080h00 L 000-----------NNN

z

t'i

-------- 000000000000000000000 -- -

o 00

LI I

I&. 00000 770000000000000000000000---------Lw 7 7 7 7 7 7 7 7 7 . 0 1 1 1 1 1 4 1 1 1 1I I I I I I I I

- - - - - - (f

>C

*1 -Mo I XwwMNw -0mo--- O-- 0 - u W tI-0 -- - - 00 0 0 00 0c00 0 0

U I

Ix u

toU ct C ;C C t C ; 0 i C n

in' N0ovL o(z - - - $ i .

*~~0 --0 0 N C1) NNNNN 0 Ucc.NLU , 0,0,0*0, * , , 0 0 0 0,0,0,0, , , 00,0,0, 0 0 0,0,0,0* , , , 0 0 w

II- 00 0 00 0 00 0 00 0 00 0 00 0 00 0o

-4

U 0

00 ----

U I00000000000000000000000000000 0000flU*

- 454

Page 65: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

*-NwM~vMMC4v-- 0000000000000000000000000C000.* 0 0' 6 0,0 0' 0, 0, 0' C; C; 0 6C ; '6C 0 0 ,0* 0,'0, * 960

zv* w M v -~wOw(wON00rv- No Wot 0WLMMO~

w 1 0 v ~ L- M 0 ) "W M- 0r 0 0 r4 in Lr I Ctr 1 ' cl; C4 V. r1 - 0 a' in M 00 C w N -v '

--------- 000000000000000000000-----2 z. .'

0

fWC000 v w N

Ui. 0000000000000000900000000000000000000000

CD,-wnw or-wwo ov m t~ovr- -w4P~v ~vNmv m - cmro~n

-------- - - -0 0 0 0 0 c o 0 ---------

Cd.V

- .- - - - -- -- cli>ac

1-o - --- 0N- - aci

.9 0

I.

9'I z 9lN wv v v 0- i W (9)( -C)Nr- 0I~rCd--; %w * CI) N -0 14 -i- -(09 -- 0- ~- - - -w0W 0 0l

z Ix2 1 C d N9o z i 99 9 9 , 9 9 9 9

o~ -00 M. NO 0n WO~ NU.)M( ) 0M m ~w V w ~

U .000- CCNy t-In0C)M V V VOM w 0W~ON)-aN -1M uMOO

I- NnV fO~W000 i0 9(),~i~~.O~ W N .C

0. N

z 55

Page 66: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

3. PLANE SECTION BLADE COORDINATES

Figure 31 shows the stacked Phase I rotor plane sections. The following

tabulation gives the coordinates for these sections. These sections are spaced

one half inch apart, beginning at the tip height of 8.5 inches and progressing

inward to 2.5 inches. These are the same section locations as given for the

baseline rotor in Reference 1. Also included in the tabulation are coordinates

for the section meanfine, the meanline angle, and the section percent thickness

at each point. Plane section chord, camber angle, and stagger angle are also

given. These coordinates are intended to represent the blade under hot running

conditions and do not include any corrections for blade untwist, meanline

deformation, centrifugal growth or thermal growth.

56

Page 67: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

2\ \ *\

•\ .\

I \ • "

,\ \\N\

\\ 'K \ \

Figur 31 tcedPaeIRoo lneScin

N.~ N~ N57

Page 68: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

CL

-a-I.-

0~ 0

a 0 000000000

I-- x- 00 0 0

weO0 Z z ~ '0~ 00--w wJ-~N W W

0 4c~ z1I 0

C) 00 --0a - NNNNN-UNNN 0 0000 0000000000

OOOONWOVN7N00oOVwgDWcu

0E - 0~00 -'w'r.oe D ---- NNNNM-0OOVoow I- . .q O C. . . .C . . . . . .* 0 0000 000000000000000

I- (n I- I 0 0 0 0 00 0 0 0 0IC 0---------

I. ilZ Z I B. O~ C~ N O'58

Page 69: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

Z 00d Nto4 oO

0 aVpNV-N

.40

WN x0 4 -

0 0 a&W-0b0 v) N W)WKqS00OK).OI om 0D 0OMONo

I- . b-. NOVUN00NU0000',00-- I0 ;- N7 :)) M C; -;6C ;6C iC

Z Z -OOW0oW

4c m<0 - -NO 0Nar-- 0 --- 000000 00

b-A._NO~owNw 0.

1: 0 0 V)0 N U D - to ) IL 00Mt0O-~.0o Y o w w0D Q0-b VUU C00 NW N -0

Z b- A.o ONU) 0-0)-D0b~N O) n

w < 0

w 0 0N0-0- )0 0~go OOMWN( D11- C.) 0 qq)(w o 00-) 0-0- M No0 0 NNNNNNC~NC%( -- 0000 C;--00000N 0 1-000000000 000000;ooo 8

0 z - Ci.

0 Z Z w 0000ww004r-K00F4 < 0000000000000000000 0 :) ~ U)4~C) 0 Z Id 4 000000OO0000000000)0 0- 0 0 VVNNWm0-Nmq0

* 0 Z %0(obw)oNOWabwWF-O w(D N. 0000---- - - - -(UCN(- I-WW-00O@~0ON 5-00000000000000

- 0- I.- 0) 0, 0,0 ,0 , *C *06I- 0 A. 00000000000- 00 00000000000000

I

0 59

Page 70: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

IL~~am

7.00 VVN

0 . . . . . . . . . . . . . . . .

.4,4,4.z

7-Goz I'j

-'4l

4,0

If)

zz b~lo~~el~-Io 0 ~la

N;DkqMC C 0 o ; toy (1

a, 0oe3 w I a...~*04 0 0 k

Nww

* O W 0 Q0rl0wV)- lb OO -0 X

W 4W

4( CID

Ir D -- 00~bN qI-~ b 0N N ~ .

0 0 ( o 0 000 ON000OON000NN4w4w~w;; ; ;;o. ~

Z I ~ 000000000000 000--000000'-00t - .ma ., .me .m e . .

- 0 '0 '; ;0 ;o *ooooooo ;' '0 0 00 o ) 0) 0 4

tW WA

L D 0 0 qW Ol - )t0VV b WW4 a ~ 4 ---- 0N- 00 - N0 )Vbbs O Q I-

I-0 .................................... 0

Page 71: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

4,4L

-90

if)

w . i

0 :644..N

-I-

VNN

-j x IM OD 0

I--4

00

0 0

( 00 0 -

*0 C; LLN4uaiW w e-iK) 0000 (

z z 0 z..

0 < w Ic

I .- (.) 0 Ia Jw 0 w w to m V

(DO) >-

0 61(

Page 72: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

'4

C);

U 00

0 0 Z 4 c ;0 ; 0 6C 'NO; a- ow N 00q0 o 0-o z ~ ~~ -W oo-rooo 0 N0~bQf(

C- C! -0 e4T 000 V

~ -,---,-ooo000o00o,--oWW

C) j 00wqo~wiwoNe(DQ

4c W -N )N00

w 0. 0000 -00000

0700 -NW0N- d q. ZN W 0-W- W0)@

a 00 - - N~NwwI- 0 000000000000000000000

'4z z -0 ~ N - O ~ s~

M -- -00000000 - 4 --00@0000000000000 LN f~ 'o~owo~ooomwoooo

I- L 00000060006606000-WtrSw Q) Z

oL 0 vK )

0 62 04 0W q q0 wo-o

Page 73: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

Q

N -)N:0@'W)N00uv-

W 0 W

-~ 0 W0-Q~~

W j 0v;ovo O w o W49) 00 NOV KMNWM) VO 6666

0

ir Wov. *00o x CsL.0.

z -- L ON000000000ONOON0,- 00

~ 400q000q0mv.-rsc)0z 0 V0.J-00--WO otWOMeONi

(D a0 CW * cc -. -- -KO 0 000ONNOO*~~~~~ .' . .)) C 0 0 K 0 q - . .. . . . .. . .

0 '. UWNJNNW- ---- 0000 0 .--.--.-.- 00000000N 0 I0 0000000000000000000 0Us~aa~~s

z 0

o- z z i< j 0000000000000000000 :) momo0WwononoOmo z W 4c 00000000000000000K)O 00 40 0 ~N40-J~cCx x f'.04DWK).-V~..ooWwuor.o W- %. 0000--------WWW 0 amOOOOOoOo. 1-- 00000000000000

>- toI

CL a-NWN WWWO OWc')Oo 0

C.) 63

Page 74: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

N W

o - 0 VNNNOWV 0NW-0 ON009N0WOr 'VD

S0 0 W000O00OOO000- O--'~'VVV NVW@0

* zz

Zi wa 0000000000000'''

gill91

0 01- 0O -0Ow"Vvw~* OD

~ 0.

iti

-0 ci 0 C0.( Y I i)4 10 C )V VI

(0 0 0IL

0 OK (

0 0 000000000000000000000000-- hWWN2 C )

: 00 Ii. 0'0 - Z ~ 00QW-00005'0000VON-n- 0

0 0 Z 0 a 000r ID -------NNN- -000000 .

r- 000000000000000000000000000hi) OW0 '6606c ; ;6c *60 i0 60 '0 *0 ' 0 0

L0 a- I'W

0.~~~~~ 0000NCV N NN N OO 0000,'q .5-

O 64

Page 75: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

(IV

(60

*20o' 0

w f

CON

(L 0 DC0i-

0r O 0 00a O0 U0'S -- 00C'J

I.-

W wa~s

W 0 0000C

0 rz 0

N UU) -

-~ U-) )

0 z ~0o 0 0

c I 0 <

N 0) x(D

0 *C) 4c-

0 0 Z 00 o O(

0 0 I- -

I- V ) C)C .

Q. 0. W

IL0

65

Page 76: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

IL

OOOOVN00000N000

00000o 000000

oov-NO-N 0000000000040

0 e z - - - 0 o o o o o o

0 Z

w 0 0 0 00000-------000000

Ir O O IL 00 N0V)0W"00V00M0f) Y0C00

z. z IL 0z N.-.W)o0)o0oNo".(,)oWo(oooooooooooo

;: W D0VM0r )Cl-- )P 0 .. . . . . . . .0 0 ooooooooooooooooooV

w °

,. o 66.,

a 000OVNO00

0 00---

z 0

w.c 00CV00000000000I%~ t~~~0W~w00-r'-NONON,00ONOW -

Lu0,0 w

0.

00 66

Page 77: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

L. Z

o~~1 n S@ iW00 .t) R. aW M

0 w N 00) w0040 Q Qt.~O ~C1 Xo q ,, O x

0 z 5LNC~~Q0~yo a - 00V CM MNo - VqN0 C) .jJ NNNN0ommo~o

to- @00 No 00f?-V000OCD --- 0 00 0

I- -0 a .0~ ~ 00000000000000-----NNWOVW-00N

w ~ ~~~~ Isl *ii WONO0womwooiWiX

it i 00NOOONO0- C

0 a0 0 (0 I 0 00 0 C)00 0 D ~ 0q D-C1D- Wr-C - .0I c0o~'~

0 0 z - 0 q 00)-Cl N~ 0 VON CON-00I-W0

N a- IL 00q000o OWNWq ou i-

a N NN N - - -00N 1 D- - 000 0 0* -,c *N 0 0000000000000000-0- C.)Ii

0 0 0 0 ;c *0 e i0 ;6 'C "6C 0 00

0D 0 1 U.

0 Z Z c-rq0 W OI0 1- 0000000000 q000 al a. OI00V~wD0N)0-

0 zw 40000000000000000000 O

.J~D 00000000000000000

a- 0 00 .~.0-N~ V .- .- 0.-Jx1- ~ A 9L 6Nic;Ni * ; 00 06 N 60 0 0 0. U-1 ;0 ,Oo ~,0

U 67

Page 78: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

IL Za I

3 o~-o o-O ow~u oio

0 w N' (4

4 zzDo

W 40 0 ZI0000000000.--

* 00

0 Z 0MONN000~-vowN000.wvoN-o *wM)-~oW*~WNeosce-NOO --

o ;C iC iC ;C C; ..i @ O-0 6 0(b t

0 o 0 L4

0 z 4a. ONOOMOZ I- ~ 0000000000000000--.---.o.-- MM

w-w urNV .. ,nw. 31111.11,1g I-c oVOg00 -O~o N o a---

wr 0 aow:*m r. C 0 mWVwwr-Nr0 oNVW-wwqwW

0000000000000000 0000--, 0

w 0 D

-~ CACNYKN - OOOOOOO OOOOo OO 00

( 0 684

Page 79: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

II

*10

N 4

'40 0

L 0 h0

C* 00

0

I- w

N Q) S OW K

M~ *j 0NS

S Z : rs 000z 0.to.<.

001 woo0

C. 4 w- .w U) w w W to-0 0

U) >- to W

J6

Page 80: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

L4

:1;-I0

RN 00 w - a N N v 00 w. . . . .

Ow 000000 *N0.v;

L Z .0 000000- z

0 ;

40 4 3 w..,---.-.-00000000(0 0 monomovoc--U)WNMOON

ir 0 C) 0000--w-.------.-00000-0 a -. . . . . . . . . . .

I- 0 X- 0000000000000000000

z Z L- A.. NICIDONVOCIONa 34J;- w~ 3 40IC1~ O~~-gq - --- :-000006C;C;c0* 0000C (

- 0~C Z 4NNO-NOW- 0won-r- 40 iaiII.aN W - I- -rO-NWOmM)OOOOMOV w

0 Z N 0 - N NW N 0 N 000

w wN v 00CDN CD CD 0 0 0 -0If) v C

(0 0 .. ~00---NN c ) qN v. I- 00000000000000000

w C; ; C 6 , 0 C;6 ; 0 0,0* , 0 C

Ir --~-- 00000004-----~oa <~ j00000000000003000

-~~0 --- QN~-w~ g)r..)m)-V0 U . . . . . . . . ...

---.- 0000000000.-. 00400000000000600w 0 w~2s~ a i e sIl4 MO) WO )O000

0 C 0 O ~ -c - IL --------C)C (~- 0 -C

I- UC. O OO00 0000 0070

Page 81: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

00

0 0) to 0 VO-0 0 0

4c 0 . O)0 '0~ 0 W-)~~1- 4001 a 0in t*C ) NOQaIf V 1) 0

NW Ir. toW . *. ..... .. .CCN N.ii00000 .W

0 ~ ~ ~ ~ ~ N VO N C; 0 C0 ; 0 0; ; 0;a:

z it! M)C)N00e0%(.4 W 4 N )0)i-i0@t-~.QCa W 4C

I -ID *t X

4c 600000000000000009-,-- <

*0 0 Z ON---)0C0~0)

I- ~ ~ ~ ~ ~ ~ ~ ~ oo 00 O0)-0CV)O 0-1CNf000-N-0;

2 I A. vqOwDq0w'qNvOOwC)-wof ON ------ 00o . .- 000-woV M)UsSOM,-,N 0 -

4 * I C000000000000000--.--6 C ci I~ W

NW W w IL

£0 0 1. VVb- m v- o0 N a IL

W) - -- 0 0))W) 0 0,6 (0 0

N 0-0000000000000000000 U emmaimii

z z C

< 14 0000000000000000000 V NN :) ~ £ e-K-C.1o 0 0 (D (A CYOID OOO VON00OO a VN 0 0 C.) V N£D0 N0C)Vor

X -Dowri--eo~e s I 00000000000000I0 0. 00000 000 0000000- 00C) 0,0,0*0,0,0,0,0,0,0000,

IL C

0 7

Page 82: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

CLZ VO-~~ 0'~V0N a VIMA Q~QQq

0 (4 OM000 00VOMOO-. 00-o 0

W -0

w N 0.0.

zw *r

- OC - 3 - wV0

- 0

I..0 0

0 0 (4 VON-00-NOVOOWNNOMOO0---

z I~ S 0000000000000---X 0 1114ses 111sea 111116111s, I

4.a 0.0

0 0 0 k44 0<

4 1 0 IN- :)I-.40 4) 1-WOe00Oe')g)UNVN)0'rOO 0000 44

0 z 4 OW; 0WNO1-) 0-000V-f'-NfOM0 - 0x OW O0N'q00wWwwWMWO1-(4 WW

0 K . . . . . . . . . . . . . . ZZ(4 0 00000000000000000000 ------ WWL

N C.) Il il $ 0 C.))

z

(D LL t- C

0 ~ C O 0 00000MONOO-ON00M00Q0000 00K% ---- 000000 0 0 0 0 0 0 0 0 0 0 0

IN-~ 00000000000000000000000000 0

U) 0 00

0 It

Page 83: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

II

.4.

w4 04o 00O

I-V)

0 0 0 00

W 0000rr X;.JWW;0 ~ ( ~ 0 0

-~a C) IL NN

V CC

o- .0 to

4'~ - -1

-0 C.)C.)

0 0

C) - - :

wr x c-4 4on bJ -- i

) w o -coQ

-. 0 w bW'U 0 OK

IL.I- 'q C')73

Page 84: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

'Al

~~000

0 OMOJ00 0 o

on'NAOON~o

VQVNQIwVVm

N Y 00 Q - 4 o

ON00io we "N

0 C' 4 0~ - 0 0 0 0 P ID a o.-

* ~~~ ~ I I- 00 0DL~'orw 4a Z (O--Cao-rOwp o _Oo

.A9 - ON N m amowvwAtAA

it0 0 00 ------------- 000~I~~ .......................... ....2 T 0000000000000000000 - NOOWOMOO

'10 0

(0 00 @Q-1 0..-)0q 0 ' aaQN00 q(w 0 3, 4 ---- .-- oooooo 6oo

*~ - Z 0~O W 0Ic~reN W nO~~ W~%~C

0 0O 000 NON~-- -- -- -00 I-0- <h -1 0000000000 0 N 0 Q (Dz~

W. w0 0 x * .

re O ----00000000000

- 0 00000000000000000,,a,,,

w X Wo0000000-00-00W0 ZIZ N *00000-0SWU qCV-00 4

a; _Al VV - OW 0 0 0-; _

----- ~ ~ 00 0 00 0.-- 00000000000000K)N 0 4c 00000000000000000w , w . YC YC . )'

(0000 000 0000000000

IL a.~I- I-- O OO o o oo--. --------00 000 o

0 --

Page 85: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

IL Z aNS

0 0 0s1w " m

U0

4 0 km J~0%t

i No V N 0Ia V -,o0 V0 ) 040 IN 0 .J t 4ii 6c C C 0 w

0~~ N< *eM00Nr .00000@0UO a

0~~( Z 000600ONW0 0' 0 j W( o -o~m w

W I-

Z ILN N~ C 1 D 0N0

C;a C; C;C ;C .iC ; ;60

W0 :) -t)6)U

w z 0;;M00U)V)C'J06* 0 W IL 41 06NO0O0I-I. - -00a CJ6 0lUN - 0 V 0* 0, 0-N e 0,N 0 0 ~J00000000q)Ct0000 0N 0V0-0Ir(U

I N '- ) 0'.O - ))D W6 c; a.0 iC ;C *6ci6C ;c ,0 i0

0 0 -r -- -0O--N W06-.- VO .

W j ?0000o0000000~~ C-D D W ~ ommw

0 0 0 0 0 0 0000 no 00I 0I 0 ( COD - 00OD00ID0Ix V' X to-owm~mVo~w~ 0 0 00-'tQNU)6N000

N ;: Or- 00000000000000 ) Sa~h~IIi

(.) CL0000000000000000000 IL W 60 ,0 ,0 ,0 *0 ,0

0--Z

m IL N ' N U #)NC (DD~t-'0 00) 0)0 0 " (- 000000 000000

0 75

Page 86: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

L0

a.0 z ooeerONOV O SDq0N~ 0 DVO - 0~D 0..O *U 0 LJS~NQ

a -0)O V' e~ m ~ ~ etoa

0 q

w 00a 0PNt-000 "-V -~~r0l-N -

_AJ NN 0 D 0:NY V W V ')~

~~ 0.

W .D -* 0& 0 J W V0it o- O O* - 0 0 I

0 0 0-~I.

W W WN L- W V--N ~ 0CJ~

0 z 41 -00 N N C,0OD OVt qrCYDDl.-O0 W YC)* 1- 0 OWN (yr- W(004osewK'qN0 NGWVNOO 0 x

N a 00 0 0 0 00 0 0 0 0 WW

N V asam I 09)

-~ ON0r 0 L. 0 -

v x 0 -0C~q~~0 0 ONIt v0-ND0-0N-OW0NN.-0ON1'N000 ;-

* 0 z 0 *- N N -0D-W OL NW 0

X 1-- OO0000000000000000000 0000 0 0

'U (A 'U Do

Co W

a' 76

Page 87: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

ILIN

40 0IJ0

4, 0

to 00 l

0

It 0toC YY

*V 0w~ "i0L 0 0

A ~ 0000

0 D-N

o Y w al

w ~

N 0) -) (

(0 o(*70 DC

0 1' V)-0z ama 0 'C

w' .0 0

Z 0) OC w

IL)

0 7700~

Page 88: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

4K

w ! nN. l ,z N

0 N Nw w wo o

B 4cVN NVO0aN

ILl.1 .v

'IL

ft 000N N N - 0

Ix 0

0 CC

4K I-

d 0 Z -0NN~ w~.. e --N 00Q00000000000000c

z Z.

-. z w 4(0000000000000000

wC U) w

0~ 78

Page 89: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

IL Z

0A 0 a o0~~EU

N V0 k 0DD)U.~U 4i r' l--'-C-000000

Cd x 000 NNNNN NON"-bE

aN 0 W 0 N O1W (- N0 CD vovmN OON .N 0 0),0

30 0000--NNOMVV)Dt~. pWaswNN~sI L . . .-

D 0000000000000000000 4

I- U. j U)N0v 0NID00rqED0N

a~~ ~ ~ ~ 0. f V~wOm~o

IK x 0-00000000000000---. W-) W

-000o 0 0 0)0.I

0 z Z C0 N 0

w 0) ( 0) k". It) qq 40)N N- - - 0 0 ---- -000N U I 0000000000000000000 0 11U8111

0 zw 0000000000000000000 0:0t20wNwVOW~N w 00()O vo

I- C .. 000000 0000000 0000000

(. IL iC '0 *0 0* 6 0' t. C; C; 6 60 000000000 00 0

0) >- 0)

IL 0

A 79

Page 90: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

IL Z N

44V

.on

0000.e4w V

o V.

0 (

zzz a: .NDNON cc.)a~ - C ~ N

W (j

0 a) O 0 0 00r0 0 0 0 00v0 '0

to~'

-0

a00 0 0O0~w t.r .

4.' 00 0 IL

wa 0 I- D -

0 Z ( NNOOU0NO-0V)NN ww"VNO a S1000

N 0 0IL ww

0 0( 0 000i ;,0" i; ;6i ;0 Zw Z

N 00.44 0

It0 2 LL

E~ ~ OWN ON OO00W000N000000000000 0

E1 i 0000000000000000000000000 00 000 000 00000

I0 >0

C. ----- N NN N N 0 0' 4-

0s

Page 91: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

ILI

00

9 00

4!(0W 0 Wf K Z

0 ( D% -000 C

I0 N 04c0 0 0o0

W 4 -0.84 000

00 U-to*1C w . .

toW

00

C)Z cc 04r* W 4 --

*~~ 0 Q~ I

w ) K) Lo (0V) to

0 081 )

Page 92: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

V0

-40

~-0

-KI)0 4m mw w o

CC

N 0 (

0

W U)l NO OWv w0 ~~ 00--- *.--0)4DYi NN N- U0O-O(U0

x~ 0 r.O U) 0e.w~ro w 0 xI)r l( q(Dr Da 14: 0-bNO 0 U)b-.C

0 U) Z Cd OVO-00-Oo 0040b) ZQ 0 w

wU -

K I- B

N~ ,-00000000000000000

z X -QqOWQO fON(OONOWONO Z

k4 0 000-0 00CVCVd(OV--0 -

W ---- 0000000000--- < 000000000000000

wU) 4

4c 0 "C-- ~ ~ '~ )0 N J-- - -

L C a

C)C ) )V)0 " -w~co~)~~w-r-'

N C)I- O OOOO OOOO OO82

Page 93: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

Ce) z m *NOqv N wNO00-0

N0

w 1.. 0 wOI.v (D ONDM)DWNoY OO N NN N -0N- -0-M- - w 0D

ov 0l sop)0n-,oQr%0M)U

0 1.- Z e.- IOow'0tDo- W"NW U) OW 0OWM ONW 0 j

0 - N -00 0- NVOVVNO W 4N C Y 0 0 ONN 'W-w--. v ~ v Xi nI 77 "

~0 Z M *P-N000"VNON

m X 0 NONO-r.qO '0ONq00qqON Wr X a

w 0 000-NVWOO-N OV 00II))UU 681611

o a oooocoooooo coC

1 z z

It - C .. 00000U)D-"w00

~~I t'- 0N W.:Urq W% 0, 03.0

N 0 1- 000000000000000-0-- -0

-00 ii 00

ND U Ww .wO 0 I- OOOO -000000 0 D 0VONO -0 z Z A400000c,0000000000Oa- -

-Z000000N000000

1- 0 IL 0 000 0 0 00000000000000000~ill~

0V4

U 8

Page 94: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

L m

C;!0 0 W

zz

o wo 0.

'I j nn

w 4

-. 0

z S

I- w C1 - -0bU0(O) 0 0- 5 WC 0 0 00L A 4c)K

N W I W LJ

-0 0 0

N I 2 w 0

*~ 0 0

2: 0 ' 0 IL 000-0 W U~ 0-t-6 IJ4 a : N VI *U)0 QN-CY0oN0104 0W)t(0CN00 U)6r-e- 0 q I-I-

0 C O0000000000000000000000000- 00J

- 4K

C ~~ -WWN NO O0000000 00000000n 00-

4 84

Page 95: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

.I3

to 0w a0 NO

'Doo

* 0

m 0000

oN 0 V'

0

0 It

we~ o 4(%C)C0~~ z 0 0 OX

r 0( <X ;: o(o w

Sw -- o

o0 85.

Page 96: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

II

4%;

4%0

.40

0NIN. 0 0 0 N ODI O 0 900

0 Z WW0040WO

W( 0 0 W r, (AIW 0 4 z0 v O 0 (

m 0) 01N kOVW

N ~ w 011U N Z~e--U)0~

zl IDWOO~;N 0 N (0

I .-- 0000000000006666 wa 0O-000000

x .C0 0N--0'Q0UNO

a0) -i O WUNU)0-'0tOWVN

0 0 Z mN0NQNMVNMONUw~wON0 0N 0 4 NO.---00O00NO0N000W

o to -Z N If) k1 000000000000000000,( o W ':( 0 f)4

N 0 00000V)Wt'000O00000000q

w 0,C i6C , ;0 - - 4_j 0)~0000000000000I- W w '--0-0.0-000000000

0~~~0 --- NNqqCN0CNNW-- -

0 0L 0- 00 ,0 *0 0 ,0 *0 *

I-I - -) - - -0 - - -0 -O-

-C - - - - - -0Nw- -

l0 8JUU~0W-00 O-~

Page 97: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

0 * I

w C)0 N OO0;t w4

o -K

Ow W 'wv-.0000000*~~~~ 3C Xwe o~- - ~

W a NW 00 0 j

0 - N Yto 144 F.ON W 4D NOM to - " - - o

IL .. .4

J. 0 01 0 051 0 )0C ; ;,6(iC; ; 60-c; ; ; 4

00 z'0~~~~~ 000-- NNO 00000 C)ISI SS ,IS ,

4 0N00000N0N0N0000000a0

3z W

o 0 0 to IL V W D1 0 )

I- 0 0 D00 ~ - - ~ C - 0 t - 0 N

I I 00 000O.@WOf-IOM 1110 II8_j If0D9 f q00C - .: 0-0 a@-~ji 0 N

-~~~~~~~~~ .. . . . .........................N 0 0000000000000000000 IN

-0 z)0 I 0 .

0 Z It 4

<- ) -00000000000 0D M4 OVN rnN 0 z w 0000000000000000000 on0 aaaeleaa

w 00000000000000000000

(L I I- 0, 4 i 0 0,0,0, 0 io iC ;0 00000 00000000

IL C0 000000000000l 010-N000- W 00000000IL CW

CO 87

Page 98: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

set of vectors which would produce the same circulation as the actual blade

taking into account the change in streamline radius and meridional velocity.

The difference between the deviation angle implied by the data match calculations

and the reference deviation angle was then added to the reference deviation

angle calculated from the modified Carter's Rule for the Phase I blade.

Phase I Rotor deviation angles are shown on Figure 23. A plot of departure

angles for each streamsurface section is shown in Figure 24. Once the intra-

blade work distribution was chosen these departure angles were required to

satisfy the desired incidence angles, deviation angles, and passage area ratios.

The resulting streamsurface tip section of the Phase I rotor is compared to

that of the baseline rotor in Figure 25. The "deviation angle minus reference

deviation angle" for the Phase I rotor wes kept essentially the same as the data

match analysis although there are some small differences. Figure 26 shows the

"delta deviation" compared to the data match of the baseline design.

If the performance of a new rotor design is to be accurately evaluated

by comparing overall stage performance with the baseline design then it is

important that the stator have nearly the same entering conditions in both

cases. Figure 27 shows a comparison of the Phase I stator incidence angles

with the data match base. As can be seen the differences are small.

Figure 28 shows the radial distribution of Phase I rotor throat margin

and compares it to the data match case. The throat margin for a streamsurface

blade section is defined here as the percent of excess throat area over and

above the minimum theoretical area required to pass the streamtube flow at a

throat Mach number of 1.0 and assuming a total pressure loss equivalent to a

normal shock at the upstream Mach number. In a rotor the effect of radius change

(between the leading edge and throat) on the relative total enthalpy and pressure

is included. As can be seen in Figure 27 the Phase I rotor throat margin is

nearly identical to that of the data match of the baseline design.

Details of the Phase I rotor design are given in Section VIII.

F:4

Page 99: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

LIY C f )P, la( f v > YV 01 qbolaa4;o '.i M) 0 1

C;J .!OrI.o101 A A 0

" MOW

Mo a

0 N0000-

0 . . . . . . . . . . . . .D 00000000000000"

*z Ix j oe-e j;.v-or.)1

- CL aaOaaaaaaa a f O ON009 W0 NO 0N*L

- 0 ~0-N

0 0 0 00O0N NO MOONqq0C)00x OONVO

0 Ci 0 IL..4N W w 0

a0 1 IL0ix) -j (.( 0YI

0 4K VC)e -)C~,N4Cr4NDOto 0 c; 0,0 I ; 0, C;C * 'C)0C; 0 .; )Q0M0, 0 zwz

iN ;)aa a i.)

a Z IXO

E - Z -00 0 00 0 00 0000000)0tOC~W~ O 0 00I- I-

d COW C 00) >04 4

L 0 W

L. ----- N N CCC0(C))) q -

88

Page 100: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

""L

.4.i-I0.40

0~0

w v;0 X

0 00

0400

WV)0 JW 'V

0 000

o4 00 00

- w

a 0 *

* I-I-IL 0

NW 0 l

0 0 0IJ * - -

0 (aI-ito0GoUV) >- 04

Q) 40L

N 0 89

Page 101: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

ILN

ICI0

I0

0

0w i

4V

ir IL 9)NW0 O OW0)1 01o z I-,0 )0 ,- C 00-00-V WOO- VO

to001 C) Z

N W4 W ~ ~ -ls~i0 -

N4 a 00000000000000000

0e -0----WW00000000000J--- <- 00000000

o 1-- 0

I- ~ I -~ -- - - - -OO O-OC -O-OO-

L-- - - -4

(0 90 IJ* 1

Page 102: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

FI

IL

N

C);

N N w0q00

9! NU) ON M.-- -0N'0S- 0 0 2 1..-00000000000w v o0 w 0

0 N WONOI@UO'- . . . . .N N N --- o-- $o'-Nono WO X

4c0 4c ~ 0- I O 00 0o, W<N-v< mov

'3 00000000-OOVO0 - Z OQoNS-NSU-owOUoo~eom Q&ca -~o0 )CU4N04OQ0N00I C) .jj U)U)OON-000QIO.4

w NNOU N N w 4c ..............0- 0lqc'-VN.0Nlwt COON WOO to v--------00000

D 0 000 --- NNNNN--ssss's~I .................

0000000000000000000 4ooi o ,,,, o , o ,s , o mo

z z

re 0It.0)0N~0I. CK - NVN01Ifl00. 0 4 wo~ 0 000MONi.1'.onvoww

X O0 We 0-j -000-NOVOONNO010'-eNO1 0.

. . ......... .. ...... 4 "I 0000000000000000-0- 9-N W

0 U 0 0 I

0 ~4 0~4 'VOW00000MON0 2 z 4 -0DUNWO-

N a CLqo)~e'rw)O )0N-0~t

C O C - o- -- 00N . I- 0000000000000000000 0 0

al . . . . . . . . . . . . . . . . . . . .. . . . . . .

i w 0000000000000000000 I0 0

4(0 C IL

z Z U)@00CDo~omwoI- w 4 0000000000000000000 N. :)W--N~.~

a C 2 h 4 00000CJ00000000000U00 0m 0 0 @DqO-r.Cr x N~oe)4D~oU)Q-'V~owoQNv~t. WU) 000- -N00'vU)WoNt

X - I-WD--0000 C - 00000000000000hi - C)..............................I.. . .. .. .

V- I) a000000000000000000 00 00000000000000

CL

9©9

Page 103: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

L z

II

UDo

* 09L.. 0w'0 B. Z

00

0 Zz

0 00

w .JJ

hi 00 4K0 O 00 O 0000-----.

a- r- I W4K Ir j

0 0- 0 i 0, ; ;C 0* 0, 0 0 ;00 0 V eo '-- C ; ;z

0 0 000-- 00~q00 N-..

i* I.. Ni.J0 C. 0 0.4Z Xi am .

0 N -- IDW I 040~~t Z0 IN N o No00r'S N0w4-f- )M 0-

0 0 ~000000000000000000000000.--.. 00

N) C) cc01 15

4c 0xhL a W

I - - - - --

00 92

Page 104: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

II

'1;

,1020

00

:1 0 mI- cc I)

W 0q 0 qq0K 0 o DN~C WO) 0 W~

'*1V 0 0 -000o*r 4( 00000

0 0:.0 C

W ODWWcr ~ 0 0-i

o0 40000.4 w 000

0 ss

0 ~W U

w0 0:

0 < .wD0 00

: 4 om 0 0o0 w0n

;: 0 0 ILJ 0w ~ ~ U to w -)tomQ

to - U a:

0 0 93@ C

Page 105: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

12*

7+;;

00

0 Z

W~ j Q

0...........4 0000000000000000000

o si'oo as .. NVSIN-N Z ) t Q 0- -W

00 0 :)V)0N .-. 00I E I- X

00 to0 4 Ia 0 )0I!0N-W..o Z

N 0 a 0-0oJ0vw00nCOucgww.=000 0009 0 000 0 0000 00W 660660060

4O~OOVW~VN ZZ

IL ~ VON00 OO-q0V-~0Kwo~~.ooo3 ----- oooo

- ~~~ -1 00N00N000000E0000000Nq0 z w 4( 0000000000000000

x 0 -4D--Q0Ww)CwOOMk'

0 - 0 IL o000C *C;. ;60 0 0, 0, rr',Q 0*w., 0 w

.7 ~ ~ 9 I -~0 ) ~ 0O -U - -00-0-0-0-0-0-ZL a

CL - - -4 - -A.- -.- OO~o ooo ooo--.- 4 . 00 0000 000094

Page 106: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

0 L)

W 6A.V0 WN X

0 z -~~P)'~0Q 4( 000000000w I- w V)0 r-0 0 -YI 9) (Y D a

0 z SL W"00 00Y-PQ00 ;WAO

0 0 J ID b) 9) NW 0 .Y (Y 0 0

n 000 --- C WtNNNN-'- 0 ssaa *saaL I . .

o 0c000c0000000o00000zz :~ : I ??0000000000!! 1I

~~~~~000 000 N WO 0 0 0 0 00 0 OVON

0 Go06c ;6c *0 iC

0 V) to () a

0( z z ww uo-ooowo)

to a) 000--------.00000000o 0 I gasa*N 0 --- 00000000000000 C)

0

0 z-zZ0: --- ON-0-0moInow- < j 0000000000000000000 n --- OGQWCDCwwowo

V 0 Z hi ( 00000000000000000000 ON- 0 0- oQK-Uwo0I.0a

a- !rCow A 0000000000000- Do 00000000000000

U) U) wQ)

0 95

Page 107: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

ILZ0

NoON0w

1 4 1 1 1 1 , 1

0 t

0 W<

000. OVON00SIDQW-@DW0G0V0U~ "" :N * p ~ .

66 0 ..J 666) 66 666666

0 Z

0 0000000 000NO00000000'-0000-.

39 I r a. IL

0 0 0 &N W J C )L-0.- QO N-~ O u

W C! - q 0 N-0 ) M C0 V)(Dr(o 0m0 0 MM0 000-NN 000 OON-0 WW

0 0 a 0 C; 0 aaa, C;saga;0 , ;c ; *C, 0ss almaN ~ 11 1 4 1 0.0* I- W

N~~ OD 0r 40 0 L- 0 (aI

0 z (0 0 VN~-VM0WqS-OQ-00--r 0 006000M)O)---- 000a0)--oV0 ..

E r 00000000---0000000000-* ww

N Q) Is, a 00

CO NOI- QqID N 4 - O O Nw o W

(~ 0 L,. 06

Page 108: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

II

ww

00 0 0

000W 44NN

0) _gU) S

41 (0000be...

0 0 000

a 0 I- I

z 0 i

0

0 0 (

q z to 4c

4' - 0 Or

It 00 W -D4(Wl0l - x - a q c0

00 Z N 0 0 I.- -

> W- It

IL a

O 97

Page 109: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

L

*tV 4 i

N0

I 0 0

0 owe)0 w *00v ig 0000 -.

N N V-.No0 ----- N qN ,,Zoo-°o ,.,0 ~ ~~~ Z -0NNU-0o~0e DMVNMt. N

N! "o V W ........ 0000 00oN oo0

3 V6 N ON.-0 0 r-f)VV""N. .0

z~~ 00000000000000000000

N O V OOOOOOOO

W Z . 0 00 ~ , N

it 0 ( 00 Zt-W'qqOYNN--0

CO 00qN00 000000 4 J 0000000000000000z z L- OONVVMW

V -I -P- W Cb-l')W qOVN W -- --- 000000000000000 V0OCtW001

V 0 o Z N 0ONO)O-OOOOOOO

0 . . . . . .... . . . . . . . . . . . .0 Z NOOOOOOOOO

0 .< I-0 ZN --- 0 Nro-w V $to - 4 W- 0 0 U V 0

0 300000

N q' 00000000000000---DW i 0' i '; ;; C* 6 6 a 00-

x NIflQ00OOO0Nq-qC,(000Z

Z) V .. . . . . . . . . . . . . . . . . .

----~ ~ ~ .00000004 00000000000000000 0 z6111 1411 wi 4c 0000W0K0 000000000

Ng)N0NU)N00OMWO-q1- 000 ---- NNN0O0V

0 I- . . . . . . . . . . . . . . . . .

IL0

98

Page 110: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

*14

0 *~A 0 O... ...V! 9 0 0 0)(000~000000

0 N O

Z V 00 V W~ QQ'c ~C'S0 I-Z USD WN0-

W .4 --jC'e ) % ' w .. . . .. . .0 - Q)0~ ~ - C T- ...-- ???0?00 O000O- ------ v- -OO-w~ al.aa as

E I- BI-

1- -

0 0 Z D 0'.II. ti

C9 w4 j 0-0wOWVVW-CD0q

0 0 00 ts D ) )0N -w X X'.)CJCC.C WaN I 0

Z IL 0000000006600000- I6600

IxJ _j cyi O0 (v wb(P4w O 0.

0 $ o 0 (L

4')C U00i0Ovwm0v(D

w C! X - -f~wmooomowonw0 I~ 0 ~ qC 0NN0M)0t-NCJq0 B @V0V00N-OQN t-

1-. 0 0 "ow wovwC ve m 0

N C) -- .--------.------- 0000 U)mmmmmmm

-w oo~~o0oo0o0 w

o -z zm<.. C 0000000000000000000 (D :) --- OMW0Cl'q'-VT

0 z 0000 00 0 0000000000 0 an) 0 -- 0C000000D000E - - ~ D-~0Q~b~0 O I-00000000000000

w 0 wi0

C) 99

Page 111: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

IL

IIA"10

0 94 CIL~v

to~ 0000000000000000000000000o 00:

OK 000P1100

it~0- N V0 N00 NONOW-090O j

* 0 0. 0000--ou~-~0O00

W m

0 0 0 Ib0 0 3

0 Z wo040 r,0 0-4

7110 000000000000 0040-NN-000-.ah WWN U 0 0-W-~N0Nw~~~

Z ~ ~ ~ ~ ~ ~ ~ ~ f INDOOOOOOOOoooo~o4-3 W 0.0

-0 0 0 440 0 to 0 o

1.- 00 ------------------ 000 0~s~ 00*;0 *0 0, 0, 0. N 0 q 0r.-0, 6c;cic;0 ,0, ooo ;cic 0 00 W

0 100 z

Page 112: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

:t!u

'I N0

A.Y

N

00

0 0 0000

0000

*I I IxaSZ -000

S w 4c0a4 z o

j XOOO0 0 0000 J0000

N W

- 0Nw 0 Y4

D 0!

0 Z 4

0 C) (aI- w

0o i01

N

Z N 04C x- 0 a:L04

W~: xi 0

(0 0 4c

00 V

Page 113: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

______________ rs.,rzcr

AC

'I0

"10

I0

0NX 000

w j

.. .- . . . . .

Z (wvow- OVNOwN

o z I - CN *1WM_j IT vqW0Cy( 0 0C Nt DI q

0 ZU M N 00 1 - W S(Q -00 0 I-Z C 0-4( 0 ~NVW Z ~CJ0CC~-)0

to~~t - (Y OV ) ) 0 rO r-W 0) ) 0 0

N o 1- 00000000000000----(0 (DF'.W f~P0-0NM)0V-v~

w 00---N< j 0C)0C00t00000000

;:00 ---'-o 0w w-'qwoooZ 0 .- * .0- ) -' t. *'"*O

SIL 00 0000000000000-N )

xt CL -------- 0~ M rs,

o 102

Page 114: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

a.________ Z, 0) 01N( N0001( 0V

4N

Ic

)0

I0

00 ~ 0 * 0 0WKNm0

W 0 0 wA0~~~~~ -MON N woNP~)N@V@-0~

I zwooew-o-Ovwo0 a" 0W0OIw<0

Z Noz -oooNeeaQ~w"Nw~oo 0NONveW .J 0 -- N- VIVVO.QOI(DQ W .0 - 0--oo1000:0 @K)0-wW) 0 -i -- C; C-- 00

n U) 0000000000000000000j

0~ 0 2 0100-OwNoomoI

0 40*00NOMM00100

Z IL -r-q0(mo0Q--'QoNVlNS0 - ON--00-N0oDr-t%.0@ a

I-0 0 0 0 0 0 000 C;I ;c ;C ;C ( i666666 - 0 ww-0(3 (fl to mQ0 I

( W w J w IL

0 z

0E t-0 (Y (Y ID 000 N4 1O 0 0. N 0 (0)NW-M -O(YWItC- 0 O~-W00 0 01WN 0 000OWDt C 4c

N U I- ----- ~---~.--------- 0 Umi.mmii

w 4c j 0000000000000000000 v

0 z 0000000000000000000 00 0 -N-N0'-

C!DII - 5- -r-0000@00 0 QV 0000000000000w W - C) ....

0 >-

103

Page 115: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

*1

'1w0 #4 WNN -- - 0 O0 0 0 O 0- -0 0 1'IqW00

9 000000O000000000000000OCC00 00

?????????0000000000000I

a 9- win- -

0) 0J (0 01-0 0--N D00C DV)I. 00000000000000000000000000 (

4K V -, ii i i i,,a ,

0 Z (

* W - 000.--If- NoNN OWNowwom.vC0 0 LA ... .~ .N .. . ~ Q .)~~ . bJW.. . . *6 6

(0 I- 0000000000000000000000-.- Jw .)- Wx

0z 0L

N 0 L0-- WK - I- N--V~ -000-.O----000m0

- Wi-

W V)W 00 * 9(0 ) 0 )

A. 00 -~0--- --- -- --- --N D - 00 0 WW

A. - NN N NN N 00~(~,q .

II

Page 116: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

I0

a0 0

(i ON20 0

000

L C0 0'1 0o 0- 0

0~ -It ( ID -P 0

z00- 00

z z0 0

0

LL) 0)4Z 0 N D x

q zK V)41

N zi 0 )0 o

0 Z .)0 4c

U * Y w- -

0

I 0 a

00

0 ' 105Wo

Page 117: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

'OttL~n C. .fl~

.

A0w v.....

0 I*01O) 0N NIWN N I

0 10 Z

Z ) ( ov v-W000INNN --

It a 0 00 - N - WINW000 0000 .(

z a

za OWt)OM)1K)I-N00 0

0 OWN0NMOCNOW)VI

0 0 z-aIN~~ W -00000000000000-0

00 0C)N00...................

0 C) 0O-.--NNNU--- 0('))00(N Z

I- Z - I 000000000000000 0 C00000%0U0.-'NC)1Io o w I- ( I)QNNOofm w 0 0

a: C a j 4 ', C N O 0 D

IM 0000 < j 0000000000.-000000It - NON-0-WOON0NOo0woo-0

C) Z: 1. 000 - - - - N N N N 0 0 V (w 0 hi

"e s "0 (L 0 00 ;6C *666 ,0 ,60 ,0

to CL ---------- 0O~--

-K a. -D0 0 ~ C -~~- --.--

0 1 J 'CN0( V)- 0 C')D'0 .

Page 118: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

00

0 W0 0

0~~~ 000000it 0000ONMM0

N W w 0oq~ ~ 00 N 00S0 000 0 0 0!( 11 4 1 14 1

zc z 000 0 K -C

2 0 z -0 W0 ~- ~ ~ 0 000W0NNNVNOW

C) 0 0 .JJ C;NV-00N0IO0 ~ 0 MVN0(b 0~ -W) W.N 0DV nV O 1

0 0 0 000 Gto0000I00L

0 00OO O0000000000000

0 Z x*~~~C ZNW 0 O"em 00u)vNe-V00

z I 0.0,-00~00r q.- V~Nc (O I D 000 000 000N V - -. - -

4 j 0000000000000000000 N-

Do04 000000000000.w0 m- - .. . .C . . .

4L a

w IL IL ~q ~ N - ----

ZU 107

Page 119: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

4

IL O

'Io:0

0 ONNOV000M

0 ---- Noo0

0 0Nl NNOMeoAMOOOM wo 3

3t 00NOOVN0 B&I-

w ZZ

z 0

0 0J ON qON00 O0~P~%

z 00000000000000000000000000 4

000 L A(

I- * ZI--

O X 0 000000 wo -NNNN NNO-0'NMMm

-1 00 10 1gg gi 0g e Cg000 YW l q f 4 e o

N C.) 0

z0 Z w

0 e0 (00400-l( (D (A 0-o0((D NqP. --a r-0 N 0Ou WW0(Pq C)VI- N 4 CYL ZZ Yo 0-qi)0M0NNNN0

0 0 000000000000000 o-ft 0 N, lm 0 ~,, 00 0 N N V N N .

- IIl

10

Page 120: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

II

14C

V! C

CY 0 Z

; 0:

0 00 If)1N~i 0ai (1) ZO

0 -

z' 000L0

o 0 oK- Z 000

w C

N 0000

0 ZY w

w 0 N UV0 Z 040 0

x 0 0w - xC 0:<4

-0 a) N0 --

C) to w oU

(L 0 0

0 l10

Page 121: TO - DTIC19. Comparison of Phase I Rotor Hub C~itour to Baseline Rotor Hub Contour 3 20. Phase I Rotor Static Pressure Distribution 5 21. Phase I Rotor Intrablade Work Distribution6

ILO0i0 0

V;0;f;V;f

W oow OON

WOOVNNIu

N ,iii0

N

0 ~000000 - --- ~

0 -W 8W000~~0NOC

00 0 000 cc0000 000

IU * w0ICW100-(U0wo

a 0000000W-000Wx 000000WV000000

It - UOV0(WNO- I

- -

(L WU 000o00(w00nNWJE

0 0000000000000z

11