54
TELEKOMUNIKACIONI SISTEMI (2) Školska 2007/2008. god.

Tk Sistemi 2

Embed Size (px)

Citation preview

Page 1: Tk Sistemi 2

TELEKOMUNIKACIONI SISTEMI (2)

Školska 2007/2008. god.

Page 2: Tk Sistemi 2

2

Pregled kursa Pregled kursa Uvod: istorija telekomunikacija, uvodni pojmovi o TK

mrežama, model komunikacionog sistema, izobličenja u prenosu signala, šumovi

Kablovski sistemi veza (žične linije veza)Kablovski sistemi veza (žične linije veza) Analogni sistemi prenosa Digitalni sistemi prenosa (PDH, SDH) Telefonska mreža, IDN, ISDN, signalizacija no. 7 Frame Relay tehnologija ATM tehnologija i B-ISDN xDSL (HDSL, ADSL, VDSL) Lokalne računarske mreže (LAN) Internet i IP tehnologija Multiservisne IP mreže; VoiP, IP televizija

Page 3: Tk Sistemi 2

3

Medijumi prenosa (1)Medijumi prenosa (1)

Medijum prenosa (transmission medium) je fizička veza između dva telekomunikaciona uređaja po kojoj se prenose signali

Medijumi prenosa: Kablovski

Žične linije vezaŽične linije veza Optički sistemi veza

Bežični

Page 4: Tk Sistemi 2

4

Medijumi prenosa (2)Medijumi prenosa (2) Karakteristike medijuma prenosa:

Slabljenje Kašnjenje Šum

Termički Intermodulacioni Preslušavanje Impulsni

Ključni faktori za izbor medijuma prenosa: Cena Propusni opseg Gubici pri prenosu

Page 5: Tk Sistemi 2

5

Elektromagnetski spektar Elektromagnetski spektar i njegovo korii njegovo korišćšćenje uenje u telekomunikacijamatelekomunikacijama

TV, GSM,Wi-Fi

1016101510141013101210111010109108107106105104103102Hz

SHF EHFUHFVHFHFMFLFVLFULFSLF

101

ELF

Simetrična parica

Koaksijalni kabl Optička vlakna

Podmornice AM radio

FM radio, TV, radar

Satelitski prenos

Usmerene veze

Radio Mikro-talasi Infracrveni UV

Vidljivi

1022 1024

X

Page 6: Tk Sistemi 2

6

ELF – Extremely Low Frequency, 3Hz– 30Hz SLF – Super Low Frequency, 30Hz– 300Hz ULF – Ultra Low Frequency, 300Hz– 3kHz VLF – Very Low Frequency, 3kHz– 30kHz LF – Low Frequency, 30kHz– 300kHz MF – Medium Frequency, 300kHz– 3MHz HF – High Frequency, 3MHz– 30MHz VHF – Very High Frequency, 30MHz– 300MHz UHF – Ultra High Frequency, 300MHz– 3GHz SHF – Super High Frequency, 3GHz– 30GHz EHF – Extremely High Frequency, 30GHz– 300GHz

Page 7: Tk Sistemi 2

7

Žične linije vezaŽične linije veza

Jedna vrsta su vodovi vodovi izgrađeni od dva provodnika koji se zajedno nazivaju paricaparica; provodnici su po pravilu od bakra (Cu)

Prema konstrukciji i nameni dele se na : Vazdušne vodove Simetrične vodove Koaksijalne vodove

Posebna vrsta su talasovoditalasovodi kod kojih postoji samo jedan provodnik

Page 8: Tk Sistemi 2

8

Vazdušni vodovi (1)Vazdušni vodovi (1)

Postavljaju u slobodnom prostoru tako da je izolator između dva provodnika vazduh

Na određenim rastojanjima, obično 50 m postavljaju se uporišta (bandere) sa porcelanskim ili staklenim izolatorima na koje se učvršćuju provodnici

Rastojanje između dva provodnika je 20 cm. Prečnik provodnika je standardizovan na

1.5mm, 2mm i 3mm.

Page 9: Tk Sistemi 2

9

Vazdušni vodovi (2)Vazdušni vodovi (2)

Konstrukcija vazdušnih vodova ih čini osetljivim na stanje u atmosferi, tako da vlaga, kiša, sneg i led pogoršavaju međusobnu izolaciju.

Taloženjem atmosferskih padavina na provodnicima povećava se njihova masa, pa uprkos relativno velikom prečniku žica može doći do njihovog kidanja, a time i do prekida linije veze, što vazdušne vodove čini nepouzdanim

Page 10: Tk Sistemi 2

10

Vazdušni vodovi (3)Vazdušni vodovi (3)

Budući da provodnici nisu zaštićeni u njima se indukuje visok nivo elektromagnetnih smetnji koje proističu od drugih vodova, atmosferskih pražnjenja, varničenja na električnim objektima i radio talasa.

Pošto radio opsezi počinju već od talasnih dužina λ = 2000 m, gornja granična frekvencija primene vazdušnih vodova je ffmaxmax = 150 kHz. = 150 kHz.

Page 11: Tk Sistemi 2

11

Vazdušni vodovi (4)Vazdušni vodovi (4)

Često se u blizini vazdušnih vodova nalaze bakarni provodnici koji služe za razvod električne energije.

Od ovih provodnika se u vazdušnim vodovima indukuje napon frekvencije 50 Hz, koji u zavisnosti od blizine vodova i načina ukrštanja može biti znatan, što dovodi do oštećenja telekomunikacionih uređaja, a u ekstremnim slučajevima i do opasnosti po život ljudi.

Zato se na vazdušnim vodovima moraju postaviti naponski ograničavači.

Page 12: Tk Sistemi 2

12

Vazdušni vodovi (5)Vazdušni vodovi (5)

Sve ovo ne preporučuje vazdušne vodove za telekomunikacioni prenos, pa je njihova primena ograničena najčešće na privremena rešenja, ili jeftina rešenja privoda signala do pojedinačnih pretplatnika (kod nas ih ima u ruralnim područjima).

Page 13: Tk Sistemi 2

13

Simetrični vodovi (1) Simetrični vodovi (1)

Čine ih dva provodnika od koji svaki preko bakarne žice ima prevučen sloj od izolatora.

Ovo omogućava da se takvi provodnici, odnosno veliki broj parica, spakuje unutar simetričnog kabla.

Page 14: Tk Sistemi 2

14

Simetrični vodovi (2)Simetrični vodovi (2)

Unutar simetričnog kabla nalazi se veliki broj parica, od desetak, pa do više stotina.

Da bi se smestio toliki broj vodova unutar nekih razumnih poprečnih preseka kabla prečnik bakarnog provodnika je mali i standardizovan je na 0.32, 04, 06, 0.8, 0.9, 1.2 i 1.3 mm

Manji preseci služe za dovođenje signala na kraćim rastojanjima, naprimer do pretplatnika,a provodnici većeg poprečnog preseka koriste se za veća rastojanja, na primer za vezu između centrala.

Page 15: Tk Sistemi 2

15

Simetrični vodovi (3)Simetrični vodovi (3)

Izolacioni sloj iznad provodnika može biti načinjen od hartije ili plastičnih masa.

Sloj hartije ima malu debljinu, što je dobro sa gledišta povećenje broja parica unutar kabla, ali hartija, bez obzira što je impregnirana, apsorbuje vlagu, pa nije dobar izolator.

Zato je primena vodova sa papirnom izolacijom bila ograničena na pretplatničke vodove, ali se sve više izbacuje iz upotrebe.

Page 16: Tk Sistemi 2

16

Simetrični vodovi (4)Simetrični vodovi (4)

Od plastičnih masa kao izolator se najčešće koristi polivinil hlorid (PVC) i polietilen (PE).

Razumljivo da je otpornost na vlagu velika, a i električne karakteristike voda su bolje.

Zbog veće debljine izolacionog sloja u odnosu na papirnu izolaciju broj vodova unutar standardizovanog prečnika kabla je smanjen.

Page 17: Tk Sistemi 2

17

Simetrični vodovi (5)Simetrični vodovi (5) Izolovane bakarne žice se pri konstrukciji kabla međusobno

upredaju. Upredanje se vrši kako bi se smanjilo preslušavanje između

simetričnih vodova.

Po dva provodnika

Po dve parice

Zvezda u četvorku

Page 18: Tk Sistemi 2

18

Simetrični vodovi (6)Simetrični vodovi (6)

Upredanje po dva provodnikapo dva provodnika , kao i ostala upredanja, se vrši prilikom proizvodnje kabla, a korak upredanja je određen tako da se postigne minimum slabljenja.

Međusobno upredanje dve pariceupredanje dve parice (prethodno upredene po dva provodnika) daje najbolje električne karakteristike, ali zahteva više prostora.

Zato je najčešće u primeni upredanje tipa zvezda u zvezda u četvorkučetvorku. Tako upreden vod se naziva skraćeno četvorkačetvorka, koja sadrži dve parice.

Page 19: Tk Sistemi 2

19

Simetrični vodovi (7)Simetrični vodovi (7)

Osnovna karakteristika simetričnog voda, širina propusnog opsega, zavisi od prečnika žice, vrste izolatora i načina upredanja.

Upredena dva provodnika sa papirnom izolacijom imaju propusni opseg od 0 Hz 0 Hz do do 150 kHz150 kHz i u tome su kompatibilni sa vazdušnim vodom.

Vodovi sa plastičnom izolacijom imaju propusni opseg od 0 Hz do standardizovanih 252 kHz i252 kHz i 552kHz.552kHz.

Kod vodova sa većim prečnikom žice i specijalnih konstrukcija gornja granična frekvencija se može povećati na nekoliko stotina nekoliko stotina MHz MHz (primena u LAN).

Page 20: Tk Sistemi 2

20

Simetrični vodovi (7)Simetrični vodovi (7) Simetrični kablovi se polažu

pod zemljom, pod vodom, kao samonosivi vazdušni simetrični kablovi.

Podzemni kablovi se polažu u unapred napravljenu kablovsku kanalizaciju, ili direktno u zemlju.

Od načina polaganja kabla zavisi način izrade omotača. Kablovi koji se postavljaju direktno u zemlju moraju da imaju dodatne

omotače od čeličnog lima, ili čeličnih traka, sa dodatnom zaštitom od vlage.

Zaštita je još veća kod podvodnih kablova, posebno onim pod morem i okeanima jer tada popravka oštećenja na kablu nije moguća. U nekim ekstremnim uslovima prazan prostor između parica u kablu se puni uljem.

Page 21: Tk Sistemi 2

21

Simetrični vodovi (8)Simetrični vodovi (8)

Kablovi koji se polažu u kablovsku kanalizaciju imaju metalni omotač, najčešće u obliku cevi od olova. Pored povećanja mehaničke otpornosti strukture i zaštite

od vlage, omotač od metala štiti vodove od spoljne električne i magnetne interferencije.

Olovni omotač u odnosu na omotače od aluminijuma i čelične trake ima veću savitljivost i time pojednostavljuje proizvodnju, transport i polaganje kabla.

Ukoliko se očekuje veći utical vlage preko metalne cevi se prevlači sloj od plastične mase.

Kod dobro izvedene kanalizacije i u objektima dovoljan je samo plastrični omotač.

Page 22: Tk Sistemi 2

22

Lociranje kablova u Lociranje kablova u poprečnom profilu ulicepoprečnom profilu ulice

E-električni vod visokog napona, P- gasovod niskog napona,

V-vodovod pitke vode, Vu-vodovod tehnicke vode, Ps-gasovod

srednjeg pritiska, T-telefonski kablovi, Ev-elektricni vod visokog

napona, V1-primarni vod pitke vode, K-kanalizacija i Tv-toplovod.

Telefonski kablovi

Page 23: Tk Sistemi 2

23

Primena simetričnih Primena simetričnih vodova u računarskim vodova u računarskim mrežama (1)mrežama (1) Neoklopljena parica (UTP - Unshielded Twisted

Pair) Oklopljena parica (STP - Shielded Twisted Pair) UTP - obična telefonska žica, jeftina i laka za

instalaciju, koristi se za LAN; na UTP dosta utiču elektromagnetske smetnje (susedne parice, šumovi)

STP oklop (shield) - metalna folija za zaštitu parice 1991. standard EIA-568 (Electronic Industries

Association) specificira korišćenje UTP i STP za LAN-ove brzinama prenosa od 1-16 Mb/s

Page 24: Tk Sistemi 2

24

Primena simetričnih Primena simetričnih vodova u računarskim vodova u računarskim mrežama (2)mrežama (2) 1995. EIA-568-A za brzine do 100 Mb/s

kategorija 3 (Category 3 – Cat 3) - 10 Mb/s, zadovoljava min. zahteva za prenos podataka u Ethernet mrežama

kategorija 4 (Cat 4) – 16 Mb/s kategorija 5 (Cat 5) – 100 Mb/s, standard za novije LAN-

ove (Fast Ethernet) Najviše se koriste Cat 3 i Cat 5; Cat 5 je jače

isprepletena parica, skuplja ali daje bolje performanse mreže

Kategorije 5e i 6 – 550 Mb/s i do Gb/s

Page 25: Tk Sistemi 2

25

Primena simetričnih Primena simetričnih vodova u računarskim vodova u računarskim mrežama (3)mrežama (3)Rek (montažni orman

za Cat 5e)

Isporuka kabla Cat 5e (namotaji)

Konektori za Cat 5eSet alata za

konektovanje i testiranje Cat 5e

Page 26: Tk Sistemi 2

26

Koaksijalni vodovi (1) Koaksijalni vodovi (1)

Sastoji se od dva provodnika: unutrašnjeg od pune bakarne žice i spoljašnjeg od bakarne cevi sa spoljnom zaštitom od

plastične mase Između unutrašneg i spoljnjeg provodnika izolaciju

čine plastični prstenovi, puna plastična masa (kada se koaksijalni kabl koristi za privod posebnih signala, na primer za vezu između antene i TV prijemnika)

Spoljašnji provodnik, radi veće savitljivosti je napravljen od bakarne košuljice

Page 27: Tk Sistemi 2

27

Koaksijalni vodovi (2) Koaksijalni vodovi (2) U javnoj telekomunikacionoj mreži prečnici unutrašnjeg

provodnika ddaa i spoljašnje cevi ddbb su standardizovani na: ddbb / d/ daa = 9.5 mm / 2.6 mm = 9.5 mm / 2.6 mm (normalni prečnik ili velika tuba) i ddbb / d/ daa = 4.4 mm / 1.2 mm = 4.4 mm / 1.2 mm (mali prečnik ili mala tuba).

Oba ova odnosa su 3.6 3.6 kada je slabljenje koaksijalnog voda minimalno.

Unutrašnji provodnik

Izolator

Spoljašnji provodnikZaštitni omotač

Page 28: Tk Sistemi 2

28

Koaksijalni vodovi (3) Koaksijalni vodovi (3)

Jedan koaksijalni kabl sadrži od jedne do više desetina koaksijalnih tuba.

Spoljna konstrukcija je ista kao i kod simetričnih kablova.

U jednom kablu mogu da se zajednički nađu simetrični i koaksijalni vodovi.

Page 29: Tk Sistemi 2

29

Primena koaksijalnih Primena koaksijalnih kablova (1)kablova (1) Različite primene za prenos analognih i digitalnih

podataka: telefonija, kablovska TV, LAN Podela:

za prenos u osnovnom opsegu (baseband coaxial cable) za širokopojasni prenos (broadband coaxial cable)

Kabl za prenos u osnovnom opsegu: za prenos digitalnih podataka jedan kanal za prenošenje samo jedne informacije u

jednom trenutku propusni opseg zavisi od dužine kabla, npr. za 1km – 10

Mb/s koristi se za kablovsku TV i neke LAN mreže

Page 30: Tk Sistemi 2

30

Primena koaksijalnih Primena koaksijalnih kablova (2)kablova (2) Kabl za širokopojasni prenos koristi se

za analogni prenos koji je manje osetljiv od digitalnog, pa udaljenosti mogi biti i 100 km, ali i za prenos digitalnih podataka (skuplji i složeniji nego baseband kabl)

mogu prenositi integrisane signale govora, podataka i video signale

veći domet postiže se pojačanjem, ali se signal može prenositi samo u jednom smeru

Problem se rešava korišćenjem 2 tipa širokopojasnih sistema: dvostruki kabl (dual cable) - koristi 2 paralelna kabla, jedan za

prenos podataka prema glavnom čvoru (head-end), a drugi od tog čvora u suprotnom smeru; računari šalju podatke po jednom, a primaju po drugom kablu

jednostruki kabl (single cable) - koristi različite frekvencije za prenos u različitim smerovima po istom kablu

Page 31: Tk Sistemi 2

31

Primena koaksijalnih Primena koaksijalnih kablova (3)kablova (3)

Za velike brzine prenosa, potiskuju ih optički vodovi koji imaju znatno veći propusni opseg, manje slabljenje i jeftiniji su.

Primena koaksijalnih kablova se pomera ka delovima telekomunikacione mreže koji su bliži pretplatniku gde je telekomunikacioni saobraćaj manjeg inteziteta.

Head-end

>

Head-end

>

Niže frekvencije

Više frekvencije

Dvostruki kabl Jednostruki kabl

Page 32: Tk Sistemi 2

32

TalasovodTalasovod

Šuplja metalna cev u čijoj unutrašnjosti se prostiru radio talasi.

Poprečni presek cevi je kružnog, eliptičnog i pravougaonog oblika, prečnik reda centimetra.

Bez obzira na njihov veoma veliki propusni opseg, zbog prednosti optičkih vodova, primena im je ograničena na mikrotalasno područje radio talasa, gde direktno povezuju antenu i udaljen primopredajnik bez konverzije radiotalasa u električnu struju.

Page 33: Tk Sistemi 2

33

Primarni parametri voda Primarni parametri voda (1)(1) Vod predstavlja električni medijum prenosa koji

karakterišu električne veličine: otpor, induktivnost, odvodnost i kapacitivnost.

Za razliku od pojedinačnih elemenata gde su ove veličine koncentrisane u nekoj komponenti (otpor, kalem, kondenzator), one se kod vodova zajednički nalaze u svakom njegovom delu, sve do diferencijalno malih dužina.

Zato se jedinice tih električnih veličina definišu po jedinici dužine i tako definisane nazivaju se primarni parametri voda.

Page 34: Tk Sistemi 2

34

Primarni parametri voda Primarni parametri voda (2)(2) Primarni parametri voda su: podužna otpornost r (Ω/km)r (Ω/km), podužna induktivnost s (H/km)s (H/km), podužna kapacitivnost c (F/km)c (F/km) i podužna odvodnost g (S/km)g (S/km); S (Siemens) = 1 / Ω.

Podužna otpornost rr predstavlja redni otpor dva provodnika po jedinici dužine, uzimajući u obzir skin efekat

Skin efekat – kada naizmenična struja prolazi kroz provodnik, gustina struje nije uniformna već ima tendenciju da se koncentriše na površini provodnika (zavisi od frekvencije).

Page 35: Tk Sistemi 2

35

Primarni parametri voda Primarni parametri voda (3)(3) Podužna induktivnost ss nastaje

delom usled magnetnog polja unutar svakog provodnika (interno, u zavisnosti od skin efekta); blago opada sa porastom frekvencije

delom usled magnetskog polja između dva provodnika (eksterno, praktično nezavisno od frekvencije)

Podužna kapacitivnost cc odnosi se na permitivnost dielektrika između provodnika (dielektrična konstanta)

Podužna odvodnost gg nastaje usled: Nedostataka izolacije (uglavnom zanemarljiva) Dielektričnih gubitaka koji se povećavaju sa porastom

učestanosti g=g=cctantan , gde je – ugao gubitka dielektrika

Page 36: Tk Sistemi 2

36

Model elementarnog Model elementarnog odsečka vodaodsečka voda

Page 37: Tk Sistemi 2

37

TipiTipiččne vrednosti primarnih ne vrednosti primarnih parametara vodaparametara voda

Parametar Vazdušni Simetrični Koaksijalni

r 2-3 /km 25-500 /km 40-80 /km

s 2 H/km 0.7 mH/km 0.26 mH/km

c 6 nF/km 30-40 nF/km 50 nF/km

g

3 S/km (lepo vreme)

24 S/km (kiša)

1 S/km 14 S/km

f = 1000 Hz f = 1 MHz

Page 38: Tk Sistemi 2

38

Skin efekat kod Skin efekat kod koaksijalnog voda (1)koaksijalnog voda (1)

U slučaju koncentričnih provodnika struja se koncentriše ka spoljnoj površini unutrašnjeg provodnika i ka unutrašnjoj površini spoljnog provodnika

Ekvivalentna sekcija dva provodnika određuje se pomoću veličine koja se naziva dubina penetracije - dubina penetracije - (m) (m)

f

– specifična otpornost (m)

– permeabilnost (specifična magnetna provodljivost) (Vs/Am)

f – frekvencija (Hz)

da db

Page 39: Tk Sistemi 2

39

Skin efekat kod Skin efekat kod koaksijalnog voda (2)koaksijalnog voda (2)

Za bakar važi =17.5 * 10–9 m i 0 = 1,256 Vs/Am (0 je magnetna permeabilnost vakuuma), pa se dubina penetracije menja u zavisnosti od frekvencije kao na slici

1010109108107106105104 f (Hz)

1

10

100

(10–6 m)

Page 40: Tk Sistemi 2

40

Skin efekat kod Skin efekat kod koaksijalnog voda (3)koaksijalnog voda (3) Pošto su površine delova provodnika u kojima je koncentrisana struja približno ddaaaa i ddbbbb, podužna otpornost koaksijalnog

voda izračunava se iz formule:

Zamenom izraza za dubinu penetracije

Podužna otpornost raste proporcionalno kvadratnom korenu frekvencije Podužna otpornost zavisi od kvadratnog korena specifične otpornosti

a b

a a b br

d d

f

0 a b

a br f

d d

Page 41: Tk Sistemi 2

41

Sekundarni parametri Sekundarni parametri vodavoda Iz primarnih parametara voda izvode se dva sekundarna

parametra voda: karakteristična impedansa ZcZc i konstanta prostiranja γγ.

Zp

1u

1

UZ

I

Page 42: Tk Sistemi 2

42

Karakteristična Karakteristična impedansa (1) impedansa (1) Karakteristična impedansa je impedansa koja bi bila

izmerena na ulazu beskonačno dugog voda ili voda konačne dužine koji je zatvoren istom impedansom Zc.

Fizički, karakteristična impedansa predstavlja odnos struje i napona u bilo kojoj tački voda.

1c u

1

UZ Z

I za Zp=Zc

Page 43: Tk Sistemi 2

43

Karakteristična Karakteristična impedansa (2)

cjg

sjrZc

cjcc eZZ

r

g

s

c

cZ

c

Veza sa primarnim parametrima:

Page 44: Tk Sistemi 2

44

Konstanta prostiranja (1)Konstanta prostiranja (1)

γ = α + jβ

Realni deo konstante prostiranja α, ima dimenziju dB/km i naziva se koeficijent slabljenja.

On pokazuje slabljenje snage signala po jedinici dužine voda Slabljenje signala zavisi od njegove frekvencije α= α(ω) i

raste sa porastom frekvencije. Vrednosti koeficijenta slabljenja u zavisnosti od prečnika

provodnika su kod simetričnih vodova na frekvenciji od f = 800 Hz i kod koaksijalnih vodova na f = 1 MHz reda veličine 1dB/km.

( )( )r j s g j c Veza sa primarnim parametrima:

Page 45: Tk Sistemi 2

45

Promena signala duž vodaPromena signala duž voda

Page 46: Tk Sistemi 2

46

Konstanta prostiranja (2)Konstanta prostiranja (2)

Imaginarnini deo konstante prenosa β ima dimenziju rad/km i naziva se fazni koeficijent.

On pokazuje promenu faze signala po jedinici dužine voda.

Fazni koeficijent β = β(ω) raste srazmerno kvadratnom korenu frekvencije.

Prosečne vrednosti su: kod simetričnih vodova na f = 800 Hz reda veličine

1 rad/km. kod koaksijalnih kablova na f = 1MHz β su reda veličine

10 rad/km.

Page 47: Tk Sistemi 2

47

Konstanta prostiranjaKonstanta prostiranja (3)(3)

Pošto je β(ω) nelinearna funkcija frekvencije komponente signala različitih frekvencija će istu dužinu voda preći za različito vreme, odnosno neće imati istu brzinu prostiranja duž voda

Brzine prenosa se povećavaju proporcionalno sa √ω i u sredini propusnog opsega i za niskofrekventne simetrične vodove, visokofrekventne simetrične vodove i koaksijalne vodove su oko 100.000 km/s, 200.000 km/s i 280.000 km/s , respektivno

Page 48: Tk Sistemi 2

48

Asimptotsko ponašanje (1)Asimptotsko ponašanje (1) Ako važi relacija r>>ωsr>>ωs i gg00:

Karakteristična impedansa je kompleksna i opada srazmerno kvadratnom korenu frekvencije

Koeficijent slabljenja i fazni koeficijent su jednaki i rastu srazmerno kvadratnom korenu frekvencije – postoje amplitudska i fazna izobličenja

4 j

cr r

Z ej c c

1 1

2 2jr c r c jr c

Page 49: Tk Sistemi 2

49

Asimptotsko ponašanje (2)Asimptotsko ponašanje (2) Ako važi relacija r<<ωsr<<ωs i gg00:

Karakteristična impedansa je realna i ne zavisi od frekvencije Fazni koeficijent linearno raste sa porastom frekvencije – nema faznih

izobličenja Koeficijent slabljenja je srazmeran sa rr i može se smatrati nezavisnim

od frekvencije samo ako je skin efekat zanemarljiv; u suprotnom raste sa kvadratnim korenom frekvencije

c cs

Z Zc

2 1 12

r rsc j rc j sc j j sc j

s s

2 2

c

r c rsc

s Z

Page 50: Tk Sistemi 2

50

Preslušavanje (Preslušavanje (crosstalkcrosstalk)) Kada su dva voda veoma blizu, oni utiču jedan na

drugog usled: Galvanske spregeGalvanske sprege, zbog otpornosti između dva provodnika

(javlja se i kada je jedan vod povezan na zajedničko uzemljenje – masu)

Kapacitivne spregeKapacitivne sprege između dva voda Induktivne spregeInduktivne sprege koja potiče od magnetskog polja jednog

voda koje utiče na magnetsko polje drugog voda (međusobna induktansa)

Posledica: deo signala koji se prenosi jednim vodom pojavljuje se na drugom vodu i obrnuto; ta pojava se naziva preslušavanje i predstavlja neželjen efekat, posebno nepovoljan ako je preslušavanje razumljivo.

Page 51: Tk Sistemi 2

51

Preslušavanje na bližem i Preslušavanje na bližem i daljem kraju (1)daljem kraju (1)

Zg=Zc NEXTNEXT FEXTFEXT

Page 52: Tk Sistemi 2

52

Preslušavanje na bližem i daljem Preslušavanje na bližem i daljem kraju (2)kraju (2) Preslušavanje na bližem kraju (NEXT – Near End Crosstalk)

definiše se kao mera neželjenog signala koji potiče od bližeg kraja ometajućeg voda i meri se na istom kraju ometanog voda. Ne zavisi od dužine voda.

Preslušavanje na daljem kraju (FEXT – Far End Crosstalk) definiše se kao mera neželjenog signala koji potiče od bližeg kraja ometajućeg voda i meri se na daljem kraju ometanog voda. Slabi usled propagacije kroz vod.

Iako se oba ova fenomena uvek pojavljuju istovremeno, njihovi efekti su različiti: Jednosmerni kanali, isti smer, relevantan je FEXT Jednosmerni kanali, suprotni smer, relevantan je NEXT Dvosmerni kanali, relevantni su NEXT i FEXT

Page 53: Tk Sistemi 2

53

Smanjenje preslušavanja Smanjenje preslušavanja ukrštanjem provodnika ukrštanjem provodnika (upredanje)(upredanje)

)ii()ii()ii()ii(i 42312341'p

)ii()ii()ii()ii(i 42314321p

Page 54: Tk Sistemi 2

54

Zaključak Iako je tendencija instalacije optičkih kablova (o kojima

ćete slušati u zasebnom kursu) evidentna, ne samo u okosnici mreže nego i do krajnjih korisnika, bakarni kablovi su još uvek u upotrebi i ostaće u upotrebi bar narednih nekoliko decenija.

Razlozi: Zato što instalacije miliona tona bakra već postoje širom sveta

(počelo je pre 150 godina) i što ih treba valjano iskoristiti Zato što se pojavljuju nove tehnologije (DSL) koje omogućavaju

da parice instalirane do milijardi pretplatnika budu iskorišćene za istovremeni prenos analognog govora i velikih količina brzih digitalnih podataka

Zato što se postavlja pitanje isplativosti polaganja optičkih kablova u retko naseljenim područjima (ruralnim)