1
To adapt and persist in a changing environment Matthew Osmond and Claire de Mazancourt Redpath Museum and Department of Biology, McGill University Introduction Habitats are undergoing unprecedented rates of fragmentation and change Isolated populations respond to a changing environment by altering both traits and abundance 1 Very few models incorporate the responses of both traits and abundances 2 By including both we capture the nature of the race: hurry up and adapt before you go extinct 3 Time Box 1. the Math The rate of evolution for an asexual population is d ¯ s dt = μσ 2 μ 2 ps, s opt )g s, s opt ), where ¯ s is the average trait value, s opt is the optimal trait value, μσ 2 μ 2 is the supply rate of beneficial mutations, ¯ ps, s opt ) is the population abundance, and g s, s opt ) is the strength of selection 6 . Assuming mutations are rare we calculate p and g , giving d ¯ s dt = -μσ 2 μ KRs - s opt )e -s-s opt ) 2 /2σ 2 k 2σ 2 k . And we see that the evolution halts d ¯ s dt =0 when the population is perfectly adapted ¯ s = s opt or infinitely mal-adapted (extinct) ¯ s - s opt = ±∞. We can now find the trait value ¯ s* at which the population experiences it’s maxi- mum rate of evolution by setting ¯ s d ¯ s dt =0, which gives ¯ s* = s opt ± σ k . In other words, when the population’s trait value ¯ s lags the optimum s opt by σ k the rate of evolution is maximal, and we can compute this maximum, d ¯ s dt max = ±μσ 2 μ KR σ k p e/2 . Evolutionary rescue Maladapted populations will rapidly decline to extinction if they do not evolve Populations which evolve fast enough to prevent extinction are ‘rescued’ by evolution 2 0 0 Density 0 Figure 1. A change in environment at time 0 causes abundances to decline. Extinction occurs if adapted individuals do not increase fast enough (left panel). If, however, adapted individuals are able to propagate fast enough, the population can persist (right panel) 4 . Evolutionary rescue may be important with global climate change E.g., with ever-earlier springs, can birds adjust their date of egg-laying fast enough to persist? 5 Distance from optimal trait value s - s opt Rate of evolution ds dt d ¯ s dt max = ±μσ 2 μ KR σ k e/2 To persist, a population must evolve as fast as the environment changes 7 : d ¯ s dt | max κ Maximum rate of evolution increases with: mututation rate μ mutational variance σ 2 μ population size (carrying capacity) K reproductive rate R strength of stabilizing selection 1 σ k Questions What is the maximum rate of environmental change a population can withstand? Which aspects of a population does this maximum rate depend on? Model We model the evolution and abundance of a population as the environment changes gradually Abundance p i of phenotype i grows logistically and experiences Lotka-Volterra competition: dp i dt = p i R(1 - 1 k i P j =1 a ij p j ) One quantitative trait s i determines fitness, through competition a ij and carrying capacity k i : Trait-dependent competition a ij ; Trait-dependent carrying capacity k i ; similar values compete strongest. maximum at optimal trait value s opt . Analysis Figure 2. The rate of evolution d ¯ s dt as a function of the distance from the optimal | ¯ s - s opt |. It is maximal d ¯ s dt | max at an intermediate distance. See Box 1 for details. s opt = s 0 + κt Optimum trait changes at rate κ. Simulations ●● 2.4 2.5 2.6 2.7 2.8 2.9 3.0 Density ●● ●●● ●● ●● ●●● 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 1000 3000 5000 7000 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Trait value s Optimal trait value s opt ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● 0 1000 2000 3000 0 1 2 3 ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● Time Figure 3. Individual-based simulations corroborate findings: when the maximum rate of evolution is greater than the rate of change in the optimal populations persist ( d ¯ s dt | max ; left panel), otherwise populations go extinct ( d ¯ s dt | max ; right panel). Abundance in bottom panel indicated by greyscale; black abundant and white extinct. Conclusions We have formulated an expression for the maximum rate a population can evolve In the long-run, a population must evolve as fast as the environment changes, or go extinct 7 Conservation efforts should therefore take the above variables into account when assessing risk Directions Compare maximum rate of evolution with quantitative genetic models 8,9,7,10 Test predictions with experiment: expose yeast to increasing salt concentrations 2 Examine extinction risk when the environment changes abruptly References 1. Holt, R. Trends in Ecology and Evolution 5(9), 311-315 (1990) 2. Bell, G. & Gonzalez, A. Ecology Letters 12(9), 942-948 (2009) 3. Maynarnd Smith, J. Philosophical Transactions of the Royal Society B 325(1228), 241-252 (1989) 4. Gomulkiewicz, R. & Holt, R. Evolution 49(1), 201-207 (1995) 5. Crick, H., Dudley, D., Glue, D., & Thomson D. Nature 388, 526–527 (1997) 6. Dieckmann, U. & Law, R. Journal of Mathematical Biology 34(5- 6), 579-612 (1996) 7. urger, R. & Lynch, M. Evolution 49(1), 151-163 (1995) 8. Lynch, M. & Lande, R. in Biotic Interactions and Global Change (eds Kareiva P., Kingsolver J., & Huey R.) 234–250 (Sinauer Associates, Sunderland, Massachusetts, 1993) 9. Lynch, M., Gabriel, W., &Wood, A. Limnology Oceanography 36(7), 1301- 1312 (1991) 10. urger, R. & Lynch, M. in Environmental Stress, Adaptation, and Evolution (eds Bijlsma, R. & Loeschcke, V.) 209–239 (Birkhauser Verlag, Basel, Switzerland, 1997)

To adapt and persist in a changing environment · ˙2 2 p(s;s opt)g(s;s opt);where s is the average trait value, s opt is the optimal trait value, ˙2 2 is the supply rate of beneficial

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: To adapt and persist in a changing environment · ˙2 2 p(s;s opt)g(s;s opt);where s is the average trait value, s opt is the optimal trait value, ˙2 2 is the supply rate of beneficial

'

&

$

%

'

&

$

%

'

&

$

%

To adapt and persist in a changing environment

Matthew Osmond and Claire de Mazancourt

Redpath Museum and Department of Biology, McGill University

Introduction

•Habitats are undergoing unprecedented rates of fragmentation and change

• Isolated populations respond to a changing environment by altering both traits and abundance1

•Very few models incorporate the responses of both traits and abundances2

• By including both we capture the nature of the race: hurry up and adapt before you go extinct3

Time

Box 1. the MathThe rate of evolution for an asexual population is ds

dt =µσ2

µ

2 p(s, sopt)g(s, sopt), where

s is the average trait value, sopt is the optimal trait value, µσ2µ

2 is the supply rateof beneficial mutations, p(s, sopt) is the population abundance, and g(s, sopt) is thestrength of selection6.

Assuming mutations are rare we calculate p and g, giving

ds

dt=−µσ2

µKR(s− sopt)e−(s−sopt)2/2σ2k

2σ2k

.

And we see that the evolution halts dsdt = 0 when the population is perfectly adapted

s = sopt or infinitely mal-adapted (extinct) s− sopt = ±∞.

We can now find the trait value s∗ at which the population experiences it’s maxi-mum rate of evolution by setting ∂

∂sdsdt = 0, which gives s∗ = sopt ± σk. In other

words, when the population’s trait value s lags the optimum sopt by σk the rate ofevolution is maximal, and we can compute this maximum,

ds

dt

∣∣∣∣max

=±µσ2

µKR

σk√e/2

.

Evolutionary rescue

•Maladapted populations will rapidly decline to extinction if they do not evolve

• Populations which evolve fast enough to prevent extinction are ‘rescued’ by evolution2

00

Den

sity

0

Figure 1. A change in environment at time 0 causes abundances to decline. Extinction occursif adapted individuals do not increase fast enough (left panel). If, however, adapted

individuals are able to propagate fast enough, the population can persist (right panel)4.

• Evolutionary rescue may be important with global climate change

• E.g., with ever-earlier springs, can birds adjust their date of egg-laying fast enough to persist?5

Distance from optimal trait value s− sopt

Rat

e of

evo

lutio

n ds

dt

dsdt

∣∣∣∣max

=±µσ2

µKR

σk√e/2

• To persist, a population must evolve as fast as theenvironment changes7: dsdt |max ≥ κ

•Maximum rate of evolution increases with:• mututation rate µ• mutational variance σ2

µ

• population size (carrying capacity) K• reproductive rate R• strength of stabilizing selection 1

σk

Questions

•What is the maximum rate of environmental change a population can withstand?

•Which aspects of a population does this maximum rate depend on?

Model

•We model the evolution and abundance of a population as the environment changes gradually

•Abundance pi of phenotype i grows logistically and experiences Lotka-Volterra competition:

dpidt = piR(1− 1

ki

P∑j=1

aijpj)

•One quantitative trait si determines fitness, through competition aij and carrying capacity ki:

Trait-dependent competition aij; Trait-dependent carrying capacity ki;similar values compete strongest. maximum at optimal trait value sopt.

Analysis

Figure 2. The rate of evolution dsdt as a function of the distance from the optimal |s− sopt|. It is

maximal dsdt |max at an intermediate distance. See Box 1 for details.

?

sopt = s0 +κt

Optimum traitchanges at rate κ.

Simulations

●●●●●●●●

●●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●

●●●●●●●●●

●●

●●●●●

●●●

●●●●●●●●●●

●●●●●●

●●●●

●●

●●●●●

●●●●●●●●●●●●●●●

●●●●●

●●●●●●

●●●●●●●

●●●●●

●●

●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●

●●●●●●

●●

●●●●●●●

●●

●●●●●●

●●●

●●●●●●●●●●●

●●

●●●●●

●●

●●●

●●●●●●●●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●

2.4

2.5

2.6

2.7

2.8

2.9

3.0

Den

sity

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.0

0.5

1.0

1.5

2.0

2.5

3.0

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●●●●●●●●●

●●●●●

●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●●●●●●●

●●●●●●

●●●●●●

●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●●●●●

●●●●●

●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 1000 3000 5000 7000

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Trai

t val

ue s

Opt

imal

trai

t val

ue s o

pt

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●●●

●●●

●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 1000 2000 3000

01

23

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Time

Figure 3. Individual-based simulations corroborate findings: when the maximum rate ofevolution is greater than the rate of change in the optimal populations persist (dsdt |max > κ; leftpanel), otherwise populations go extinct (dsdt |max < κ; right panel). Abundance in bottom panel

indicated by greyscale; black abundant and white extinct.

Conclusions

•We have formulated an expression for the maximum rate a population can evolve

• In the long-run, a population must evolve as fast as the environment changes, or go extinct7

• Conservation efforts should therefore take the above variables into account when assessing risk

Directions

• Compare maximum rate of evolution with quantitative genetic models8,9,7,10

• Test predictions with experiment: expose yeast to increasing salt concentrations2

• Examine extinction risk when the environment changes abruptly

References1. Holt, R. Trends in Ecology and Evolution 5(9), 311-315 (1990) 2. Bell, G. & Gonzalez, A. Ecology Letters12(9), 942-948 (2009) 3. Maynarnd Smith, J. Philosophical Transactions of the Royal Society B 325(1228), 241-252(1989) 4. Gomulkiewicz, R. & Holt, R. Evolution 49(1), 201-207 (1995) 5. Crick, H., Dudley, D., Glue, D., &Thomson D. Nature 388, 526–527 (1997) 6. Dieckmann, U. & Law, R. Journal of Mathematical Biology 34(5-6), 579-612 (1996) 7. Burger, R. & Lynch, M. Evolution 49(1), 151-163 (1995) 8. Lynch, M. & Lande, R. inBiotic Interactions and Global Change (eds Kareiva P., Kingsolver J., & Huey R.) 234–250 (Sinauer Associates,Sunderland, Massachusetts, 1993) 9. Lynch, M., Gabriel, W., & Wood, A. Limnology Oceanography 36(7), 1301-1312 (1991) 10. Burger, R. & Lynch, M. in Environmental Stress, Adaptation, and Evolution (eds Bijlsma, R. &Loeschcke, V.) 209–239 (Birkhauser Verlag, Basel, Switzerland, 1997)

References1. Holt, R. D. Trends in Ecology and Evolution 5(9), 311–315 (1990).

2. Bell, G. and Gonzalez, A. Ecology Letters 12(9), 942–948 (2009).

3. Maynarnd Smith, J. Philosophical Transactions of the Royal Society B: Biological Sciences 325(1228), 241–252(1989).

4. Gomulkiewicz, R. and Holt, R. Evolution 49(1), 201–207 (1995).

5. Crick, H., Dudley, C., Glue, D. E., and Thomson, D. L. Nature 388, 526–527 (1997).

6. Dieckmann, U. and Law, R. Journal of Mathematical Biology 34(5-6), 579–612 January (1996).

7. Burger, R. and Lynch, M. Evolution 49(1), 151–163 (1995).

8. Lynch, M., Gabriel, W., and Wood, A. M. Limnology Oceanography 36(7), 1301–1312 (1991).

9. Lynch, M. and Lande, R. Biotic interactions and global change , 234–250 (1993).

10. B”urger, R. and Lynch, M. Environmental stress, adaptation and evolution , 209–239 (1997).