Time_Delay_Systems_anjan raksit

  • Upload
    sourav

  • View
    217

  • Download
    0

Embed Size (px)

Citation preview

  • 8/3/2019 Time_Delay_Systems_anjan raksit

    1/25

    ontro oontro o

    me- e ay ys emsme- e ay ys ems

  • 8/3/2019 Time_Delay_Systems_anjan raksit

    2/25

    Time-Delay Element

    Time-Dela

    Element- l

    l= me- e ayTime Responsex(t)

    unit step1

    0t

    t

    1

    0 tTl

  • 8/3/2019 Time_Delay_Systems_anjan raksit

    3/25

    Time-Delay SystemsExample 1

    empera ure easuremen o ea - xc anger u pu

    b t

    Sensor

    a(t)d

    Heat

    cold in

    out v out

    Sensor

    Heat

    cold in

    v = velocitd = distance

    = al

  • 8/3/2019 Time_Delay_Systems_anjan raksit

    4/25

    Time-Delay SystemsExample 2

    c ness easuremen o o e ee a e

    Thickness

    +

    gauge

    Time delay between

    vSteel Plate c ange n c nessand measurement:

    +

    vT

    l=

    d

  • 8/3/2019 Time_Delay_Systems_anjan raksit

    5/25

    Difference Between Time-Lag and Time-Delay

    (a)

    (b)

    (c)

    lsT

    In case (c), transfer function of the block = ,T= time lag, Tl= delay

    ( ) sTsG += 1

  • 8/3/2019 Time_Delay_Systems_anjan raksit

    6/25

    ro em ue o resence o me- e ayin a Process Control Loop

    Due to the presence of time-delay, any corrective action from

    the controller cannot be immediately applied to the process.

    , ,

    sometimes quite large, due to any load disturbance or change

    in set- oint.

  • 8/3/2019 Time_Delay_Systems_anjan raksit

    7/25

    Transfer Function of Time-Delay Element

    t Time-Delay t = x t - T Element

    Taking Laplace Transform:

    ( )lsTe

    sX

    =

    Transfer Function of a Time-Delay Element2

    1

    Now,

    12

    12

    12

    21

    12!

    l

    l

    l

    sTl

    sT

    sT

    sTe

    ee sT

    + = =

    1

    21

    2!lsT+ +

    1

    21

    lsT lsT

    -1

    21 lsT+

  • 8/3/2019 Time_Delay_Systems_anjan raksit

    8/25

    Effect of Time-Delay on Process Loop Response

    T.F. of a Process with Time-Delay: ( ) ( ) lsTesGsG =

    where G/(s) is the transfer function of the delay free part of the

    process.Case Stu y: Proport ona Contro o a F rst-Or er Process

    with Time-Delay

    controller process

    + Kp

    1

    le

    sT

    +C(s)R(s)

    +_

    p

    T = Process Time Constant

  • 8/3/2019 Time_Delay_Systems_anjan raksit

    9/25

    Case Study: Proportional Control of a First-Order Process

    with Time-Delay (contd )

    lsTe

    controller

    p1 sT++

    _

    The Characteristic Eqn. of the C.L. System: 1 01

    lsT

    pK e

    sT

    + =+

    Using First-Order Pade Approximation:

    0

    2

    11

    1 =

    +

    lpsTK

    01

    1

    1

    2

    1

    2

    1

    2 =

    ++

    ++ p

    lpl KTKTT

    ss

    211

    ++l

    sTsT22

    ll

    The standard form: 1 1T T K T +

    2 22 0,n ns s + + =,

    p

    nlTT

    =

    The Natural Freq.( )2 1p lK T

    =

    + +The Damping Ratio

  • 8/3/2019 Time_Delay_Systems_anjan raksit

    10/25

    Case Study: Proportional Control of a First-Order Process

    with Time-Delay (contd )

    lsTe

    controller

    p1 sT++

    _

    The damping ratio becomes zero when:

    +=

    l

    l

    p

    T

    TTK

    2

    The system becomes unstable when:

    +

    > lp

    TTK

    2

    l

    Conclusion: Time-delay may cause instability even in

    first-order system for large values ofKp

    .

  • 8/3/2019 Time_Delay_Systems_anjan raksit

    11/25

    Case Study: Proportional Control of a First-Order Process

    with Time-Delay (contd )

    + Kp

    1

    lsTe

    sT

    +C(s)R(s)

    +_

    controller process

    Loo T.F. of the C. L. S stem:eK l

    sT

    p

    Root Locus Plot

    sT+1

    Usin First-Order Pade A roximation:

    2

    1 2

    pl

    pl

    KsT

    sK T T

    =

    ( ) 1 21 1 2

    l

    l

    sTsT s s

    T T

    + + + + Case I:

    2

    lT

    T >j

    Kp =Kcs-plane Kc: Critical Gain

    Kp

    = 0 Kp

    = 0

    22

    l

    c

    T

    KT

    + =

    0

    2

    lT

    1

    T

    2

    lT

    2 lT T +=

    Kp

    = Kc

    l

  • 8/3/2019 Time_Delay_Systems_anjan raksit

    12/25

    Case Study: Proportional Control of a First-Order Process

    with Time-Delay (contd )

    + Kp

    1

    lsTe

    sT

    +C(s)R(s)

    +_

    controller process

    Loo T.F. of the C. L. S stem:eK l

    sT

    p

    Root Locus Plot

    sT+1

    Usin First-Order Pade A roximation:

    2

    1 2

    pl

    pl

    KsTs

    K T T

    =

    ( ) 1 21 1 2

    l

    l

    sTsT s s

    T T

    + + + + Case II: l

    TT