85
Scaling limits of random dissection Igor Kortchemski (work with N. Curien and B. Haas) DMA cole Normale SupØrieure SIAM Discrete Mathematics - June 2014

[tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Scaling limits of random dissections

Igor Kortchemski (work with N. Curien and B. Haas)DMA – École Normale Supérieure

SIAM Discrete Mathematics - June 2014

June 17, 2014

Page 2: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Outline

O. Motivation

I. Definition

II. Theorem

III. Application

IV. Proof

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 2 / 475

Page 3: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

O. Motivation

I. Definition

II. Theorem

III. Application

IV. Proof

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 3 / 475

Page 4: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Scaling limits of random maps

Goal: choose a random map Mn of size n and study its global geometry asn→∞.

If possible, show that a continuous limit exists (Chassaing & Schaeffer’04).

Problem (Schramm at ICM ’06): Let Tn be a random uniform triangulation ofthe sphere with n vertices. View Tn as a compact metric space. Show thatn−1/4 · Tn converges towards a random compact metric space (the Brownianmap), in distribution for the Gromov–Hausdorff topology.

Solved by Le Gall in 2011.

(see Le Gall’s proceeding at ICM ’14 for more information and references)

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 4 / 475

Page 5: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Scaling limits of random maps

Goal: choose a random map Mn of size n and study its global geometry asn→∞. If possible, show that a continuous limit exists (Chassaing & Schaeffer’04).

Problem (Schramm at ICM ’06): Let Tn be a random uniform triangulation ofthe sphere with n vertices. View Tn as a compact metric space. Show thatn−1/4 · Tn converges towards a random compact metric space (the Brownianmap), in distribution for the Gromov–Hausdorff topology.

Solved by Le Gall in 2011.

(see Le Gall’s proceeding at ICM ’14 for more information and references)

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 4 / 475

Page 6: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Scaling limits of random maps

Goal: choose a random map Mn of size n and study its global geometry asn→∞. If possible, show that a continuous limit exists (Chassaing & Schaeffer’04).

Problem (Schramm at ICM ’06): Let Tn be a random uniform triangulation ofthe sphere with n vertices.

View Tn as a compact metric space. Show thatn−1/4 · Tn converges towards a random compact metric space (the Brownianmap), in distribution for the Gromov–Hausdorff topology.

Solved by Le Gall in 2011.

(see Le Gall’s proceeding at ICM ’14 for more information and references)

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 4 / 475

Page 7: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Scaling limits of random maps

Goal: choose a random map Mn of size n and study its global geometry asn→∞. If possible, show that a continuous limit exists (Chassaing & Schaeffer’04).

Problem (Schramm at ICM ’06): Let Tn be a random uniform triangulation ofthe sphere with n vertices. View Tn as a compact metric space.

Show thatn−1/4 · Tn converges towards a random compact metric space (the Brownianmap), in distribution for the Gromov–Hausdorff topology.

Solved by Le Gall in 2011.

(see Le Gall’s proceeding at ICM ’14 for more information and references)

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 4 / 475

Page 8: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Scaling limits of random maps

Goal: choose a random map Mn of size n and study its global geometry asn→∞. If possible, show that a continuous limit exists (Chassaing & Schaeffer’04).

Problem (Schramm at ICM ’06): Let Tn be a random uniform triangulation ofthe sphere with n vertices. View Tn as a compact metric space. Show thatn−1/4 · Tn converges towards a random compact metric space (the Brownianmap)

, in distribution for the Gromov–Hausdorff topology.

Solved by Le Gall in 2011.

(see Le Gall’s proceeding at ICM ’14 for more information and references)

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 4 / 475

Page 9: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Scaling limits of random maps

Goal: choose a random map Mn of size n and study its global geometry asn→∞. If possible, show that a continuous limit exists (Chassaing & Schaeffer’04).

Problem (Schramm at ICM ’06): Let Tn be a random uniform triangulation ofthe sphere with n vertices. View Tn as a compact metric space. Show thatn−1/4 · Tn converges towards a random compact metric space (the Brownianmap), in distribution for the Gromov–Hausdorff topology.

Solved by Le Gall in 2011.

(see Le Gall’s proceeding at ICM ’14 for more information and references)

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 4 / 475

Page 10: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Scaling limits of random maps

Goal: choose a random map Mn of size n and study its global geometry asn→∞. If possible, show that a continuous limit exists (Chassaing & Schaeffer’04).

Problem (Schramm at ICM ’06): Let Tn be a random uniform triangulation ofthe sphere with n vertices. View Tn as a compact metric space. Show thatn−1/4 · Tn converges towards a random compact metric space (the Brownianmap), in distribution for the Gromov–Hausdorff topology.

Solved by Le Gall in 2011.

(see Le Gall’s proceeding at ICM ’14 for more information and references)

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 4 / 475

Page 11: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Scaling limits of random maps

Goal: choose a random map Mn of size n and study its global geometry asn→∞. If possible, show that a continuous limit exists (Chassaing & Schaeffer’04).

Problem (Schramm at ICM ’06): Let Tn be a random uniform triangulation ofthe sphere with n vertices. View Tn as a compact metric space. Show thatn−1/4 · Tn converges towards a random compact metric space (the Brownianmap), in distribution for the Gromov–Hausdorff topology.

Solved by Le Gall in 2011.

(see Le Gall’s proceeding at ICM ’14 for more information and references)

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 4 / 475

Page 12: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

A simulation of the Brownian CRT

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 5 / 475

Page 13: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Random maps having the CRT as a scaling limit

I Albenque & Marckert (’07): Uniform stack triangulations with 2n faces

I Janson & Steffánsson (’12): Boltzmann-type bipartite maps with n edges,having a face of macroscopic degree.

I Bettinelli (’11): Uniform quadrangulations with n faces with fixedboundary �

√n.

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 6 / 475

Page 14: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Random maps having the CRT as a scaling limitI Albenque & Marckert (’07): Uniform stack triangulations with 2n faces

I Janson & Steffánsson (’12): Boltzmann-type bipartite maps with n edges,having a face of macroscopic degree.

I Bettinelli (’11): Uniform quadrangulations with n faces with fixedboundary �

√n.

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 6 / 475

Page 15: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Random maps having the CRT as a scaling limitI Albenque & Marckert (’07): Uniform stack triangulations with 2n faces

I Janson & Steffánsson (’12): Boltzmann-type bipartite maps with n edges,having a face of macroscopic degree.

I Bettinelli (’11): Uniform quadrangulations with n faces with fixedboundary �

√n.

Figure : Figure by Albenque & Marckert

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 6 / 475

Page 16: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Random maps having the CRT as a scaling limitI Albenque & Marckert (’07): Uniform stack triangulations with 2n faces

I Janson & Steffánsson (’12): Boltzmann-type bipartite maps with n edges,having a face of macroscopic degree.

I Bettinelli (’11): Uniform quadrangulations with n faces with fixedboundary �

√n.

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 6 / 475

Page 17: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Random maps having the CRT as a scaling limitI Albenque & Marckert (’07): Uniform stack triangulations with 2n faces

I Janson & Steffánsson (’12): Boltzmann-type bipartite maps with n edges,having a face of macroscopic degree.

I Bettinelli (’11): Uniform quadrangulations with n faces with fixedboundary �

√n.

Figure : Figure by Janson & Steffánsson

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 6 / 475

Page 18: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Random maps having the CRT as a scaling limitI Albenque & Marckert (’07): Uniform stack triangulations with 2n faces

I Janson & Steffánsson (’12): Boltzmann-type bipartite maps with n edges,having a face of macroscopic degree.

I Bettinelli (’11): Uniform quadrangulations with n faces with fixedboundary �

√n.

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 6 / 475

Page 19: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

O. Motivation

I. Definition: Boltzmann dissections

II. Theorem

III. Application

IV. Proof

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 7 / 475

Page 20: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

DissectionsLet Pn be the polygon whose vertices are e

2iπjn (j = 0, 1, . . . ,n− 1).

A dissection of Pn is the union of the sides Pn and of a collection ofnoncrossing diagonals.

�We will view dissections as compact metric spaces.

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 8 / 475

Page 21: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

DissectionsLet Pn be the polygon whose vertices are e

2iπjn (j = 0, 1, . . . ,n− 1).

A dissection of Pn is the union of the sides Pn and of a collection ofnoncrossing diagonals.

�We will view dissections as compact metric spaces.

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 8 / 475

Page 22: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

DissectionsLet Pn be the polygon whose vertices are e

2iπjn (j = 0, 1, . . . ,n− 1).

A dissection of Pn is the union of the sides Pn and of a collection ofnoncrossing diagonals.

�We will view dissections as compact metric spaces.

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 8 / 475

Page 23: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Dissections à la Boltzmann

Let Dn be the set of all dissections of Pn.

Fix a sequence (µi)i>2 of nonnegative real numbers.

Associate a weight π(ω) with every dissection ω ∈ Dn:

π(ω) =∏

f faces of ω

µdeg(f)−1.

Then define a probability measure on Dn by normalizing the weights:

Zn =∑ω∈Dn

π(ω)

and when Zn 6= 0, set for every ω ∈ Dn:

Pµn(ω) =1

Znπ(ω).

We call Pµn(ω) a Boltzmann probability distribution.

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 9 / 147

Page 24: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Dissections à la Boltzmann

Let Dn be the set of all dissections of Pn.

Fix a sequence (µi)i>2 of nonnegative real numbers.

Associate a weight π(ω) with every dissection ω ∈ Dn:

π(ω) =∏

f faces of ω

µdeg(f)−1.

Then define a probability measure on Dn by normalizing the weights:

Zn =∑ω∈Dn

π(ω)

and when Zn 6= 0, set for every ω ∈ Dn:

Pµn(ω) =1

Znπ(ω).

We call Pµn(ω) a Boltzmann probability distribution.

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 9 / 147

Page 25: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Dissections à la Boltzmann

Let Dn be the set of all dissections of Pn.

Fix a sequence (µi)i>2 of nonnegative real numbers.

Associate a weight π(ω) with every dissection ω ∈ Dn:

π(ω) =∏

f faces of ω

µdeg(f)−1.

Then define a probability measure on Dn by normalizing the weights:

Zn =∑ω∈Dn

π(ω)

and when Zn 6= 0, set for every ω ∈ Dn:

Pµn(ω) =1

Znπ(ω).

We call Pµn(ω) a Boltzmann probability distribution.

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 9 / 147

Page 26: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Dissections à la Boltzmann

Let Dn be the set of all dissections of Pn.

Fix a sequence (µi)i>2 of nonnegative real numbers.

Associate a weight π(ω) with every dissection ω ∈ Dn:

π(ω) =∏

f faces of ω

µdeg(f)−1.

Then define a probability measure on Dn by normalizing the weights:

Zn =∑ω∈Dn

π(ω)

and when Zn 6= 0, set for every ω ∈ Dn:

Pµn(ω) =1

Znπ(ω).

We call Pµn(ω) a Boltzmann probability distribution.

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 9 / 147

Page 27: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Dissections à la Boltzmann

Let Dn be the set of all dissections of Pn.

Fix a sequence (µi)i>2 of nonnegative real numbers.

Associate a weight π(ω) with every dissection ω ∈ Dn:

π(ω) =∏

f faces of ω

µdeg(f)−1.

Then define a probability measure on Dn by normalizing the weights:

Zn =∑ω∈Dn

π(ω)

and when Zn 6= 0, set for every ω ∈ Dn:

Pµn(ω) =1

Znπ(ω).

We call Pµn(ω) a Boltzmann probability distribution.

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 9 / 147

Page 28: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Dissections à la Boltzmann

Let Dn be the set of all dissections of Pn.

Fix a sequence (µi)i>2 of nonnegative real numbers.

Associate a weight π(ω) with every dissection ω ∈ Dn:

π(ω) =∏

f faces of ω

µdeg(f)−1.

Then define a probability measure on Dn by normalizing the weights:

Zn =∑ω∈Dn

π(ω)

and when Zn 6= 0, set for every ω ∈ Dn:

Pµn(ω) =1

Znπ(ω).

We call Pµn(ω) a Boltzmann probability distribution.

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 9 / 147

Page 29: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Dissections à la Boltzmann

Assume that νi = λi−1µi for every i > 2 with λ > 0.

Then Pνn = Pµn.

Proposition.

Suppose that there exists λ > 0 such that∑i>2 iλ

i−1µi = 1. Set

ν0 = 1−∑i>2

λi−1µi, ν1 = 0, νi = λi−1µi (i > 2),

Then Pνn = Pµn and ν is a critical probability measure on Z+ with ν1 = 0.

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 10 / 147

Page 30: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Dissections à la Boltzmann

Assume that νi = λi−1µi for every i > 2 with λ > 0. Then Pνn = Pµn.

Proposition.

Suppose that there exists λ > 0 such that∑i>2 iλ

i−1µi = 1. Set

ν0 = 1−∑i>2

λi−1µi, ν1 = 0, νi = λi−1µi (i > 2),

Then Pνn = Pµn and ν is a critical probability measure on Z+ with ν1 = 0.

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 10 / 147

Page 31: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Dissections à la Boltzmann

Assume that νi = λi−1µi for every i > 2 with λ > 0. Then Pνn = Pµn.

Proposition.

Suppose that there exists λ > 0 such that∑i>2 iλ

i−1µi = 1.

Set

ν0 = 1−∑i>2

λi−1µi, ν1 = 0, νi = λi−1µi (i > 2),

Then Pνn = Pµn and ν is a critical probability measure on Z+ with ν1 = 0.

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 10 / 147

Page 32: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Dissections à la Boltzmann

Assume that νi = λi−1µi for every i > 2 with λ > 0. Then Pνn = Pµn.

Proposition.

Suppose that there exists λ > 0 such that∑i>2 iλ

i−1µi = 1. Set

ν0 = 1−∑i>2

λi−1µi, ν1 = 0, νi = λi−1µi (i > 2),

Then Pνn = Pµn and ν is a critical probability measure on Z+ with ν1 = 0.

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 10 / 147

Page 33: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Dissections à la Boltzmann

Assume that νi = λi−1µi for every i > 2 with λ > 0. Then Pνn = Pµn.

Proposition.

Suppose that there exists λ > 0 such that∑i>2 iλ

i−1µi = 1. Set

ν0 = 1−∑i>2

λi−1µi, ν1 = 0, νi = λi−1µi (i > 2),

Then Pνn = Pµn and ν is a critical probability measure on Z+ with ν1 = 0.

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 10 / 147

Page 34: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Dissections à la Boltzmann: examples

I Uniform p-angulations (p > 3). Set

µ(p)0 = 1−

1

p− 1, µ

(p)p−1 =

1

p− 1, µ

(p)i = 0 (i 6= 0, i 6= p− 1).

Then Pµ(p)

n is the uniform measure over all p-angulations of Pn.

I Uniform dissections. Set

µ0 = 2−√2, µ1 = 0, µi =

(2−√2

2

)i−1

i > 2,

then Pµn is the uniform measure on the set of all dissections of Pn.

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 11 / 147

Page 35: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Dissections à la Boltzmann: examples

I Uniform p-angulations (p > 3). Set

µ(p)0 = 1−

1

p− 1, µ

(p)p−1 =

1

p− 1, µ

(p)i = 0 (i 6= 0, i 6= p− 1).

Then Pµ(p)

n is the uniform measure over all p-angulations of Pn.

I Uniform dissections. Set

µ0 = 2−√2, µ1 = 0, µi =

(2−√2

2

)i−1

i > 2,

then Pµn is the uniform measure on the set of all dissections of Pn.

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 11 / 147

Page 36: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Dissections à la Boltzmann: examples

I Uniform p-angulations (p > 3). Set

µ(p)0 = 1−

1

p− 1, µ

(p)p−1 =

1

p− 1, µ

(p)i = 0 (i 6= 0, i 6= p− 1).

Then Pµ(p)

n is the uniform measure over all p-angulations of Pn.

I Uniform dissections. Set

µ0 = 2−√2, µ1 = 0, µi =

(2−√2

2

)i−1

i > 2,

then Pµn is the uniform measure on the set of all dissections of Pn.

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 11 / 147

Page 37: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Dissections à la Boltzmann: examples

I Uniform p-angulations (p > 3). Set

µ(p)0 = 1−

1

p− 1, µ

(p)p−1 =

1

p− 1, µ

(p)i = 0 (i 6= 0, i 6= p− 1).

Then Pµ(p)

n is the uniform measure over all p-angulations of Pn.

I Uniform dissections. Set

µ0 = 2−√2, µ1 = 0, µi =

(2−√2

2

)i−1

i > 2,

then Pµn is the uniform measure on the set of all dissections of Pn.

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 11 / 147

Page 38: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

I. Definition

II. Theorem: scaling limits of random dissections

III. Application

IV. Proof

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 12 / 147

Page 39: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Scaling limit of random dissections

Let µ be a probability measure over {0, 2, 3, . . .} of mean 1 s.t.∑i>0 e

λiµi <∞for some λ > 0.

Let Dµn be a random dissection distributed according to Pµn.

What does Dµn look like, for n large, as a metric space?

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 13 /√

8/3

Page 40: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Scaling limit of random dissections

Let µ be a probability measure over {0, 2, 3, . . .} of mean 1 s.t.∑i>0 e

λiµi <∞for some λ > 0.

Let Dµn be a random dissection distributed according to Pµn.

What does Dµn look like, for n large, as a metric space?

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 13 /√

8/3

Page 41: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Scaling limit of random dissections

Let µ be a probability measure over {0, 2, 3, . . .} of mean 1 s.t.∑i>0 e

λiµi <∞for some λ > 0.

Let Dµn be a random dissection distributed according to Pµn.

What does Dµn look like, for n large, as a metric space?

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 13 /√

8/3

Page 42: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Simulations

Figure : A uniform dissection of P45.

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 14 /√

8/3

Page 43: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Simulations

Figure : A uniform dissection of P260.

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 14 /√

8/3

Page 44: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Simulations

Figure : A uniform dissection of P387.

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 14 /√

8/3

Page 45: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Simulations

Figure : A uniform dissection of P637.

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 14 /√

8/3

Page 46: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Simulations

Figure : A uniform dissection of P8916.

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 14 /√

8/3

Page 47: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Scaling limit of random dissectionsLet µ be a probability measure over {0, 2, 3, . . .} of mean 1 s.t.

∑i>0 e

λiµi <∞for some λ > 0. Let Dµn be a random dissection distributed according to Pµn.

There exists a constant c(µ) such that:

1√n·Dµn

(d)−−−→n→∞ c(µ) · Te,

where Te is a random compact metric space, called the Brownian CRT andthe convergence holds in distribution for the Gromov–Hausdorff topologyon compact metric spaces.

In addition, c(µ) =2

σ√µ0· 14

(σ2 +

µ0µ2Z+

2µ2Z+− µ0

),

where µ2Z+= µ0 + µ2 + µ4 + · · · and σ2 ∈ (0,∞) is the variance of µ.

Theorem (Curien, Haas & K.).

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 15 /√

8/3

Page 48: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Scaling limit of random dissectionsLet µ be a probability measure over {0, 2, 3, . . .} of mean 1 s.t.

∑i>0 e

λiµi <∞for some λ > 0. Let Dµn be a random dissection distributed according to Pµn.

There exists a constant c(µ) such that:

1√n·Dµn

(d)−−−→n→∞ c(µ) · Te,

where Te is a random compact metric space, called the Brownian CRT andthe convergence holds in distribution for the Gromov–Hausdorff topologyon compact metric spaces.

In addition, c(µ) =2

σ√µ0· 14

(σ2 +

µ0µ2Z+

2µ2Z+− µ0

),

where µ2Z+= µ0 + µ2 + µ4 + · · · and σ2 ∈ (0,∞) is the variance of µ.

Theorem (Curien, Haas & K.).

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 15 /√

8/3

Page 49: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Scaling limit of random dissectionsLet µ be a probability measure over {0, 2, 3, . . .} of mean 1 s.t.

∑i>0 e

λiµi <∞for some λ > 0. Let Dµn be a random dissection distributed according to Pµn.

There exists a constant c(µ) such that:

1√n·Dµn

(d)−−−→n→∞ c(µ) · Te,

where Te is a random compact metric space, called the Brownian CRT

andthe convergence holds in distribution for the Gromov–Hausdorff topologyon compact metric spaces.

In addition, c(µ) =2

σ√µ0· 14

(σ2 +

µ0µ2Z+

2µ2Z+− µ0

),

where µ2Z+= µ0 + µ2 + µ4 + · · · and σ2 ∈ (0,∞) is the variance of µ.

Theorem (Curien, Haas & K.).

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 15 /√

8/3

Page 50: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Scaling limit of random dissectionsLet µ be a probability measure over {0, 2, 3, . . .} of mean 1 s.t.

∑i>0 e

λiµi <∞for some λ > 0. Let Dµn be a random dissection distributed according to Pµn.

There exists a constant c(µ) such that:

1√n·Dµn

(d)−−−→n→∞ c(µ) · Te,

where Te is a random compact metric space, called the Brownian CRT andthe convergence holds in distribution for the Gromov–Hausdorff topologyon compact metric spaces.

In addition, c(µ) =2

σ√µ0· 14

(σ2 +

µ0µ2Z+

2µ2Z+− µ0

),

where µ2Z+= µ0 + µ2 + µ4 + · · · and σ2 ∈ (0,∞) is the variance of µ.

Theorem (Curien, Haas & K.).

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 15 /√

8/3

Page 51: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Scaling limit of random dissectionsLet µ be a probability measure over {0, 2, 3, . . .} of mean 1 s.t.

∑i>0 e

λiµi <∞for some λ > 0. Let Dµn be a random dissection distributed according to Pµn.

There exists a constant c(µ) such that:

1√n·Dµn

(d)−−−→n→∞ c(µ) · Te,

where Te is a random compact metric space, called the Brownian CRT andthe convergence holds in distribution for the Gromov–Hausdorff topologyon compact metric spaces.

In addition, c(µ) =2

σ√µ0· 14

(σ2 +

µ0µ2Z+

2µ2Z+− µ0

),

where µ2Z+= µ0 + µ2 + µ4 + · · · and σ2 ∈ (0,∞) is the variance of µ.

Theorem (Curien, Haas & K.).

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 15 /√

8/3

Page 52: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Scaling limit of random dissectionsLet µ be a probability measure over {0, 2, 3, . . .} of mean 1 s.t.

∑i>0 e

λiµi <∞for some λ > 0. Let Dµn be a random dissection distributed according to Pµn.

There exists a constant c(µ) such that:

1√n·Dµn

(d)−−−→n→∞ c(µ) · Te,

where Te is a random compact metric space, called the Brownian CRT andthe convergence holds in distribution for the Gromov–Hausdorff topologyon compact metric spaces.

In addition, c(µ) =2

σ√µ0· 14

(σ2 +

µ0µ2Z+

2µ2Z+− µ0

),

where µ2Z+= µ0 + µ2 + µ4 + · · · and σ2 ∈ (0,∞) is the variance of µ.

Theorem (Curien, Haas & K.).

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 15 /√

8/3

Page 53: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

What is the Brownian Continuum Random Tree?First define the contour function of a tree:

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 16 / −i

Page 54: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

What is the Brownian Continuum Random Tree?Knowing the contour function, it is easy to recover the tree by gluing:

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 17 / −i

Page 55: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

What is the Brownian Continuum Random Tree?The Brownian tree Te is obtained by gluing from the Brownian excursion e.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Figure : A simulation of e.

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 18 /√

17

Page 56: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

A simulation of the Brownian CRT

Figure : A non isometric plane embedding of a realization of Te.

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 19 /√

17

Page 57: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

RecapLet µ be a probability measure over {0, 2, 3, . . .} of mean 1 s.t.

∑i>0 e

λiµi <∞for some λ > 0. Let Dµn be a random dissection distributed according to Pµn.

There exists a constant c(µ) such that:

1√n·Dµn

(d)−−−→n→∞ c(µ) · Te,

where Te is a random compact metric space, called the Brownian CRT andthe convergence holds in distribution for the Gromov–Hausdorff topologyon compact metric spaces.

In addition, c(µ) =2

σ√µ0· 14

(σ2 +

µ0µ2Z+

2µ2Z+− µ0

),

where µ2Z+= µ0 + µ2 + µ4 + · · · and σ2 ∈ (0,∞) is the variance of µ.

Theorem (Curien, Haas & K.).

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 20 /√

17

Page 58: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

I. Definition

II. Theorem

III. Combinatorial applications

IV. Proof

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 21 /√

17

Page 59: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Applications

Combinatorial properties of random dissections have been studied by variousauthors :

I Uniform triangulations : Devroye, Flajolet, Hurtado, Noy & Steiger(maximal degree, longest diagonal, 1999) and Gao & Wormald (maximaldegree, 2000),

I Uniform dissections (and triangulations) : Bernasconi, Panagiotou & Steger(degrees, maximal degree, 2010) and Drmota, de Mier & Noy (diameter,2012).

y When µi ∼ c/i1+α as i→∞, loops remain in the scaling limit, which isthe stable looptree of index α ∈ (1, 2) (Curien & K.). The looptree of indexα = 3/2 describes the scaling limit of boundaries of critical site percolation onthe Uniform Infinite Planar Triangulation (Curien & K.).

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 22 / ?

Page 60: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Applications

Combinatorial properties of random dissections have been studied by variousauthors :

I Uniform triangulations : Devroye, Flajolet, Hurtado, Noy & Steiger(maximal degree, longest diagonal, 1999) and Gao & Wormald (maximaldegree, 2000),

I Uniform dissections (and triangulations) : Bernasconi, Panagiotou & Steger(degrees, maximal degree, 2010) and Drmota, de Mier & Noy (diameter,2012).

y When µi ∼ c/i1+α as i→∞, loops remain in the scaling limit, which isthe stable looptree of index α ∈ (1, 2) (Curien & K.).

The looptree of indexα = 3/2 describes the scaling limit of boundaries of critical site percolation onthe Uniform Infinite Planar Triangulation (Curien & K.).

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 22 / ?

Page 61: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Applications

Combinatorial properties of random dissections have been studied by variousauthors :

I Uniform triangulations : Devroye, Flajolet, Hurtado, Noy & Steiger(maximal degree, longest diagonal, 1999) and Gao & Wormald (maximaldegree, 2000),

I Uniform dissections (and triangulations) : Bernasconi, Panagiotou & Steger(degrees, maximal degree, 2010) and Drmota, de Mier & Noy (diameter,2012).

y When µi ∼ c/i1+α as i→∞, loops remain in the scaling limit, which isthe stable looptree of index α ∈ (1, 2) (Curien & K.). The looptree of indexα = 3/2 describes the scaling limit of boundaries of critical site percolation onthe Uniform Infinite Planar Triangulation (Curien & K.).

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 22 / ?

Page 62: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

ApplicationsThe diameter Diam(Dµn) is the maximal distance between two points of Dµn.

We have for every p > 0:

E[Diam(Dµn)

p]

∼n→∞

c(µ)p ·∫∞0

xpfD(x)dx · np/2

.

In particular, for p = 1, E[Diam(Dµn)

]∼

n→∞ c(µ) · 2√2π

3·√n.

Corollary.

For uniform dissections, we get E[Diam(Dµn)

]∼

1

21(3+

√2)29/4

√πn

' 0.99988√πn. This strenghtens a result of Drmota, de Mier & Noy who

proved that

(3+√2)21/4

7

√πn 6 E

[Diam(Dµn)

]6 2 · (3+

√2)21/4

7

√πn

' 0.74√πn ' 1.5

√πn.

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 23 / −34

Page 63: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

ApplicationsThe diameter Diam(Dµn) is the maximal distance between two points of Dµn.

We have for every p > 0:

E[Diam(Dµn)

p]

∼n→∞

c(µ)p ·∫∞0

xpfD(x)dx · np/2

.

In particular, for p = 1, E[Diam(Dµn)

]∼

n→∞ c(µ) · 2√2π

3·√n.

Corollary.

For uniform dissections, we get E[Diam(Dµn)

]∼

1

21(3+

√2)29/4

√πn

' 0.99988√πn. This strenghtens a result of Drmota, de Mier & Noy who

proved that

(3+√2)21/4

7

√πn 6 E

[Diam(Dµn)

]6 2 · (3+

√2)21/4

7

√πn

' 0.74√πn ' 1.5

√πn.

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 23 / −34

Page 64: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

ApplicationsThe diameter Diam(Dµn) is the maximal distance between two points of Dµn.

We have for every p > 0:

E[Diam(Dµn)

p]

∼n→∞

c(µ)p ·∫∞0

xpfD(x)dx

· np/2.

In particular, for p = 1, E[Diam(Dµn)

]∼

n→∞ c(µ) · 2√2π

3·√n.

Corollary.

For uniform dissections, we get E[Diam(Dµn)

]∼

1

21(3+

√2)29/4

√πn

' 0.99988√πn. This strenghtens a result of Drmota, de Mier & Noy who

proved that

(3+√2)21/4

7

√πn 6 E

[Diam(Dµn)

]6 2 · (3+

√2)21/4

7

√πn

' 0.74√πn ' 1.5

√πn.

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 23 / −34

Page 65: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

ApplicationsThe diameter Diam(Dµn) is the maximal distance between two points of Dµn.

We have for every p > 0:

E[Diam(Dµn)

p]

∼n→∞ c(µ)p ·

∫∞0

xpfD(x)dx

· np/2.

In particular, for p = 1, E[Diam(Dµn)

]∼

n→∞ c(µ) · 2√2π

3·√n.

Corollary.

For uniform dissections, we get E[Diam(Dµn)

]∼

1

21(3+

√2)29/4

√πn

' 0.99988√πn. This strenghtens a result of Drmota, de Mier & Noy who

proved that

(3+√2)21/4

7

√πn 6 E

[Diam(Dµn)

]6 2 · (3+

√2)21/4

7

√πn

' 0.74√πn ' 1.5

√πn.

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 23 / −34

Page 66: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

ApplicationsThe diameter Diam(Dµn) is the maximal distance between two points of Dµn.

We have for every p > 0:

E[Diam(Dµn)

p]

∼n→∞ c(µ)p ·

∫∞0

xpfD(x)dx · np/2.

In particular, for p = 1, E[Diam(Dµn)

]∼

n→∞ c(µ) · 2√2π

3·√n.

Corollary.

For uniform dissections, we get E[Diam(Dµn)

]∼

1

21(3+

√2)29/4

√πn

' 0.99988√πn. This strenghtens a result of Drmota, de Mier & Noy who

proved that

(3+√2)21/4

7

√πn 6 E

[Diam(Dµn)

]6 2 · (3+

√2)21/4

7

√πn

' 0.74√πn ' 1.5

√πn.

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 23 / −34

Page 67: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

ApplicationsThe diameter Diam(Dµn) is the maximal distance between two points of Dµn.

We have for every p > 0:

E[Diam(Dµn)

p]

∼n→∞ c(µ)p ·

∫∞0

xpfD(x)dx · np/2.

In particular, for p = 1, E[Diam(Dµn)

]∼

n→∞ c(µ) · 2√2π

3·√n.

Corollary.

where, setting bk,x = (16πk/x)2, fD(x) is√2π3 times∑

k>1

(29

x4

(4b4k,x − 36b3k,x + 75b2k,x − 30bk,x

)+

24

x2

(4b3k,x − 10b2k,x

))e−bk,x .

For uniform dissections, we get E[Diam(Dµn)

]∼

1

21(3+

√2)29/4

√πn

' 0.99988√πn. This strenghtens a result of Drmota, de Mier & Noy who

proved that

(3+√2)21/4

7

√πn 6 E

[Diam(Dµn)

]6 2 · (3+

√2)21/4

7

√πn

' 0.74√πn ' 1.5

√πn.

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 23 / −34

Page 68: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

ApplicationsThe diameter Diam(Dµn) is the maximal distance between two points of Dµn.

We have for every p > 0:

E[Diam(Dµn)

p]

∼n→∞ c(µ)p ·

∫∞0

xpfD(x)dx · np/2.

In particular, for p = 1, E[Diam(Dµn)

]∼

n→∞ c(µ) · 2√2π

3·√n.

Corollary.

where, setting bk,x = (16πk/x)2, fD(x) is√2π3 times∑

k>1

(29

x4

(4b4k,x − 36b3k,x + 75b2k,x − 30bk,x

)+

24

x2

(4b3k,x − 10b2k,x

))e−bk,x .

For uniform dissections, we get E[Diam(Dµn)

]∼

1

21(3+

√2)29/4

√πn

' 0.99988√πn. This strenghtens a result of Drmota, de Mier & Noy who

proved that

(3+√2)21/4

7

√πn 6 E

[Diam(Dµn)

]6 2 · (3+

√2)21/4

7

√πn

' 0.74√πn ' 1.5

√πn.

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 23 / −34

Page 69: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

ApplicationsThe diameter Diam(Dµn) is the maximal distance between two points of Dµn.

We have for every p > 0:

E[Diam(Dµn)

p]

∼n→∞ c(µ)p ·

∫∞0

xpfD(x)dx · np/2.

In particular, for p = 1, E[Diam(Dµn)

]∼

n→∞ c(µ) · 2√2π

3·√n.

Corollary.

y Remark: c(µ) is explicit for p-angulations and uniform dissections.

For

uniform dissections, we get E[Diam(Dµn)

]∼

1

21(3+

√2)29/4

√πn

' 0.99988√πn. This strenghtens a result of Drmota, de Mier & Noy who

proved that

(3+√2)21/4

7

√πn 6 E

[Diam(Dµn)

]6 2 · (3+

√2)21/4

7

√πn

' 0.74√πn ' 1.5

√πn.

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 23 / −34

Page 70: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

ApplicationsThe diameter Diam(Dµn) is the maximal distance between two points of Dµn.

We have for every p > 0:

E[Diam(Dµn)

p]

∼n→∞ c(µ)p ·

∫∞0

xpfD(x)dx · np/2.

In particular, for p = 1, E[Diam(Dµn)

]∼

n→∞ c(µ) · 2√2π

3·√n.

Corollary.

y Remark: c(µ) is explicit for p-angulations and uniform dissections. Forinstance, for uniform dissections:

c(µ) =1

7(3+

√2)23/4.

For uniform dissections, we get E[Diam(Dµn)

]∼

1

21(3+

√2)29/4

√πn

' 0.99988√πn. This strenghtens a result of Drmota, de Mier & Noy who

proved that

(3+√2)21/4

7

√πn 6 E

[Diam(Dµn)

]6 2 · (3+

√2)21/4

7

√πn

' 0.74√πn ' 1.5

√πn.

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 23 / −34

Page 71: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

ApplicationsThe diameter Diam(Dµn) is the maximal distance between two points of Dµn.

We have for every p > 0:

E[Diam(Dµn)

p]

∼n→∞ c(µ)p ·

∫∞0

xpfD(x)dx · np/2.

In particular, for p = 1, E[Diam(Dµn)

]∼

n→∞ c(µ) · 2√2π

3·√n.

Corollary.

For uniform dissections, we get E[Diam(Dµn)

]∼

1

21(3+

√2)29/4

√πn

' 0.99988√πn.

This strenghtens a result of Drmota, de Mier & Noy whoproved that

(3+√2)21/4

7

√πn 6 E

[Diam(Dµn)

]6 2 · (3+

√2)21/4

7

√πn

' 0.74√πn ' 1.5

√πn.

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 23 / −34

Page 72: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

ApplicationsThe diameter Diam(Dµn) is the maximal distance between two points of Dµn.

We have for every p > 0:

E[Diam(Dµn)

p]

∼n→∞ c(µ)p ·

∫∞0

xpfD(x)dx · np/2.

In particular, for p = 1, E[Diam(Dµn)

]∼

n→∞ c(µ) · 2√2π

3·√n.

Corollary.

For uniform dissections, we get E[Diam(Dµn)

]∼

1

21(3+

√2)29/4

√πn

' 0.99988√πn. This strenghtens a result of Drmota, de Mier & Noy who

proved that

(3+√2)21/4

7

√πn 6 E

[Diam(Dµn)

]6 2 · (3+

√2)21/4

7

√πn

' 0.74√πn ' 1.5

√πn.

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 23 / −34

Page 73: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

I. Definition

II. Theorem

III. Application

IV. Proof

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 24 / −34

Page 74: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Proofg Step 1. Consider the dual tree of Dµn:

Figure : A dissection and its dual tree Tµn.

y Key fact. Tµn is a (planted) Galton–Watson tree with offspring distribution

µ conditioned on having n− 1 leaves.

It is known (Rizzolo or K.) that:

1√n· Tµn

(d)−→n→∞ 2

σ√µ0· Te.

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 25 / ℵ0

Page 75: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Proofg Step 1. Consider the dual tree of Dµn:

Figure : A dissection and its dual tree Tµn.

y Key fact. Tµn is a (planted) Galton–Watson tree with offspring distribution

µ conditioned on having n− 1 leaves.

It is known (Rizzolo or K.) that:

1√n· Tµn

(d)−→n→∞ 2

σ√µ0· Te.

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 25 / ℵ0

Page 76: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Proofg Step 1. Consider the dual tree of Dµn:

Figure : A dissection and its dual tree Tµn.

y Key fact. Tµn is a (planted) Galton–Watson tree with offspring distribution

µ conditioned on having n− 1 leaves. It is known (Rizzolo or K.) that:

1√n· Tµn

(d)−→n→∞ 2

σ√µ0· Te.

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 25 / ℵ0

Page 77: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Proofg Step 2. We show that:

Dµn ' 1

4

(σ2 +

µ0µ2Z+

2µ2Z+− µ0

)· Tµn.

To this end, we compare the length of geodesics in Dµn and in T

µn by using an

“exploration” Markov Chain:

Figure : A geodesic in Tµn (in light blue) and the associated geodesic in Dµn (in red).

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 26 / ℵ1

Page 78: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

Proofg Step 2. We show that:

Dµn ' 1

4

(σ2 +

µ0µ2Z+

2µ2Z+− µ0

)· Tµn.

To this end, we compare the length of geodesics in Dµn and in T

µn by using an

“exploration” Markov Chain:

Figure : A geodesic in Tµn (in light blue) and the associated geodesic in Dµn (in red).

�Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 26 / ℵ1

Page 79: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

The Markov Chain

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections

Page 80: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

The Markov Chain

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections

Page 81: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

The Markov Chain

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections

Page 82: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

The Markov Chain

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections

Page 83: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

The Markov Chain

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections

Page 84: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

The Markov Chain

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections

Page 85: [tl](-25pt,20pt)[scale=0.2]37 Scaling limits of random ...igor-kortchemski.perso.math.cnrs.fr/slides/crt.pdf · Scalinglimitsofrandomdissections IgorKortchemski(workwithN.CurienandB.Haas)

Motivation Definition: Boltzmann dissections Theorem Applications Proof

The Markov Chain

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections