41
Uppsala 2013 D. Rochman – 1 / 26 TMC vs. perturbation and other applications D. Rochman and A.J. Koning Nuclear Research and Consultancy Group, NRG, Petten, The Netherlands Uppsala TMC meeting, April 2013

TMC vs. perturbation - tendl.web.psi.ch · Uppsala 2013 D. Rochman – 1 / 26 TMC vs. perturbation and other applications D. Rochman and A.J. Koning Nuclear Research and Consultancy

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Uppsala 2013 D. Rochman – 1 / 26

    TMC vs. perturbationand other applications

    D. Rochman and A.J. Koning

    Nuclear Research and Consultancy Group,

    NRG, Petten, The Netherlands

    Uppsala TMC meeting, April 2013

  • Contents

    Uppsala 2013D. Rochman – 2 / 26

    ① Short introduction to nuclear data uncertainties② Outcomes of the approach (TMC is one of them)③ TMC vs. perturbation④ Examples for real cases⑤ Fast TMC⑥ Conclusions

    All slides can be found at:ftp://ftp.nrg.eu/pub/www/talys/bibrochman/presentation.html.

    ftp://ftp.nrg.eu/pub/www/talys/bib_rochman/presentation.html

  • Introduction to nuclear data uncertainties

    Uppsala 2013D. Rochman – 3 / 26

    General comments:

    uncertainties are not errors (and vice versa),uncertainties should now be given with all data (seems obvious ?),they are related to risks, quality of work, money, perception, fear, safety...

    Uncertainty⇌ safety⇌ professionalism

    True uncertainties do not exist ! They are the reflection of our knowledge andmethods.

    All the above for covariancesThe importance of nuclear data uncertainties should be checked. If believednegligible, please prove it !

  • Backbone of our methodology: REPRODUCIBILITY

    Uppsala 2013D. Rochman – 4 / 26

    TALYSnuclear code

    T6 softwarepackage

    Librarycloning andcomplement Reproducibility

    NR

    GN

    ucle

    arsim

    ulation

    Original nuclear datalibrary TENDL+ covariances

    Uncertaintypropagation(fast) TMC

    OptimumSearch and find(Petten Method)

  • TMC: procedure for the random file production

    Uppsala 2013D. Rochman – 5 / 26

    AutoTalysTASMAN

    n TANESinput files

    n TALYSinput files

    n TARESinput files

    n TAFISinput files

    TANES TALYS TARES TAFIS

    n FissionNeutron Spect.

    output files

    n TALYSoutput files

    n ResonanceParametersoutput files

    n ν-baroutput files

    TEFAL

    1 ENDF file+

    covariancesn× ENDFrandom files

  • TMC for nuclear data uncertainty propagation, what else ?

    Uppsala 2013D. Rochman – 6 / 26

    © + No covariance matrices (no 2 Gb files)butevery possible cross correlationincluded,

    © + No approximationbut true probability distribution,© + Only essential info for an evaluation is stored,© + No perturbation code necessary,only “essential” codes,© + Feedback to model parameters,© + Full reactor core calculation and transient,© + Also applicable to fission yields, thermal scattering, pseudo-fission products, all

    isotopes (...just everything),© + Other variants: AREVA (NUDUNA), GRS (XSUSA), CIEMAT (ACAB), PSI

    (NUSS), CNRS Grenoble..., based on covariance files,© + Many spin-offs (TENDL covariances, sensitivity, adjustment...)© + QA.

    § - Needs discipline to reproduce,§ - Memory and computer time (not human time),§ - Need mentality change.

  • 2008: Total Monte Carlo (TMC)

    Uppsala 2013D. Rochman – 7 / 26

    Control of nuclear data (TALYS system)+ processing (NJOY)

    + system simulation (MCNP/ERANOS/CASMO...)

    1000times

    For each random ENDF file, the benchmark calculation is performed with MCNP. Atthe end of then calculations,n different keff values are obtained.

    σ2total = σ2statistics+σ

    2nuclear data

    Lead Fast Reactor system

    keff value

    Num

    ber

    ofco

    unts

    /bin

    s

    1.021.011.00

    40

    30

    20

    10

    0

    FitExtreme value

    equivalentGaussian

    Accelerator Driven System

    keff value

    Num

    ber

    ofco

    unts

    /bin

    s

    0.980.970.96

    50

    40

    30

    20

    10

    0

  • Example with 238U: Monte Carlo calculations

    Uppsala 2013D. Rochman – 8 / 26

    σstand.dev. ≃ 15%

    238U(n,inl) at 2 MeV

    Cross Section (Barns)

    Cou

    nts

    /chan

    nel

    3.83.63.43.23.02.8

    30

    20

    10

    0

    σstand.dev. ≃ 10%

    238U(n,γ) at 100 keV

    Cross Section (Barns)

    Cou

    nts

    /chan

    nel

    0.260.230.200.17

    30

    20

    10

    0

    TALYS238U(n,inl)

    Incident Neutron Energy (MeV)

    Cro

    ssSec

    tion

    (Bar

    ns)

    108642

    4

    3

    2

    1

    TALYS238U(n,γ)

    Incident Neutron Energy (MeV)

    Cro

    ssSec

    tion

    (Bar

    ns)

    1.00.1

    100

    10−1

    10−2

  • Examples with 63Cu(n,2n) and65Cu(n,el)

    Uppsala 2013D. Rochman – 9 / 26

    n = 10063Cu(n,2n)

    Incident Energy (MeV)

    Cro

    ssse

    ctio

    n(b

    )

    2018161412

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0

    n = 163Cu(n,2n)

    Incident Energy (MeV)

    Cro

    ssse

    ctio

    n(b

    )

    2018161412

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0

    Skewness = 0.33

    Sigma = 4 mb/Sr

    Mean = 22 mb/Sr

    cos(θ) = −0.41En = 8 MeV

    65Cu(n,el)

    Cross section (b/Sr)

    Cou

    nts

    /bin

    0.050.040.030.020.01

    20

    15

    10

    5

    0

    En = 8 MeV

    65Cu(n,el) (n=100)

    cos(θ)

    dσ/d

    θ(b

    /Sr)

    0.80.50.2-0.1-0.4-0.7-1.0

    101

    100

    10−1

    10−2

  • Nuclear data: examples in the resonance region

    Uppsala 2013D. Rochman – 10 / 26

    JEFF-3.1ENDF/B-VII.0

    This workExp

    50 random 241Pu(n,f)

    Incident neutron energy (eV)

    Cro

    ssse

    ctio

    n(b

    arns)

    10010−110−2

    104

    103

    102

    101

    JEFF-3.1ENDF/B-VII.0

    This workExp

    50 random 235U(n,f)

    Incident neutron energy (eV)

    Cro

    ssse

    ctio

    n(b

    arns)

    4.03.02.01.00.40.1

    102

    101

  • TMC versus Perturbation method

    Uppsala 2013D. Rochman – 11 / 26

    ① Obtain uncertainties on large-scale models due to nuclear data uncertainties② Systematic approach, reliable and reproducable

    Solution (1): Total Monte Carlo

    Control of nuclear data (TALYS)+ simple processing (NJOY)

    + system simulation (MCNP/ERANOS/CASMO...)

    1000times

    Solution (2): Perturbation method=⇒MCNP+ Perturbation cards+covariance files

  • TMC versus Perturbation: Results

    Uppsala 2013D. Rochman – 12 / 26

    Comparison TMC-Perturbation methods for a few keff benchmarks. The ratio in the

    last column is ”TMC over Perturbation”.

    Total Monte Carlo Perturbation RatioBenchmark Isotopes Uncertainty Uncertainty

    due to nuclear due to nuclear

    data (pcm) data (pcm)

    hst39-6 19F 330 290 1.16hmf7-34 19F 350 290 1.21ict3-132 90Zr 190 150 1.29hmf57-1 208Pb 500 410 1.22pmf2 239Pu 840 720 1.16pmf2 240Pu 790 650 1.21

  • Results: Details of the TMC-Perturbation methods for239,240Pu keffbenchmarks

    Uppsala 2013D. Rochman – 13 / 26

    pmf2 239Pu pmf2 240Pu∆keff (pcm) ∆keff (pcm)

    TMC Perturbation TMC PerturbationTotal 840 720 790 650MF1 400 - 370 -(n,inl) 170 140 70 50(n,el) 250 240 30 40(n,γ) 100 100 30 30(n,f) 720 660 730 640MF4 20 - 20 -MF5 50 - 30 -MF6 50 - 30 -

  • Considered data in TMC (or fast TMC)

    Uppsala 2013D. Rochman – 14 / 26

    Several hundreds of random ENDF files for transport + depletion

    • 3 Major actinides:235U, 238U, 239Pu,• Light elements: lighter than oxygen,• 2 Thermal scattering data: H in H2O, D in D2O• All Fission yields (e.g.234,235,236,238U, 239,240,241Pu,237Np, 241,243Am, 243,244Cm),• All Minor actinides (e.g.234,236,237U, 237Np, 238,240,241,242Pu, Am, Cm),• All fission products (e.g. from Ge to Er), and decay data,

    (fast) TMC can be applied toanyinput data, propagating uncertainties toanyoutputs

  • Considered data in TMC (or fast TMC)

    Uppsala 2013D. Rochman – 14 / 26

    Several hundreds of random ENDF files for transport + depletion

    • 3 Major actinides:235U, 238U, 239Pu,• Light elements: lighter than oxygen,• 2 Thermal scattering data: H in H2O, D in D2O• All Fission yields (e.g.234,235,236,238U, 239,240,241Pu,237Np, 241,243Am, 243,244Cm),• All Minor actinides (e.g.234,236,237U, 237Np, 238,240,241,242Pu, Am, Cm),• All fission products (e.g. from Ge to Er), and decay data,

    (fast) TMC can be applied toanyinput data, propagating uncertainties toanyoutputs

    TMC was already applied to

    • criticality-safety, shielding, pincell/assembly burn-up, activation,• PWR, BWR, Gen-IV systems,• UO2, MOX fuels,• MCNP, SERPENT, FISPACT, DRAGON, PANTHER, RELAP-5

  • Comparison of ∆k∞ for assemblies and full core (SERPENT)

    Uppsala 2013D. Rochman – 15 / 26

    VVER MOX

    VVER UO2

    BWR MOX (w Gd)

    BWR UO2 (w Gd)

    PWR MOX (4 assemblies)

    PWR MOX (1 assembly)

    PWR UO2 (w Gd)

    PWR UO2 (no Gd)

    k∞ uncertainty for different assemblies

    Burn-up (GWd/tHM)

    ∆k ∞

    1.2

    1.0

    0.8

    0.6

    0.4

    0.2

    0.050403020100

    1.2

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0

  • TMC applied to PWR assembly burn-up calculations with DRAGON

    Uppsala 2013D. Rochman – 16 / 26

    due to nu-bardue to pointwise xsdue to resonance xs

    due to transport data

    238U

    Burn up (GWd/tHM)

    Unce

    rtai

    nty

    onk

    eff(%

    )

    6050403020100

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0

  • Example of TMC for the impact of the matrix fuel

    Uppsala 2013D. Rochman – 17 / 26

    1σ Mo data uncertainty

    12 % Pu, 88 % Mo (volume)Westinghouse 3 loops type reactor

    LWR Inert Matrix Fuel

    δT ≃ 35 efpd

    Reactivity Swing

    Time (efpd)

    keff

    2000150010005000

    1.4

    1.3

    1.2

    1.1

    1.0

    0.9

    0.8

  • PWR MOX assembly uncertainties

    Uppsala 2013D. Rochman – 18 / 26

    Fission Products

    Fission Yields

    H in H2O235U

    238U

    239Pu

    Total

    Burn-up (GWd/tHM)

    Rel

    ativ

    e∆

    k eff

    (%)

    50403020100

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0

    • 1 MOX assembly surrounded by UO2 assemblies,• Burn-up calculated with SERPENT,• All major nuclear data taken into account.

  • Effect of H in H 2O for a full core PWR (courtesy of O. Cabellos, UPM,Spain)

    Uppsala 2013D. Rochman – 19 / 26

    Method: TMC applied to COBAYA (3D multigroup core calculations) + SIMULA(coupled neutronic-thermohydraulics 3D core calculations)

  • Effect of H in H 2O for a full core PWR (courtesy of O. Cabellos, UPM,Spain)

    Uppsala 2013D. Rochman – 20 / 26

    Power coeff.

    Moderator Temp. coeff.

    Boron concentration

    H in H2O effect for a PWR full core

    Burn-up (GWd/TMU)

    Unce

    rtai

    ntie

    s(%

    )

    8.04.02.01.00.50.20.1

    8

    4

    2

    1

  • Drawbacks of the TMC method

    Uppsala 2013D. Rochman – 21 / 26

    In TMC:

    If we can do a calculation once, we can also doit a 1000 times, each time with a varying data library.

  • Drawbacks of the TMC method

    Uppsala 2013D. Rochman – 21 / 26

    In TMC:

    If we can do a calculation once, we can also doit a 1000 times, each time with a varying data library.

    Well, then uncertainty propagation with TMC takes1000× longer than a singlecalculation...(Each σstatisticsneeds to be small)

  • Drawbacks of the TMC method

    Uppsala 2013D. Rochman – 21 / 26

    In TMC:

    If we can do a calculation once, we can also doit a 1000 times, each time with a varying data library.

    Well, then uncertainty propagation with TMC takes1000× longer than a singlecalculation...(Each σstatisticsneeds to be small)

    There is a solution with Monte Carlo codes.

  • 2013: fast TMC method...

    Uppsala 2013D. Rochman – 22 / 26

    If a single calculation takesm histories (σstatsmall enough),then repeat itn times withm/n histories,random nuclear data and random seeds.

    σ2total = σ2statistics+σ

    2nuclear datastill holds.

  • 2013: fast TMC method...

    Uppsala 2013D. Rochman – 22 / 26

    If a single calculation takesm histories (σstatsmall enough),then repeat itn times withm/n histories,random nuclear data and random seeds.

    σ2total = σ2statistics+σ

    2nuclear datastill holds.

    run 0 ENDF/B-VII.1 seed s0 m histories T sec. k± σstat

  • 2013: fast TMC method...

    Uppsala 2013D. Rochman – 22 / 26

    If a single calculation takesm histories (σstatsmall enough),then repeat itn times withm/n histories,random nuclear data and random seeds.

    σ2total = σ2statistics+σ

    2nuclear datastill holds.

    run 0 ENDF/B-VII.1 seed s0 m histories T sec. k± σstatrun 1 nuclear data 1 seed s1 m/n hist. T/n sec. k1±σ1 ∼ σstat

    √n

  • 2013: fast TMC method...

    Uppsala 2013D. Rochman – 22 / 26

    If a single calculation takesm histories (σstatsmall enough),then repeat itn times withm/n histories,random nuclear data and random seeds.

    σ2total = σ2statistics+σ

    2nuclear datastill holds.

    run 0 ENDF/B-VII.1 seed s0 m histories T sec. k± σstatrun 1 nuclear data 1 seed s1 m/n hist. T/n sec. k1±σ1 ∼ σstat

    √n

    run 2 nuclear data 2 seed s2 m/n hist. T/n sec. k2±σ2

  • 2013: fast TMC method...

    Uppsala 2013D. Rochman – 22 / 26

    If a single calculation takesm histories (σstatsmall enough),then repeat itn times withm/n histories,random nuclear data and random seeds.

    σ2total = σ2statistics+σ

    2nuclear datastill holds.

    run 0 ENDF/B-VII.1 seed s0 m histories T sec. k± σstatrun 1 nuclear data 1 seed s1 m/n hist. T/n sec. k1±σ1 ∼ σstat

    √n

    run 2 nuclear data 2 seed s2 m/n hist. T/n sec. k2±σ2...

    ......

    runn nuclear datan seed sn m/n hist. T/n sec. kn ±σn

  • 2013: fast TMC method...

    Uppsala 2013D. Rochman – 22 / 26

    If a single calculation takesm histories (σstatsmall enough),then repeat itn times withm/n histories,random nuclear data and random seeds.

    σ2total = σ2statistics+σ

    2nuclear datastill holds.

    run 0 ENDF/B-VII.1 seed s0 m histories T sec. k± σstatrun 1 nuclear data 1 seed s1 m/n hist. T/n sec. k1±σ1 ∼ σstat

    √n

    run 2 nuclear data 2 seed s2 m/n hist. T/n sec. k2±σ2...

    ......

    runn nuclear datan seed sn m/n hist. T/n sec. kn ±σnn runs T sec.

  • 2013: fast TMC method...

    Uppsala 2013D. Rochman – 22 / 26

    If a single calculation takesm histories (σstatsmall enough),then repeat itn times withm/n histories,random nuclear data and random seeds.

    σ2total = σ2statistics+σ

    2nuclear datastill holds.

    run 0 ENDF/B-VII.1 seed s0 m histories T sec. k± σstatrun 1 nuclear data 1 seed s1 m/n hist. T/n sec. k1±σ1 ∼ σstat

    √n

    run 2 nuclear data 2 seed s2 m/n hist. T/n sec. k2±σ2...

    ......

    runn nuclear datan seed sn m/n hist. T/n sec. kn ±σnn runs T sec.

    σ2total = 1n−1n

    ∑i=1

    (

    ki −k)2

  • 2013: fast TMC method...

    Uppsala 2013D. Rochman – 22 / 26

    If a single calculation takesm histories (σstatsmall enough),then repeat itn times withm/n histories,random nuclear data and random seeds.

    σ2total = σ2statistics+σ

    2nuclear datastill holds.

    run 0 ENDF/B-VII.1 seed s0 m histories T sec. k± σstatrun 1 nuclear data 1 seed s1 m/n hist. T/n sec. k1±σ1 ∼ σstat

    √n

    run 2 nuclear data 2 seed s2 m/n hist. T/n sec. k2±σ2...

    ......

    runn nuclear datan seed sn m/n hist. T/n sec. kn ±σnn runs T sec.

    σ2total = 1n−1n

    ∑i=1

    (

    ki −k)2

    σ2statistics = 1nn

    ∑i=1

    σ2i

  • The fast TMC method

    Uppsala 2013D. Rochman – 23 / 26

    © as fast as S/U methods (1-2× longer than 1 single calculationwithoutuncertainties),

    © tested on criticality & shielding benchmarks, burn-up (keff and inventory),

  • The fast TMC method

    Uppsala 2013D. Rochman – 23 / 26

    © as fast as S/U methods (1-2× longer than 1 single calculationwithoutuncertainties),

    © tested on criticality & shielding benchmarks, burn-up (keff and inventory),© Example: the Martin-Hoogenboom benchmark (= the Kord SmithChallenge)

    MCNP model: 241 fuel assemblies, with 264 fuel pins each

    =⇒ 357×357×100 regions (1.26×1.26×3.66 cm3): 12.7 million cells

  • The fast TMC method

    Uppsala 2013D. Rochman – 23 / 26

    © as fast as S/U methods (1-2× longer than 1 single calculationwithoutuncertainties),

    © tested on criticality & shielding benchmarks, burn-up (keff and inventory),© Example: the Martin-Hoogenboom benchmark (= the Kord SmithChallenge)

    MCNP model: 241 fuel assemblies, with 264 fuel pins each

    =⇒ 357×357×100 regions (1.26×1.26×3.66 cm3): 12.7 million cellsUncertainty on generated local pin power (tally f7) due to235U, 238U, 239Pu

    and H in H2O thermal scattering ineach cell?

  • Fast TMC method

    Uppsala 2013D. Rochman – 24 / 26

    1 normal calculation without nuclear data uncertainty takes n = 2×1011 histories(σstatistics= 0.25 % at the center,500 weekson 1 cpu)=⇒ TMC: 500 random runs ofn = 2×1011 histories (500 weeksfor each)=⇒ fast TMC: 500 random runs ofn/500= 4×108 histories (1 weekfor each)

  • Fast TMC method

    Uppsala 2013D. Rochman – 24 / 26

    1 normal calculation without nuclear data uncertainty takes n = 2×1011 histories(σstatistics= 0.25 % at the center,500 weekson 1 cpu)=⇒ TMC: 500 random runs ofn = 2×1011 histories (500 weeksfor each)=⇒ fast TMC: 500 random runs ofn/500= 4×108 histories (1 weekfor each)

    87654321guidetube

    n.a.

    y(c

    m)

    200

    150

    100

    50

    0

    -50

    -100

    -150

    -200

    x (cm)200150100500-50-100-150-200

    Nuclear data Uncertainties (%)

    mid-height in the core

    (2.7 ± 0.2) %

    (1.0 ± 0.1) %

    Uncertainties due to 235U, 238U, 239Pu and H in H2O

    x (cm)

    Unce

    rtai

    nty

    onpow

    er(%

    )

    2001000-100-200

    10

    8

    6

    4

    2

    0

  • Other outcomes of the NRG approach (not detailed here)

    Uppsala 2013D. Rochman – 25 / 26

    ❅ Sensitivity,❅ Nuclear data adjustment,❅ Include fast TMC in Serpent ?

    Correlation pmi2 keff-56Fe(n,γ)

    Cor

    rela

    tion

    0.1

    0.0

    -0.1

    -0.2

    -0.3

    -0.4

    Exp. dataThis work

    ENDF/B-VII.0

    56Fe(n,γ)

    Incident neutron energy (MeV)

    Cro

    ssSec

    tion

    (bar

    ns)

    2· 1012· 1002· 10−12· 10−22· 10−32· 10−42· 10−52· 10−6

    1· 100

    1· 10−1

    1· 10−2

    1· 10−3

    1· 10−4

    1· 10−5

  • Conclusions

    Uppsala 2013D. Rochman – 26 / 26

    ➪ (fast) TMC is a powerful tool for uncertainty propagation,➪ All types of nuclear data impact can be assessed,➪ Most direct way to propagate uncertainties,➪ Better QA, better modern use of computers,➪ (fast) TMC is part of global approach to improve transparency and safety of

    nuclear simulation

  • Conclusions

    Uppsala 2013D. Rochman – 26 / 26

    ➪ (fast) TMC is a powerful tool for uncertainty propagation,➪ All types of nuclear data impact can be assessed,➪ Most direct way to propagate uncertainties,➪ Better QA, better modern use of computers,➪ (fast) TMC is part of global approach to improve transparency and safety of

    nuclear simulation

    TMC: If we can do a calculation once, we can also doit a 1000 times, each time with a varying data library.

  • Conclusions

    Uppsala 2013D. Rochman – 26 / 26

    ➪ (fast) TMC is a powerful tool for uncertainty propagation,➪ All types of nuclear data impact can be assessed,➪ Most direct way to propagate uncertainties,➪ Better QA, better modern use of computers,➪ (fast) TMC is part of global approach to improve transparency and safety of

    nuclear simulation

    TMC: If we can do a calculation once, we can also doit a 1000 times, each time with a varying data library.fast TMC:If we can do a calculation once, we can also get

    nuclear data uncertainties at the same time

    ContentsIntroduction to nuclear data uncertaintiesBackbone of our methodology: REPRODUCIBILITY TMC: procedure for the random file productionTMC for nuclear data uncertainty propagation, what else ?2008: Total Monte Carlo (TMC)Example with 238U: Monte Carlo calculationsExamples with 63Cu(n,2n) and 65Cu(n,el)Nuclear data: examples in the resonance regionTMC versus Perturbation methodTMC versus Perturbation: ResultsResults: Details of the TMC-Perturbation methods for 239,240Pu keff benchmarksConsidered data in TMC (or fast TMC)Comparison of k for assemblies and full core (SERPENT) TMC applied to PWR assembly burn-up calculations with DRAGONExample of TMC for the impact of the matrix fuelPWR MOX assembly uncertaintiesEffect of H in H2O for a full core PWR (courtesy of O. Cabellos, UPM, Spain)Effect of H in H2O for a full core PWR (courtesy of O. Cabellos, UPM, Spain)Drawbacks of the TMC method 2013: fast TMC method...The fast TMC methodFast TMC methodOther outcomes of the NRG approach (not detailed here)Conclusions