38
Timing Recovery at Low SNR Cramer-Rao bound, and outperforming the PLL Aravind R. Nayak John R. Barry Steven W. McLaughlin {nayak, barry, swm}@ece.gatech.edu Georgia Institute of Technology N I A I G R O E G E H T F O L A E S S T I T U T E O F T E C H N O L O G Y 8 5 8 1 N A D P R OG R E S S S E R V I C E

Timing Recovery at Low SNR - Rutgers Universityarchive.dimacs.rutgers.edu/Workshops/Storage/slides/nayak.pdfAravind R. Nayak John R. Barry Steven W. McLaughlin {nayak, barry, swm}@ece.gatech.edu

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Timing Recovery at Low SNR - Rutgers Universityarchive.dimacs.rutgers.edu/Workshops/Storage/slides/nayak.pdfAravind R. Nayak John R. Barry Steven W. McLaughlin {nayak, barry, swm}@ece.gatech.edu

Timing Recovery at Low SNR

Cramer-Rao bound, and outperforming the PLL

Aravind R. NayakJohn R. Barry

Steven W. McLaughlin

{nayak, barry, swm}@ece.gatech.eduGeorgia Institute of Technology

NI•AIGR

OE

G•

EH

T•

FO •

L A E S •

S T I T U T E• O

F•

TE

CH

NO

LOGY•

8 581

NA DPR O G R ESS S ER V I C E

Page 2: Timing Recovery at Low SNR - Rutgers Universityarchive.dimacs.rutgers.edu/Workshops/Storage/slides/nayak.pdfAravind R. Nayak John R. Barry Steven W. McLaughlin {nayak, barry, swm}@ece.gatech.edu

1

Communication system model

Transmitter

Channel

Receiver

SourceECC

Encoder Modulator

Channel

SamplerEqualizerECC

Decoder

Discrete-time Continuous-time

Page 3: Timing Recovery at Low SNR - Rutgers Universityarchive.dimacs.rutgers.edu/Workshops/Storage/slides/nayak.pdfAravind R. Nayak John R. Barry Steven W. McLaughlin {nayak, barry, swm}@ece.gatech.edu

2

Continuous-time discrete-time interface

SourceECC

Encoder Modulator

Channel

SamplerEqualizerECC

Decoder

Discrete-time

Continuous-time

to

Continuous-time

Discrete-time

to

Page 4: Timing Recovery at Low SNR - Rutgers Universityarchive.dimacs.rutgers.edu/Workshops/Storage/slides/nayak.pdfAravind R. Nayak John R. Barry Steven W. McLaughlin {nayak, barry, swm}@ece.gatech.edu

3

Sampling: Timing recovery

0 T 2T 3T

τ0 τ1 τ2–τ3

a1a0

a2

a3

TIME

T – Symbol duration

a0, a1, a2,... – Data symbols

τ0, τ1, τ2,... – Timing offsets

Timing Recovery Problem: Estimate τ0, τ1, τ2, ...

Page 5: Timing Recovery at Low SNR - Rutgers Universityarchive.dimacs.rutgers.edu/Workshops/Storage/slides/nayak.pdfAravind R. Nayak John R. Barry Steven W. McLaughlin {nayak, barry, swm}@ece.gatech.edu

4

Constant offset:

Frequency offset:

Random walk:

wherewi arei.i.d. zero-mean Gaussian random variables ofvariance . determines the severity of the random walk.

τk τ=

τk τ0 k∆T+ τk 1– ∆T+= =

τk 1+ τk wk+ τ0 wii 0=

k

∑+= =

σw2 σw

2

Timing offset models

Page 6: Timing Recovery at Low SNR - Rutgers Universityarchive.dimacs.rutgers.edu/Workshops/Storage/slides/nayak.pdfAravind R. Nayak John R. Barry Steven W. McLaughlin {nayak, barry, swm}@ece.gatech.edu

5

Acquisition:

• Estimate τ0

• Correlation techniques

• Known preamble sequence at start of packet (Trained mode)

• Parameterτ0 spans a large range

Tracking :

• Keep track ofτ1, τ2, τ3,...

• Based on the phase-locked loop (PLL)

• Data symbols unknown (Decision-directed mode)

• Sufficient to track small signalsτ1 –τ0 , τ2 –τ1 , τ3 –τ2 , ...

Timing recovery in two stages

Page 7: Timing Recovery at Low SNR - Rutgers Universityarchive.dimacs.rutgers.edu/Workshops/Storage/slides/nayak.pdfAravind R. Nayak John R. Barry Steven W. McLaughlin {nayak, barry, swm}@ece.gatech.edu

6

PLL: Motivation

Consider the simple case of a time-invariant offset:

τk = τ

Let be the current timing estimate.

Timing error: εi = τi – =τ – .

With a perfect timing error detector (TED), we get =εi .

Update:

With imperfect TED:

τi

τi τi

εi

τi 1+ τi εi+ τ= =

τi 1+ τi αεi+=

Page 8: Timing Recovery at Low SNR - Rutgers Universityarchive.dimacs.rutgers.edu/Workshops/Storage/slides/nayak.pdfAravind R. Nayak John R. Barry Steven W. McLaughlin {nayak, barry, swm}@ece.gatech.edu

7

PLL-based timing recovery

PLLUPDATE

f(t)y(t)

rcv. filter

T.E.D.

kT + kτ

rkfor further processing

r t( )

τk 1+ τk αεk+=

τk 1+ τk αεk β εii 0=

k 1–

∑+ +=

First-order PLL

Second-order PLL

Page 9: Timing Recovery at Low SNR - Rutgers Universityarchive.dimacs.rutgers.edu/Workshops/Storage/slides/nayak.pdfAravind R. Nayak John R. Barry Steven W. McLaughlin {nayak, barry, swm}@ece.gatech.edu

8

Timing Error Detector (TED)

PLLUPDATE

f(t)y(t)

rcv. filter

T.E.D.

kT + kτ

rk

kd

for further processing

r t( )

εk3T16-------- rkdk 1– rk 1– dk–( )=

Mueller & Müller Timing Error Detector

• TED is a decision-directed device

• Usually, instantaneous hard quantization

• Better decisions entail delay that destabilizes the loop

Page 10: Timing Recovery at Low SNR - Rutgers Universityarchive.dimacs.rutgers.edu/Workshops/Storage/slides/nayak.pdfAravind R. Nayak John R. Barry Steven W. McLaughlin {nayak, barry, swm}@ece.gatech.edu

9

• Improve the quality of decisions (Approach I)

⇒ Need to get around the delay induced by better decisions.

⇒ Feedback from the ECC decoder and equalizer to timing recovery.

Dr. Barry’s presentation!

• Improve the timing recovery architecture (Approach II)

⇒ Need to assume perfect decisions for tractability.

⇒ Methods based on gradient search and projection operation.

⇒ Use Cramer-Rao bound to evaluate competing methods.

This presentation!

Improving timing recovery

Page 11: Timing Recovery at Low SNR - Rutgers Universityarchive.dimacs.rutgers.edu/Workshops/Storage/slides/nayak.pdfAravind R. Nayak John R. Barry Steven W. McLaughlin {nayak, barry, swm}@ece.gatech.edu

10

Overview: Approach II

Questions:

• How good is the PLL-based system?

• Can it be improved upon?

Method:

• Derive fundamental performance limits.

• Compare the PLL performance with these limits.

• Develop methods that outperform the PLL.

Page 12: Timing Recovery at Low SNR - Rutgers Universityarchive.dimacs.rutgers.edu/Workshops/Storage/slides/nayak.pdfAravind R. Nayak John R. Barry Steven W. McLaughlin {nayak, barry, swm}@ece.gatech.edu

11

Problem statement

The uniform samples are:

rk = alh(kT – lT – τl) + nk ,

whereσ2 is the noise variance, andh(t) is the impulse response.

Problem: Given samples{rk} and knowledge of channel model, estimate• theN uncoded i.i.d. data symbols{ak}• theN timing offsets{τk}.

l 0=N 1–∑

AWGN

τ h(t)

We consider the followinguncodedsystem:

ak{ }0N 1–

uncoded i.i.d.

rkLPF

kT(uniform)

Page 13: Timing Recovery at Low SNR - Rutgers Universityarchive.dimacs.rutgers.edu/Workshops/Storage/slides/nayak.pdfAravind R. Nayak John R. Barry Steven W. McLaughlin {nayak, barry, swm}@ece.gatech.edu

12

Cramer-Rao bound

• answers the following question:

“What is the best any estimator can do?”

• is independent of the estimator itself.

• is a lower bound on the error variance of any estimator.

Cramer-Rao bound (CRB)

Page 14: Timing Recovery at Low SNR - Rutgers Universityarchive.dimacs.rutgers.edu/Workshops/Storage/slides/nayak.pdfAravind R. Nayak John R. Barry Steven W. McLaughlin {nayak, barry, swm}@ece.gatech.edu

13

→ fixed, unknown parameter to be estimated

r → observations

• Sensitivity of to changes in determines quality of estimation.

• If is narrow, for a givenr, probable s lie in a narrow range.

⇒ can be estimated better,i.e., with lesser error variance.

• CRB uses as a measure of narrowness.

θ

f r θ( ) θ

f r θ( ) θ

θ∂

∂θ------ f r θ( )log

CRB, intuitively

f r θ1( ) f r θ1( )f r θ2( ) f r θ2( )

r r

Page 15: Timing Recovery at Low SNR - Rutgers Universityarchive.dimacs.rutgers.edu/Workshops/Storage/slides/nayak.pdfAravind R. Nayak John R. Barry Steven W. McLaughlin {nayak, barry, swm}@ece.gatech.edu

14

CRB for a random parameter

If is random as opposed to being fixed and unknown,

• is characterized by ap.d.f. and

• r, are characterized by the jointp.d.f. .

The measure for narrowness in this case is

θ

θ f θ( )

θ f r θ,( )

∂∂θ------ f r θ,( )log

Page 16: Timing Recovery at Low SNR - Rutgers Universityarchive.dimacs.rutgers.edu/Workshops/Storage/slides/nayak.pdfAravind R. Nayak John R. Barry Steven W. McLaughlin {nayak, barry, swm}@ece.gatech.edu

15

For any unbiased estimator , the estimation error covariance matrix islower bounded by

where is the information matrix given by

In particular,

θ r( )

E θ r( ) θ–( ) θ r( ) θ–( )T

[ ] J 1–≥

J

J E ∂∂θ------ f r θ,( )log

∂∂θ------ f r θ,( )log

T

=

E θi r( ) θi–( )2

[ ] J 1– i i,( )≥

CRB is the inverse of Fisher information

Page 17: Timing Recovery at Low SNR - Rutgers Universityarchive.dimacs.rutgers.edu/Workshops/Storage/slides/nayak.pdfAravind R. Nayak John R. Barry Steven W. McLaughlin {nayak, barry, swm}@ece.gatech.edu

16

• An estimator that achieves the CRB is calledefficient.

• Efficient estimators do not always exist.

Fixed, unknownθ: ML is efficient

Randomθ: MAP is efficient

∂∂θ------ f r θ( )log 0=

∂∂θ------ f r θ,( )log 0=

Efficient estimators

Page 18: Timing Recovery at Low SNR - Rutgers Universityarchive.dimacs.rutgers.edu/Workshops/Storage/slides/nayak.pdfAravind R. Nayak John R. Barry Steven W. McLaughlin {nayak, barry, swm}@ece.gatech.edu

17

CRB: lower bound on timing error variance

Constant offset:

Frequency offset:

σε2 σ2

N Eh'--------------≥

σε2 6σ2

N 1–( )N 2N 1–( )Eh'----------------------------------------------------------≥

Page 19: Timing Recovery at Low SNR - Rutgers Universityarchive.dimacs.rutgers.edu/Workshops/Storage/slides/nayak.pdfAravind R. Nayak John R. Barry Steven W. McLaughlin {nayak, barry, swm}@ece.gatech.edu

18

CRB for a random walk

The Cramer-Rao bound on the error variance of any unbiased timing estimator:

where

is the steady state value,

,

and .

E τk τk–( )2[ ] h f k( )⋅≥

h σw2 η

η2 1–---------------=

f k( ) N 0.5+( ) ηlog( ) 1 N 0.5 2 k 1+( )–+( ) ηlog( )sinhN 0.5+( ) ηlog( )sinh

--------------------------------------------------------------------------------–tanh=

η λ λ2 4–+2

-----------------------------= λ 2 2π2

3--------- 1–

σw2

σ2T2-------------+=

Page 20: Timing Recovery at Low SNR - Rutgers Universityarchive.dimacs.rutgers.edu/Workshops/Storage/slides/nayak.pdfAravind R. Nayak John R. Barry Steven W. McLaughlin {nayak, barry, swm}@ece.gatech.edu

19

Steady-state value becomes more representative as SNR and N increase.

CRB: Steady-state value

0 50000

0.4%

0.8%

1.2%

Time

σ ε⁄T

(%)

σw ⁄ T = 0.05%

h

N = 5000

Parameters

SNRbit = 5 dB

Page 21: Timing Recovery at Low SNR - Rutgers Universityarchive.dimacs.rutgers.edu/Workshops/Storage/slides/nayak.pdfAravind R. Nayak John R. Barry Steven W. McLaughlin {nayak, barry, swm}@ece.gatech.edu

20

Trained PLL away from the CRB

0 2050 41001%

2%

3%

4%

5%

Time (bit periods)

CRLB

Trained PLL with α optimized

N = 4095

Parameters

SNR = 5 dB

σw ⁄ T = 0.7%α = 0.03

10000 sectors

ES

TIM

AT

ION

ER

RO

R J

ITT

ER

σ ε⁄T

(%)

Trained PLL does not achieve the steady-state CRB.

Page 22: Timing Recovery at Low SNR - Rutgers Universityarchive.dimacs.rutgers.edu/Workshops/Storage/slides/nayak.pdfAravind R. Nayak John R. Barry Steven W. McLaughlin {nayak, barry, swm}@ece.gatech.edu

21

0 10 20 300

1%

2%

3%

4%

5%

ES

TIM

AT

ION

ER

RO

R J

ITT

ER

σ ε⁄T

(%)

SNR (dB)

7 dB

α = 0.01

α = 0.02

α=

0.03α

=0.05

α=

0.1

α=

0.2

α = 0.03

α = 0.05

CRB

N = 500

Parameters

σw ⁄ T = 0.5%1000 trials

Trained PLL vs. Steady-state CRB

Page 23: Timing Recovery at Low SNR - Rutgers Universityarchive.dimacs.rutgers.edu/Workshops/Storage/slides/nayak.pdfAravind R. Nayak John R. Barry Steven W. McLaughlin {nayak, barry, swm}@ece.gatech.edu

22

• As in the random walk case, the PLL does not achieve theCRB in the constant offset and the frequency offset cases.

• Using Kalman filtering analysis, we can show that PLL isthe optimal causal timing recovery scheme.

⇒ Eliminate causality constraint to improve performance.

⇒ Block processing.

Outperforming the PLL: Block processing

Page 24: Timing Recovery at Low SNR - Rutgers Universityarchive.dimacs.rutgers.edu/Workshops/Storage/slides/nayak.pdfAravind R. Nayak John R. Barry Steven W. McLaughlin {nayak, barry, swm}@ece.gatech.edu

23

The trained maximum-likelihood (ML) estimator picks to minimize

This minimization can be implemented using gradient descent:

• Initialization using PLL.

• Without training, use instead of .

τ

J τ a;( ) rk alh kT lT– τ–( )l∑–

2

k ∞–=

∑=

τi 1+ τi µJ' τi a;( )–=

J τ a;( ) J τ a;( )

Constant offset: Gradient search

Page 25: Timing Recovery at Low SNR - Rutgers Universityarchive.dimacs.rutgers.edu/Workshops/Storage/slides/nayak.pdfAravind R. Nayak John R. Barry Steven W. McLaughlin {nayak, barry, swm}@ece.gatech.edu

24

Trained ML achieves CRB α = 0.01

Parameters

N = 5000

τ/T = π/20

-8 -3 2 70.2%

2%

20%

SNR (dB)

0.3%

1%

10%

3%

RM

S T

imin

g E

rror

σ ε /

T

Trained ML, CRB

Trained PLL

Decision-directed PLL

Decision-directed ML

Two ways to improve performance over conventional PLL:

* Better architecture – ML for example.

* Better decisions – exploit error correction codes.

Page 26: Timing Recovery at Low SNR - Rutgers Universityarchive.dimacs.rutgers.edu/Workshops/Storage/slides/nayak.pdfAravind R. Nayak John R. Barry Steven W. McLaughlin {nayak, barry, swm}@ece.gatech.edu

25

Frequency offset: Least squares estimation

Let ,

,

from PLL.

Model:

Problem:

Find and to minimize

Solution:

and

k 0 1 … N 1–, , ,[ ]T=

τ τ0 τ1 … τN 1–, , ,[ ]T=

τ τ0 τ1 … τN 1–, , ,[ ]T=

τ ∆T( )k τ0+=

∆T τ0

τ ∆T( )ˆ k τ0ˆ+( )–

2

∆TN kτk∑ k τk∑∑–

N k2∑ k∑( )2–----------------------------------------------= τ0

1N----- τk k∆T–( )∑=

0 1000 2000 3000 4000

0

2

4

6

8

k

τkτk

Page 27: Timing Recovery at Low SNR - Rutgers Universityarchive.dimacs.rutgers.edu/Workshops/Storage/slides/nayak.pdfAravind R. Nayak John R. Barry Steven W. McLaughlin {nayak, barry, swm}@ece.gatech.edu

26

Least Squares away from CRB 10000 packets

Parameters

N = 250

0 4 8 12 1610–5

10–4

10–3

10–2

SNR (dB)

RM

S E

stim

atio

n E

rror

in∆T

/ T

0 4 8 12 16

10–2

10–1

SNR (dB)R

MS

Est

imat

ion

Err

or in

τ 0 /

T

Decision-Directed

Trained

CRBCRB

Trained

Decision-Directed

* Trained MM + PLL + LS about 2 dB away from the CRB⇒ Gradient descent?

∆T/T ∼ unif[0, 0.005]τ0/T ~ unif[0, 0.1]

α optimized

Page 28: Timing Recovery at Low SNR - Rutgers Universityarchive.dimacs.rutgers.edu/Workshops/Storage/slides/nayak.pdfAravind R. Nayak John R. Barry Steven W. McLaughlin {nayak, barry, swm}@ece.gatech.edu

27

Gradient descent not suitable

−0.1 −0.05 0 0.05 0.10

500

1000

1500

Given uniform samples , pick and to minimizerk{ } ∆T τ0

J ∆T τ0 a;,( ) rk alh kT lT– l∆T– τ0–( )l∑–

2

k∑=

∆T T⁄

J∆

Tτ 0,

()

parabolic in .J ∆T τ0,( ) τ0

Gradient descent→ sensitive to initialization→ proceeds along greatest gradient: rattling in the bowl

Page 29: Timing Recovery at Low SNR - Rutgers Universityarchive.dimacs.rutgers.edu/Workshops/Storage/slides/nayak.pdfAravind R. Nayak John R. Barry Steven W. McLaughlin {nayak, barry, swm}@ece.gatech.edu

28

Gradient descent:

• Moves along the direction of greatest gradient,

• Long, narrow valley⇒ this is not a good idea.

Newton’s method:

• Makes parabolic approximation,

• Directly computes the location of the minimum,

• Efficacy depends on how good the parabolic approximation is.

LM combines these two estimates using a weight factorλ.

Levenberg-Marquardt method

Page 30: Timing Recovery at Low SNR - Rutgers Universityarchive.dimacs.rutgers.edu/Workshops/Storage/slides/nayak.pdfAravind R. Nayak John R. Barry Steven W. McLaughlin {nayak, barry, swm}@ece.gatech.edu

29

The update box* updates the estimatewi → wi+1,* increasesλ if error increased; decreasesλ if error decreased.

Levenberg-Marquardt (LM) method

PLL LS

UniformSampler Compute

Update

r t( ) τ w0

Initialization

Levenberg-Marquardt

y

w

Page 31: Timing Recovery at Low SNR - Rutgers Universityarchive.dimacs.rutgers.edu/Workshops/Storage/slides/nayak.pdfAravind R. Nayak John R. Barry Steven W. McLaughlin {nayak, barry, swm}@ece.gatech.edu

30

* Trained MM + PLL + LS + LM method achieves the CRB.

Trained LM achieves CRB

0 4 8 12 1610–5

10–4

10–3

SNR (dB)

RM

S E

stim

atio

n E

rror

in∆T

/ T

0 4 8 12 16

10–2

10–1

SNR (dB)R

MS

Est

imat

ion

Err

or in

τ 0 /

T

CRB

Trained LM

CRB

Trained LM

10000 packets

Parameters

N = 250

∆T/T ∼ unif[0, 0.005]τ0/T ~ unif[0, 0.1]

α optimized

Page 32: Timing Recovery at Low SNR - Rutgers Universityarchive.dimacs.rutgers.edu/Workshops/Storage/slides/nayak.pdfAravind R. Nayak John R. Barry Steven W. McLaughlin {nayak, barry, swm}@ece.gatech.edu

31

• N-dimensional estimation problem,

• ML estimation prohibitively complex.

Instead:

• Linearize the PLL-based system,

• Apply projection operator.

Random walk: Linearization and Projection

Page 33: Timing Recovery at Low SNR - Rutgers Universityarchive.dimacs.rutgers.edu/Workshops/Storage/slides/nayak.pdfAravind R. Nayak John R. Barry Steven W. McLaughlin {nayak, barry, swm}@ece.gatech.edu

32

TED equation:

Define:

Therefore, we get the following linear Gaussian model:

• Outputyk is the sum of the PLL and the TED outputs.

• Validity of model depends on linearity of TED characteristics.

• is an estimate based on previous observations (a priori).

• yk is based on previous and present observsations (a posteriori).

εk εk nk+ τk τk– nk+= =

yk τk εk+=

yk τk nk+=

τk

Linear Gaussian model from PLL

Page 34: Timing Recovery at Low SNR - Rutgers Universityarchive.dimacs.rutgers.edu/Workshops/Storage/slides/nayak.pdfAravind R. Nayak John R. Barry Steven W. McLaughlin {nayak, barry, swm}@ece.gatech.edu

33

For the linear Gaussian model, the MAP estimator is

where

• y is the vector of a posteriori observations

• is the covariance matrix of the timing offset vector

• is the variance of the noisenk

τmap y( ) Kτ σn2 I+( )

1–Kτ y=

Kτ τ

σn2

MAP estimator

Page 35: Timing Recovery at Low SNR - Rutgers Universityarchive.dimacs.rutgers.edu/Workshops/Storage/slides/nayak.pdfAravind R. Nayak John R. Barry Steven W. McLaughlin {nayak, barry, swm}@ece.gatech.edu

34

5 10 15 20

10−4

10−3

SNR (dB)

Tim

ing

Err

or V

aria

nce

CRBTrained MAPTrained PLL

• 5.5 dB gain over PLL.

• 1.5 dB away from CRB.

• CRB not attainable with the timing model chosen. (Thea posteriori den-sity needs to be Gaussian, which is not the case here.)

• Gap partly due to loss due to linearization of the TED characteristics.

f θ r( )

1000 packets

Parameters

N = 500

σw/T = 0.33%

α optimized

MAP estimator: Performance

random walk model

first order PLLMM TED

Page 36: Timing Recovery at Low SNR - Rutgers Universityarchive.dimacs.rutgers.edu/Workshops/Storage/slides/nayak.pdfAravind R. Nayak John R. Barry Steven W. McLaughlin {nayak, barry, swm}@ece.gatech.edu

35

MAP estimator takes the form of a matrix operation:

Using the structure of the matrices involved, we can rewrite this as

where

• is a convolution matrix,

⇒ implemented as atime-invariant filter ,

• is diagonal matrix with different diagonal entries,

⇒ implemented astime-varying scaling of the filter output.

τmap y( ) Kτ σn2 I+( )

1–Kτ y=

τmap y( ) A1 A2 y≈

A2

A1

MAP estimator: Reduced-complexity Implementation

Page 37: Timing Recovery at Low SNR - Rutgers Universityarchive.dimacs.rutgers.edu/Workshops/Storage/slides/nayak.pdfAravind R. Nayak John R. Barry Steven W. McLaughlin {nayak, barry, swm}@ece.gatech.edu

36

• Conventional timing recovery based on the PLL.

• Cramer-Rao bound gives a bound on performance of any timing estimator.

• Derived the CRB for different timing offset models.

• PLL does not achieve the CRB.

• With constant offset, gradient descent achieves the CRB.

• With frequency offset, the Levenberg-Marquardt method achieves the CRB.

• With a random walk, the MAP estimator significantly outperforms the CRB.

(Caveat: With a random walk, the CRB is not achievable.)

Summary

Page 38: Timing Recovery at Low SNR - Rutgers Universityarchive.dimacs.rutgers.edu/Workshops/Storage/slides/nayak.pdfAravind R. Nayak John R. Barry Steven W. McLaughlin {nayak, barry, swm}@ece.gatech.edu

37

Thank you!

Questions?