39
Timing calibration in ANTARES Juan José Hernández Rey IFIC – Instituto de Física Corpuscular Universitat de València C.S.I.C. (for the ANTARES collaboration) International Workshop on UHE Neutrino Telescopes, Chiba University, 2930 July 2003

Timing calibration in ANTARES Juan José Hernández Rey IFIC – Instituto de Física Corpuscular Universitat de València C.S.I.C. (for the ANTARES collaboration)

  • View
    217

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Timing calibration in ANTARES Juan José Hernández Rey IFIC – Instituto de Física Corpuscular Universitat de València  C.S.I.C. (for the ANTARES collaboration)

Timing calibration in ANTARES

Juan José Hernández Rey IFIC – Instituto de Física Corpuscular

Universitat de València C.S.I.C.

(for the ANTARES collaboration)

International Workshop on UHE Neutrino Telescopes, Chiba University, 2930 July 2003

Page 2: Timing calibration in ANTARES Juan José Hernández Rey IFIC – Instituto de Física Corpuscular Universitat de València  C.S.I.C. (for the ANTARES collaboration)

Timing Requirements

Absolute timing (i.e. w.r.t. UTC)

Compatible with available systems (GPS, synchronization)

Physics requirements ~1 ms (coherent source of 300km size)

Relative timing (i.e. among OMs)

Limited by intrinsic detector processes

event to event fluctuations:

TTS of PMTs (σ ~ 1.3 ns)

Light propagation in water (σ ~ 1.3 ns)

Electronics (σ 1 ns)

Goal σ ≤ 0.5 ns (in average relative Δt0’s)

More info?

(cf. talk on PMTs by Zornoza)

Page 3: Timing calibration in ANTARES Juan José Hernández Rey IFIC – Instituto de Física Corpuscular Universitat de València  C.S.I.C. (for the ANTARES collaboration)

Timing calibration systems

In-situ calibration systems: Clock calibration system

LEDs in Optical Modules

Optical Beacons

Down-going muon tracks

Calibration before immersion: Laserfibre system

Clock calibration

LEDs in Optical Modules

Built-in systems

Laboratory specific

Page 4: Timing calibration in ANTARES Juan José Hernández Rey IFIC – Instituto de Física Corpuscular Universitat de València  C.S.I.C. (for the ANTARES collaboration)

Clock

calibration

system

Page 5: Timing calibration in ANTARES Juan José Hernández Rey IFIC – Instituto de Física Corpuscular Universitat de València  C.S.I.C. (for the ANTARES collaboration)

Clock system on-shore

λ= 1534 nm

λ= 1549 nm

TDC

Start StopON_WDM

Optical Fiber

ON_GPS

20MHzTXRX

ON_PCIO

ON_SYNPC1

Control Computer

Time-Stamp

1PPS

ON_SYNPC2

Data BaseControl

Computer

DB

IRIG-B (Synchro. Bus)Ethernet NTP protocol to

other computers

32 I/O Board for control frame and synchronous commands

RXTX

StartStop

1Hz

ON_GPIB

GPIB

Com1Cm2

ON_GPSControl

Control Modbus

ON_CLOCK

ON_CRATE 1

A high accuracy 20MHz clock signal synchronized with the GPS system is generated

Start an stop signals are generated and sent to the TDC. Commands can be superimposed. Interfaces with the control PC.

The clock electrical signal is converted to an optical signal and sent to the detector by Wave Division Multiplexing.

The overall system is controlled by a PC. Its internal clock is synchronized to the one pulse per second signal provided by the GPS. The adequate Time Stamping format is provided.

A TDC measures the roundtrip delay.

Page 6: Timing calibration in ANTARES Juan José Hernández Rey IFIC – Instituto de Física Corpuscular Universitat de València  C.S.I.C. (for the ANTARES collaboration)

Clock distribution

START STOPTDC

STARTSTOPGPS E/O/E

TXRX

Main Electro-Optical Cable 40 km

from shore to Junction BoxSingle bidirectional fibre

(1534 nm / 1549 nm)

Junction Box116 passive splitter

String Control ModuleBIDI modules

O/E and E/O convertersby sectors (5 storeys)

Local Control ModulesLCM clock boards

1534 nm1549 nm

1310 nm1550 nm

On-shore Station

Link Cables200-500 m fibre

1534 nm1549 nm

Page 7: Timing calibration in ANTARES Juan José Hernández Rey IFIC – Instituto de Física Corpuscular Universitat de València  C.S.I.C. (for the ANTARES collaboration)

Time calibration through the clock system

Each ARS (readout chip) has its own local time counter

The ARS uses the LCM clock board for Time Stamping

A general Reset Time Stamp order to all ARS every 0.8 s (max)

A TVC ramp gives time w.r.t. each clock cycle

Clock boards at SCMs and at LCMs are bidirectional

Roundtrip delay relative calibration up to LCM clock boards

Anode signal

Threshold

TVC

Clock signal

Page 8: Timing calibration in ANTARES Juan José Hernández Rey IFIC – Instituto de Física Corpuscular Universitat de València  C.S.I.C. (for the ANTARES collaboration)

Echobased clock calibration (Tests)

1510/1310 nm

ON_SHORE station

TDC

GPS

- Electronic boards - Opt/Elec converter- Optical splitter

PC control - Clock

Reference

On Test

Phase Jitter between 2 cards(Roundtrip delay ).

LCM_CLOCK-2

LCM_CLOCK-1

Page 9: Timing calibration in ANTARES Juan José Hernández Rey IFIC – Instituto de Física Corpuscular Universitat de València  C.S.I.C. (for the ANTARES collaboration)

Clock calibration test results

Average of 100 measurements:

σ~10 ps

Oneshot difference:

<Δ> ~ 100 ps

Page 10: Timing calibration in ANTARES Juan José Hernández Rey IFIC – Instituto de Física Corpuscular Universitat de València  C.S.I.C. (for the ANTARES collaboration)

Pre- Production Sector Line and Mini Instrumentation Line results(Clock only reached SCMs due to broken fibre)

Roundtrip: ~420 μs Total drift: ~800 ps Precision: 100 ps

1 ns

~ 16 days

Roundtrip delay (s)

Datataking time (s)

MIL

PSL + 572.72 ns

50 ps

Time difference (ns)

~ 16 days

Time difference: ~286 ns Drift: ~60 ps

Page 11: Timing calibration in ANTARES Juan José Hernández Rey IFIC – Instituto de Física Corpuscular Universitat de València  C.S.I.C. (for the ANTARES collaboration)

Calibration

in the

Laboratory

Page 12: Timing calibration in ANTARES Juan José Hernández Rey IFIC – Instituto de Física Corpuscular Universitat de València  C.S.I.C. (for the ANTARES collaboration)

Timing calibration in a dark room

Before immersion the strings will be calibrated in a dark room at

CPPM (Marseilles).

Some of the built-in systems are used.

A dedicated laser-fibre system is also employed.

Once in the sea, the in-situ calibration

will have these results as a reference.

Dark room calibration with

Pre-production Sector Line (PSL)

Page 13: Timing calibration in ANTARES Juan José Hernández Rey IFIC – Instituto de Física Corpuscular Universitat de València  C.S.I.C. (for the ANTARES collaboration)

Laser calibration at the CPPM dark room

Optical Optical fibresfibres

t1

t2

t3

Optical Splitter

Laser

Optical beacon

Cylinder

Page 14: Timing calibration in ANTARES Juan José Hernández Rey IFIC – Instituto de Física Corpuscular Universitat de València  C.S.I.C. (for the ANTARES collaboration)

Time calibration in the Laboratory (results) Time difference of laser pulses between ARS

Clock and TVC calibrations raw data

Nhits

A few 100 ns between two consecutive storeys due to difference in clock

delay

after

Nhits

Differences due to TT and cables OM/LCM

ns

Page 15: Timing calibration in ANTARES Juan José Hernández Rey IFIC – Instituto de Física Corpuscular Universitat de València  C.S.I.C. (for the ANTARES collaboration)

Pulsed LED

in

Optical Module

Page 16: Timing calibration in ANTARES Juan José Hernández Rey IFIC – Instituto de Física Corpuscular Universitat de València  C.S.I.C. (for the ANTARES collaboration)

LED in Optical Module

LED in OM allows to monitor

Transit Time of PMT

Cable

Motherboard

Base

Cage

LED

PMT

Cage

Hemisphere

Hemisphere

Page 17: Timing calibration in ANTARES Juan José Hernández Rey IFIC – Instituto de Física Corpuscular Universitat de València  C.S.I.C. (for the ANTARES collaboration)

LED pulser

based on Kapustinsky et al. NIM A214, 612

Pulse rise time: ~ 2 ns (10%90%)

Pulse width: 4.5 6.5 ns

Jitter: ~100 ps

Light yield: 040 pJ/pulse(attenuated by housing

and Al coating)

Energy stability: 5%(pulse-to-pulse)

Sheffield pulserBlue LED Agilent HLMP-CB15

Page 18: Timing calibration in ANTARES Juan José Hernández Rey IFIC – Instituto de Física Corpuscular Universitat de València  C.S.I.C. (for the ANTARES collaboration)

Transit Time monitoring by the LED in the OM

Vda fixed (1025V)T

T

TT

(800

V)

ns

Vkd (volts)

(photocathode to 1st dynode voltage)

0

2

4

6

8

10

12

14

16

18

200 300 400 500 600 700 800 900

Vkd (volts)

TT

(Vkd

)-T

T(8

00V

) n

s

ST 5037 led recette 1pe

ST 5037 LED2 9.4pe

ST 5037 led recette 74pe

1 pe

9.4 pe

74 pe

TT(Vkd) slope does not depend on Npe

Page 19: Timing calibration in ANTARES Juan José Hernández Rey IFIC – Instituto de Física Corpuscular Universitat de València  C.S.I.C. (for the ANTARES collaboration)

~3 pe Vkd fixed (800V)

y = -0.0178x + 23.094

y = -0.0177x + 23.403

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

700 800 900 1000 1100 1200 1300 1400

Vda

Dif

tt

/ T

T 1

34

7v

(n

s)

led JP 0.5mmglued

ST 5002

TT

TT

(134

7 V

) n

s

Vda(volts)

(1st dynode to anode voltage)

y = -0.0195x + 26.295

y = -0.0194x + 25.485

0

2

4

6

8

10

12

14

600 700 800 900 1000 1100 1200 1300 1400

HV d1-a (V)

Dif

TT

/TT

1350

V (

ns)

ST 5037 led recette

ST 5037 led JP

~10 pe

y = -0.019x + 25.174

y = -0.0181x + 24.471

0

2

4

6

8

10

12

14

600 700 800 900 1000 1100 1200 1300 1400

HV D1-A (V)

Dif

TT

/TT

1350V

(n

s) ST 5162 led recette

ST 5162 led JP

~21 pe

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

0 10 20 30 40 50 60 70 80

Npe mean

slo

pe

(ns/

100V

)

Slo

pe

(ns/

100

V

)Average NpeTT(Vda) slope does not change for Npe< 20

TT(Vkd) and TT(Vda) can be reproduced to 0.5ns

Transit Time monitoring by the LED in the OM

Page 20: Timing calibration in ANTARES Juan José Hernández Rey IFIC – Instituto de Física Corpuscular Universitat de València  C.S.I.C. (for the ANTARES collaboration)

Optical

Beacons

Page 21: Timing calibration in ANTARES Juan José Hernández Rey IFIC – Instituto de Física Corpuscular Universitat de València  C.S.I.C. (for the ANTARES collaboration)

Optical Beacons

Use well-controlled, external (pulsed) light sourcesScattering and absorption OB OM distance ≤ λabs or λscat

In ANTARES: One LED beacon every 4/5 storeys. Laser beacons at bottom of some strings.

Strings

Light sources

Light shells

Optical modules

Page 22: Timing calibration in ANTARES Juan José Hernández Rey IFIC – Instituto de Física Corpuscular Universitat de València  C.S.I.C. (for the ANTARES collaboration)

LED Beacons in Sector Line

to the cable

LEDBeacon

Block ofElectronicsLCM

Optical Modulein the glass sphere

Hydrophone

to the cable

Page 23: Timing calibration in ANTARES Juan José Hernández Rey IFIC – Instituto de Física Corpuscular Universitat de València  C.S.I.C. (for the ANTARES collaboration)

LED beacon

Page 24: Timing calibration in ANTARES Juan José Hernández Rey IFIC – Instituto de Física Corpuscular Universitat de València  C.S.I.C. (for the ANTARES collaboration)

LED beacon components

Hexagonal mounting(six vertical faces)

Six LEDs per face(one looking upwards)

Sheffield pulser

Page 25: Timing calibration in ANTARES Juan José Hernández Rey IFIC – Instituto de Física Corpuscular Universitat de València  C.S.I.C. (for the ANTARES collaboration)

Laser beacon

Page 26: Timing calibration in ANTARES Juan José Hernández Rey IFIC – Instituto de Física Corpuscular Universitat de València  C.S.I.C. (for the ANTARES collaboration)

Laser beacon

diffuser

60 m

300

m

Current corrected by angle

0

100

200

300

400

500

600

30 40 50 60 70 80 90

output ROD angle (degrees)

Cu

rren

t (p

A)

Measurement

Monte Carlo

Nd-YAG laserλ= 532 nm (green)

Stable energy per pulse(after warm-up)

Short pulses(σ< 0.5 ns)

Light exits through diffuser + quartz rod(avoids sedimentation )

~ cos θ

Laser Beacon at Bottom String Socket

Points upwards to nearby strings

Page 27: Timing calibration in ANTARES Juan José Hernández Rey IFIC – Instituto de Física Corpuscular Universitat de València  C.S.I.C. (for the ANTARES collaboration)

Optical Beacons Monte Carlo results

Every OM receives light from at least 2 OBsEffect of light scattering can be corrected with systematics ≤ 0.5 ns

Distance OB-OM (m)

T50, T90, T100 ≡ Time at 50%, 90%, 100% of peak in the rising-edge

( if gaussian: X(a(%))= σ √(-2•ln a(%)) )

T90 (ns)

T50 (ns)

T corrected

Nb of OBs

Nb of OBs

Source’s time width correlated with scattering and should be known in advance

Distance OB-OM (m) Distance OB-OM (m)

T50 (ns) T100 (ns)

Source full width: 2 ns 4 ns 6 ns

Optical Beacons will enable an

independent relative timing

calibration at the ~0.5 ns level

Page 28: Timing calibration in ANTARES Juan José Hernández Rey IFIC – Instituto de Física Corpuscular Universitat de València  C.S.I.C. (for the ANTARES collaboration)

Off-sets, drifts and fluctuations…

Photocathode → ARS TVC

ARS TVC←

LCM clock

LCM clock ← JB splitter

Master Clock → JB splitter

Delay 100 ns 10ns 24 s 400 s

Stability 2 ns 0.2 ns 0.5 ns 2 ns

Jitter 1.3 ns 0.8 ns 0.1 ns 0.1 ns

Dark Room,

Clock

LED in OM

Opt. Beacons

Muons

Defs.: Delay ≡ Δt ; Off-set ≡ t0 ; Stability ≡ Labo-site calib change

or drift with timeJitter ≡ event to event fluctuation

Calibs.: ≡ from the very start (for this calibration system)

⊕ ≡ in the middle (contributes to this system) ≡ no handle (for this system)

tCLOCK i

tCLOCK j

OM j

tOM j

tLCM j

ARS j

Master Clock

JB_SPLIT tCABLE

tOMi

tLCM i

OM i ARS i

LCM_CLOCK j

LCM_CLOCK i

tOM ≡ PM cath to ARS TVCtLCM ≡ ARS in to LCM clocktCLOCK ≡ LCM clock to splitter in JBtcable ≡ Sea and land cables

More info?

Page 29: Timing calibration in ANTARES Juan José Hernández Rey IFIC – Instituto de Física Corpuscular Universitat de València  C.S.I.C. (for the ANTARES collaboration)

SummaryTiming calibration goals of ANTARES:

~1 ms in absolute timing (internal clock w.r.t. UTC)

≤ 0.5 ns in relative timing (between OMs)

Intrinsic (event by event) fluctuations:

σ ~ 1.3 ⊕ 1.3 ⊕ 1 ns Pmt medium electronics

Several complementary systems will be used. Cross-checks will be possible. Relative calibration of average t0’s will reach σ ≤ 0.5 ns

Page 30: Timing calibration in ANTARES Juan José Hernández Rey IFIC – Instituto de Física Corpuscular Universitat de València  C.S.I.C. (for the ANTARES collaboration)

Villa Pacha

Page 31: Timing calibration in ANTARES Juan José Hernández Rey IFIC – Instituto de Física Corpuscular Universitat de València  C.S.I.C. (for the ANTARES collaboration)

END OF TALK

Page 32: Timing calibration in ANTARES Juan José Hernández Rey IFIC – Instituto de Física Corpuscular Universitat de València  C.S.I.C. (for the ANTARES collaboration)

HYPERLINKS and BACKUP SLIDES

Page 33: Timing calibration in ANTARES Juan José Hernández Rey IFIC – Instituto de Física Corpuscular Universitat de València  C.S.I.C. (for the ANTARES collaboration)

Clock system on-shore

TDC

Start StopON_WDM

Optical FibreTo Junction

Box

ON_GPS

20MHzTX

RX

ON_PCIO

ON_SYNPC1

CLOCKControl

Computer

Time-Stamp1PPS

ON_SYNPC2

Data BaseControl

Computer

DB

IRIG-B (Synchro. Bus)

Ethernet NTP protocol to other computers

32 I/O BoardFor control frame and synchronous comands

RX

TX

StartStop

1Hz

ON_GPIB

GPIB

Com1

Com2

ON_GPSControl (SCPI)

ON_CRATEControl (Modbus)

ON_CLOCK

ON_CRATE 1

ON_GPS HP58540A: 10 MHz (± 1011/day ) + 1 pps (UTC σ~100 ns)TLC2932 EVM:20 MHz (frequency doubler)

ON_CLOCK-Interface of PC clock with WDM- START (to SYNPC and TDC) and STOP (TDC)- Superimpose commands- Monitoring

TDC Time to Digital

Converter

Standford Res. SRS620

ON_WDMElectro-optical converter uses Wavelength Division Multiplexing λ= 1534 nm (to JB) λ=1549 nm (from JB)

ON_SYNCPC1 PCGPS synchronization via 1-pps signals

ON_CLOCK PCSynchronize internal PC with UTC GPS pps PCI-SYNCCLOCK BRANDYW

ON_GPIBGPIB connection to TDC Calibration through roundtrip delays

λ= 1534 nm

λ= 1549 nm

Page 34: Timing calibration in ANTARES Juan José Hernández Rey IFIC – Instituto de Física Corpuscular Universitat de València  C.S.I.C. (for the ANTARES collaboration)

Components of the clock system

Input from MEOCOutput to SCMs

Junction Box Passive Splitter

BIDIANT board(SCM and LCM Containers)

WDM laser module

PIN diode receiver module

Page 35: Timing calibration in ANTARES Juan José Hernández Rey IFIC – Instituto de Física Corpuscular Universitat de València  C.S.I.C. (for the ANTARES collaboration)

Off-sets, drifts and fluctuations (more info)

tOM ≡ PM cath to ARS TVCtPM = 48 ns @ Vkd =800 V 57 ns @ Vkd =362 VVkd dependence 33 ps/VTTS = 1.3 ns ( Vkd 1ps/V)Vkd time stability 0.16 VExpected variations:Channel-to-channel: 10 nsLabo to Sea: 5 nsTime drift: 2 ns

tARS

σ 0.8 nsVariations mostly due to TVCStability → 4.3 ns/V + 33 ps/C ( 0.1 ns 0.6 ns)

tCABLE

Temperature variation 35 ps/K/kmPart in the Sea → very stable (<0.5 ns)Land cable: 1ns(contributes to absolute timing only)

tCLOCK

Stability: σ 0.05 nsVariations mostly due to TVCStability → 4.3 ns/V + 33 ps/C ( 0.1 ns 0.6 ns)Clock to GPS precision: 1.3 ns

tLCM - due to electronics and cablesDelay 10 ns Stability 0.2 ns

Anode signal

Threshold

TVC

Clock signal

Page 36: Timing calibration in ANTARES Juan José Hernández Rey IFIC – Instituto de Física Corpuscular Universitat de València  C.S.I.C. (for the ANTARES collaboration)

Water transparency:

- Blue light (470 nm) abs ~ 608 mscat eff ~ 26530 m

- UV light (370 nm) abs ~ 262 mscat eff ~ 1204 m

Timing of photon arrival times(pulsed LED sources)

scat eff = scat

1 - < cos >

At 24m, 95% within t = 10 ns (B)t = 30 ns (UV)

Light absorption and diffusion

(Errors reflect variations betweendifferent measurements)

Page 37: Timing calibration in ANTARES Juan José Hernández Rey IFIC – Instituto de Física Corpuscular Universitat de València  C.S.I.C. (for the ANTARES collaboration)

Chromatic dispersion

Cherenkov angle is determined by phase refractive index,

propagation time by group velocity (i.e. group refractive index):

cos θc= 1/ β∙nφ vg = c/ng where:

Our detector is colour blind: a definite λ must be chosen (we use

λ=460 nm). This introduces time shifts (can be corrected) and

spreads (depend on distance)

Monte Carlo shows that scattering does not introduce an

additional spread up to distances of 50 m (it makes the light less

“chromatic”).

d

dn

n

nng

1

Page 38: Timing calibration in ANTARES Juan José Hernández Rey IFIC – Instituto de Física Corpuscular Universitat de València  C.S.I.C. (for the ANTARES collaboration)

Overall chromaticity + scattering effects

Nph

oto

ns

Nph

oto

ns

residuals (t - Lc n(460 nm)/c)Distance from track (m) σmedium (ns)

10 0.68

40 1.3

100 2.8

200 5.9

Page 39: Timing calibration in ANTARES Juan José Hernández Rey IFIC – Instituto de Física Corpuscular Universitat de València  C.S.I.C. (for the ANTARES collaboration)

Pieces, parts and spares