27
Title: High dimensional single cell analysis predicts response to anti-PD-1 immunotherapy Authors: Carsten Krieg* 1 , Malgorzata Nowicka 2,3 , Silvia Guglietta 4 , Sabrina Schindler 5 , Felix J. Hartmann 1 , Lukas M. Weber 2,3 , Reinhard Dummer 5 , Mark D. Robinson 2,3 , Mitchell P. Levesque # * 5 , Burkhard Becher # * 1 . SUPPLEMENTARY INFORMATION - Content list METHODS Patient samples Stimulations, stainings, and mass cytometry acquisition Antibody Conjugation CyTOF Data Analysis Cytokine analysis based on a bimatrix CellCnn analysis Validation by flow cytometry + correlation of PFS with monocyte frequency Patient data and analysis Immunohistology TABLES AND FIGURES Table S1 – Blood samples characteristics biomarker discovery study. Table S2 – Staining panels for Mass Cytometry Data Sets. Table S3 – Blood sample characteristics for the validation study. Figure S1 – Experimental design used for the CyTOF data. Figure S2 – Simultaneous detection of T cell differentiation and activation markers in blood. Figure S3 – Immunohistochemical intensity scores of lyphocytes and monocytes markers in FFPE melanoma tumor samples. Figure S4 – Defining CD8 + T cells subpopulations by using over-clustering. Figure S5 – Simultaneous detection of TH and CTL profiles in human blood. Figure S6 – Characterization of the circulating myeloid compartment. Figure S7 – Comparison of frequencies in cellular sub-populations using the myeloid panel Figure S8 – Correlation of IFN-γ-producing T cells with myeloid cell expansion. Figure S9 – In depth analysis of the CD14+ myeloid compartment. Figure S10 – Identification of a monocyte signature by CellCnn Figure S11 – Back projection of cells identified using CellCnn into tSNE. Figure S12 – CXCL2 expression by RNA-Seq. Figure S13 – Citrus analysis of the T cell panel. Figure S14 – Citrus analysis of the myeloid compartment Figure S15 – FACS validation panel Figure S16 – Baseline clinical characteristics of all patients. Figure S17 – Hazard rates at baseline of all patients REFERENCES

Title: High dimensional single cell analysis predicts ... · CyTOF data came from 2 separate measurements (dataset 1 and dataset 2). In each measurement baseline (before treatment)

Embed Size (px)

Citation preview

Title:Highdimensionalsinglecellanalysispredictsresponsetoanti-PD-1immunotherapyAuthors: Carsten Krieg*1, Malgorzata Nowicka2,3, Silvia Guglietta4, SabrinaSchindler5, Felix J.Hartmann1, LukasM.Weber2,3, ReinhardDummer5,MarkD.Robinson2,3,MitchellP.Levesque#*5,BurkhardBecher#*1.

SUPPLEMENTARYINFORMATION-Contentlist

METHODS• Patientsamples• Stimulations,stainings,andmasscytometryacquisition• AntibodyConjugation• CyTOFDataAnalysis• Cytokineanalysisbasedonabimatrix• CellCnnanalysis• Validation by flow cytometry + correlation of PFS with monocyte

frequency• Patientdataandanalysis• Immunohistology

TABLESANDFIGURES• TableS1–Bloodsamplescharacteristicsbiomarkerdiscoverystudy.• TableS2–StainingpanelsforMassCytometryDataSets.• TableS3–Bloodsamplecharacteristicsforthevalidationstudy.• FigureS1–ExperimentaldesignusedfortheCyTOFdata.• FigureS2–SimultaneousdetectionofTcelldifferentiationandactivation

markersinblood.• FigureS3–Immunohistochemicalintensityscoresoflyphocytesand

monocytesmarkersinFFPEmelanomatumorsamples.• FigureS4–DefiningCD8+Tcellssubpopulationsbyusingover-clustering.• FigureS5–SimultaneousdetectionofTHandCTLprofilesinhuman

blood.• FigureS6–Characterizationofthecirculatingmyeloidcompartment.• FigureS7–Comparisonoffrequenciesincellularsub-populationsusing

themyeloidpanel• FigureS8–CorrelationofIFN-γ-producingTcellswithmyeloidcell

expansion.• FigureS9–IndepthanalysisoftheCD14+myeloidcompartment.• FigureS10–IdentificationofamonocytesignaturebyCellCnn• FigureS11–BackprojectionofcellsidentifiedusingCellCnnintotSNE.• FigureS12–CXCL2expressionbyRNA-Seq.• FigureS13–CitrusanalysisoftheTcellpanel.• FigureS14–Citrusanalysisofthemyeloidcompartment• FigureS15–FACSvalidationpanel• FigureS16–Baselineclinicalcharacteristicsofallpatients.• FigureS17–Hazardratesatbaselineofallpatients

REFERENCES

Krieg et al. - HighDimanalysispredictsresponsetoPD-1therapy–supplementarydata

page 1 of 26

SUPPLEMENTARYMETHODSPatientSamples

Ashealthycontrols(n=10),age-andsex-matchedPBMCswereacquiredfromthe

Red Cross Blood Bank, Zurich, Switzerland. Two patient cohorts (total n=51)

wereanalyzed in this study (seeSupplementaryTables1and3).Baselinewas

defined as a sample that was collected within a maximum of 1.5 months of

therapyinitiation,withanaverageof2.27daysbeforethetherapystartedanda

medianof0days,meaningthatthemajorityofbaselinesampleswerecollected

onthedayof treatment initiation.Allhumanbiologicalsampleswerecollected

afterwritten informed consent of the patients andwith approval of the Local

EthicsCommittee(KantonaleEthikkommissionZürich,KEK-ZHauthorizationNr.

2014-0425)inaccordancetoGCPguidelinesandtheDeclarationofHelsinki.

Stimulations,stainings,andmasscytometryacquisition

Cryopreserved PBMCswere thawed, incubated for 10minutes in pre-warmed

complete RPMI (RPMI, 10% FBS, Glutamine, Penicillin and Streptomycin)

containing 200µg/ml DNAse, spun down, washed in cRPMI. Cells from each

samplewerewashed,counted,adjustedto2x10e6lifecells/stainandseededin

96-well plates. For stimulations cells were seeded into 96-well non-tissue

culturetreatedroundbottomplates(BDFalcon)andleftuntreatedorstimulated

for 4 hours with 50ng/ml phorbol-12-myristate-13-acetate (PMA) and 1 mM

ionomycin in thepresenceof10µg/mlBrefeldinA (Sigma)andmonensin (BD).

For live cell barcoding cells were transferred into V-bottom plates (Costar)

washedincoldFACSbuffer(PBS+2%FCS+2mMEDTA+0.05%sodiumazide)

and incubated for 15 minutes at 37°C with a unique combination of metal-

labeledanti-humanCD45antibodies.Cellswerethenwashedtwicewithice-cold

FACSbufferandLive/Deadstainedwith200µMCisplatin-Pt-198(Fluidigm)for

2minutes at room temperature. Cellswerewashed and surfaceproteinswere

stainedwithantibodiesat37°Cfor15minutesandforanadditional10minutes

at4°C.CellswerewashedwithFACSbufferandinordertoperformintracellular

staining,somesampleswerepermeabilizedusingcytofix/cytoperm-buffer(BD)

for 20 minutes on ice and stained with an intracellular antibody cocktail

Krieg et al. - HighDimanalysispredictsresponsetoPD-1therapy–supplementarydata

page 2 of 26

(Supplementary Table 2) for 40min on ice. Finally, cellswere incubated over

night with 250nM iridium intercalator (Fluidigm) to label cellular DNA.

Subsequently, cells were washed with PBS and with distilled water. Mass

cytometry acquisitionwas performed on a CyTOF2.1 (Helios)mass cytometer

(Fluidigm).

AntibodyConjugation

Purifiedantibodieslackingcarrierproteinswerepurchasedfromthecompanies

listed in Supplementary Table 2. Antibody conjugationwas performed using a

metal-labelingkit(Fluidigm).

CyTOFDataAnalysis

CyTOFdata came from2 separatemeasurements (dataset1 anddataset2). In

eachmeasurementbaseline(beforetreatment)andtimepoint(after12weeksof

treatment)sampleswerestainedseparatelyresultingin4experimentalbatches

(dataset1–before,dataset1–after,dataset2–before,dataset2–after).Ineach

batch,HD,NRandRsamplesweremeasured(SupplementaryFigure1).

We approached the dataset unbiased, meaning we did not expect a specific

pattern.Wemixedbaselineandtimepointsampleswiththeideathatprognostic

markersthatareidentifiedat12weeksmaybeusefulforpatientmonitoringor

possiblyforthepredictionofotherendpointssuchasoverallresponse.Thus,the

mathematicalalgorithmbehindour“mixedapproach”estimatesthecorrelation

ofpatientsthatenterwithmorethanonesampleandthealgorithmisawareof

baseline and time point samples. All analyses on CyTOF datawere performed

afterarcsinh(withcofactorequalto5)transformationofmarkerexpression.In

thefollowing,wedevelopedacustomRworkflowinordertodiscoverdifferent

biomarkerswhencomparingmarkerexpressionsbetweenrespondersandnon-

responders(https://github.com/gosianow/carsten_cytof_code).

Further details of the majority of the pipeline, including many additional

visualizations,optionalanalysesandRcode,arepublishedasaworkflowarticle1.

Allmarkerswere included in the analysis and sampleswith less than 50 cells

were excluded. This cutoff was used to balance the identification of relatively

Krieg et al. - HighDimanalysispredictsresponsetoPD-1therapy–supplementarydata

page 3 of 26

rare population while retaining the identities of the main populations.

Differentialmarker expression analysiswas performed by fitting linearmixed

models (LMM) using the lme4 R package2. Here, marker expression either

represents the global values (aggregated over all cells for a sample) or

subpopulation-specific (aggregated over all cells in a cluster). The median

marker expression is a response variable (y) and the explanatory variables

include experimental group response (non-responder, responder or healthy

donor)asafixedeffect.Toaccountforanybatcheffectsamongsamples,weuse

eachindividualexperimentasanadditionalfixedeffect(batch).Weaccountfor

the fact that samples are paired (same sample measured before and after

therapy)byintroducingthepatientIDasarandomeffect.Totestfordifferences

between responders and non-responders, we used the generalized linear

hypothesis (glht) function from the multcomp R package3 to test for the four

followingcontrasts:(1)thedifferenceinmarkerexpressionbetweenresponders

and non-responders before therapy, (2) differences after therapy, (3) overall

differences in both combined and (4) an interaction that is comparing

differencesbeforeandafter therapy.Except for functional components (Figure

3),wenotedthatinalmostallcasesthattherapydidnothaveanimpactonthe

observedsignificantdifferences.Basedonthisobservationandinordertogain

power,wereportresultsoftheoveralldifferencesbetweenrespondersandnon-

responders. To adjust for multiple comparisons, we adjusted the resulting p-

valuesusingtheBenjamini–Hochbergprocedure.

Differential marker expression is visualized using heatmaps as the change

between responders and non-responders for significant markers (adjusted p-

value<0.1).Coloursrepresentnormalizedmedianmarkerexpressionstomean

of0andstandarddeviationof1.

To rank markers according to their importance, we used the feature-scoring

algorithm based on principal component analysis (PCA) from Levine et al.4,

whichidentifiesthenon-redundantmarkersineachpatient,whilecapturingthe

overall diversity. Top scoring (Levine PCA score averaged across samples)

markerswereusedforsubsequentclusteringanddimensionreductionanalysis.

Inordertoclustersinglecelldata,weusedtheSOMfunctionfromtheFlowSOM

R package5 and ConsensusClusterPlus function from ConsensusClusterPlus R

Krieg et al. - HighDimanalysispredictsresponsetoPD-1therapy–supplementarydata

page 4 of 26

package6, a combination of methods that is amongst the best performing

clusteringapproaches7. In the firststep,weusedFlowSOMtoassigncells toa

10x10 grid according to their similarity using the self organizing map (SOM)

algorithm. In the second step, the resulting 100 codes, vectors of marker

expression representing the 100 grid nodes, were clustered using

ConsensusClusterPlus hierarchical clustering with average linkage. Since we

knew the mapping between cells and nodes, we could reconstruct the final

clustering for each individual cell.We applied ConsensusClusterPlus to cluster

the codes into a range of clusters from2 to 20 and to calculate a score (delta

area),whichweusedtodefinetheappropriatenumberofclusterspresentinthe

databasedonthesocalledelbowcriterion.Fordatavisualization,weusedtSNE

dimensionreduction,torepresenttheannotatedcellpopulationsina2Dmap8.

Clustersweremanuallyannotatedbasedontheheatmapswithnormalizedto0-

1medianmarkerexpressionineachclusterandtheaforementionedtSNEmaps.

To our knowledge there are no automatic annotation approaches thus cluster

annotationremainsamanualstepinmanyapproaches,e.g.Citrus,CellCnn.The

recentlyproposedtool,calledMarkerEnrichmentModelling(MEM)9,providesa

consistentcharacterizationofclusters,whichconsistsoflistsofmarkersthatare

positivelyand/ornegativelyenrichedwithrespecttosomepredefinedreference.

Suchnamingagainhastobemanuallyinterpretedinordertoobtainmeaningful

namesof cell types and thus stays subjective.Amoredetaileddescriptionand

discussion of our clustering and labeling/annotating strategy, including its

strengthsandweaknessescanbefoundinourBioconductorworkflow1.

Inordertoanalyzedifferencesinrelativecellpopulationabundance(frequency)

between responders and non-responders to anti-PD-1 therapy, we performed

analysis analogous to differentialmarker expression analysis described above.

Here,theresponsevariable(y)wasthenumberofcellsinagivenclusterineach

sample, and insteadof aLMM,a generalized linearmixedmodel (GLMM)with

thebinomialfamilywasapplied.

Krieg et al. - HighDimanalysispredictsresponsetoPD-1therapy–supplementarydata

page 5 of 26

Cytokineanalysisbasedonabimatrix

Fortheselectedsubpopulations,weinvestigatedchangesincytokineproduction

betweenrespondersandnon-responders.Basedonpublishedcytokineanalysis

algorithmssuchasCOMPASS10,weexploitedanewtypeofanalysisbasedona

so-calledbimatrix.Bimatrixisabinarymatrixwithrowsrepresentingcellsand

columns corresponding to the cytokines of interestwhere each entry encodes

whetheracellispositive(1)ornegative(0)foragivencytokine.Thresholdsfor

defining the positive status of a cell were defined for each batch of data

individually by investigating expression profiles in FlowJo using DMSO or a

biological negative control. Subsequently, we performed two types of

comparisons. First, the differential frequency analysis based on GLMM, which

comparethefrequenciesofpositivecellsinrespondersandnon-respondersfor

each individual cytokine (Figure 3A and 4A). For the second analysis, we

considered an entire cytokine set profile of each cell. Cells described by the

bimatrixwereclusteredusingtheSOMmethodinto49groups(7times7grid)to

generate profiles of the cytokine production, which we refer to as cytokine

combination groups (CCGs) (Figure3B and4B), and the relative abundanceof

theseprofileswascomparedbetweenrespondersandnon-respondersusingthe

GLMMapproachdescribedabove(Figure3Dand4D).

CellCnnanalysis

WeuseddefaultparametersettingstorunCellCnn,includingrandomlysplitting

dataintotrainingandvalidationsetsinordertotrainthemodel.AsCellCnndoes

notprovideanymeasure for thesignificanceof identified filters,wehaveused

ourGLMMapproach(amodelwithobservation-levelrandomeffectsorOLREto

correctlymodelover-dispersedbinomialdata)totestwhethertheidentifiedcell

population is significantly over-represented in responders (Supplementary

Figure10).Ofnote,thep-valuesobtainedwiththisapproachdonotaccountfor

the selection step (only the selected population is tested). However, such p-

valuescanbestillinformativeofthemagnitudeofobserveddifferences.

Validationbyflowcytometry

Afterthawing,cellsuspensionswerestainedinstainingbuffer(PBS,5mMEDTA,

Krieg et al. - HighDimanalysispredictsresponsetoPD-1therapy–supplementarydata

page 6 of 26

0.5%BSA) containing Fc-block (Miltenyi)with the following antibody cocktail

(clones in brackets, all from Biolegend until noted otherwise): CD11b-

BrilliantViolett (BV) 421 (ICRF44), CD14-PE (HCD14), HLA-DR-FITC (L243),

CD4-BV711 (OKT4),CD33-BV605 (WM53),CD3-BV785 (OKT3), andLive/dead-

stain-NearInfraRed. CD56-Pe-Cy7 (NCAM1), CD19-BV605 (1D3), and CD11c-

AlexaFluor700 (B-Ly6) were from BD Biosciences, CD16-APC (3G8) from

ThermoFischer and CD45RO-ECD (2H4LDH11LD89(2H4), from Beckman

Coulter. The frequencies of two cell populations,whichwere CD3+ T cells and

CD14+CD16-HLA-DR+ monocytes, were extracted from the three groups. For

statisticaltesting,weappliedageneralizedlinearmodel(GLM)withbetafamily,

using the glmmADMB R package11, where the response y is an relative

abundance(proportion)ofacellpopulationinthesample.Thecontrastforthe

comparisonbetweenrespondersandnon-responderswastestedusingtheglht

function and a Benjamini–Hochberg procedure was applied to correct the

resultingp-valuesformultiple-testing.

CorrelationofPFSwithmonocytefrequency

InordertovisualizeandquantifythedifferenceinPFSassociatedwithclassical

monocyte frequenciesatbaseline frombothcohorts,weremovedbatcheffects

and calculated the optimal cutoff point in the classical monocytes frequency,

which best dichotomizes responders from non-responders. The calculations

were performed in R, using the OptimalCutpoints package and the Youden

method12. To compute the cumulative hazard functionwe used the previously

calculatedcutoffof19.38%tocreatethe2groups.ThiswasperformedinRusing

the survfit function of the survival package and the ggsurvplot function of the

survminerpackage.

Patientdataandanalysis

Standard clinical parameters (k=53) were collected at baseline for the two

cohorts (n=51). To assess the potential correlation between progression-free

survival (PFS) and any of the clinical variables plus the frequency of classical

monocytes, we performed a Cox proportional-hazards regression. Gender,

previoustreatment,mutationstatus,metastasislocalizationandprimarytumor

Krieg et al. - HighDimanalysispredictsresponsetoPD-1therapy–supplementarydata

page 7 of 26

ulcerationwere considered as binary variables,melanoma-staging parameters

were considered as ordinal variables and the rest as continuous variables

(SupplementaryFigure16).To account for thebatch effects (CyTOFdataset1,

CyTOFdataset2andFACS)onthemeasuredfrequenciesofclassicalmonocytes

wenormalized themperbatch tomeanof zeroandstandarddeviationofone.

Candidate prognostic factorswith p-values smaller than 0.05 in the univariate

analysis (Supplementary Figure17A)were then included into themultivariate

model(SupplementaryFigure17B).Ofnote,p-valuesinthemultivariatemodel

do not account for pre-selection from the univariate step. Calculations were

performed in R using the coxph() function from the survival package and the

forestplotwasgeneratedusingtheforestplot()functionfromthermetapackage.

Thesame53parametersweretestedforassociationwithresponse(NRversus

R) using linearmodels (LM) for continuousparameters and generalized linear

models(GLM)forthebinaryparameters.Inbothcases,inregressionmodels,the

clinicalparametersweretreatedasdependentvariablesy,andresponse(NR,R)

wastreatedastheexplanatoryvariable.Toadjustformultiplecomparisons,we

adjustedtheresultingp-valuesusingtheBenjamini–Hochbergprocedure.

Immunohistology

Immunohistologywasdoneaccordingtopublishedprotocols13.Theassessment

oftumorinfiltratingcellwasperformedon23formalin-fixedparaffin-embedded

tumor samples, sourced from patients previously included in our cohorts (15

respondersand8non-responders).Sampleswithacollectiondatetheclosestto

the treatment initiation date were included (mean=23.22days, median=3days,

range=-212-215days). Tumors were fixed in formalin and subsequently

embedded in paraffin. For immunohistochemistry staining, sections were

deparaffinized,rehydratedandpretreatedwithEDTA(Sigma-Aldrich),TSR9.0or

proteinase-K (Sigma-Aldrich) before performing staining with one of the

followingprimaryantibodies(allantibodiesfromDAKOuntilstatedotherwise):

anti-humanCD3 (cloneF7.2.38,1:50), rabbit anti-humanCD4 (cloneEPR6855,

1:100,Abcam),mouseanti-humanCD8(cloneM7103,1:25),mouseanti-human

CD68(cloneM0814,1:200),mouseanti-humanCD163(clone10D6,Abcam),or

rabbitanti-humanPD-L1(clone13684,CellSignaling).Asassecondaryreagent

Krieg et al. - HighDimanalysispredictsresponsetoPD-1therapy–supplementarydata

page 8 of 26

for the mouse antibodies AP K5005 anti rabbit IgG-biotin for the rabbit

antibodies (Vector Labs) were used. For the anti-PD-L1 stain a blocking step

with goat serumwas added before the secondary antibody. Visualization was

obtainedwithAlkalinePhosphatase/Redreagent,chromogenorAEC(allDako).

After counterstaining with haematoxylin, sections were dehydrated and

prepared for visualization bymountingwithmountingmediumEukitt (Sigma-

Aldrich).

Krieg et al. - HighDimanalysispredictsresponsetoPD-1therapy–supplementarydata

page 9 of 26

SUPPLEMENTARYTABLESANDFIGURES Supplementary Table 1. Characteristics of blood samples from melanoma patients and healthy donors used for the biomarker discovery study. Time point 1 Time point 2 Total

Healthy donors

N dataset 1 5 5 N dataset 2 5 5 N TOTAL 10 10 20 Age in years – mean (range) 60.3 (46-71) Sex – male/female 6/4

Melanoma patients Before therapy After therapy

Responders

N dataset 1 5 5 N dataset 2 6 6 N TOTAL 11 11 22 Age in years – mean (range) 62.0 (42-81) Sex – male/female 9/2

Non-responders

N dataset 1 5 5 N dataset 2 4 4 N TOTAL 9 9 18 Age in years – mean (range) 57.8 (45-75) Sex – male/female 5/4

SupplementaryTable2.StainingpanelsforMassCytometryDataSets.

Supplementary Figure: Staining Panels for Mass cytometry Data Sets

Mass Antigen Clone Distributor Mass Antigen Clone Distributor Mass Antigen Clone Distributor89 CD45 HI30 Fluidigm 89 CD45 HI30 Fluidigm 89 CD45 HI30 Fluidigm104 CD45 HI30 BioLegend 104 CD45 HI30 BioLegend 104 CD45 HI30 BioLegend105 CD45 HI30 BioLegend 105 CD45 HI30 BioLegend 105 CD45 HI30 BioLegend106 CD45 HI30 BioLegend 106 CD45 HI30 BioLegend 106 CD45 HI30 BioLegend108 CD45 HI30 BioLegend 108 CD45 HI30 BioLegend 108 CD45 HI30 BioLegend110 CD45 HI30 BioLegend 110 CD45 HI30 BioLegend 110 CD45 HI30 BioLegend141 CCR6 G034E3/11A9 Fluidigm 143 CD45RA HI100 Fluidigm 142 CD19 HIB19 Fluidigm142 CD11a HI111 Fluidigm 144 IL-4 MP4-25D2 Fluidigm 146 CD64 10.1 Fluidigm143 CD45RA HI100 Fluidigm 145 CD4 RPA-T4/OKT4 Fluidigm 147 CD303 201A BioLegend144 CCR5 NP-6G4/J418F1 BioLegend 146 CD8a RPA-T8 Fluidigm 148 CD34 581 Fluidigm145 CD4 RPA-T4/OKT4 Fluidigm 148 IL-17A BL168 Fluidigm 149 CD141 M80 BioLegend146 CD8a RPA-T8 Fluidigm 149 CD25 2A3 Fluidigm 150 CD61 VI-PL2 Fluidigm149 CD25 2A3 Fluidigm 152 TCRgd 11F2 Fluidigm 151 CD123 6H6 Fluidigm152 TCRgd 11F2 Fluidigm 155 CD27 L128 Fluidigm 152 CD66b 80H3 Fluidigm153 CD62L DREG56 Fluidigm 156 IL-13 JES10-5A2 BioLegend 153 CD62L DREG-56 Fluidigm154 LAG-3 17B4 Enzo 158 IL-2 MQ1-17H12 Fluidigm 154 ICAM-1 14C11 R&D155 CD27 L128 Fluidigm 159 GM-CSF BVD2-21C11 Fluidigm 155 CD1c L161 BioLegend156 CXCR3 G025H7 Fluidigm 160 CD28 CD28.2 Fluidigm 156 CD86 IT.2 Fluidigm158 CCR4 205410 Fluidigm 161 CTLA4 14D3 Fluidigm 160 CD14 M5E2 Fluidigm160 CD28 CD28.2 Fluidigm 162 CD69 FN50 Fluidigm 162 CD11c N418 Fluidigm161 CTLA4 14D3 Fluidigm 164 CD45RO UCHL1 Fluidigm 163 CD7 CD7-6B7 BioLegend162 CD69 FN50 Fluidigm 165 IFN-g B27 Fluidigm 165 CD16 3G8 Fluidigm164 CD95 DX5 Fluidigm 166 IL-10 JES3-907 Fluidigm 166 CD209 DCN46 BD165 CD45RO UCHL1 Fluidigm 167 CCR7 G043H7 Fluidigm 167 CD38 HIT2 Fluidigm166 BTLA J168-540 BD 168 TNF-a MAb11 BioLegend 169 CD33 WM53 Fluidigm167 CCR7 G043H7 Fluidigm 169 CD19 HIB19 Fluidigm 170 CD3 SP34.2 Fluidigm169 CD19 HIB19 Fluidigm 170 CD3 SP34.2 Fluidigm 173 CD56 NCAM16.2 BD170 CD3 SP34.2 Fluidigm 171 Granzyme-B GB11 Fluidigm 174 HLA-DR L243 Fluidigm171 Granzyme-B GB11 Fluidigm 173 CD56 NCAM16.2 BD 175 CD274 (PDL1) 29E.2A3 Fluidigm172 CD57 hCD57 Fluidigm 175 PD-1 EH12.2H7 Fluidigm 209 CD11b ICRF44 Fluidigm173 CD56 NCAM16.2 BD 176 CD127 A019D5 Fluidigm174 HLA-DR L243 Fluidigm175 PD-1 EH12.2H7 Fluidigm176 CD127 A019D5 Fluidigm209 CD16 3G8 Fluidigm

Panel 1 (T cell phenotype) Panel 2 (cytokines) Panel 3 (myeloid)

Krieg et al. - HighDimanalysispredictsresponsetoPD-1therapy–supplementarydata

page 10 of 26

Supplementary Table 3 – Characteristics of melanoma patients and healthy donors used for the validation study. Time point 1

Healthy donors N TOTAL 14 Age in years – mean (range) 63.4 (46-91) Sex – male/female 7/7

Melanoma patients Before therapy

Responders N TOTAL 15 Age in years – mean (range) 58.9 (31-93) Sex – male/female 9/6

Non-responders N TOTAL 16 Age in years – mean (range) 61.9 (27-89) Sex – male/female 8/8

Supplementary Figure 1. Experimental design for the discovery cohort using CyTOF.

Experimental setup for theprocessingof frozenPBMC frommatchedsamplesbeforeandafter

PD-1 immunotherapy. (A)Total samplesn=60weredistributedover2datasets. 20melanoma

patients before (R=11 andNR=9) and after (12weeks treatment) treatment initiation and 10

healthycontrolsusingmetal-labeledantibodiesand(B)subsequentprocessingofsamplesfrom

Afortheacquisitionbymasscytometryandfinalbioinformaticsanalysis.

x5! x5!

x5! x5!

x5! x5!

Before treatment (baseline)!

After treatment!(time point)!

Staining ! Staining !

Treated!

Dat

aset

1

(mea

sure

men

t 1)!

x5! x5!

x4! x4!

x6! x6!

Staining ! Staining !

Treated!

Dat

aset

2

(mea

sure

men

t 2)!

x5! x5!

x5! x5!

x5! x5!

Before treatment (baseline)!

After treatment!(time point)!

Staining! Staining!

Treated!D

atas

et 1

(m

easu

rem

ent 1

)!

x5! x5!

x4! x4!

x6! x6!

Staining! Staining!

Treated!

Dat

aset

2

(mea

sure

men

t 2)!

before after before afterA

B

Krieg et al. - HighDimanalysispredictsresponsetoPD-1therapy–supplementarydata

page 11 of 26

Supplementary Figure 2. Simultaneous detection of T cell differentiation and activation

markers in blood. PBMCs from 5 healthy donors and 10melanoma patients were barcoded,

stainedwithapanelof31antibodiesandanalyzedbymasscytometry.Biaxialmasscytometry

plotsshowthestainingqualitybygatingoncombinedhealthysamplesfromarespectivepositive

andnegativecellpopulationoftheshowndifferentiationandactivationmarker.Eachplotshows

arepresentationoffourindependentexperiments.

Krieg et al. - HighDimanalysispredictsresponsetoPD-1therapy–supplementarydata

page 12 of 26

Supplementary Figure 3. Immunohistochemical intensity scores of lymphocytes and

monocytes markers in FFPE melanoma tumor samples. (A) Matched tumors to liquid

biposies from 15 non-responders (NR) and 8 responders (R) previously analysed in the

discovery or the validation cohort were stained for CD163, CD68, CD4, CD8, CD3 and PD-L1

(samplingdateisinarangeof215daysfromthestartoftreatmentdate).Numbersnexttothe

bluescaleindicatestainingintensities(0=null,1=1-20%,2=21-40%,3=41-60%,4=>60%).(B)

Paired comparison of myeloid blood cell frequencies in responders (R, green) and non-

responders(NR,red)withCD3andPD-L1stainingintensitiesintumoratbaseline.

CD68 CD8 PD−L1

CD163 CD3 CD4

NR R NR R NR R

0

25

50

75

100

0

25

50

75

100

Perc

enta

ges

Staining intensity0

1

2

3

4

Statisticalanalysisofthehistology

CD3 R

R monos R CD30

10

20

30

40

0

1

2

3

4

bloo

d m

onoc

yte

frequ

ncy

CD

3 staining intensity in tumor

PD-L1 R

R monos R PD-L10

10

20

30

40

0

1

2

3

4

bloo

d m

onoc

yte

frequ

ency

(%)

PD

-L1 staining intensity in tumor

CD3 NR

NR monos NR CD30

10

20

30

40

0

1

2

3

4

bloo

d m

onoc

yte

frequ

ency

(%) C

D3 staining intensity in tum

or

PD-L1 NR

NR monos NR PD-L10

10

20

30

40

0

1

2

3

4

bloo

d m

onoc

yte

frequ

ency

(%)

PD

-L1 staining intensity in tumor

A

B

Krieg et al. - HighDimanalysispredictsresponsetoPD-1therapy–supplementarydata

page 13 of 26

Complexheatmap supportingfigure2D

ABeforetherapy

Legend:

CD57

CD28

CD27

Granzym

e−B

CD95

HLA−D

R

CXC

R3

CCR4

CTLA4

BTLA

LAG−3

CD11a

CD69

PD−1

CCR5

CCR6

adjp_N

RvsR_base

346789101314151617181920242526272829303536373839404546474849505657585960666970761251112212231323334414243445152536162636471727374758182838491929394545565787980858687899095969798991002367687788

cluster_mergingnaiveCMEMTE

cluster12345

in

00.250.50.751

out

00.250.50.751

apvsup(0.01,0.05]up(0.1,1]down(0,0.01]down(0.1,1]

merged

5clu

sters

adjustedp-value

CD11b

HLA−D

R

ICAM

−1

CD33

CD38

CD86

CD141

CD274_PD

L1

CD64

CD56

CD62L

CD1c

CD209

CD34

CD11c

CD303

CD45

CD14

CD61

CD16

CD123

adjp_N

RvsR_base

5671738394849505860891819202829304025273637471415344243536364656667747576777879838485868788899094959697989910035454654555644575968697080101626

cluster_mergingCD14+_monosCD33lo_monoDCpDCdrop

cluster1234567891011121314151617181920

in

00.250.50.751

out

00.250.50.751

apvs(0,0.05](0.05,0.1](0.1,1]

CD11b

HLA−D

R

ICAM

−1

CD33

CD38

CD86

CD141

CD274_PD

L1

CD64

CD56

CD62L

CD1c

CD209

CD34

CD11c

CD303

CD45

CD14

CD61

CD16

CD123

adjp_N

RvsR_base

5671738394849505860891819202829304025273637471415344243536364656667747576777879838485868788899094959697989910035454654555644575968697080101626

cluster_mergingCD14+_monosCD33lo_monoDCpDCdrop

cluster1234567891011121314151617181920

in

00.250.50.751

out

00.250.50.751

apvsup(0,0.01]up(0.01,0.05]up(0.05,0.1]up(0.1,1]down(0,0.01]down(0.01,0.05]down(0.05,0.1]down(0.1,1]

normalizedmedianexpression

Krieg et al. - HighDimanalysispredictsresponsetoPD-1therapy–supplementarydata

page 14 of 26

Supplementary Figure 4. Defining CD8+ T cells subpopulations with over-clustering.

Annotation of 100 unmerged clusters obtainedwith FlowSOM on CD8+ T cells before (A) and

after (B) therapy. Shown are two representative heatmaps of 0-1 normalizedmedianmarker

expressionineachcluster(HDn=10,patientsn=20).Thebarontheright indicatesadjustedp-

valuesfromclusterfrequencycomparisonsbetweenRandNRandthedirectionofchanges(up-

blue, down-red in R versus NR). The second most left bar shows clustering into 5 groups

obtainedwithconsensusstep.Baronthemostleftshowshowthe5clusterswereannotated.All

p-valueswerecalculatedusingtwo-sidedt-testsandwerecorrectedforthemultiplecomparison

usingtheBenjamini-Hochbergadjustment.

Complexheatmap supportingfigure2D

merged

5clu

sters

CD57

CD62L

CCR7

CD28

CD27

CD127

Granzym

e−B

CD95

CD45RO

HLA−D

R

CD45RA

CXC

R3

CCR4

CTLA4

BTLA

LAG−3

CD11a

CD69

PD−1

CCR5

CD25

CCR6

adjp_N

RvsR_base

346789101314151617181920242526272829303536373839404546474849505657585960666970761251112212231323334414243445152536162636471727374758182838491929394545565787980858687899095969798991002367687788

cluster_mergingnaiveCMEMTE

cluster12345

in

00.250.50.751

out

00.250.50.751

apvs(0,0.05](0.05,0.1](0.1,1]

CD57

CD62L

CCR7

CD28

CD27

CD127

Granzym

e−B

CD95

CD45RO

HLA−DR

CD45RA

CXCR

3

CCR4

CTLA4

BTLA

LAG−3

CD11a

CD69

PD−1

CCR5

CD25

CCR6

adjp_N

RvsR_base

346789101314151617181920242526272829303536373839404546474849505657585960666970761251112212231323334414243445152536162636471727374758182838491929394545565787980858687899095969798991002367687788

cluster_mergingnaiveCMEMTE

cluster12345

in

00.250.50.751

out

00.250.50.751

apvs(0,0.05](0.05,0.1](0.1,1]

CD57

CD62L

CCR7

CD28

CD27

CD127

Granzym

e−B

CD95

CD45RO

HLA−DR

CD45RA

CXCR

3

CCR4

CTLA4

BTLA

LAG−3

CD11a

CD69

PD−1

CCR5

CD25

CCR6

adjp_N

RvsR_base

346789101314151617181920242526272829303536373839404546474849505657585960666970761251112212231323334414243445152536162636471727374758182838491929394545565787980858687899095969798991002367687788

cluster_mergingnaiveCMEMTE

cluster12345

in

00.250.50.751

out

00.250.50.751

apvs(0,0.05](0.05,0.1](0.1,1]

cluster name

normalized medianexpression

adjusted p-value

BAftertherapy

Legend:

CD57

CD28

CD27

Granzym

e−B

CD95

HLA−D

R

CXC

R3

CCR4

CTLA4

BTLA

LAG−3

CD11a

CD69

PD−1

CCR5

CCR6

adjp_N

RvsR_tx

344042434849535657585964656667686970767778798087888990979899100123456711121314151621222324252631323335891017181920272829303637383944464750604151526162637172737475818283848586919293949596455455

cluster_mergingnaiveCMEMTE

cluster12345

in

00.250.50.751

out

00.250.50.751

apvsup(0,0.01]up(0.01,0.05]up(0.05,0.1]up(0.1,1]down(0.1,1]

adjustedp-value

CD11b

HLA−D

R

ICAM

−1

CD33

CD38

CD86

CD141

CD274_PD

L1

CD64

CD56

CD62L

CD1c

CD209

CD34

CD11c

CD303

CD45

CD14

CD61

CD16

CD123

adjp_N

RvsR_base

5671738394849505860891819202829304025273637471415344243536364656667747576777879838485868788899094959697989910035454654555644575968697080101626

cluster_mergingCD14+_monosCD33lo_monoDCpDCdrop

cluster1234567891011121314151617181920

in

00.250.50.751

out

00.250.50.751

apvs(0,0.05](0.05,0.1](0.1,1]

CD11b

HLA−D

R

ICAM

−1

CD33

CD38

CD86

CD141

CD274_PD

L1

CD64

CD56

CD62L

CD1c

CD209

CD34

CD11c

CD303

CD45

CD14

CD61

CD16

CD123

adjp_N

RvsR_base

5671738394849505860891819202829304025273637471415344243536364656667747576777879838485868788899094959697989910035454654555644575968697080101626

cluster_mergingCD14+_monosCD33lo_monoDCpDCdrop

cluster1234567891011121314151617181920

in

00.250.50.751

out

00.250.50.751

apvsup(0,0.01]up(0.01,0.05]up(0.05,0.1]up(0.1,1]down(0,0.01]down(0.01,0.05]down(0.05,0.1]down(0.1,1]

normalizedmedianexpression

Krieg et al. - HighDimanalysispredictsresponsetoPD-1therapy–supplementarydata

page 15 of 26

SupplementaryFigure5.SimultaneousdetectionofTHandCTLprofilesinhumanblood.

PBMC from melanoma patients were stimulated for 4 hours with PMA/Ionomycin in the

presence of brefeldin A. Two-dimensional mass cytometry plots show one out of four

independentexperiments.

SupplementaryFigure6.Characterizationofthecirculatingmyeloidcompartment inthe

blood of melanoma patients. Shown are dot plots from mass cytometry staining panels on

PBMC samples. Gates are on all live cells, or CD3+, or CD3- CD19- subpopulations. Data is

representativeofoneoutoffourindependentexperiments.

Krieg et al. - HighDimanalysispredictsresponsetoPD-1therapy–supplementarydata

page 16 of 26

SupplementaryFigure7.Comparisonoffrequenciesincellularsub-populationsusingthe

myeloidpanel. Cluster frequencies in healthy donors (HD, black), non-responders (NR, pink)

and responders (R, green) in dataset 1 and 2. Asterisks indicate the significance level of

differences in cell frequencies between NR and R before and after treatment (numbers show

adjustedp-values,HDn=20,NRn=18,Rn=22).Boxplotsrepresenttheinterquartilerange(IQR)

withthehorizontallineindicatingthemedian.Whiskersextendtothefarthestdatapointwithin

amaximumof1.5IQR.Allp-valueswerecalculatedusingtwo-sidedt-testsandwerecorrected

forthemultiplecomparisonusingtheBenjamini-Hochbergadjustment.

T_cells B_cells CD14− CD14+ NK_cells cDC pDC

0

1

2

3

0

1

2

4

6

8

10

0

10

20

30

2.55.07.5

10.012.5

7.5

10.0

12.5

15.0

4050607080

Freq

uenc

y (%

) HDNRR

data23data29dataset1dataset2

T_cells B_cells CD14− CD14+ NK_cells cDC pDC

0

1

2

3

0

1

2

4

6

8

10

0

10

20

30

2.55.07.5

10.012.5

7.5

10.0

12.5

15.0

4050607080

Freq

uenc

y (%

) HDNRR

data23data29

T_cells B_cells CD14− CD14+ NK_cells cDC pDC

0

1

2

3

012345

4

6

8

10

0

10

20

30

0

5

10

15

7.5

10.0

12.5

15.0

4050607080

Freq

uenc

y (%

) HDNRR

data23data29

T_cells B_cells CD14− CD14+ NK_cells cDC pDC

0

5

10

15

0

1

2

3

2.5

5.0

7.5

10.0

12.5

0

20

40

60

0

5

10

15

20

6

9

12

15

20

40

60

80

Freq

uenc

y (%

) HDNRR

data23data29

Before

After

3.50e-03

1.88e-02

1.88e-023.50e-03

FrequencyinPBM

C(%)

SupplementaryFigure7

1.40e-02

1.40e-02

Krieg et al. - HighDimanalysispredictsresponsetoPD-1therapy–supplementarydata

page 17 of 26

Supplementary Figure 8. Relationship between the frequency of IFN-γ-producing T cells

withmyeloidcellfrequencyandmedianPD-L1expressiononmyeloidcells.Presentedare

resultsforafter-treatmentsamplesfromdataset2(n=15).RindicatestheSpearmancorrelation.

10

20

30

10 20 30CD14pos_monos

IFN_gpos data29.tx

txHDtxNRtxR

0.87

4

8

12

16

10 20 30CD14pos_monos

IFN_gpos data29.tx

txHDtxNRtxR

CD4 CD8

Freq

uencyofIFN-γ

+ (%)

FrequencyofCD14+myeloidcells(%)

MedianPD-L1expressiononallmyeloidcells

0

10

20

30

40

50

20 30 40 50CD4

myeloid

data23.base

data23.tx

data29.base

data29.tx

baseHDbaseNRbaseRtxHDtxNRtxR

HDNRR

R=0.94 R=0.87

4

8

12

16

0.1987 0.1988 0.1989 0.1990CD274_PDL1

IFN_gpos data29.tx

txHDtxNRtxR

0.93

R=0.93

20

30

0.1987 0.1988 0.1989 0.1990CD274_PDL1

IFN_gpos data29.tx

txHDtxNRtxR

0.87

R=0.87

Krieg et al. - HighDimanalysispredictsresponsetoPD-1therapy–supplementarydata

page 18 of 26

Supplementary Figure 9. In depth analysis of the CD14+ myeloid compartment before

therapy.Initially,over-clusteringinto100groupswasperformedwithFlowSOMonallcellsfrom

HD,NR andR, before therapy and under therapy for each dataset (1 and 2) separately. Using

consensus clustering, 100 clusters were merged into 20 groups, which were then manually

annotated.Shownaremarkerprofiles(medianmarkerexpressionnormalizedto0-1range,HD

n=10,patientsn=20)forclusters(atthe100resolution)thatcorrespondtoCD14+cells(redbar

ontheleft).Columnontherightshowsadjustedp-valuesanddirectionofchange(upordown)of

individualclusterswhencomparingRtoNRbeforetherapy(base).

CD11b

HLA−D

R

ICAM

−1

CD33

CD38

CD86

CD141

CD274_PD

L1

CD64

CD56

CD62L

CD1c

CD209

CD34

CD11c

CD303

CD45

CD14

CD61

CD16

CD123

adjp_N

RvsR_base

5671738394849505860891819202829304025273637471415344243536364656667747576777879838485868788899094959697989910035454654555644575968697080101626

cluster_mergingCD14+_monosCD33lo_monoDCpDCdrop

cluster1234567891011121314151617181920

in

00.250.50.751

out

00.250.50.751

apvs(0,0.05](0.05,0.1](0.1,1]

Complexheatmap supporting figure4D

CD11b

HLA−D

R

ICAM

−1

CD33

CD38

CD86

CD141

CD274_PD

L1

CD64

CD56

CD62L

CD1c

CD209

CD34

CD11c

CD303

CD45

CD14

CD61

CD16

CD123

adjp_N

RvsR_base

5671738394849505860891819202829304025273637471415344243536364656667747576777879838485868788899094959697989910035454654555644575968697080101626

cluster_mergingCD14+_monosCD33lo_monoDCpDCdrop

cluster1234567891011121314151617181920

in

00.250.50.751

out

00.250.50.751

apvsup(0,0.01]up(0.01,0.05]up(0.05,0.1]up(0.1,1]down(0,0.01]down(0.01,0.05]down(0.05,0.1]down(0.1,1]

normalizedmedianexpression

adjustedp-value

CD11b

HLA−D

R

ICAM−1

CD33

CD38

CD86

CD141

CD274_PDL1

CD64

CD56

CD62L

CD1c

CD209

CD34

CD11c

CD303

CD45

CD14

CD61

CD16

CD123

adjp_N

RvsR_base

adjp_N

RvsR_tx

313241425152536263617273747181828393949192123456781112131415161723242526273536373848582122333443448645464755565766765464657584859596

cluster_mergingCD14+_monosCD33lo_monoDCpDC

cluster1346791011131415171819

in

00.250.50.751

out

00.250.50.751

apvsup(0,0.01]up(0.01,0.05]up(0.05,0.1]up(0.1,1]down(0,0.01]down(0.01,0.05]down(0.05,0.1]down(0.1,1]

CD11b

HLA−D

R

ICAM−1

CD33

CD38

CD86

CD141

CD274_PDL1

CD64

CD56

CD62L

CD1c

CD209

CD34

CD11c

CD303

CD45

CD14

CD61

CD16

CD123

adjp_N

RvsR_base

adjp_N

RvsR_tx

313241425152536263617273747181828393949192123456781112131415161723242526273536373848582122333443448645464755565766765464657584859596

cluster_mergingCD14+_monosCD33lo_monoDCpDC

cluster1346791011131415171819

in

00.250.50.751

out

00.250.50.751

apvsup(0,0.01]up(0.01,0.05]up(0.05,0.1]up(0.1,1]down(0,0.01]down(0.01,0.05]down(0.05,0.1]down(0.1,1]

SupplementaryFigure9

adjustedp-valuebase

adjustedp-valueth

erapy

CD14+clu

ster

20cluster

Therapy

42 61 83 93 94 91 920

2

4

6HDNRR

cluster

Clu

ster

freq

uenc

y (%

)Base

42 61 83 93 94 91 920

2

4

6

cluster

Clu

ster

freq

uenc

y (%

)

Krieg et al. - HighDimanalysispredictsresponsetoPD-1therapy–supplementarydata

page 19 of 26

Supplementary Figure10. Identificationof amonocyte signaturebyCellCnn. Frequency of

cells discovered using CellCnn in non-responders (NR) and responders (R) from dataset 1 (left panel)

and relative marker distributions, shown as scaled histograms of arcsinh-transformed marker

expression, for all cells (blue) and the detected population (red) (right panel).

Supplementary Figure 11. Back projection of cells identified using CellCnn into tSNE.

Shownare tSNEplots corresponding toFigure3A.Cells identifiedbyCellCnnaremarkedwith

blackcircles(arrow).

Filtering using CellCnn

***

CD45KS=0.34

CD19KS=0.09

CD64KS=0.45

CD303KS=0.27

CD34KS=0.28

CD141KS=0.58

CD61KS=0.40

CD123KS=0.44

CD66bKS=0.58

CD62LKS=0.19

ICAM-1KS=0.84

CD1cKS=0.49

CD86KS=0.64

CD14KS=0.85

CD11cKS=0.82

CD7KS=0.26

CD16KS=0.16

CD209KS=0.18

CD38KS=0.37

CD33KS=0.56

CD3KS=0.24

CD56KS=0.13

HLA-DRKS=0.51

PD-L1KS=0.45

CD11bKS=0.48

●●

●●

●● ●

●●

● ●

●●

●●

●●

●●

●●

●● ●

●●

●●

●●

●●

●●

●●

● ●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

● ●

●●

● ●

●●

●●

● ●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

● ●

●● ●

●●

●●

● ●

●●

●●

●●

●●

● ●

●●

●●

● ●

●●

● ●

●●

●●

●●

●●

●●

●●●

● ●

●●

● ●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

● ●

●●

●●

● ●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

● ●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

● ●

●●

●●

●●

● ●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

● ●

●●

●●

●● ●

● ●

● ●

● ●

●●

● ●

● ●

● ●

● ●

●●

● ●

● ●

●●

●●

●●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●●

● ●

●●

●●

●●

● ●

●●

● ● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●● ●

●●

● ●

●●

● ●

●●●

●●

●●

●●●

●●

●●

●●

●●

● ●

●●

● ●

●●●

●●

●●

●●

●●

●●

● ●

●●

● ●

●●

● ●

●●

●●

●●

●●

● ●

●●

● ●

●●

●●

●●

●●

● ●

●●

● ●

●●

●●

●●

●●

● ●

●● ●

●●

●●

● ●

●●

●●

●●

●●

● ●

● ●

● ●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

● ●

● ●

●●

● ●

●●

● ●

● ●

●●

●●

●●

●●

● ●

● ●

●●

●●

●●

● ●

● ●

●●

●●

●●

● ●

●●

●●

●●

● ●

●●

● ●

● ●●

●●

●●

●●●

●●

● ●

● ●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●● ●

●●

●●●

●●

●●

●●

●● ●

●●

●●● ●

●●

● ●

●●●

●●

● ●●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

● ●

● ●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

● ●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●●

●●

● ●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

● ●

●●

● ●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

● ●

●●

● ●

●●

●●

● ●

●●

● ●

●●

●●

●●

● ●

●●

●●

●●

● ●

● ●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●● ●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

● ●

● ●

●●

●●

●●

●●

● ●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

● ●

●●

●●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●● ●

●●

●●

●●

●●

●●

●●

● ●

●●

● ●

●●

●●

●●

● ●●●

● ●

● ●

●●

● ●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

● ●

●●

● ●

●●

●●

●●

●●

●●

● ●

●●

● ●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

● ●

●●

●●

● ●

●●

●●

●●

●●

●●●

● ●

●●

●●

●●

●●

●●

●●

● ●

●●

●●●

● ●●

● ●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●●

●●

●●●

●●

●●

●●

●●

●●

●● ● ●

●●●●

●●

●●

●●

●● ●

●●

●●●

●●

●● ●

●● ●

●●

●●

●●

●● ●

●●

● ●●●●

●● ●

●●●

●●

●●

●●●

●● ●

●●

●●

● ●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●●

● ●●●

●●

●●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●● ●

●●

●●

●● ●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●● ●●

●●

●●

●●

● ●

●●

●●

●●●

● ●

●●

●●

●●

●●● ●

●●

●●

●●

●●●

● ●

●●

●●

●●

● ●

●●

● ●

●●

●●

●●

●●

●●

●●●●

●●

●●

●●

●●

●●

● ●●

●●

●●

● ●●

● ●

● ●

●●

●● ●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●●

●●●

● ●● ●

●●

●●

●●

●●

● ●●

●●● ●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

● ●

●●

●●

●●●

● ●

●●

●● ●

● ●

●●

● ●●

●●

●●

●●

NR R

−20 0 20 −20 0 20

−20

0

20

40

t−SNE1

t−SN

E2

●●●●●●●

T_cells

B_cells

CD14−

CD14+

NK_cells

cDC

pDC

SupplementaryFigure11NR R

tSNE1

tSNE

2

Krieg et al. - HighDimanalysispredictsresponsetoPD-1therapy–supplementarydata

page 20 of 26

SupplementaryFigure12.CXCL2expressionbyRNA-seq.Boxplots showingexpression (in

counts permillion) of CXCL2measuredwithRNA-seq in CD14+HLA-DR+monocytes inHD,NR

and R at baseline. Shown are the p-value (P) and the false discovery rate (FDR) from the

comparisonbetweenNRandR(NRn=Rn=HDn=4).

HD

NR R

1

2

5

10

20

50

CXCL2P=0.00024 FDR=0.05931

coun

ts p

er m

illion

Krieg et al. - HighDimanalysispredictsresponsetoPD-1therapy–supplementarydata

page 21 of 26

Supplementary Figure 13. Citrus analysis of the T cell panel. Using a predictive model

(pamr)Citrusidentifiedclustersforwhichabundancewasthebestpredictoroftheresponseto

the PD-1 treatment. (A) Cross validation results presenting estimated error rates of models

consideredbyCitrus.Reportedareresults for theminimumerrorratemodel (cv.min). (B)Cell

abundanceinclustersidentifiedbyCitrusasassociatedwiththeresponse,stratifiedbyresponse

(responder R and non-responderNR). (C) Clustering hierarchy of clusters generated by Citrus

that contain at least 5% of total cells. (D) Heatmap representing overallmarker expression in

clustersidentifiedbyCitrusasassociatedwithresponse.

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Number of model features

Regularization Threshold

Mod

el C

ross

Val

idat

ion

Erro

r Rat

e

3.95 3.51 3.07 2.63 2.19 1.76 1.32 0.88 0.44 0.00

025

5075

100

0 2 5 6 7 7 8 8 10 11 14 16 18 24 29

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●

Cross Validation Error RateFeature False Discovery Ratecv.mincv.1secv.fdr.constrained

abundance

9905

9915

99389948

9949

9955

9969

9972

9976

9977

9978

9979

9980

9981

9982

9983

9984

9986

99879988

9989

9990

9991

9992

9993

9994

9995

9996

9997

99989999

5.34

1.77

0.55

3.80

0.12

3.24

1.88

4.35

1.98

2.22

0.51

3.21

0.29

1.39

0.36

2.95

0.32

0.21

4.11

4.34

0.12

0.00

0.00

0.00

1.79

1.64

174Yb_HLA−DR170Yb_CD3155G

d_CD27145Nd_CD4.CD4146Nd_CD8a160G

d_CD28153Eu_CD62L176Yb_CD127172Yb_CD57165Ho_CD45RO209Bi_CD16169Tm

_CD19171Yb_G

ranzymeB

9990 (22%)9994 (24.52%)

0

1

2

3

4

5

cluster 9990 abundance

cluster 9994 abundance

NR

R

NR

R

0.1Log10 scale

MyeloidTcell

A B

C

D

Krieg et al. - HighDimanalysispredictsresponsetoPD-1therapy–supplementarydata

page 22 of 26

SupplementaryFigure14.Citrusanalysisofthemyeloidcell-enriched(CD3-CD19-)panel.

Using a predictive model (pamr) Citrus identified clusters for which abundance was the best

predictor of the response to the PD-1 treatment. (A) Cross validation results presenting

estimated error rates of models considered by Citrus. Reported are results for the minimum

errorratemodel(cv.min). (B)Cellabundanceinclusters identifiedbyCitrusasassociatedwith

the response, stratified by response (responder R and non-responder NR). (C) Clustering

hierarchy of clusters generated by Citrus that contain at least 5% of total cells. (D) Heatmap

representing overall marker expression in clusters identified by Citrus as associated with

response.

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Number of model features

Regularization Threshold

Mod

el C

ross

Val

idat

ion

Erro

r Rat

e

3.62 3.22 2.82 2.41 2.01 1.61 1.21 0.80 0.40 0.00

025

5075

100

0 2 3 4 5 6 6 7 9 11 14 16 20 25 28

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●

Cross Validation Error RateFeature False Discovery Ratecv.mincv.1secv.fdr.constrained

abundance

7981

7987

7989

7993

7994

7995

8000

80018002

8003

8005

8006

8007

8008

8009

8010

8011

8012

8013

8014

8015

8016

8017

8018

8019

8020

8021

8022

8023

8024

cluster 8022 abundance

cluster 8023 abundance

cluster 8017 abundance

cluster 8013 abundance

NR

R

NR

R

NR

R

NR

R

0.1Log10 scale

1.08

1.11

1.44

4.40

1.10

1.10

1.51

3.79

1.04

1.00

1.38

3.44

0.00

0.00

0.00

2.14

0.44

0.40

0.90

2.09

0.08

0.07

0.16

1.39

1.44

1.58

2.23

1.12

0.08

0.08

0.16

1.21

0.21

0.21

0.36

0.95

0.46

0.42

0.55

1.47

0.00

0.00

0.14

0.16

0.35

0.53

0.66

0.52

0.00

0.00

0.00

0.24

CD

11bH

LA−DR

ICAM

−1C

D33

CD

38C

D86

CD

7C

D141

CD

274_PDL1

CD

64C

D56

CD

62LC

D1c

8013 (20%)8017 (23.74%)8022 (34.8%)8023 (65.2%)

0

1

2

3

4

MyeloidNK/Tcell

NK/TcellNK/Tcell

A B

C

D

Krieg et al. - HighDimanalysispredictsresponsetoPD-1therapy–supplementarydata

page 23 of 26

Supplementary Figure15. FACS validationpanel.PBMC from an independent, randomized,

blinded patient cohortwere stained for CD3, CD4, CD11b, CD14, CD19, CD16, CD33, CD45RO,

CD56,andHLA-DR,acquiredandanalyzedusingtheabovegatingstrategy.Notethepositionof

thelymphocytesandmonocytesgate(arrow).

Exclude!

Krieg et al. - HighDimanalysispredictsresponsetoPD-1therapy–supplementarydata

page 24 of 26

Supplementary Figure 16. Baseline clinical parameters of patients.Clinical parameters of

the patients included in the discovery mass cytometry (N=20) and FACS validation (N=31)

approaches. Parameters were categorized according to standard clinical cutoffs (e.g. LDH >

480U/l). The percentages are calculated on the total number of patients in the cohort and

thereforeaccountformissingvalues.

N % N %Age

< 40 years old 0 0.0% 4 12.9%40-55 years old 7 35.0% 10 32.3%56-70 years old 7 35.0% 6 19.4%> 70 years old 6 30.0% 11 35.5%

GenderMale 13 65.0% 17 54.8%Female 7 35.0% 14 45.2%

Progression-free survival (PFS)< 3 months 6 30.0% 12 38.7%3-9 months 5 25.0% 13 41.9%> 9 months 9 45.0% 6 19.4%

Lactate dehydrogenase (LDH)< 480 U/l 18 90.0% 26 89.7%≥ 480 U/l 2 10.0% 3 10.3%

S100< 0.2 μg/l 9 45.0% 17 56.7%≥ 0.2 μg/l 11 55.0% 13 43.3%

Neutrophils (ANC)< 8 G/l 18 90.0% 30 96.8%≥ 8 G/l 2 10.0% 1 3.2%

Lymphocytes (ALC)< 1.5 G/l 11 55.0% 20 64.5%≥ 1.5 G/l 9 45.0% 11 35.5%

Leukocytes< 9.6 G/l 17 85.0% 30 96.8%≥ 9.6 G/l 3 15.0% 1 3.2%

Monocytes< 0.95 G/l 17 85.0% 30 96.8%≥ 0.95 G/l 3 15.0% 1 3.2%

Thrombocytes< 143 G/l 1 5.0% 0 0.0%143 - 400 G/l 18 90.0% 28 90.3%> 400 G/l 1 5.0% 3 9.7%

Eosinophils< 0.7 G/l 4 20.0% 31 100.0%≥ 0.7 G/l 16 80.0% 0 0.0%

Basophils< 0.15 G/l 20 100.0% 31 100.0%≥ 0.15 G/l 0 0.0% 0 0.0%

Haemoglobin< 134 g/l 11 55.0% 15 48.4%≥ 134 g/l 9 45.0% 16 51.6%

Hematocrit< 0.4 l/l 7 35.0% 11 35.5%≥ 0.4 l/l 13 65.0% 20 64.5%

Erythrocytes< 4.2 T/l 6 30.0% 7 22.6%≥ 4.2 T/l 14 70.0% 24 77.4%

Mean corpuscular volume (MCV)< 80 fl 0 0.0% 1 3.2%≥ 80 fl 20 100.0% 30 96.8%

Mean corpuscular haemoglobin (MCH)< 34 pg 20 100.0% 29 93.5%≥ 34 pg 0 0.0% 2 6.5%

Mean corpuscular haemoglobin concentration (MCHC)

< 310 g/l 1 5.0% 1 3.2%≥ 310 g/l 19 95.0% 30 96.8%

Red blood cell distribution width (RDW)< 14.8 % 12 85.7% 22 78.6%≥ 14.8 % 2 14.3% 6 21.4%

Immature granulocytes absolute< 0.03 G/l 15 78.9% 26 83.9%≥ 0.03 G/l 4 21.1% 5 16.1%

Immature granulocytes< 0.5 % 17 89.5% 28 90.3%≥ 0.5 % 2 10.5% 3 9.7%

Sodium< 136 mmol/l 3 15.0% 1 3.2%≥ 136 mmol/l 17 85.0% 30 96.8%

Potassium< 3.3 mmol/l 0 0.0% 0 0.0%3.3 - 4-5 mmol/l 17 94.4% 29 96.7%> 4.5 mmol/l 1 5.6% 1 3.3%

Urea< 7.14 mmol/l 15 78.9% 27 87.1%≥ 7.14 mmol/l 4 21.1% 4 12.9%

Creatinin< 62 μmol/l 4 20.0% 8 26.7%62 - 106 μmol/l 16 80.0% 18 60.0%> 106 μmol/l 0 0.0% 4 13.3%

Estimated glomerular filtration rate (eGFR)< 90 ml/min 9 45.0% 17 56.7%≥ 90 ml/min 11 55.0% 13 43.3%

Bilirubin< 21 μmol/l 16 94.1% 27 93.1%≥ 21 μmol/l 1 5.9% 2 6.9%

Protein< 66 g/l 1 7.1% 2 11.8%≥ 66 g/l 13 92.9% 15 88.2%

Albumin< 40 g/l 3 23.1% 3 12.0%≥ 40 g/l 10 76.9% 22 88.0%

Aspartate aminotransferase (AST)< 50 U/l 16 94.1% 25 92.6%≥ 50 U/l 1 5.9% 2 7.4%

Alanine aminotransferase (ALT)< 50 U/l 18 94.7% 30 96.8%≥ 50 U/l 1 5.3% 1 3.2%

Gamma-glutamyl transpeptidase (GGT)< 60 U/l 10 100.0% 25 83.3%≥ 60 U/l 0 0.0% 5 16.7%

Alkaline phosphatase< 40 U/l 2 10.5% 2 6.5%40 - 129 U/l 16 84.2% 27 87.1%> 129 U/l 1 5.3% 2 6.5%

C-reactive protein (CRP)< 5 mg/l 12 66.7% 19 67.9%≥ 5 mg/l 6 33.3% 9 32.1%

Thyroid-stimulating hormone (TSH)< 3.18 mg/l 13 81.3% 26 83.9%≥ 3.18 mg/l 3 18.8% 5 16.1%

PATIENT CHARACTERISTICS Discovery cohort Validation cohort

Krieg et al. - HighDimanalysispredictsresponsetoPD-1therapy–supplementarydata

page 25 of 26

Supplementary Figure17.Hazard rates according to baseline characteristics of patients

included the discovery mass cytometry and validation conventional flow cytometry

approaches. (A) Univariate Cox regression analysis of progression-free survival (PFS). (B)

MultivariateCoxregressionanalysisincludedvariableswithp-values<0.05fromtheunivariate

analysis. The columns next to the variables in the table show the coefficients Hazard Rate

(HRate),thelower(LCL)andupper(UCL)95%confidenceintervals,andtheassociatedp-value

(Pvalue) derived from theCox regression.Missing values for baseline characteristicswerenot

inputed.Redsquaresrepresenthazardrates.Barsrepresent95%confidenceinterval(n=51).

A

B

SupplementaryFigure17

UNIVARIATE Cox regression model − BOTH COHORT, baseline samples only

variablesThrombocytesClassical monocytes (CD14+CD16−)Lactate dehydrogenase (LDH)Liver metastasisAlkaline phosphataseImmature granulocytes (%)M classification = 1PotassiumHematocritAlbuminMelanoma stage IVN classification = 3HemoglobinAspartate aminotransferaseBrain metastasisSex (Male)ErythrocytesGamma−glutamyl transpeptidaseTyroid−stimulating hormonePrevious targeted therapycKIT mutatedN classification = 2MonocytesN classification = 1C−reactive proteinS100Previous chemo treatmentPrevious radio treatmentBasophilsBone metastasisLymphocytes (ALC)Mean corpuscular hemoglobinEstimated glomerular filtration rateLung metastasisUlcerated primary tumorBRAF mutatedMean corpuscular hemoglobin conc.Total proteinAlanine aminotransferaseNRAS mutatedPrimary tumor classification = 3EosinophilsBilirubinUreaRed cell distribution widthAge at samplingPrimary tumor classification = 4Number of days since last ipi treatmentSodiumLeukocytesPrevious ipi treatmentCreatinineANC/ALCMean corpuscular volumeNeutrophils (ANC)Primary tumor classification = 2Nodal metastatic mass = macrometastasisNodal metastatic mass = in transit metastasis

HRate 0.009−0.786 0.001 1.070 0.011 0.801−1.440−1.180−7.440−0.113−1.200−0.861−0.016 0.015−0.890−0.513−0.526 0.001 0.152 0.598 1.170−0.738 0.929−0.781 0.010 0.082 0.382−0.293 8.300−0.300−0.204−0.061−0.006−0.190−0.210−0.178 0.007 0.021 0.006 0.177−0.238−0.386−0.005 0.026−0.060−0.002−0.116 0.000−0.006−0.007−0.026 0.000 0.002 0.000−0.001−0.00719.20019.200

LCL(95%) 4.33e−03−1.19e+00 3.00e−04 3.49e−01 3.15e−03 1.30e−01−2.71e+00−2.27e+00−1.53e+01−2.38e−01−2.69e+00−1.94e+00−3.69e−02−4.70e−03−2.08e+00−1.21e+00−1.26e+00−4.96e−04−7.51e−02−2.96e−01−6.53e−01−1.89e+00−6.11e−01−2.22e+00−9.87e−03−8.79e−02−4.58e−01−9.88e−01−1.23e+01−1.14e+00−7.96e−01−2.44e−01−2.54e−02−8.79e−01−1.07e+00−9.11e−01−2.35e−02−7.13e−02−2.05e−02−6.78e−01−1.75e+00−2.86e+00−3.57e−02−1.70e−01−6.04e−01−2.57e−02−1.39e+00−3.02e−03−1.52e−01−1.91e−01−9.22e−01−1.73e−02−1.68e−01−4.75e−02−2.14e−01−1.51e+00

−Inf −Inf

UCL(95%) 0.01310−0.38400 0.00136 1.78000 0.01920 1.47000−0.16300−0.09130 0.37200 0.01210 0.28600 0.21700 0.00487 0.03500 0.29800 0.18000 0.20800 0.00256 0.37900 1.49000 2.99000 0.41500 2.47000 0.65700 0.02960 0.25300 1.22000 0.4010028.90000 0.54200 0.38800 0.12100 0.01380 0.49900 0.64900 0.55600 0.03760 0.11300 0.03190 1.03000 1.27000 2.09000 0.02640 0.22300 0.48300 0.02120 1.16000 0.00257 0.14000 0.17800 0.87000 0.01650 0.17200 0.04670 0.21100 1.50000

Inf Inf

Pvalue9.82e−051.26e−042.14e−033.59e−036.28e−031.93e−022.71e−023.36e−026.20e−027.67e−021.13e−011.17e−011.33e−011.34e−011.42e−011.47e−011.60e−011.85e−011.89e−011.90e−012.09e−012.10e−012.37e−012.87e−013.27e−013.43e−013.73e−014.08e−014.29e−014.85e−014.99e−015.10e−015.60e−015.88e−016.32e−016.35e−016.51e−016.59e−016.70e−016.85e−017.58e−017.60e−017.67e−017.91e−018.28e−018.52e−018.59e−018.74e−019.34e−019.43e−019.55e−019.65e−019.81e−019.87e−019.91e−019.92e−019.99e−019.99e−01

−10 −8 −6 −4 −2 0 2 4 6 8 10

Hazard Rate

MULTIVARIATE Cox regression model − BOTH COHORT, baseline samples only

variablesClassical monocytes (CD14+CD16−)Immature granulocytes (%)Lactate dehydrogenase (LDH)M classification = 1Alkaline phosphataseThrombocytesPotassiumLiver metastasis

HRate−1.180 1.180 0.001 1.860 0.008 0.005−1.180 0.323

LCL(95%)−2.020 0.237 0.000−0.195−0.003−0.003−3.330−0.794

UCL(95%)−0.344 2.130 0.002 3.910 0.018 0.013 0.963 1.440

Pvalue0.0060.0140.0660.0760.1380.1970.2800.571

−5 −4 −3 −2 −1 0 1 2 3 4 5

Hazard Rate

Krieg et al. - HighDimanalysispredictsresponsetoPD-1therapy–supplementarydata

page 26 of 26

REFERENCES

1. Nowicka,M.etal.CyTOFworkflow:differentialdiscoveryinhigh-throughputhigh-

dimensionalcytometrydatasets.F1000Research6,748(2017).2. Bates,D.,Mächler,M.,Bolker,B.&Walker,S.FittingLinearMixed-EffectsModelsUsing

lme4.JournalofStatisticalSoftware67,1–48(2015).3. Hothorn,T.,Bretz,F.&Westfall,P.SimultaneousInferenceinGeneralParametricModels.

BiometricalJournal50,346–363(2008).4. Levine,J.H.etal.Data-DrivenPhenotypicDissectionofAMLRevealsProgenitor-likeCells

thatCorrelatewithPrognosis.Cell162,184–197(2015).5. VanGassen,S.etal.FlowSOM:Usingself-organizingmapsforvisualizationand

interpretationofcytometrydata.CytometryPartA87,636–645(2015).6. Wilkerson,M.D.&Hayes,D.N.ConsensusClusterPlus:aclassdiscoverytoolwith

confidenceassessmentsanditemtracking.Bioinformatics26,1572–1573(2010).7. Weber,L.M.&Robinson,M.D.ComparisonofClusteringMethodsforHigh-Dimensional

Single-CellFlowandMassCytometryData.(2016).doi:10.1101/0476138. Maaten,L.V.D.&Hinton,G.VisualizingDatausingt-SNE.JournalofMachineLearning

Research9,2579–2605(2008).9. Diggins,K.E.,Greenplate,A.R.,Leelatian,N.,Wogsland,C.E.&Irish,J.M.Characterizing

cellsubsetsusingmarkerenrichmentmodeling.Nat.Methods14,275–278(2017).10. Lin,L.etal.COMPASSidentifiesT-cellsubsetscorrelatedwithclinicaloutcomes.Nat.

Biotechnol.33,610–616(2015).11. glmmADMBRpackage.Linkhttpglmmadmb.r-forge.r-project.orgAvailableat:(Accessed:

12December2016)12. López-Ratón,M.,Rodríguez-Álvarez,M.X.,Suárez,C.C.&Sampedro,F.G.

OptimalCutpoints:AnRPackageforSelectingOptimalCutpointsinDiagnosticTests.JournalofStatisticalSoftware61,1–36(2014).

13. Guglietta,S.etal.CoagulationinducedbyC3aR-dependentNETosisdrivesprotumorigenicneutrophilsduringsmallintestinaltumorigenesis.NatCommun7,11037(2016).