38
1 10 Coupon Bonds The chapter studies coupon bonds from the perspective of the arbitrage-free pricing methodology. This is in contrast to the classical approach to fixed incom e analysis or coupon bond pricing thatw aspresented in C hapter 2. The differences betw een the tw o approaches are num erous.

Time

  • Upload
    mab

  • View
    49

  • Download
    0

Embed Size (px)

DESCRIPTION

Table 10.1: The Cash Flows to a Typical Coupon Bond with Price B (0), Principal L, Coupon C and Maturity T. 012…T |||| B (0)CC…CCoupons LPrincipal. Time. coupon rate c = 1+C/L. Table 10.2: An Example of a Time 0 Zero-Coupon Bond Price Curve. P(0,4) = .923845 - PowerPoint PPT Presentation

Citation preview

Page 1: Time

1

10 Coupon Bonds The chapter studies coupon bonds from the perspective of the arbitrage-free pricing methodology. This is in contrast to the classical approach to fixed income analysis or coupon bond pricing that was presented in Chapter 2. The differences between the two approaches are numerous.

Page 2: Time

2

First, the arbitrage-free pricing methodology canbe used to risk manage a portfolio of bonds givenan arbitrary evolution for the term structure ofinterest rates. The classical approach can onlyhedge parallel shifts in the term structure ofinterest rates.

Second, the arbitrage-free pricing approach can beused to price interest rate derivatives in a mannerconsistent with that used to price coupon-bonds.The classical approach cannot.

Third, the arbitrage-free pricing approach can beextended to handle foreign currency risk andcredit risk. The classical approach cannot.

Page 3: Time

3

A A Coupon Bond as a Portfolio of Zero-Coupon Bonds This section studies the arbitrage-free pricing of noncallable coupon bonds. The valuation method of this section is independent of the particular evolution of the term structure of interest rates selected; in particular, it does not depend on the number or specification of the factors in the economy, either one, two, or three factors. We define a coupon bond with principle L, coupons C, and maturity T to be a financial security that is entitled to receive coupon payments of C dollars at times 1, …, T with a principal repayment of L at time T. The coupon rate on the bond is c = 1+C/L.

Page 4: Time

4

Table 10.1: The Cash Flows to a Typical Coupon Bond with Price B(0), Principal L,

Coupon C and Maturity T

Time0 1 2 … T| | | |B(0) C C … C Coupons

L Principal

coupon rate c = 1+C/L

Page 5: Time

5

T h e c o u p o n b o n d ’ s c a s h f l o w s c a n b e o b t a i n e df r o m a p o r t f o l i o o f z e r o - c o u p o n b o n d s .

T h e d u p l i c a t i n g p o r t f o l i o c o n s i s t s o f C

z e r o - c o u p o n b o n d s m a t u r i n g a t t i m e s = 1 , . . . , T - 1a n d C + L z e r o - c o u p o n b o n d s m a t u r i t y a t t i m e T .

L e t t h e m a r k e t p r i c e o f t h e c o u p o n b o n d b ed e n o t e d B ( t ) .

T h e c o s t o f c o n s t r u c t i n g t h e d u p l i c a t i n g p o r t f o l i oo f z e r o - c o u p o n b o n d s i s :

)T,t(LPT

1ti)i,t(CP

.

I n c o n s t r u c t i n g t h i s p o r t f o l i o , i t i s a s s u m e d t h a tt h e c o n s t r u c t i o n o c c u r s a f t e r t h e c o u p o n p a y m e n th a s b e e n p a i d a t t i m e t ( i . e . , i t r e p r e s e n t s t h ee x - c o u p o n v a l u e a t t i m e t ) .

Page 6: Time

6

Thus, the arbitrage-free price of the coupon bond is:

)T,t(LPT

1ti)i,t(CP)t(

B . (10.1)

Note that the arbitrage-free price for the coupon bond can be computed without any knowledge of the evolution of the term structure of interest rates. It depends solely on the initial zero-coupon bond price curve. We now illustrate this computation with an example.

Page 7: Time

7

Table 10.2: An Example of a Time 0 Zero-Coupon Bond Price Curve

P(0,4) = .923845P(0,3) = .942322P(0,2) = .961169P(0,1) = .980392

Page 8: Time

8

Table 10.3: An Example of the Cash Flows to a Coupon Bond

0 1 2 3 4

$5 $5 $100

time

coupon principal

Page 9: Time

9

EXAMPLE: COUPON BOND CALCULATION. Consider a coupon bond whose cash flows are as given in Table 10.3. Using expression (10.1), the value of this coupon bond at time 0, ex-coupon, is: B(0) = 5P(0,2) + 5P(0,4)+100P(0,4) = 5[0.961169] + 105[0.923845] = 101.8096. If the market price for the coupon bond differed, an arbitrage opportunity would exist.

Page 10: Time

10

For example, if the market price of this couponbond were 102.000, then an arbitrage opportunityis represented by: (i) shorting and holding untilmaturity the coupon bond, (ii) buying and holdinguntil maturity five units of the two-periodzero-coupon bond, and (iii) buying and holdinguntil maturity 105 units of the four-periodzero-coupon bond. The initial position brings in102-101.8096 dollars. Subsequently, the cash flowsto the short coupon bond are satisfied by the cashflows from the zero-coupon bond portfolio, leavingno further obligation.

Page 11: Time

11

The above arbitrage-free pricing technique doesnot depend on a particular evolution for the termstructure of interest rates. This makes theapproach quite useful for pricing

It is less worthwhile, however, for hedging.

In this approach, a synthetic coupon bond isconstructed via a buy and hold strategy involvinga portfolio of zero-coupon bonds.

Zero-coupon bonds are needed for each date onwhich a cash payment to the coupon bond is made. For example, given a 20 year bond with semi-annual coupon payments, 40 zero-coupon bondsare required.

Page 12: Time

12

This requirement has two practical problems.

One, the particular zero-coupon bonds that matchthe coupon dates most likely do not trade, makingthe replication impossible.

Two, if they all trade, the initial transaction costswill be quite large.

Page 13: Time

13

B A Coupon Bond as a Dynamic Trading Strategy

This section shows how to use the HJM model tosynthetically construct a coupon bond usingfewer zero-coupon bonds then the number ofpayment dates.

This approach is dependent, however, on aparticular evolution for the term structure ofinterest rates.

EXAMPLE: SYNTHETIC COUPON BONDCONSTRUCTION IN A ONE-FACTORMODEL.

Page 14: Time

14Figure 10.1: An Example of a One-Factor Bond Price Curve Evolution. Pseudo-Probabilities Are Along Each Branch of the Tree.

.923845

.942322

.961169

.980392 1

.947497

.965127

.982699 1

.937148

.957211

.978085 1

1/2

1/2

1/2

1/2

1/2

1/2

.967826

.984222 1

.960529

.980015 1

.962414

.981169 1

.953877

.976147 1

.985301 1

.981381 1

.982456 1

.977778 1

.983134 1

.978637 1

.979870 1

.974502 1

1

1

1

1

1

1

1

1

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

P(0,4) P(0,3) P(0,2) P(0,1) P(0,0)

=

B(0) 1

1.02

1.02

1.037958

1.037958

1.042854

1.042854

r(0) = 1.02

1.017606

1.022406

1.016031

1.020393

1.019193

1.024436

1.054597

1.054597

1.059125

1.059125

1.062869

1.062869

1.068337

1.068337

time 0 1 2 3 4

Page 15: Time

15

The first step in applying this technology is to check to see if the given evolution in arbitrage-free. Fortunately, this determination was already performed in Chapter 9. The pseudo probabilities calculated for each maturity zero-coupon bond/money market account pair at each node in the tree are strictly between zero and one, and equal to each other (i.e., 1/2). We use method 2, risk-neutral valuation, which was illustrated in Chapter 7.

Page 16: Time

16

S t e p 1 : R i s k - N e u t r a l V a l u a t i o n

T h i s a p p r o a c h p r o c e e d s b y b a c k w a r d i n d u c t i o n .

A t t i m e 4 , w e k n o w t h e c a s h f l o w s t o t h e c o u p o nb o n d . T h e y a r e 1 0 5 d o l l a r s , a c r o s s a l l s t a t e s .

M o v i n g b a c k t o t i m e 3 , a t s t a t e u u u , w e c o m p u t et h e p r i c e o f t h e c o u p o n b o n d a s :

4566.1030149182.1

105)2/1(105)2/1();3(

);4()2/1();4()2/1();3(

uuur

uuuduuuuuuu BBB.

Page 17: Time

17

Figure 10.2: The Evolution of the Coupon Bond's Price for the Example in Table 10.3.The coupon payment at each date is indicated by the nodes. The Synthetic Coupon-Bond Portfolio (n 0(t;st), n4(t;st)) in the money

market account and four-period zero-coupon bond are given under each node. Pseudo-probabilities along the branches of the Tree.

101.8096

(2.7567,107.218)

104.4006 (4.81516,105.002)

103.2910 (4.79273,105.002)

101.6218 Coupon = 5 (.000067,105)

100.8556 Coupon = 5 (-.001925,105.002)

101.0535 Coupon = 5

(-.023571,105.026)

100.1571 Coupon = 5

(-.010209,105.0112)

103.4566 (98.1006,0)

103.0450 (97.7103,0)

103.1579 (97.3992,0)

102.6667 (96.9354,0)

103.2291 (97.1231,0)

102.7568 (96.6787,0)

102.8864 (96.3052,0)

102.3227 (95.7775,0)

100 Coupon = 5

100 Coupon = 5

100 Coupon = 5

100 Coupon = 5

100 Coupon = 5

100 Coupon = 5

100 Coupon = 5

100 Coupon = 5

1/2

1/2

1/2

1/2 1/2

1/2

1/2

1.02

1.017606

1.016031

1.020393

1.019193

1.022406

1/2

1/2

1/2

1/2 1/2

1/2

1.024436

1/2

time 0 1 2 3 4

Page 18: Time

18

N e x t , a t t i m e 2 , w e r e p e a t t h e p r e v i o u s p r o c e d u r e .

F o r e x a m p l e , a t t i m e 2 s t a t e u u , t h e c o m p u t a t i o ni s :

6218.101016031.1

0450.103)2/1(4566.103)2/1();2(

);3()2/1();3()2/1();2(

uur

uuduuuuu BBB.

Page 19: Time

19

S t e p p i n g b a c k t o t i m e 1 , s t a t e u , w e r e p e a t t h ep r e v i o u s p r o c e d u r e , b u t t h i s t i m e w i t h a t w i s t .

W h e n c o m p u t i n g t h e d i s c o u n t e d e x p e c t e d v a l u e ,w e n e e d t o i n c l u d e b o t h t h e f u t u r e v a l u e a n df u t u r e c a s h f l o w i n t h e n u m e r a t o r .

T h e c a l c u l a t i o n i s :

.4006.104017606.1

]58556.100)[2/1(]56218.101)[2/1();1(

]);2()[2/1(]);2()[2/1();1(

ur

CudCuuu BBB

Page 20: Time

20

Finally, at time 0, the procedure yields:

8096.10102.1

2910.103)2/1(4006.104)2/1()0(

);1()2/1();1()2/1()0(

r

du BBB.

Page 21: Time

21

Step 2: Delta Hedging The next step is to construct the synthetic coupon bond using a dynamic self-financing trading in the four-period zero-coupon bond (n4(t;st)) and the money market account (n0(t;st)). We use the delta approach that was described in Chapter 7. This approach proceeds by backward induction, and it uses the prices of the coupon bond generated in step 1 above.

Page 22: Time

22

F i r s t , a t t i m e 3 t h e r e i s o n l y o n e z e r o - c o u p o n b o n dt r a d i n g , t h e f o u r - p e r i o d z e r o . I t i s u s e d t oc o n s t r u c t t h e m o n e y m a r k e t a c c o u n t . T h u s w ec a n i n v e s t i n e i t h e r t h e f o u r - p e r i o d z e r o o r t h em o n e y m a r k e t a c c o u n t ( s i n c e b o t h a r e i d e n t i c a l ) . W e c h o o s e , a r b i t r a r i l y , t h e m o n e y m a r k e ta c c o u n t :

T i m e 3 , s t a t e u u u :

1006.98054597.1

4566.103);3(

);4,3();3(4);3();3(0

0);3(4

uuB

uuuPuuunuuuuuun

uuun

B

T i m e 3 , s t a t e u u d :

7103.97054697.1

0450.103);3(

);4,3();3(4);3();3(0

0);3(4

uuB

uudPuudnuuduudn

uudn

B

Page 23: Time

23

M o v i n g b a c k t o t i m e 2 , w e a p p l y t h e d e l t ac o n s t r u c t i o n a g a i n .

T h e c o m p u t a t i o n i s :

T i m e 2 , s t a t e u u

000067.037958.1

967826.0)105(6218.101);2(

);4,2();2(4);2();2(0

105981381.985301.

0450.1034566.103);4,3();4,3(

);3();3();2(4

uB

uuPuunuuuun

uudPuuuPuuduuuuun

B

BB

Page 24: Time

24

Time 2, state ud:

001925.037958.1

960529.0)002.105(8556.100);2(

);4,2();2(4);2();2(0

002.105977778.982456.

6667.1021579.103);4,3();4,3(

);3();3();2(4

uB

udPudnududn

uddPuduPudduduudn

B

BB

Page 25: Time

25

M o v in g b a c k t o t im e 1 , w e g e t

T im e 1 , s t a t e u :

81516.402.1

947497.0)002.105(4006.104)1(

);4,1();1(4);1();1(0

002.105960529.967826.

]58556.100[]56218.101[);4,2();4,2(

]);2([]);2([);1(4

B

uPunuun

udPuuPCudCuuun

B

BB

Page 26: Time

26

Time 1, state d:

.79273.402.1

937148.0)002.105(291.103)1(

);4,1();1(4);1();1(0

002.105953877.962414.

]51571.100[]50535.101[);4,2();4,2(

]);2([]);2([);1(4

B

dPdndun

ddPduPCddCdudn

B

BB

Page 27: Time

27

F i n a l l y , a t t i m e 0 :

.75670.21

923845.0)218.107(8096.101)0(

)4,0()0(4)0()0(0

218.107937148.947497.

291.1034006.104);4,1();4,1(

);1();1()0(4

B

Pnn

dPuPdun

B

BB

T h e c o s t o f c o n s t r u c t i n g t h i s s y n t h e t i c c o u p o nb o n d a t t i m e 0 i s

8096.101)923845(.218.1077567.2

)4,0()0(4)0(0

Pnn.

Page 28: Time

28

This synthetic construction is more complicatedthan the buy and hold strategy discussedpreviously.

This synthetic construction is dynamic and itinvolves rebalancing the portfolio across time.

The rebalancing is self-financing at times 1 and 3,but it generates a positive cash flow of 5 dollars attime 2. Hence, only at time 2 is the syntheticcoupon bond not self-financing.

Page 29: Time

29

C Comparison of HJM Hedging versus Duration Hedging This section compares HJM hedging versus the classical duration hedging of Chapter 2. EXAMPLE: ERROR IN MODIFIED DURATION HEDGING ZERO-COUPON BONDS

Page 30: Time

30

Figure 10.1: An Example of a One-Factor Bond Price Curve Evolution. Pseudo-Probabilities Are Along Each Branch of the Tree.

.923845

.942322

.961169

.980392 1

.947497

.965127

.982699 1

.937148

.957211

.978085 1

1/2

1/2

1/2

1/2

1/2

1/2

.967826

.984222 1

.960529

.980015 1

.962414

.981169 1

.953877

.976147 1

.985301 1

.981381 1

.982456 1

.977778 1

.983134 1

.978637 1

.979870 1

.974502 1

1

1

1

1

1

1

1

1

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

P(0,4) P(0,3) P(0,2) P(0,1) P(0,0)

=

B(0) 1

1.02

1.02

1.037958

1.037958

1.042854

1.042854

r(0) = 1.02

1.017606

1.022406

1.016031

1.020393

1.019193

1.024436

1.054597

1.054597

1.059125

1.059125

1.062869

1.019193

1.068337

1.068337

time 0 1 2 3 4

Page 31: Time

31

C o n s i d e r h o l d i n g a p o s i t i o n i n c o u p o n b o n d “ a ”a n d d e s i r i n g t o h e d g e t h i s p o s i t i o n w i t h a c o u p o nb o n d “ b ” .

L e t t h e t w o b o n d s ( a , b ) c o n s i d e r e d b e z e r o - c o u p o nb o n d s o f v a r i o u s m a t u r i t i e s ; i . e . ,

.923845.)4,0()0(

961169.)2,0()0(

Pb

andPaBB

Page 32: Time

32Figure 10.3: A Comparison of HJM Hedging versus Duration Hedging. The Bond Trading Strategy (na(0), nb(0)) is Given.

HJM .549287(1, -.445825)

Duration .480585(1, -.52020)

Actual PayoffHJM .56027Duration .489811

HJM .56027Duration .490581

Investment

1/2

1/2

r(0) = 1.02

time 0 1

Duration hedge (if corrcct)1.02(.480585)=.490197

Page 33: Time

33

1 T h e H J M H e d g e

F r o m C h a p t e r 8 , w e k n o w t h a t a h e d g e d p o r t f o l i oi n v o l v i n g t h e s e t w o z e r o s c a n o n l y b e o b t a i n e d b yc r e a t i n g t h e “ a ” b o n d s y n t h e t i c a l l y u s i n g t h e “ b ”b o n d .

T h e d e l t a g i v e s t h e a p p r o p r i a t e p o s i t i o n i n t h e “ b ”b o n d .

T h e e n t i r e p o r t f o l i o i s t h e n l o n g 1 u n i t o f b o n d “ a ”a n d s h o r t bn u n i t s o f b o n d “ b ” , i . e

.445835.);4,1();4,1();2,1();2,1(

1

dPuPdPuP

bn

andan

T h e i n i t i a l i n v e s t m e n t i n t h i s h e d g e d p o r t f o l i o i s :

.549287.)923845(.445835.)961169(.1

)4,0()2,0(

PbnPan

Page 34: Time

34

I f t h e p o r t f o l i o i s r i s k l e s s , t h e n t o a v o i d a r b i t r a g ea t t i m e 1 , i t s v a l u e s h o u l d b e t h e i n i t i a l i n v e s t m e n tt i m e s t h e s p o t r a t e o f i n t e r e s t o v e r [ 0 , 1 ] , i . e .

. 5 4 9 2 8 7 ( 1 . 0 2 ) = . 5 6 0 2 7 .

T h e v a l u e o f t h e H J M h e d g e d p o r t f o l i o a t t i m e 1c a n b e c o m p u t e d a s f o l l o w s :

T i m e 1 , s t a t e u

.56027.)947497(.445835.)982699(.1

);4,1();2,1(

uPbnuPan

T i m e 1 , s t a t e d

.56027.)937148(.445835.)978085(.1

);4,1();2,1(

dPbndPan

T h e v a l u e s a r e e x a c t l y a s n e e d e d t o g e n e r a t e ar i s k l e s s p o r t f o l i o . S o t h e H J M h e d g e w o r k s !

Page 35: Time

35

2 T h e D u r a t i o n H e d g e

W e n o w c a l c u l a t e t h e h e d g e b a s e d o n m o d i f i e dd u r a t i o n .

F o r t h i s e x a m p l e i t i s e a s y t o s h o w t h a t t h a td u r a t i o n o f b o n d s “ a ” a n d “ b ” a r e :

.4)0( 2)0( bDa ndaD

T h i s f o l l o w s b e c a u s e a z e r o - c o u p o n b o n d ' sd u r a t i o n i s a l w a y s e q u a l t o i t s t i m e t o m a t u r i t y .

G i v e n t h a t t h e f o r w a r d r a t e c u r v e i s f l a t a t 1 . 0 2 ,w e h a v e t h a t t h e y i e l d o n b o t h b o n d s “ a ” a n d “ b ”a r e i d e n t i c a l a n d e q u a l t o Y a ( 0 ) = Y b ( 0 ) = 1 . 0 2 .

T h e b o n d s ’ m o d i f i e d d u r a t i o n s a r e :

.0 2.1/4)0(,0 2.1/2)0(, bMDa ndaMD

Page 36: Time

36

T h e m o d i f i e d - d u r a t i o n h e d g e i s d e t e r m i n e d f r o m e x p r e s s i o n ( 2 . 1 3 ) i n C h a p t e r 2 . I t i s g i v e n b y

52020.02.1/)923845(.402.1/)961169(.2

)0()0(,

)0()0(,

1

bbMDaaMD

bn

an

B

B

T h e i n i t i a l i n v e s t m e n t i n t h i s p o r t f o l i o i s :

.480585.)923845(.52020.)961169(.1

)4,0()2,0(

PbnPan

Page 37: Time

37

Again, if the portfolio is riskless, then to avoidarbitrage at time 1, its value should be the initialinvestment times the spot rate of interest over[0,1], i.e.

(.480585)1.02 = .490197.

Page 38: Time

38

T h e v a l u e o f t h e d u r a t i o n h e d g e d p o r t f o l i o a t t i m e1 i s :

T i m e 1 , s t a t e u

.489811.)947497(.52020.)982699(.1

);4,1();2,1(

uPbnuPan

T i m e 1 , s t a t e d

.490581.)937148(.52020.)978085(.1

);4,1();2,1(

dPbndPan

T h i s p o r t f o l i o i s n o t r i s k l e s s ! I t e a r n s m o r e i n t h ed o w n s t a t e a n d l e s s i n t h e u p s t a t e t h e n t h e s p o tr a t e o f i n t e r e s t .

T h i s i l l u s t r a t e s t h a t t h e d u r a t i o n h e d g e d o e s n o tw o r k .